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Abstract: Pertinent issues of collagen antigenicity and immunogenicity are concisely re-
viewed as they relate to the design and application of biomedical devices. A brief discussion of
the fundamental concepts of collagen immunochemistry is presented, with a subsequent
review of documented clinical responses to devices containing reconstituted soluble or solu-
bilized collagen. The significance of atelocollagen, concerns regarding collagen-induced auto-
immunity, and other relevant topics are also addressed in the context of current understand-
ing of the human immune response to collagen. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res
Part B: Appl Biomater 71B: 343–354, 2004
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INTRODUCTION

Despite its widespread acceptance as a safe and multifunc-
tional material,1,2 the status of collagen as an animal-derived
biomaterial has always raised—and will likely always raise—
concerns regarding its potential to evoke immune responses.
Although the clinical incidence of adverse reactions to acel-
lular collagen implants is exceedingly rare, they do indeed
occur,3–8 and thus an understanding of their mechanisms is
essential for the design and application of new biomedical
devices.

A large proportion of the literature addressing the immuno-
chemistry of collagen was assembled in the 1960s and 1970s,
and observations from many of these investigations have formed
the basis for countless immunological and biochemical studies
ever since. In the field of applied biomaterials, however, use of
certain selective interpretations of these studies (in particular, to
infer generalizations regarding biocompatibility) has become
increasingly frequent, suggesting that a current review of the
pertinent issues would be beneficial.

The present review attempts to summarize the key aspects
of collagen antigenicity and immunogenicity as they relate to
the design and clinical application of biomedical devices. It
should be noted that the treatment presented here focuses on

antigenicity and immunogenicity as they relate to devices
comprised of reconstituted soluble or solubilized collagens;
discussion of decellularized grafts containing insoluble col-
lagen—including demineralized bone matrix9,10 and xeno-
genic heart valves11,12—is documented elsewhere, and is
included only where pertinent. The reader is referred to
Yannas13 for a comprehensive review on the structure and
material properties of collagen, and to the pertinent sections
of Friess14 for a concise and current overview of collagen
extraction methods. A thorough summary of the seminal
immunological studies on collagen can be found in Furth-
mayr and Timpl.15

MECHANISMS OF ANTIGENIC AND
IMMUNOGENIC RESPONSES TO COLLAGEN

Until 1954, collagen was largely considered to be nonimmu-
nogenic,16 and despite subsequent evidence demonstrating its
ability to interact with antibodies, it is still considered to be a
weak antigen.2,15 Although the interpretation of immuno-
chemical reactions to collagen-containing implants is often
complicated by the presence of noncollagenous proteins,17

cells and cell remnants,18,19 and artefacts from crosslinking
treatments,20–22 the wealth of literature devoted to the immu-
nological behavior of collagen itself provides an extensive
basis on which such interpretations can be based.

In addressing the immunochemical properties of any pro-
tein, it is pertinent to distinguish between the potentially
ambiguous terms “antigenicity” and “immunogenicity.” In
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the absence of standardized methods for purification and
characterization of reconstituted collagen preparations, how-
ever, it is exceedingly difficult to make such a distinction due
to the influence of processing and crosslinking, and the pres-
ence of noncollagenous impurities. For the purposes of the
present discussion, the treatment of Crumpton23 has been
adopted: antigenicity will be used to refer exclusively to the
ability to interact with secreted antibodies, while immunoge-
nicity will be used to refer to the ability to induce an immune
response—a process that includes the synthesis of (and inter-
action with) these same antibodies.

Antigenicity

In general, macromolecular features of a protein not common
to the host species are more likely to encourage an immune
response than shared features. Thus, the issue of collagen
antigenicity is intimately linked with the concepts of self-
tolerance and interspecies variation. Although reconstituted
collagens derived from human amnion have been developed
and applied to eliminate interspecies variation in preclinical
models,24,25 no such product has yet received approval for
clinical use, and thus an understanding of the antigenicity of
exogenous collagen remains an issue of utmost importance.

Macromolecular features on an antigen molecule that in-
teract with antibodies are referred to as antigenic determi-
nants, some of which elicit strong interactions, some weak
interactions, and some no interactions at all. Antigenic deter-
minants of collagen can be classified into one of three cate-
gories:

1. Helical [Fig. 1(a)]—recognition by antibodies dependent
on 3D conformation (i.e., the presence of an intact triple
helix)

2. Central [Fig. 1(b)]—located within the triple helical por-
tion of native collagen, but recognition based solely on
amino acid sequence and not 3D conformation

3. Terminal [Fig. 1(c)]—located in the nonhelical terminal
regions (telopeptides) of the molecule

The triple helical region of collagen has shown a high
degree of evolutionary stability, with variations in the amino
acid sequences not exceeding more than a few percent be-
tween mammalian species.26 A far greater degree of variabil-
ity is found in the nonhelical terminal regions, with up to half
of the amino acid residues in these regions exhibiting inter-
species variation.15 It is thus, perhaps, not surprising that a
number of studies have shown that the major antigenic de-
terminants for certain donor/recipient pairings are located
within these terminal regions.27–30 In contrast, however, stud-
ies performed using different species pairings have shown the
major determinants to be helical,31–33 and in still other cases,
evidence has been presented to suggest that central determi-
nants also play a major role in collagen–antibody interac-
tions.32 It is pertinent to note that central determinants are
often hidden eptitopes, only interacting with antibodies when

the triple helix has unwound;34 this fact may have implica-
tions for the antibody response to collagenous implants as
they denature of degrade.

Such variability clarifies an oft-encountered misconcep-
tion, namely, that the majority of—or even all—collagen
antigenicity is, without exception, attributable to its terminal
telopeptides.37–40 Although certain documented cases have
indicated that this holds true for some donor/recipient pair-
ings, a thorough examination of the literature indicates that
the location of major antigenic determinants on the collagen
molecule varies depending on both the donor and recipient
species (Table I). Although one study has been performed on
the helical and central determinants of bovine collagen in
humans,7 further detailed study is needed to characterize the
human immune response.

Immunogenicity

The immune response to an antigen involves a number of
molecule and cell types. Although binding of antibodies and
targeting by cytotoxic cells represent the mechanisms through
which antigens and antigen-infected cells are ultimately elim-
inated, the cascade of events linking exposure to elimination
comprises a complex—and, at times, poorly understood—
interaction between the humoral (antibody-mediated) and
cell-mediated responses (Fig. 2)

The humoral response involves the production of immu-
noglobin (Ig) molecules (antibodies) that bind directly to
antigens, blocking their active sites and marking them for
destruction by phagocytes and natural killer cells. In contrast,
the cell-mediated response involves cell types that do not
interact directly with antigens (T-cells), but interact instead
with host cells that show signs either of (1) being infected
with antigens or (2) having engulged them through phagocy-
tosis. Far from acting independently, however, these two
response mechanisms interact in certain instances, with anti-
body-producing B-cells functioning only under the regulatory
influence of T-cells in some cases (T-cell–dependent humoral
response) and independently in others (T-cell–independent
humoral response). Similarly, cell-mediated responses to
multicellular organisms too large to be phagocytosed are
often dependent on the prior attachment of antibodies.

In some individuals or species, immunological responses
to certain antigens are absent (immunological tolerance),
while in others a predisposition to strong responses to a given
antigen exists (hypersensitivity or allergy). Although both of
these conditions are often genetic, tolerance and hypersensi-
tivity can also be acquired after repeated or heavy exposure.
Disease and other altered immunological conditions can alter
the immune response to a given antigen, and, in extreme
cases, autoimmune disorders can develop, in which adverse
responses to the body’s own tissue occur.

The immune response to collagen contains both a humoral
and a cell-mediated component, the relative contributions of
which are not yet fully understood. Experiments in a murine
model have shown that the humoral response to bovine col-
lagen is T-cell dependent, with no measurable antibody re-
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sponse in the absence of T-cells.41 However, murine reac-
tions to rat and Ascaris collagens have been shown to be
T-cell independent,42 illustrating that—as in the case of an-
tigenicity—the immunogenic response elicited by collagen is
dependent both on the donor and the recipient species.

Exposure to exogenous collagen is believed to be primar-
ily dietary in nature. This is in contrast to airborne allergens
such as pollen, and to contact allergens such as latex and
nickel. Clinical observations indicate that 2–4% of the total
population possess an inherent immunity (allergy) to bovine

Figure 1. Classes of antigenic determinants of collagen.15 [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

TABLE I. Species Dependence of the Antibody Response to Type I Collagen15

Donor
Species

Recipient
Species

Major
Antigenic Sites

Minor
Antigenic Sites

Sites Apparently
Not Involved Ref

Calf Rabbit Terminal Helical, Central — 30
Rat Rabbit Terminal Helical, Central — 29
Rat Chicken Helical, Central — Terminal 31,32
Calf Rat Helical — Terminal, Central 31,35,36
Calf Mouse Helical — Terminal, Central 33
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Figure 2. Humoral and cell-mediated immune responses. IgM—immunoglobin (Ig) molecule acting as
the antigen receptor on the surface of B-cells (also the first antibody secreted during primary
response); IgG—predominant serum Ig, appears after initial secretion of IgM; IgA, IgE—serum anti-
bodies also appearing after initial secretion of IgM; CD4�—surface marker/molecule charactericstic of
helper T-cells; CD8�—surface marker/molecule characteristic of cytotoxic T-cells. [Color figure can
be viewed in the online issue, which is available at www.interscience.wiley.com.]
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type I collagen.43–46 Comparison with the 10–15% of the
total population susceptible to nickel-sensitization,47,48 or the
estimated 6% (7–17% of healthcare workers) susceptible to
latex allergy49 shows this incidence to be decidedly low.

Common clinical practice assesses the risk of immune
reactions to collagen on the basis of levels of circulating
antibodies, with most physicians recommending two skin
tests prior to treatment.50 Although experience suggests that
these precautions greatly reduce the number patients devel-
oping immune reactions, an additional 1–2% of patients still
encounter them.

CLINICAL RESPONSES TO COLLAGEN

The first widespread use of collagen in the surgical environ-
ment was in the capacity of the suture material most com-
monly referred to as catgut.51 Catgut consists of intestinal
tissue from cattle or sheep treated to remove all noncollag-
enous material, and crosslinked using a variety of chemical
treatments;52 there has been no known use of the intestines of
a cat. Although a number of studies inferring possible allergic
reactions were documented from 1930–1970,53,54 an equal
number of studies argued against such a relationship, attrib-
uting the stigma of catgut allergy to septic complications or
psychosomatic factors.52,55 Although precise immunochemi-
cal studies using human antibodies would undoubtedly con-
tribute towards elucidating the questions regarding catgut
allergy, the advent of synthetic polymer sutures has made
their tissue-derived equivalents somewhat obsolete, and
hence the likelihood of such a study small.

Perhaps the most thoroughly characterized collagen-based
devices are the injectable collagens used for soft tissue aug-
mentation. Generally produced via pepsin extraction from
calf skin, these products are used commonly in cosmetic
surgery, and immunological studies documenting responses
to a number of them provide a useful tool for the statistical
evaluation of immune responses to collagen in general.43–45,56,57

Results from these studies have consistently shown the inci-
dence of preexisting hypersensitivity to bovine collagen to be
in the range of 2–4% percent, with the postoperative devel-
opment of bovine collagen allergy in an additional 1% of
subjects.43–45 In the rare (�3%) incidence of adverse reac-
tions, granuloma and localized inflammation have been ob-
served—reactions that generally resolve within a few months,
and never last longer than 1 year. Premature resorption or
other adverse effects on implant function have not been
reported in conjunction with these reactions, and their treat-
ment using immunosuppressants has been shown to be effec-
tive.6 Routine practice dictates that all patients are pre-
screened for preexisting collagen allergy, with patients ex-
hibiting signs of hypersensitivity excluded from treatment.

Composites of pepsin-solubilized bovine type I collagen
and calcium phosphates have recently seen significant use as
bone fillers for spinal fusion,58,59 fracture fixation,60,61 and
maxillofacial applications.62–64 As these materials are un-
crosslinked, they provide little in the way of mechanical

strength, but when used in combination with internal or
external fixation devices they have produced encouraging
results. Immunological responses to these materials have
been limited to elevated levels of circulating antibodies to
collagen, with no reported effect on the efficacy of the im-
plant itself.60,62,63 As with the case of injectable collagen,
screening for collagen allergy is routinely performed prior to
implantation.

Dermal substitutes for wound cover and wound closure
have provided an application for some of the most advanced
collagenous implants. These devices have generally been
layered to mimic the histological structure of skin, and have
included, among others: (a) porous glutaraldehyde- and
DHT-crosslinked collagen–glycosaminoglycan copolymers
combined with a silicone membrane,65–67 (b) trilayered as-
semblies of silicone, nylon mesh, and collagen,68–70 and (c)
neonatal keratinocytes alternated with neonatal fibroblasts
seeded in collagen.46,71

Both bovine67,71 and porcine69 dermal collagens have
been used to develop these products, with both acid ex-
traction67,71 and pepsin treatment70 employed depending
on the device. Although immunological data regarding the
clinical use of these materials is arguably less comprehen-
sive than that for other implant types, no collagen-induced
adverse immunological responses to nonallograft dermal
substitutes have been documented, despite the numerous
collagen sources and varied extraction methods used (Ta-
ble II ). The absence of any documented variations in the
human immunological response to devices produced from
both acid-solubilized (telopeptide-intact) collagen and
pepsin-solubilized (telopeptide-deficient) collagen is par-
ticularly noteworthy, as it suggests that telopeptide re-
moval provides no immunological benefit of clinical sig-
nificance.

The ability of fibrillar collagen to promote platelet aggre-
gation and subsequent clotting has led to the use of collagen-
containing devices as hemostats,72–75 particularly in applica-
tions where blood vessels cannot easily be clamped.75,76

Although largely successful, their use has shown both mar-
ginally higher incidences of induced collagen allergy,72 and a
granulomatous foreign-body reaction was observed after ap-
plication of a microfibrillar collagen hemostat in the spleen.8

It should be noted, however, that such devices often contain
noncollagenous protein contaminants, which some studies
have been shown to be the main immunogenic components of
collagen hemostats.17,73

Documented immunological reactions to other forms of
collagen devices have generally followed the trends of der-
mal, osseous, and cosmetic devices, with adverse immune
reactions occurring extremely infrequently. Fluid buildup
(oedema, angioedema) has been reported in the throat and
periocular regions following both ingestion of bovine colla-
gen and use of bovine collagen corneal shields,3 but only in
isolated cases without statistical data indicating incidence of
occurrence.

347ANTIGENICITY AND IMMUNOGENICITY OF COLLAGEN



T
A

B
LE

II.
Im

m
un

o
lo

g
ic

al
O

b
se

rv
at

io
ns

fr
o

m
S

el
ec

te
d

C
lin

ic
al

T
ri

al
s

Pr
od

uc
t

C
om

po
si

tio
n

C
ol

la
ge

n
D

oc
um

en
te

d
T

ri
al

s

R
ef

T
yp

e
E

xt
ra

ct
io

n
X

-L
in

ki
ng

A
pp

lic
at

io
ns

C
as

es
Im

m
un

ol
og

ic
al

R
es

po
ns

es

C
os

m
et

ic
Z

yd
er

m
/Z

yp
la

st
C

ol
la

ge
n

C
or

p,
Pa

lo
A

lto
,

C
A

C
ol

la
ge

n
B

ov
in

e
de

rm
al

T
yp

e
I

(9
5%

),
T

yp
e

II
I

(5
%

)

Pe
ps

in
N

on
e

In
je

ct
ab

le
so

ft
tis

su
e

au
gm

en
ta

tio
n

�
1,

00
0,

00
0

pr
ee

xi
st

in
g

bo
vi

ne
co

lla
ge

n
al

le
rg

y
in

2%
of

pa
tie

nt
s;

1%
de

ve
lo

pe
d

al
le

rg
y

in
re

sp
on

se
to

im
pl

an
t;

ad
ve

rs
e

re
ac

tio
n

to
im

pl
an

t
(l

oc
al

iz
ed

in
fla

m
m

at
io

n,
gr

an
ul

om
a

fo
rm

at
io

n)
in

1%
of

pa
tie

nt
s

43
,4

4,
77

A
te

lo
co

lla
ge

n
K

ok
en

:
T

ok
yo

,
Ja

pa
n

C
ol

la
ge

n
B

ov
in

e
de

rm
al

T
yp

e
I

Pe
ps

in
N

on
e

In
je

ct
ab

le
so

ft
tis

su
e

au
gm

en
ta

tio
n

70
5

pr
ee

xi
st

in
g

bo
vi

ne
co

lla
ge

n
al

le
rg

y
in

3.
8%

of
pa

tie
nt

s;
ad

ve
rs

e
re

ac
tio

n
(l

oc
al

iz
ed

in
fla

m
m

at
io

n)
to

im
pl

an
t

ob
se

rv
ed

in
2.

3%
of

pa
tie

nt
s

45

D
er

m
at

ol
og

ic
In

te
gr

a
In

te
gr

a
L

if
e

Sc
ie

nc
e

C
or

p,
Pl

ai
ns

bo
ro

,
N

J

C
ol

la
ge

n-
G

A
G

/
si

lic
on

e
B

ov
in

e
de

rm
al

T
yp

e
I

A
ci

d
G

lu
t, D
H

T
Sk

in su
bs

tit
ut

e
fo

r
w

ou
nd

cl
os

ur
e

15
9

no
ad

ve
rs

e
re

ac
tio

ns
;

sp
ec

ifi
c

im
m

un
ol

og
ic

al
da

ta
no

t
pr

es
en

te
d

67
,7

8–
81

A
pl

ig
ra

f
O

rg
an

og
en

es
is

In
c.

,
C

an
to

n,
M

A

K
er

at
in

oc
yt

es
/

co
lla

ge
n

an
d

fib
ro

bl
as

ts

B
ov

in
e

de
rm

al
T

yp
e

I
A

ci
d

N
on

e
Sk

in su
bs

tit
ut

e
fo

r
w

ou
nd

co
ve

r

10
7

pr
ee

xi
st

in
g

bo
vi

ne
co

lla
ge

n
al

le
rg

y
in

3.
0%

of
pa

tie
nt

s;
no

pa
tie

nt
s

de
ve

lo
pe

d
al

le
rg

y
in

re
sp

on
se

to
im

pl
an

t;
no

ad
ve

rs
e

re
ac

tio
ns

of
an

y
ki

nd
ob

se
rv

ed
in

re
sp

on
se

to
gr

af
ts

46
,7

1

O
rt

ho
pa

ed
ic

C
ol

la
gr

af
t

Z
im

m
er

C
or

po
ra

tio
n,

W
ar

sa
w

,
IN

C
ol

la
ge

n/
H

A
p/

T
C

P
B

ov
in

e
de

rm
al

T
yp

e
I

Pe
ps

in
N

on
e

B
on

e
fil

le
r

fo
r

sp
in

al
fu

si
on

,
fr

ac
tu

re
fix

at
io

n

30
3

po
st

op
er

at
iv

e
de

ve
lo

pm
en

t
of

bo
vi

ne
co

lla
ge

n
al

le
rg

y
ob

se
rv

ed
in

0.
33

%
of

pa
tie

nt
s

(1
ca

se
);

no
as

so
ci

at
ed

co
m

pl
ic

at
io

ns

59
,6

0,
82

A
lv

eo
fo

rm
C

ol
la

ge
n

C
or

po
ra

tio
n,

Pa
lo

A
lto

,
C

A

C
ol

la
ge

n/
H

A
p

B
ov

in
e

de
rm

al
T

yp
e

I
N

ot sp
ec

ifi
ed

N
ot sp

ec
ifi

ed
B

on
e

fil
le

r
fo

r
m

ax
ill

ae
an

d
m

an
di

bu
la

r
au

gm
en

ta
tio

n

77
pr

ee
xi

st
in

g
bo

vi
ne

co
lla

ge
n

al
le

rg
y

in
6.

5%
of

pa
tie

nt
s;

ad
di

tio
na

l
6.

5%
de

ve
lo

pe
d

al
le

rg
y

po
st

op
er

at
iv

el
y;

no
ad

ve
rs

e
af

fe
ct

on
su

rg
ic

al
ou

tc
om

e

62
,6

3

O
th

er
C

oS
ta

si
s

C
oh

es
io

n
T

ec
hn

ol
og

ie
s,

Pa
lo

A
lto

,
C

A

C
ol

la
ge

n/
th

ro
m

bi
n

B
ov

in
e

de
rm

al
T

yp
e

I
Pe

ps
in

N
on

e
Sp

ra
ya

bl
e

su
rg

ic
al

he
m

os
ta

t

92
pr

ee
xi

st
in

g
bo

vi
ne

co
lla

ge
n

al
le

rg
y

in
1%

of
pa

tie
nt

s;
ad

di
tio

na
l

8%
de

ve
lo

pe
d

al
le

rg
y

in
re

sp
on

se
to

im
pl

an
t;

no
ad

ve
rs

e
af

fe
ct

s
on

op
er

at
iv

e
ou

tc
om

e

72

N
er

ve
R

eg
en

er
at

io
n

C
on

du
it

N
on

co
m

m
er

ci
al

,
K

yo
to

,
Ja

pa
n

PG
A tu

be
/c

ol
la

ge
n

fil
le

r

Po
rc

in
e

de
rm

al
T

yp
e

I
(8

5%
),

T
yp

e
II

I
(1

5%
)

Pe
ps

in
D

H
T

D
ig

ita
l,

pe
ro

ne
al

ne
rv

e
gr

af
tin

g

65
no

ad
ve

rs
e

re
ac

tio
ns

;
sp

ec
ifi

c
im

m
un

ol
og

ic
al

da
ta

no
t

pr
es

en
te

d

83
,8

4

G
A

G
�

G
ly

co
sa

m
in

og
ly

ca
n;

H
A

p
�

H
yd

ro
xy

ap
at

ite
;

T
C

P
�

tr
ic

al
ci

um
ph

os
pa

te
;

G
lu

t
�

gl
ut

ar
al

de
hy

de
;

D
H

T
�

de
hy

dr
ot

he
rm

al
tr

ea
tm

en
t

348 LYNN, YANNAS, AND BONFIELD



RECENT ISSUES

Atelocollagen

Over the past decade, the term atelocollagen—not to be con-
fused with the commercial dermal substitute of the same name
(Atelocollagen�)38—has been used with increasing frequency to
refer to collagens treated with proteolytic enzymes to remove the
terminal telopeptides.38,85–88 The appearance of this term did
not actually correspond to the development of any new extrac-
tion method, but was rather a means to underscore the purported
immunological benefits of telopeptide removal.

Telopeptide cleavage results in collagen whose triple-
helical conformation is intact,28,30,39 yet as both the amino
(N)- and carboxyl (C)-telopeptides play important roles in
crosslinking and fibril formation, their complete removal
results in an amorphous arrangement of collagen molecules
and a consequent loss of the banded-fibril pattern in the
reconstituted product.90 Furthermore, telopeptide removal re-
sults in a significant increase in solubility.

The original observations that telopeptide cleavage affects
the antigenic response to collagen were made following pep-
sin treatment,27,28,30,89 and it is thus not surprising that pepsin
is the most commonly used enzyme for producing implant-
grade atelocollagen. Although it is well established that pep-
sin cleaves only at sites within the terminal regions, a com-
mon misconception is that it completely removes both the N-
and C-telopeptides. In fact, it has been shown that, in some
cases, telopeptide remnants persisting following pepsin treat-
ment (Fig. 3) are sufficiently large that the antigenic activity
of the pepsin-treated and native forms are largely indistin-

guishable.31 The ability of pepsin-solubilized collagen to
form fibrils upon coprecipitation with calcium salts91 may
also be due in part to the fibril-forming capacity imparted by
residual telopeptides.

As discussed previously, the location of the major anti-
genic sites on the collagen molecule varies depending on
donor/recipient species pairing. The lone documented inves-
tigation of the human antigenic response to exogenous col-
lagen reported the helical and central antigenic determinants
of pepsin-solubilized (telopeptide-deficient) bovine collagen
against human antiserum;7 no such studies of the terminal
antigenic sites on bovine collagen or investigations of any of
the antigenic sites on collagen from other species have been
documented. Thus, direct evidence showing that the major
antigenic determinants for the bovine/human and porcine/
human donor/recipient pairs reside within the telopeptides
has yet to be produced.

Numerous publications37–39 and even a long-standing
patent40 claim that telopeptide removal results in collagen
that is “nonimmunogenic, or possesses a negligibly low level
of immunogenicity.”40 These claims are often supported by
selective referencing of studies performed on calf/rabbit28,30

and rat/rabbit29 donor/recipient pairs. This practice is, how-
ever, grossly misleading, as it ignores the wealth of evidence
showing the major antigenic determinants of other donor/
recipient pairs to be central or helical, with terminal sites
having no apparent involvement in the antibody response
whatsoever.31–33

Given the high degree of interspecies variation within the
telopeptides,15 it is difficult to argue against the existence of

Figure 3. Telopeptide removal via pepsin treatment.
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at least a potential immunological benefit of using telopep-
tide-depleted collagen in place of acid soluble forms, and
indeed, there may exist a number of processing-related ben-
efits resulting from the increased solubility and amorphous
nature of atelocollagen. At present, however, the claim that it
provides any clinically significant immunological benefit re-
mains unsubstantiated.

Crosslinking

Considerable literature has been devoted to the development
of crosslinking treatments to tailor the mechanical and deg-
radation properties of collagen implants. Physical,92–95 chem-
ical,21,96–99 and combination67,87,100 treatments have been
extensively developed, characterized, and applied in both in
vitro and in vivo models.

Of these methods, glutaraldehyde treatment is by far the
most well known and well characterized, and is still the only
commercially viable process to have achieved widespread
acceptance.99 Despite its many advantages, however, much
recent literature has been devoted to the development of
alternative crosslinking treatments, to avoid the well-docu-
mented cytotoxic reactions that glutaraldehyde is known to
have the potential to evoke.20,21,101–103 It should be noted,
however, that although these reactions have been reported
often in vitro, evidence of their occurrence has yet to be
produced in vivo. In any event, cytotoxic reactions to glutar-
aldehyde result from the persistence of residual traces of the
crosslinking agent itself, and not from changes in the struc-
ture of collagen.

Glutaraldehyde treatment has long been believed to reduce
the antigenicity of xenogenic collagen.22 This claim has often
been supported by arguments that crosslink formation shields
or modifies major antigenic sites, thus reducing their capacity
to interact with antibodies. Although such arguments are
plausible, they have not been substantiated by clinical and
immunological evidence, and recent evidence—obtained fol-
lowing the implantation of xenogenic caprine heart valves in
a canine model—has, in fact, shown glutaraldehyde treat-
ment to result in increased antigenicity.104

In general, the changes in immunochemical behavior in-
duced by glutaraldehyde—and indeed all crosslinking tech-
niques—are as yet poorly understood, and thus explicit ex-
perimental evidence is required to determine the immunolog-
ical effects of a given crosslinking treatment.

Dependence of Immunogenicity on Implantation Site

The discussion of antigenicity to this point has focused
mainly on devices containing isolated and purified collagen in
soluble or solubilized form. However, the use of decellular-
ized sections of extracellular matrix for tissue regeneration
scaffolds is a well-known and well-studied technique, and an
examination of studies pertaining to their immunological
properties reveals a pertinent feature. It should be noted that
such grafts contain, in addition to collagen, antigenic noncol-
lagenous proteins,17 and—depending on the method of de-
cellularization—residual cell-associated components,104

whose presence or absence typically dominates observed
immunogenic responses.105

Despite the demonstrated immunogenicity of porcine and
bovine xenograft heart valves,18,104 their clinical application
has shown that they do not generally illicit an adverse reac-
tion.11,12,106 It has been proposed that this apparent immu-
nosilence is due primarily to the fact that the high flow
environment of the aortic outflow tract shields the grafts from
cellular interactions,104 or, stated more generally, isolates
them from the lymphatic system as a whole. Support for this
hypothesis has been provided in the form of host-versus-graft
type rejection of a commonly-used heart valve material, ob-
served upon intramuscular implantation—an implantation
site that provides ready exposure to the immune system.20

Studies of the immune responses evoked at various osse-
ous implantation sites have similarly shown that marrow
exposure at cancellous sites results in foreign-body reactions
both more sensitive and more reproducible than responses
evoked at cortical sites, which physically are more isolated
from the marrow and its source of lymphoid progenitor
cells.107 Furthermore, major thermal injury is known to acti-
vate an inflammatory cascade thought to contribute to the
development of postburn immunosuppression.108 Although
dermal substitutes are not physically isolated from the lym-
phatic system following thermal injury, suppressed reactivity,
expansion, and differentiation of T- and B-cells can mean that
grafts are largely isolated from its activity.

Such evidence demonstrates the importance of careful
selection of preclinical models for evaluating immune re-
sponses to new devices, as evaluation in shielded sites or
under altered immunological conditions may not provide a
full representation of the response elicited in a given clinical
application.

Collagen-Induced Autoimmunity

The discovery that injections of both allogenous and exoge-
nous type II collagen emulsified in Freund’s adjuvant induced
arthritis in rats,109 primates,110,111 and certain strains of
mice112 triggered concerns that an analogous response could
occur in humans. These fears were further supported by
subsequent correlation between observations that antibodies
to type II collagen play a major role in the initiation of this
reaction,113,114 and the observed presence of type II antibod-
ies in rheumatoid arthritis patients.115–117

Although the parallels between collagen-induced arthritis
in lab animals and rheumatoid arthritis in humans are both
numerous and strong, to assess the risk of autoimmunity
induced by collagen implants, a number of clarifications are
pertinent:

1. types II and XI are the only collagens that have been
shown to be arthritogenic;118 collagen types I and III do
not induce autoimmune reactions;109,112

2. induction of collagen-induced arthritis requires, at the very
least, the presence of an adjuvant to amplify the immune
response;111,112
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3. unlike the case of collagen-induced arthritis, autoreactivity
to cartilage type II collagen is not a defining feature of
human rheumatoid arthritis, and may be a consequence of
the disease as opposed its cause;119

4. reactions to collagen implants observed in humans to date
have been directed exclusively at the implant itself, and
have not in any way been autoimmune in nature.

Although there is no evidence to support the theory that
induced autoimmunity in humans could result from the im-
plantation of devices containing type II collagen, there is
equally no direct evidence to disprove it. Although a number
of type II collagen containing devices have been tested in
animal models without adverse immune responses,120,121

none of these studies have been performed in species previ-
ously shown to be susceptible to collagen-induced arthritis.

Because nearly all current collagen-containing implants
are composed of type I (and to a lesser extent type III),
collagen-induced autoimmunity is not generally considered a
potential concern. However, with the progress of research to
address the issue of repair and regeneration of cartilage—a
tissue rich in type II collagen—is likely to come increased use
of type II collagen as an implant material. Thus, the results of
ongoing research aimed at elucidating the pathology of col-
lagen-induced arthritis is, and will continue to be, of great
interest.

CONCLUSIONS

The success of collagen as a biomaterial is due in no small
part to its low antigenicity and immunogenicity. Nonetheless,
for the design and application of new biomedical devices, an
understanding of the underlying mechanisms of the human
immune response to collagen—and the clinical significance
thereof—is still of utmost importance. In light of the wealth
of literature pertaining to collagen immunochemistry, care
must be taken to ensure that the results of studies performed
on specific donor/recipient species-pairs are not used to make
broad generalizations regarding the immunological compati-
bility of all collagen types. Care should similarly be taken to
ensure that claims that certain processing treatments reduce
antigenicity are based on experimental evidence, and not
merely on conjecture. Furthermore, due diligence is required
to ensure that the risks posed by newly discovered disorders
and pathogens are thoroughly assessed and addressed appro-
priately.
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