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Hematophagous organisms must overcome host hemostasis in order to locate 
blood and maintain its flow during ingestion (1, 2). Platelet aggregation provides 
the main hemostatic obstacle because duration of bleeding of lacerated small 
vessels depends mainly upon platelet function (3, 4). Important stimuli inducing 
platelet aggregation include ADP (released by injured cells), collagen fibrils 
(exposed in subendotheliai tissues), thrombin (produced after activation of the 
coagulation cascade) and PAF I (platelet-aggregating factor, released by leuko- 
cytes). Activated platelets may release thromboxane A2 (a potent vasoconstrictor 
and platelet-aggregating stimulus), ADP, and serotonin (which further enhance 
platelet aggregation and vessel constriction) (5). In addition, platelet-derived 
factors will also contribute to thrombin formation and clotting, thus providing 
rigidity to the platelet plug (4). Thus, one can anticipate that any antihemostatic 
properties of blood-feeding arthropods will focus mainly on platelet aggregation 
and, secondarily, on vascular contraction or coagulation. 

Hard ticks feed solely on blood, each engorgement generally extending over 
at least several days, thereby providing ample time for inflammation to promote 
hemostasis at the feeding site, while increasing the tick's need to antagonize this 
process. Leukocyte-derived products, particularly PAF, would enhance hemosta- 
sis at the point of tick attachment. Immune mechanisms may further reduce 
feeding success by enhancing inflammatory reactions (6, 7). Interestingly, saliva 
of some ticks includes an anticoagulant, an antihistamine, and prostaglan- 
dins(PG); these compounds may facilitate feeding (8). Other enzymes, including 
esterases and glycosidases have been identified, but their functions remain 
unknown (8). Antiplatelet activity, however, has not been described. 

Their prolonged period of contact with a narrow range of hosts suggests that 
hard ticks may possess effective antihemostatic mechanisms peculiarly adapted 
to interfere with the inflammatory mechanisms of particular hosts. Accordingly, 
we sought to describe the salivary armamentarium of such a tick, and to ascribe 
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i Abbreviations used in this paper: IL-2, interleukin 2; mAb, monoclonal antibody, PAF, platelet- 
aggregating factor; PG, prostaglandin; RIA, radioimmunoassay. 
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function to its various components .  In particular,  we a t tempted  to identify 
platelet ant iaggregat ing activity, as well as ant i inf lammatory components  in saliva 
harvested f rom Ixodes dammini. 

Mate r i a l s  a n d  M e t h o d s  
Materials. PG were kindly provided by Dr. J. E. Pike (Upjohn Co. Kalamazoo, MI). 

Glucose and inorganic salts used were American Chemical Society-standard. Other 
reagents were obtained from Sigma Chemical Co., St. Louis, MO. Anti-Thy-1 monoclonal 
antibody (mAb) was kindly provided by Dr. Ethan Shevach (Laboratory of Immunology, 
National Institutes of Health (9). 

Source of Ticks. Adult I. dammini ticks were collected by flagging on Great Island, in 
West Yarmouth on Cape Cod in southern Massachusetts, during the spring of 1984. 

Harvest of Saliva. Piiocarpine was used to induce ticks to salivate (10, 11). Ticks were 
permitted to engorge for 4-5 d on the ear of a rabbit, after which they were removed by 
traction. Ticks weighed 25-175 mg. To collect saliva, 1 #1 of  a 5% (wt/vol) pilocarpine 
hydrochloride solution in 0.7 M NaCI was injected through glass micropipettes near the 
corner of the scutum while the ticks were restrained on glass slides by adhesive tape. 
Saliva was collected in glass tubes throughout 2 h postinjection at 35°C in a humid 
chamber. 1-25 mg of saliva were collected per tick, and samples were stored at -27°C.  
Collections <3 mg were pooled until ___ 3 mg was obtained. <5% of samples were small 
enough to require such pooling. 

Platelet Aggregation. Platelet aggregation was monitored in an aggregometer equipped 
with a 0.1 ml cuvette (12, 13) using human citrated platelet-rich plasma (0.38% final 
citrate). Five or more saliva samples were pooled for each experiment. 

Smooth Muscle Bioassay. Superfused rat stomach strips were prepared as previously 
described (14), but using aerated Tyrode's solution (15). In some experiments, laminar 
flow superfusion was used (14). Antagonists added to the perfusion fluid included: 
methysergide maleate (2 x 10 -7 g/ml), mepyramine hydrochloride (10 -7 g/ml), phenox- 
ybenzamine hydrochloride (10-! g/ml), propanolol hydrochloride (2 x 10 -6 g/ml), hyos- 
cine hydrobromide (10 -7 g/ml), and indomethacin (2 X 10 -6 g/ml). Superfusion was done 
either at 2.0 ml/min or 0.15 ml/min (laminar flow superfusion mode) at 30°C, because 
we observed maximum sensitivity of preparations at this temperature. The perfusion 
liquid, delivered through a microperpex peristaltic pump (LKB Instruments, Inc., Gaith- 
ersburg, MD), was interrupted for 10 s when standards or individual saliva samples were 
added. Such samples (---5 #1) were added in 0.1-ml aliquots dissolved in Tyrode's solution. 
Isometric contractions were recorded using a Harvard isotonic/isometric transducer. 
Guinea pig ileum preparations were prepared using a 5 ml bath (15). 

Clotting Assays. Recalcification time was determined by incubating 50 #1 of citrated 
human plasma with 0.15 M NaCI in 1 x 7 cm glass tubes (16). After 1 min at 37°C, 50 
el of CaCI2 were added, and tubes then inspected for clotting every 10 s. Tick saliva (2.5 
#l from individual samples) was added with the NaCI solution, when appropriate. To 
determine prothrombin time (17), human citrated plasma, in 50-#1 samples, was incubated 
for 1 min at 37°C, and 100 #1 of a thromboplastin (Sigma Chemical Co.) -CaCI~ (12.5 
mM) mixture was added to the plasma. Clotting was followed by shaking the tube 
continuously on the surface of a water bath. Tick saliva (2.5 #i) or 0.15 M NaC1 solutions 
were added to the plasma, when appropriate. 

Apyrase Determination. Apyrase activity was identified by measuring orthophosphate 
release (18) from ATP, ADP, or AMP in a reaction medium containing 50 mM Tris HC1, 
pH 7.5, 100 mM NaCi, 5 mM MgCI~, 2 mM nucleotide, and 1 #1 of tick saliva, in a final 
volume of 0.1 ml. Reactions proceeded for 30 min at 37°C, and were stopped by the 
addition of acid molybdate reagent. 1 U of enzymatic activity represents the amount of 
enzyme that produces orthophosphate at 1 #mol/min at 37°C, at the specified reaction 
mixture. 

PGE2 Radioimmunoassay (RIA). RIA for PGE~ was performed as described previously 
(19). 
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334 PROPERTIES OF TICK SALIVA 

Production and Assay of T Cell Hybridomas. The T hybridomas (E8.A 1) used in these 
experiments were produced by fusing sheep insulin-primed lymph node cells with the 
BW 5147 AKR thymoma (20). This cell line is an autoreactive I-Ak-specific T cell. To 
assay activity, T hybridoma cells (105 cells/well) were cultured with anti-Thy-1 (I:1000 
dilution) in complete medium (RPMI 1640 containing 8% fetal calf serum, 300 #g]ml 
penicillin, 50 #M 2-mercaptoethanol, and 10 mM Hepes buffer). Cells were cultured both 
in the presence and absence of tick saliva. Samples of saliva, ranging from 6 to 20 #1 were 
diluted to 0.2 ml, and 1 #1 of this diluted saliva was added to each well, to a 200 #1 total 
volume per well. After incubating for 24 h at 37°C, supernatants were collected and 
assayed for interleukin (IL-2) content in a secondary culture using IL-2-dependent T cell 
line HT-2 (4 × 103 cells/100 #l/well). HT-2 cells were cultured for 24 h at 370C in the 
presence of 60 #i primary culture supernatants. 1 #C of [SH]thymidine (6.8 Ci]nmol; 
Amersham Corp., Arlington Heights, IL) was added to each well, and cells were harvested 
after 16-24 h incubation on a miniMASH II (M. A. Bioproducts, Walkersville, MD). The 
degree of stimulation was measured by the amount of radioactivity retained by the glass 
fiber filter, as determined by liquid scintilation counting. 

Plasma Bradykinin Generation. Plasma bradykinin was generated by adding 25 #1 of a 
4% (wt/vol) kaolin suspension in 0.15 M NaCi to 100 #1 of human citrated, platelet-poor 
plasma (21). After 1 rain at 37°C, the mixture was added to the guinea pig ileum 
preparation. 

Results  

Platelet Antiaggregating Activity. To detect platelet antiaggregating activity, 4 
~1 of  tick saliva were added to 100 #1 of  citrated human plateletorich plasma in 
an aggregometer cuvette. Platelet aggregation was triggered by adding ADP, 
collagen suspension, or PAF, all used in concentrations that triggered maximum 
platelet response. A minor and transient episode of  platelet aggregatioo followed 
addition of  saliva to the platelet-rich plasma (Figs. 1-3), but subsequent aggre- 
gation was aborted or delayed. We conclude that the saliva of  this tick contains 
antiplatelet activity that is effective against the main stimuli of  platelet aggrega- 
tion anticipated at the tick's feeding site. 

Anticoagulant Activity. Because coagulation not only consolidates the already 
formed platelet plug, but contributes to its formation by promoting platelet 
aggregation (4-5), we sought evidence of  an anticoagulant in the tick saliva. 
First, we determined whether saliva may delay recalcification time of  citrated 
human plasma. Samples that normally clotted in 88 + 1 s, clotted in 131 _+ 10 s 
when 2.5 t~i of  saliva were added (k _+ SE; n = 6; P < 0.01, paired t test). Addition 
of  saliva did not affect prothrombin time. Because this assay depends on factors 
VII, X, and thrombin as well as fibrinogen, we conclude that saliva delays 
coagulation by acting on the intrinsic pathway of  the coagulation cascade before 
factor X activation. This activity may help prevent coagulation and thrombin 
formation at the feeding site. 

Apyrase Activity. Apyrase enzymes have recently been described in the saliva 
of  blood-sucking bugs (26), tse-tse flies (28), and mosquitoes (29), where they 
account, at least in part, for the anti-platelet-aggregating properties of  the saliva 
of  these unrelated blood-feeding insects. Accordingly, we investigated whether 
L dammini may have evolved a similar antiplatelet system. Indeed, tick saliva 
hydrolyzed both ATP and ADP (Table I), but not AMP (not shown), and this 
characterizes apyrase activity. When estimating this activity, provision was made 
for the presence of  2.5 + 0.3 mM orthophosphate (n = 10) in the saliva. 
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FIGURE 1. Inhibition of ADP-induced platelet aggregation by tick saliva. Platelet-richplasma 
(100 ~I) was preincubated for 1 min with continuous stirring. At the beginning of the tracings, 
saline (control) or saliva was added (4 ~1). The arrow marks the addition of ADP (2 ~M final 
concentration). 
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FIGURE 2. Inhibition of collagen-induced platelet aggregation by tick saliva. Other conditions 
as in Fig. 1. 
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FIGURE 3. Inhibition of PAF-acether-induced platelet aggregation by tick saliva. Final 
concentration of PAF was 50 ng/ml. Other conditions as in Fig. 1. 

TABLE I 

Apyrase Activity in Samples of Saliva Individually Harvested From 
Adult, Female Ixodes dammini Stimulated by Pilocarpine 

Sample number 
Activity with substrate* 

ATP ADP 

1 0.36 0,33 
2 0.11 0,12 
3 1.84 1.48 
4 0.12 0,11 
5 0.25 0.24 
6 0.75 O.6O 
7 0.67 0.71 
8 2.95 2.39 
9 0.28 0.26 

10 1.66 1.47 

_+ SE: 0.90 _+ 0.30 0.77 + 0.24 

* Expressed as micromoles of orthophosphate released per minute per 
milliliter of tick saliva at 37°C. 
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Preliminary characterization of  this enzyme activity in pooled saliva indicated a 
requirement for divalent cations, and that Mg ++ was a better activator than Ca ++. 
Optimum pH was 8.5-9.0 both for ATP and ADP hydrolysis, and both activities 
were stimulated by 20 mM 2-mercaptoethanol. The ratio of  ATP to ADP 
hydrolysis at pH 7.5 was 1.10 __. 0.04 to 1 (n -- 10), demonstrating close 
correlation between the two hydrolytic activities, despite a broad range of  activity 
when individual samples were compared (Table I). We conclude that tick saliva 
contains an enzyme with apyrase activity. 

PGE2 Characterization. Anti-platelet-aggregating activity seemed too great to 
be explained solely by apyrase, particularly the powerful inhibition of  PAF- 
induced platelet aggregation (Fig. 3) (5). Substances that increase platelet cyclic 
AMP are good inhibitors of  PAF-induced platelet aggregation (5), and among 
these are PG of the E series and prostacyclin (5). Evidence of salivary PG was 
then sought by means of a rat stomach strip bioassay. The tissue was rendered 
insensitive to most agonists by antagonists administered in the perfusion solution. 
Piiocarpine solutions, similar to that used to stimulate ticks to salivate, did not 
induce contractions. Saliva, on the other hand, induced contractions having an 
activity equivalent to 94 _ 32 ng PGE2/ml of  saliva (n = 9) (Figs. 4 and 5), 
thereby suggesting the presence of PG in tick saliva. 

RIA of  the same samples used in the bioassay, demonstrated the presence of  
97 + 36 ng PGE2/ml of  saliva. When compared individually, the bioassay and 
RIA results correlated closely (correlation coefficient, 0.974) (Fig. 5) and the 
slope of the regression line (0.88) did not differ from unity (as shown by analysis 
of  variance). This suggests that most, if not all, rat fundus-contracting activity 
can be attributed to PGE2. 

Immunosuppressive Activity. Because PGE~ is immunosuppressive (23), we 
asked whether tick saliva inhibits T lymphocyte activation. In this system, a 
cloned T cell hybridoma, ES.A 1 was activated by the anti-Thy-1 mAb to secrete 
IL-2. The presence of IL-2 in conditioned media from E8.A1 cells was deter- 

PGE= 2 5 2 'T 5 

Saliva 
FIGURE 4. Rat stomach strip-contracting activity induced by tick saliva. PGE, standards of 
2 and 5 ng were added as indicated. Tick saliva addition marked by arrow. 
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FIGUaE 5. Rat stomach strip (RSS)-contracting activity and PGE2 RIA of nine individual 
samples of tick saliva, both expressed in nanograms of PGE2/ml of tick saliva. The line was 
obtained by linear regression. 

TABLE II 

Effect of Tick Saliva on the Production of lL-2 by ES.A1 T Hybridoma Cells 
Stimulated by Anti-Thy-1 mAb as Detected by [SH]Thymidine Uptake by IL-2- 

dependent Cells 

Sample Treatment Saliva* PGE2* [SH]Thymidine Inhibition 
number uptake 

ul/ml pM cpm % 
- -  None - -  - -  17,804 - -  
11 Saliva 0.57 160 798 95 
12 Saliva 0.26 77 2,644 85 
13 Saliva 0.23 350 2,612 85 
14 Saliva 0.15 79 11,071 38 

* Microliters of tick saliva per milliliter of culture during E8.A1 incubation with anti- 
Thy-1 mAb. 

* Calculated concentration of PGE~ during E8.A1 incubation, as estimated from RIA. 

mined in secondary culture, by measuring uptake of [~H]thymidine in an IL-2- 
dependent  cell line. Suppression of [3H]thymidine uptake in this experiment 
reflected inhibition of IL-2 secretion, a consequence of inhibited T cell activation. 
The  results (Table II) show that addition of <1 #1 of saliva from four individual 
ticks caused marked suppression of IL-2 secretion by the T cell hybridomas. 
Although accurate quantitative comparisons cannot be made on the basis of this 
data, the degree of suppression of IL-2 secretion is in the general range expected 
from the measured quantities of PGE~ in these saliva specimens (38). We 
tentatively conclude that the suppression of IL-2 production by tick saliva can 
be accounted for by their content of PGE2. 

Kininase Activity. PGE2 is hyperalgesic, increasing the sensitivity of a lesion to 
the pain-producing effects of bradykinin (24), which would stimulate hosts to 
remove ticks. PGE2 also potentiates the edema promoted by histamine, serotonin, 
and bradykinin (25), a reaction that is present in lesions of hosts resistant to ticks 
(32). But ticks feed successfully and without causing pain, possibly because tick 
saliva antagonizes bradykinin. To  test this hypothesis, we used a guinea pig ileum 
assay to determine whether saliva prevented bradykinin activity that was elicited 
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FIGURE 6. Tick saliva prevention of contractures induced in guinea pig ileum by contact- 
activated, human citrated plasma. Bradykinin (BK) standards were added to the organ bath to 
give 0.5 or 1 ng/ml of the peptide, where indicated. 

Control 7' 10' Control 4' 
FIGURE 7. Kininase activity of tick saliva. 50 #1 of a 1:200 dilution of tick saliva were mixed 
with 50 /~1 of bradykinin (100 #g/ml) in Tyrode's solution and incubated at 37°C. At the 
indicated time intervals in minutes, 10-#1 aliquots were added to the guinea pig ileum 
preparation. 

by contact activation of human plasma (21). In effect, 1 #1 of saliva prevented 
contractions brought on by the addition of 0.1 ml of citrated plasma plus kaolin 
to the preparation (Fig. 6). This effect is consistent with that of a kininase, 
because, in another demonstration, bradykinin incubated in Tyrode's solution 
became progressively inactivated in the presence of saliva (Fig. 7). Such activity 
was destroyed by heat (100 °C for 1 min), and abolished in the presence of EDTA 
(3 mM), cysteine (3 mM), Zn ++ (0.25 mM), or Co ++ (3 mM). The presence of 
this kininase in tick saliva resolves the paradox presented by the otherwise 
hyperalgesia- and edema-promoting activities of PGE2. 

Discussion 

Saliva ejected by adult I. dammini  contains antihemostatic, antiinflammatory, 
and immunosuppressive components, properties that appear to facilitate blood~ 
feeding success of this tick during its prolonged period of host attachment. This 
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combination of pharmacologically active attributes of saliva in ticks are described 
for the first time. 

Piatelet antiaggregating activity has previously been described for blood- 
sucking bugs (27), tsetse flies (28), and mosquitoes (2, 29) and is here reported 
for the first time in the saliva of a tick. Indeed, L dammini saliva inhibits platelet 
aggregation induced by ADP, collagen, or PAF (Figs. 1-3), thus counteracting 
the main expected stimuli of platelet aggregation at the tick's feeding site. 
Thrombin  formation, a similarly anticipated factor, is prevented by a salivary 
anticoagulant. L dammini, thus, is well equipped to prevent host hemostasis. 

The  crucial role of ADP in aggregating vertebrate platelets (5, 30, 31), and a 
common requirement for blocking host hemostasis, must have promoted the 
apparently convergent development of salivary apyrase enzymes in such distantly 
related arthropods as the mosquito Aedes aegypti (29), the blood-sucking bug 
Rhodnius prolixus (26), the tse-tse fly Glossina tachinoides (28), and the tick L 
dammini. The  observed apyrase activity may account, at least in part, for the 
inhibitory effect of saliva on platelet aggregation. Because platelet aggregation 
is redundantly stimulated (4, 5), effective prevention of hemostasis requires a 
redundant  pharmacological cocktail. PGE2 (22), and possibly other as yet uni- 
dentified components, may contribute to the inhibitory effect of saliva on platelet 
aggregation. 

Salivary apyrase may promote  other effects important to a tick's successful 
feeding. In addition to inhibiting hemostasis by degrading ADP, salivary apyrase 
may prevent those inflammatory processes stimulated by ATP (34), including 
mast cell degranulation (35), and aggregation of neutrophils (36). These proc- 
esses are associated with release of  prohemostatic compounds such as thrombox- 
ane, PAF, and vasoactive amines (33). Apyrase converts ATP to AMP, which is 
pharmacologically inactive or even inhibitory to purinergic P2 receptors (37). 
Thus, apyrase contributes to antiinflammatory as well as antihemostatic activity. 

The  cardinal signs of inflammation, erythema, edema, and pain, each may 
affect the outcome of a tick's at tempt to draw blood from its host. The  erythem- 
atous reaction would help by increasing the flow of blood to the feeding site 
(8,32). Edema, on the other hand, reduces blood flow or induces bleb formation, 
as in the skin of cattle resistant to Boophilus microplus, but not in succeptible 
animals (32). Pain, which focuses attention of the host on the parasite's feeding 
site, would increase grooming behavior. Because inflammation both helps and 
hinders feeding, ticks may modulate inflammation selectively. 

One salivary component,  PGE~, presents a particular problem in this regard 
by producing a spectrum of effects that may hinder as well as help feeding. The  
helpful category includes erythema (increasing the flow of blood to the feeding 
tick), inhibition of mast cell degranulation (which helps minimize release of 
platelet-aggregating, edema-promoting, and vasoconstrictive factors) (33), and 
immunosupression (23) (potentially preventing the production of antibodies 
against salivary antigens). On the other hand, PGE2 potentiates pain produced 
by bradykinin (24), as well as edema caused by substrates that increase vascular 
permeability (25). The  tick's salivary kininase may counteract these "undesirable" 
PGE~ side effects by destroying bradykinin. In this manner, ticks antagonize 
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their host's hemostatic and inflammatory responses by the actions of several 
distinct salivary components. 

We found that I. dammini saliva is immunosuppressive, as measured by inhi- 
bition of T hybridoma activation. This inhibitory activity can be explained by 
the PGE2 content of saliva, although detailed quantitative studies have not yet 
been performed. This evidence may provide an explanation for the failure of 
salivary vaccines to induce host resistance to ticks (39), the poor mitogen 
responsiveness of T cells from tick-infected hosts (40), and the frequently 
described immunosuppressed state of tick-infected animals (7). Indeed, T cell 
activation occurs at the very beginning of  the cascade of cellular events leading 
to antibody production, acting at the site where the antigen is deposited (41). 
This action of tick saliva may delay, reduce, or abolish the host's response to the 
tick's salivary antigens, thus reducing immune-mediated inflammatory responses 
at the tick's feeding site. 

Tick-resistant hosts reject feeding ticks by means of immune-mediated, im- 
mediate inflammatory skin reactions (6, 7). In nature, however, ticks are not 
rejected. But the mechanism that permits such stable, chronic associations of 
ticks and their hosts have not been described. It seems likely that the pharma- 
cological armamentar ium in saliva may specifically prevent antisalivary antibody 
production and antagonize chemical mediators of the host's inflammatory re- 
sponse. Different hosts have evolved characteristic methods for mediating im- 
mune and inflammatory responses. For example, rat and mouse mast cells contain 
important amounts of serotonin, whereas this amine may not be detectable in 
other mammalian mast cells (42). Some animals release more histamine than 
serotonin after platelet aggregation (43). Asthma in guinea pigs is mediated 
mostly by histamine, whereas leukotrienes predominate in the human disease 
(44). Stable host associations require that the tick match its host's defenses with 
an appropriate array of its own, suggesting that these defenses may fit as a "lock 
and key." These considerations support the idea that ticks, like other parasites, 
evade host reactions that would cause rejection, and that this adaptation is a 
component  of host specificity. 

Finally, the salivary components injected by ticks may promote invasion of the 
host by tick-borne pathogens. For example, by preventing macrophage activation 
and neutrophil  activity (45), PGE~ would protect the pathogen during its initial 
phase of adaptation in the skin of a new host. L dammini is the vector of human 
babesiosis and Lyme disease (46); coinjected saliva may facilitate transmission of 
these newly discovered agents of human disease. 

S u m m a r y  
Pilocarpine-induced saliva of the tick, Ixodes dammini, inhibited platelet aggre- 

gation triggered by ADP and collagen, as well as platelet-aggregation factor. In 
addition, we found apyrase activity (which degrades ATP and ADP to AMP and 
orthophosphate) and an anticoagulant. We showed the presence of prostaglandin 
E2 (PGE~) by bioassay and radioimmunoassay. This saliva inhibited interleukin 2 
production by T cell hybridomas, an activity consistent with that of PGE2. A 
kininase was demonstrated, and this may counteract the algesia- and edema- 
promoting properties of  PGE~. Together ,  these salivary components produce 
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antihemostatic,  anti inflammatory,  and immunosuppressive effects that may facil- 
itate feeding, as well as transmission o f  t ick-borne pathogens.  

We are grateful to Dr. L. Glimcher (Harvard School of Public Health) for providing the 
E8.AI T cell hybridomas, and for helpful advice. 
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