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Introduction

High-density lipoproteins (HDLs) are a diverse class of
particles with numerous atheroprotective functions, in-
cluding facilitation of reverse cholesterol transport (RCT),
improvement in endothelial function, protection of low-
density lipoproteins (LDLs) from oxidation, limitation
of hemostasis, and retardation of inflammatory activity
related to the vascular wall [1–3]. The antiatherogenic ef-
fects of HDL reflect biological properties of HDL sub-
populations in addition to absolute plasma levels of HDL-
cholesterol (HDL-C) [4]. There are structural differences
between different HDL particles, with differentiation of
HDL subclasses on the basis of particle size, density, sur-
face charge, lipid and/or protein composition all possible.
A key function of HDL is to moderate vascular inflam-
mation, particularly expression of cytokine-induced cel-
lular adhesion molecules, monocyte chemotactic protein-
1 (MCP-1), and oxidized phospholipids. Recent evidence
supports this anti-inflammatory role as a clinically relevant
critical pathway by which HDL reduces atherosclerotic
burden.

The Role of Oxidation in Atherogenesis

There is considerable evidence that lipid oxidation within
the arterial wall plays a critical role in atherogene-
sis [2]. Oxidized LDL damages artery wall cells, and
HDL limits this LDL-induced cytotoxity by decreas-
ing levels of cholesterol hydroperoxides [5,6]. Brown
and Goldstein discovered that acetylated LDL but not
native LDL was recognized by “scavenger receptors”
instead of LDL receptors resulting in cholesteryl es-
ter accumulation in macrophages and the formation of
foam cells [7]. Fogelman and Schecter and colleagues
subsequently demonstrated that malondialdehyde, result-
ing from lipoxygenase-mediated oxidation of arachidonic
acid, can alter LDL into a form that is taken up by

macrophage scavenger receptors allowing for cholesterol
esterification in foam cells [8]. Steinberg and colleagues
have demonstrated that endothelial cells were capable
of oxidizing LDL in vitro into a suitable ligand for
macrophage scavenger receptors [9]. LDL is most athero-
genic once it has undergone a few modification steps, in-
cluding oxidation [10]. Several studies have shown that
artery walls of animals and humans with atherosclerosis
contain oxidatively modified LDL [11–13].

Artery wall cells secrete oxidative waste products into
their membranes and into the subendothelial space and
“seed” the LDL with reactive oxygen species [14–16].
Navab and colleagues have shown that endothelial and
smooth muscle cells in coculture similarly secrete oxida-
tive wastes into their surrounding microenvironments, al-
lowing for the oxidation of LDL [17,18].

Vascular Inflammation Resulting
from Lipid Oxidation

Oxidative products of lipid metabolism drive vascular
inflammatory pathways involving monocyte recruitment,
differentiation into macrophages, and formation of foam
cells [19]. Berliner et al. showed that oxidized LDL
promotes monocyte chemotactic protein-1 (MCP-1) and
monocyte-colony stimulating factor (M-CSF) expression
by artery wall cells, and monocyte (but not neutrophil)
binding to human aortic endothelial cells [20–24]. For
this minimally modified LDL (MM-LDL) to be biologi-
cally active requires the oxidation of LDL phospholipids
that contain arachidonic acid in the sn-2 position [25].
Such oxidized phospholipids are present in atheroscle-
rotic lesions in animals at concentrations expected to be
biologically active in vivo [25].

The oxidized phospholipids in MM-LDL are rec-
ognized by autoantibodies. Witztum and colleagues
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demonstrated that an IgM monoclonal antibody isolated
from apoE null mice (EO6) that recognizes the ox-
idized phospholipids in MM-LDL [26] also binds to
epitopes in human and animal atherosclerotic lesions
[12,19] and the epitopes of oxidized LDL that are nec-
essary for macrophage binding [26]. The epitope recog-
nized by the EO6 antibody is shared by “natural” T15
anti-phospholipid antibodies that are protective against
Streptoccous pneumoniae [27]. Furthermore, pneumococ-
cal vaccination protected LDL receptor null mice from
atherosclerosis [28]. Thus, antibodies to the oxidized
phospholipids found in MM-LDL appear to be “pre-
loaded” in the innate immune system [29].

The Role of HDL as an Antioxidant
in Atherogenesis

The enhancement of reverse cholesterol transport (RCT)
with HDL, apoA-I and apoA-I mimetics is well-
documented [30–33]. However, HDL particles also
carry enzymes that retard LDL oxidation, including
paraoxonase (PON), platelet-activating factor acetylhy-
drolase (PAFAH), and lecithin-cholesterol acyltransferase
(LCAT) [4,34]. These enzymes degrade proinflammatory,
oxidized phospholipids, limiting their accumulation in
LDL. In addition, apoA-I can bind oxidized lipids (“seed-
ing molecules”) and remove them from LDL [35]. This
limits the oxidation of phospholipids within LDL, along
with the subsequent inflammatory response of atheroscle-
rosis [35,36]. HDL, apoA-I and apoA-I mimetic peptides
have been shown both to limit LDL oxidation in cell-
free systems [5,37,38] and the inflammatory response in
the artery wall coculture studies of Navab and colleagues
[35,36]. This may partly explain why HDL, apoA-I and
apoA-I mimetics have been shown to decrease atheroscle-
rotic lesions and improve vascular function in animals
[30,39–43] and humans [44–46].

LDL always contains some lipoxygenase pathway
products (e.g. HPODE, HPETE) [36,47] In a study of
freshly isolated LDL from humans free of vascular dis-
ease by Navab et al., the level of these oxidation products
did not increase during in vitro incubations in the pres-
ence of antioxidants, suggesting their presence in LDL
in vivo [36]. However, when the LDL was incubated in
the presence of antioxidants along with apoA-I, the resul-
tant LDL contained less than half as much HPODE and
HPETE as at baseline [36]. Prior to these incubations the
apoA-I contained no detectable oxidized phospholipids.
However, after its incubation with LDL, apoA-I acquired
more than half of the HPODE and HPETE that had been
in the LDL [36]. After incubation with apoA-I, the LDL
was unable to stimulate the production of hydroperoxides
from phospholipid or generate a monocyte response in

artery wall cocultures [36]. When the lipids within apoA-
I that was incubated with the LDL were extracted and
added back to the LDL that had been treated with apoA-I,
the reconstituted LDL regained these abilities [36].

Consistent with these observations, HDL appears to
be a major carrier of lipid hydroperoxides in both hu-
mans and mice. HDL from C57BL/6J mice, which are
susceptible to atherosclerosis, contains more lipid perox-
ides than HDL from C3H/HeJ mice, which are resistant to
atherosclerosis [48]. Navab and colleagues demonstrated
that injection of human apoA-I into C57BL/6J mice in-
hibited LDL-induced lipid hydroperoxide formation and
monocyte chemotaxis [36]. Similarly, following infusion
of apoA-I and phospholipid into healthy human volun-
teers, the ability of their LDL to induce lipid hydroperox-
ide formation and/or LDL-induced monocyte chemotac-
tic activity was markedly reduced in each of six subjects
[36]. Thus, apoA-I has the ability to remove lipid oxida-
tion products from human LDL and significantly lessen
the inflammatory potential in both mice and humans [36].

Modifying HDL Anti-Inflammatory Function

HDL’s ability to accept lipid hydroperoxides and re-
tard cellular inflammation can change. For example, Van
Lenten et al. reported that the acute phase response
following elective surgery in humans was associated
with a change in HDL from anti-inflammatory to pro-
inflammatory [49]. At the peak of the acute phase re-
sponse, 3 days after surgery, HDL from the same pa-
tient enhanced LDL oxidation and monocyte response in
the coculture, i.e. was proinflammatory. However, by one
week after surgery the HDL reverted to its usual anti-
inflammatory state [49], consistent with an acute phase
response. Gabay and Kushner [50] described a “chronic”
acute phase response, and Ridker [51] suggested that such
a chronic inflammatory state can be seen in humans with
persistent elevation in C reactive protein (CRP). Dietary
factors may also contribute to chronic vascular inflamma-
tion, as demonstrated by Navab et al. in apoE null mice
on a chow diet and LDL receptor null mice on a high-fat
diet [52].

Changes in HDL anti-inflammatory function may re-
flect enzymatic changes within HDL. For example, in vivo,
the absence of the HDL-associated enzyme paraoxonase
(PON) resulted in increased LDL oxidation and increased
atherosclerosis in a mouse model [53]. Van Lenten et al.
demonstrated that the proinflammatory HDL phenotype
associated acute phase response in rabbits and humans
could be reversed by the addition of either purified PON
and PAFAH [49]. The decreased activities of these en-
zymes in an acute phase response may in turn result in
enhanced LDL oxidation and accelerated atherosclerosis.
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Gowri and colleagues reported that the ability of
the HDL2 subfraction from healthy humans to retard
macrophage-mediated LDL oxidation was positively cor-
related with HDL2-associated PAFAH activity [54]. In pa-
tients with poorly controlled type 2 diabetes, however,
LDL oxidation was significantly (p < 0.05) less inhibited
than in controls, and did not relate to HDL2-associated
PAFAH activity [54]. Kontush et al. recently showed that a
group of patients with hyperalphalipoproteinemia (HALP)
had HDL 2a, 2b, 3a, and 3c subfraction concentrations
that were up to two-fold higher than normolipidemic con-
trols, but had lower specific antioxidant activity on a unit
mass basis, during LDL oxidation [55]. Paraoxonase ac-
tivity was deficient from all HALP fractions, and levels of
PON1, PAFAH, and LCAT all significantly correlated with
the antioxidant activity of all HDL fractions [55]. PON1
accounted for approximately 25% of the variation, with
PAFAH and LCAT accounting for approximately 12%
each [55]. Thus, multiple enzymatic activities within HDL
play a role in prevention of LDL oxidation.

One can characterize the inflammatory response of an
individual’s HDL by its ability to lessen or intensify cellu-
lar inflammation and/or oxidation of phospholipids associ-
ated with LDL. Navab and colleagues [48] compared both
monocyte chemotactic activity (MCA) in a human artery
wall coculture and phospholipid oxidation in a cell-free
assay (CFA) prior to and after the addition of test HDL.
The group designated the “inflammatory index” as the ra-
tio of the MCA (or CFA) before and after the test HDL,
with indices less than 1.0 classified as “anti-inflammatory”
and those greater than 1.0 classified as “proinflamma-
tory” [48]. Navab reported that the inflammatory/anti-
inflammatory properties of HDL from 27 normolipidemic
coronary patients clearly separated the patients from 31
age- and gender-matched controls. The patient HDL, in
contrast to control HDL, showed pro-inflammatory MCA
and CFA results, suggesting that the inflammatory prop-
erties of HDL in these patients reflected a “chronic” acute
phase response similar to that associated with high-normal
CRP levels [51,56].

Ansell et al. [57] studied HDL inflammatory/
anti-inflammatory function in two patient groups. Group
I consisted of 26 patients who presented with stable coro-
nary heart disease (CHD) or CHD risk equivalents by
NCEP ATP-III criteria [58] that were naive to hypolipi-
demic medication and whose physicians recommended
treatment with a statin [57]. The inflammatory/anti-
inflammatory properties of HDL from these patients was
compared before and six weeks after starting statin ther-
apy. Group II presented with high HDL-cholesterol lev-
els and clinical CHD [57]. The HDL from both groups
of patients were compared to that from age- and gender-
matched controls [57]. Ansell et al. compared the MCA

generated when a standard control LDL was added to a hu-
man artery wall cell coculture with and without a test HDL
[57]. Ansell et al. also used a cell-free assay in which the
oxidized phospholipid PEIPC was added to the fluorescent
probe DCFH [57]. PEIPC was used since it is responsi-
ble for more than 80% of the LDL-induced MCA in the
coculture model.

As shown in the MCA values of Figure 1A, the pa-
tients in Group I had pro-inflammatory HDL prior to
statin therapy. After six weeks of simvastatin 40 mg/day
[57] their HDL was less pro-inflammatory, but was still
slightly pro-inflammatory on average. In contrast, the
HDL from healthy age- and gender-matched controls was
anti-inflammatory. The cell-free assay results were similar
(Fig. 1B). The lipid peroxide concentration in the patients’
HDL was significantly higher than in the controls’ HDL
(Fig. 2). Following the six weeks of simvastatin therapy,
there was a nonsignificant trend toward lower levels of
HDL lipid hydroperoxides (p = 0.07) [57]. In Group II,
consisting of 20 patients with CHD/risk equivalents whose
HDL-cholesterol levels were between 84 mg/dL and 148
mg/dL on no lipid-lowering medication [57], HDL was
uniformly pro-inflammatory (Fig. 3).

In Ansell’s Group I, only 3 of 26 patients showed low
levels of HDL-cholesterol (40 mg/dL) as defined by ATP-
III, prior to simvastatin therapy, while 20 of 26 patients
had proinflammatory HDL (inflammatory index >1.0) by
the coculture assay. All 26 patients had an HDL inflam-
matory index >0.6 [57]. In contrast, 24 of the 26 controls
had a very anti-inflammatory HDL inflammatory index
<0.6 [57]. After six weeks of simvastatin therapy, while
there was a highly significant reduction in the proinflam-
matory nature of the HDL from Group I patients, their
HDL remained frankly proinflammatory on average (in-
flammatory index = 1.08) [57].

Group II included patients with CHD despite
high HDL-cholesterol levels (95±14 mg/dL). Only
one patient had an elevated LDL-cholesterol level
(>160 mg/dL), only two patients had elevated triglyc-
erides (>150 mg/dL), and none had diabetes mellitus [57].
Eighteen of these 20 patients had proinflammatory HDL
(inflammatory index ≥1.0) while only one had an HDL
inflammatory index <0.6. Conversely, all 20 of the con-
trols exhibited anti-inflammatory HDL (inflammatory in-
dex <0.6) based on MCA [57].

HDL inflammatory index was significantly correlated
to HDL-lipid hydroperoxides (LOOH), as determined by
both the coculture and the cell-free assays [57]. The as-
says must measure more than HDL-LOOH, though, since
adding control HDL generally produced a low inflamma-
tory index despite the presence of LOOH in this HDL [57].
In fact, only one of the 46 healthy control subjects stud-
ied by Ansell and colleagues had an HDL inflammatory
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Fig. 1. HDL inflammatory index assessed by MCA (Panel A) or CFA (Panel B) in 26 patients with CHD or CHD equivalents (Group I), prior to six
weeks after simvastatin, compared to healthy age- and gender-matched controls, reproduced with permission from Ansell et al. [48]. See also Ansell
et al. [57].

Fig. 2. HDL lipid hydroperoxide (HDL-LOOH) content for Group I from Ansell et al. [57] patients before and after simvastatin, versus healthy age-
and gender-matched controls. Reproduced with permission from Ansell et al. [48].
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Fig. 3. HDL inflammatory index in human artery wall cell coculture and in the cell free assay for Ansell’s Group II [57]; patients with high levels of
HDL-cholesterol and documented CHD versus age and gender matched healthy controls. Values are mean ± S.D. Reproduced with permission from
Ansell et al. [48].

index >1.0 as determined by the cell-free assay. More
than just measuring the effects of lipid hydroperoxides,
the HDL inflammatory index measures the net contribu-
tions of a large number of factors in HDL including oxi-
dized phospholipids, lipid hydroperoxides, PON, PAFAH,
LCAT, as well as possibly glutathione peroxidase, apoA-I,
apolipoprotein J, serum amyloid A, ceruloplasmin, antiox-
idant vitamins, and products such as nitrotyrosine, gener-
ated by myeloperoxidase [48].

Macdonald et al. [59] reported that it requires more
than oxidation of HDL to generate ineffective HDL. In
fact, Macdonald and colleagues [59] reported that tyrosyl
radical oxidation of mouse HDL promoted heterodimer-
ization of apoAI-AII (tyrHDL), which actually enhanced
the ability of mouse HDL to stimulate cholesterol efflux
from fibroblasts in vitro. When tyrHDL was injected in-
traperitoneally twice weekly into apoE null mice, 37% less
aortic lesion development occurred than in mice treated
with control HDL (P < 0.001) and 67% less than ani-
mals receiving saline (P < 0.001) [59]. Bergt, Oram, and
Heinecke [60] have suggested that cross-linked het-
erodimers of apo A-I and apo A-II in tyrosylated HDL
appear to be responsible for its ability to promote choles-
terol efflux [60,61].

The Relationship Between the Inflammatory
and Cholesterol Efflux-Promoting Properties
of HDL

HDL’s ability to modulate vascular inflammation appears
to be linked to its ability to mediate removal of choles-
terol from lipid-laden cells. For example, HDL taken
from Syrian hamsters experiencing an acute phase reac-
tion due to injection of lipopolysaccharide injection was
less able to promote cellular cholesterol efflux than was
HDL from control hamsters [62]. In humans with peri-

odontitis associated with PCR evidence of Actinobacillus
Actinomycetemcomitan, Pussinen et al. [63] reported that
HDL mediated cholesterol efflux significantly improved
while CRP significantly decreased by 54% with dental
treatment. Pussinen et al. [63] concluded that periodon-
titis likely causes similar changes in HDL metabolism to
those during the acute phase response, and that this may
diminish the antiatherogenic potency of HDL.

Reddy and colleagues [64] reported that LDL oxidation
by human artery wall cells was controlled by the choles-
terol content of the cells, which in part was determined
by ABCA1 activity. Reddy et al. proposed that the reverse
cholesterol transport hypothesis and oxidation hypothesis
of atherogenesis might reflect different vantage points of
the same process [64].

The data obtained by Navab et al. [48] with D-4F, an
oral apoA-I mimetic peptide, are consistent with the pro-
posal by Reddy et al. [64]. A single oral administration
of D-4F to cynomologous monkeys reduced plasma and
lipoprotein lipid hydroperoxides two hours later. By that
time, the monkey HDL contained a significant amount
of D-4F within HDL particles. With the ensuing fall in
lipoprotein lipid hydroperoxides, there was (1) an im-
provement in the monkey HDL inflammatory index, (2)
a decrease in the ability of the monkey LDL to induce
human artery wall cells to produce monocyte chemo-
tactic activity in response to LDL, and (3) a dramatic
increase in the ability of the monkey HDL to promote
cholesterol efflux from human monocyte macrophages
[48].

Summary and Conclusions

The formation of oxidized phospholipids within LDL
activates the innate immune system. These oxidized
phospholipids are generated from arachidonic acid
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via the lipoxygenase and myeloperoxidase pathways.
Phospholipid oxidation may also affect reverse choles-
terol transport. The HDL inflammatory index and
measurements of the levels of lipid oxidation products in
lipoproteins including products of the myeloperoxidase
pathway may predict susceptibility to atherogenesis.
The ability of ApoA-I and apoA-I mimetic peptides to
reduce levels of oxidized lipids and also improve reverse
cholesterol transport may have therapeutic potential.
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