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Abstract 

  

The increased prevalence of antimicrobial resistant bacteria requires development of new 

control strategies.  Preventative measures such as development of disinfectants and antiseptics 

with faster killing and anti-biofilm capabilities would help limit the spread of resistance and 

reduce the incidence of hospital acquired infection.  Several series of novel amphiphiles, 

including three bis-cationic, four tris-cationic and three tetra-cationic double tailed amphiphile 

series, as well as one hexa-cationic, triple tailed amphiphile series were synthesized and tested 

for antimicrobial properties.  The amphiphiles in this study were previously tested for MIC 

value against several Gram-positive and negative bacterial species.  This work expanded on the 

antimicrobial capabilities of these amphiphiles by determining time to kill a population of cells, 

biofilm disruption activity, and synergistic interactions with other compounds. Bis-cationic 

amphiphiles were the fastest at killing S. aureus, as oX-12,12 killed within 1 minute.  Oxacillin, 

a Gram-positive acting antibiotic, combined with novel amphiphiles against E. coli, had FIC’s 

ranging from 0.5 to 0.19, indicating synergistic interactions.   The highest biofilm disruption 

activity disrupted 90% of P. aeruginosa preformed biofilms.  Synergistic combinations of these 

amphiphiles with oxacillin and other compounds could prove useful in overcoming bacteria 

antimicrobial resistant mechanisms.  These results contribute to the development of cationic 

amphiphiles with increased biofilm disruption activity and faster kill time, ultimately better 

disinfectants and antiseptics that will better reduce the spread of antibiotic resistant pathogens 

especially in a hospital setting.        
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Chapter 1:  Introduction  

  

1.1 Antimicrobial Resistance and Hospital Acquired Infections  

  

Antimicrobial resistance is a growing problem in the medical field, with antibiotic 

resistant bacteria responsible for approximately 2 million illnesses annually in the United States 

alone (CDC, 2013).  Widespread use of the first commercially available antibiotic, penicillin, in 

the early to mid-1940’s, lead to antibiotic resistance by the late 1940’s (Podolsky,  

2015).  Alexander Fleming himself, in 1945, predicted antibiotic resistance with increased public 

use and misuse (Rosenblatt-Farrell, 2007).   Since that time, antimicrobial resistance has been a 

continual problem.  Even with the introduction of new antimicrobials, bacteria typically acquire 

resistance within 10 years of public use (CDC, 2013; Rosenblatt-Farrell, 2007).    

The misuse of antibiotics, such as over prescribing antibiotics, use of antibiotics in animal 

feed, and antibiotics not taken as prescribed, has contributed to the spread of resistant bacteria.  

Each of these contributing factors provide bacteria with an environment encouraging 

proliferation of only bacteria that can withstand antibiotics or disinfectants.  Those that survive 

can transfer their genes responsible for resistance to non-resistant bacteria (Marinelli and 

Genilloud, 2013).  It is reasonable to expect that resistance will be gained by bacterial species for 

every type of antimicrobial at some point.  In 2015, resistance was observed in the United States 

to antibiotics that were considered “last resort drugs”, which are reserved for only those 

infections that harbor antibiotic resistance to all other antibiotics (Mataseje et al., 2015).  Once 

fail-safe antibiotics become obsolete, the death toll of antibiotic resistant infections will rise 

dramatically, potentially leading to a world that is like the time before antibiotics were 

discovered.     
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Infections caused by Staphylococcus species became the first medical issue involving 

resistance to antibiotics.  In 1946, 14% of hospital acquired (HA) Staphylococcus infections were 

resistant to available antibiotics.  Within two years, these numbers rose to 59% (Jevons, 1961; 

Schaffer, 2013).  Methicillin, a new and improved beta-lactam antibiotic, was introduced in  

1960, and resistant Staphylococcus strains were detected just one year of its introduction (Barber,  

1961), and by 1974, 2% of HA staph infections were resistant.  This strain is better known as 

MRSA (Methicillin Resistant Staphylococcus aureus).  Though a low percentage in 1974, it was 

an indication that eventually new antibiotic classes could not remain potent against this species.  

Within 20 years, the percentage rose to 22%, and to 64% by 2004 (Wispinghoff et al., 2004; 

NNIS, 2004).  Today MRSA is so prevalent that methicillin is no longer used to treat staph 

infections.  Instead, other antibiotics are used including vancomycin, daptomycin, as well as 

combination therapy (Mongkolrattanothai et al., 2003).  Eventually S. aureus is likely to become 

resistant to these antibiotics as well.  Other pathogens have a similar history of antibiotic 

resistance where an antibiotic is heavily used, becomes obsolete due to antibiotic resistance, and 

is replaced with an antibiotic that has a different mechanism of action only for that bacterial type 

to acquire a way to become resistant to the new antibiotic.  Continued antibiotic discovery as 

well as discovery of new solutions to treating bacterial infections is needed to keep up with 

growing antibiotic resistance.         

Disinfectant resistance is also a growing problem, especially in hospitals where it is vital 

to keep all equipment free of pathogens to avoid spread of disease.  Immunocompromised 

patients in hospitals can easily acquire an infection if proper protocols for keeping areas as sterile 

as possible are not observed.  In 2014, 4% of patients had acquired at least one infection while 

being hospitalized (Magill et al., 2014). The best way hospitals reduce the frequency of hospital 
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acquired infections (HAI) is to increase sterilization/sanitation measures as well as identify 

sources of infection.  Once sources are identified, preventative measures can be used to avoid 

infecting patients.  Sources of most HAI are from person to person contact, surgical sites, and 

invasive medical devices.  Mechanical ventilation equipment, endoscopes, catheters, and 

intravenous (IV) lines are the most frequently contaminated, as they are the most difficult to 

sterilize (Djordjevic et al., 2016).  About 26% of HAI were associated with contaminated 

equipment (Magill et al., 2014).  Even though preventative measures are readily used by 

hospitals and health care facilities, HAI are still one of the top 10 causes of death in the U.S. The 

costs annually for HAI in the U.S. are more than $5 billion (Peleg, 2010, O’Neill, 2014).    

There are two major issues that make HAI prevalent as well as deadly.  One is that most 

patients that are being hospitalized have weakened immune systems and are more susceptible to 

infection.  Second, more bacteria in a hospital setting are likely to be resistant to antibiotics 

(Dancer et al., 2009).  Hospitals use antimicrobials more frequently than in other locations, 

increasing the likelihood of selecting for resistant organisms.  If a patient is infected by these 

bacteria, antibiotics may not be able to clear infection.  There is a need for novel disinfectants to 

prevent the spread of resistant bacteria (McDonnell, 2007).  Recent studies have shown that some 

disinfectants currently used in hospitals around the world cannot kill bacteria as effectively as 

when they were first introduced (Khan et al., 2016).  If a solution is not found to prevent the 

spread of antimicrobial resistance, the projected death toll worldwide due to antimicrobial 

resistance will rise from 700,000 per year to nearly 10 million per year by 2050, higher than 

death due to cancer (O’Neill, 2014).  

 The so-called E.S.K.A.P.E. pathogens (Enterococcus faecium, Staphylococcus aureus,  
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Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter 

spp.) are responsible for the majority of serious hospital acquired infections (HAI) that possess 

extensive antimicrobial resistance (Boucher et al., 2009).  These pathogens cause ~50% of all 

hospital acquired infections (Hidron et al., 2008).  Most of the antimicrobial resistance isolates 

from these species show multiple antibiotic resistance leaving little or no means of eradicating 

these infection in patients. (Santajit and Indrawattana, 2016).  Approximately 20% of these HAI 

harbor resistance to multiple commonly used drugs, making these infections difficult to treat 

(Hidron et al., 2008).  In 2016 a woman in Nevada was infected with a strain of Klebsiella 

pneumoniae harboring resistance to 26 different antibiotics including even “last resort” 

antibiotics such as Colistin (Chen et al., 2016).  The health care workers were unable to treat her 

infection, therefore she developed sepsis and died.  If antibiotic resistance continues spreading, 

more bacteria will harbor resistance to a similar extent, rendering antibiotics useless for treating 

infections.  Although antibiotic development is needed to combat infections caused by these 

highly resistant bacteria, preventative measures, including better disinfection methods could help 

reduce the spread of these bacteria.      

1.2 Biofilm  

  

Many bacterial species can form biofilms, which increase antimicrobial resistance.  

Biofilms are complex structures containing colonies of bacterial cells surrounded by layered 

extracellular polymeric substance (EPS) matrices connected by water channels for nutrient 

exchange (Donlan, 2002; Figure 1).  Bacterial populations in biofilm communities can be up to 

1000 times more resistant to antimicrobials than the corresponding planktonic cells (Ntsama-

Essomba et al., 1997; Ceri et al., 1999).  Bacterial cells are densely packed within the biofilm 

matrix, encouraging exchange of resistance gene via conjugation, which can lead to more than 
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100 times higher mutation rate (Conibear et al., 2009).   If one cell in the biofilm harbors a 

plasmid with an antimicrobial resistant gene, many, if not all, of the cells within the matrix will 

acquire this gene.  (Hausner and Wuertz, 1999; Donlan, 2002).    

S. aureus, E. coli and P. aeruginosa are responsible for most biofilms found within a 

hospital setting that both cause infections and harbor antibiotic resistance genes.  When other 

bacteria enter these biofilms, they are more likely to acquire antibiotic resistance genes from 

these species, contributing the spread of antimicrobial resistance (Ntsama-Essomba et al., 1997).  

P. aeruginosa is one of the most problematic of these pathogens due to its ubiquitous nature and 

is inherently more resistant to antimicrobials due to an outer-membrane.  P. aeruginosa can 

harbor resistance to readily-used antibiotics because of extensive biofilm formation abilities.  

More than 60% of infections caused by P. aeruginosa strains have multidrug resistance (Ali et 

al., 2015).  Once a P. aeruginosa biofilm becomes established, eradication is nearly impossible 

as regrowth occurs if any biofilm remains after treatment (Vickery et al., 2004).   

   

Figure 1: Electron micrograph of a mixed species biofilm containing P. aeruginosa, K. pneumoniae, Flavobacterium, 

and L. pneumophila (Photo from the CDC Public Health Image Library).     

  

 Biofilms are involved in over 60% of infections, according to the NIH (Lewis,  
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2001).  Chemical treatments are not effective at eliminating 100% of biofilms (Gawande et al., 

2008).  Currently used chemical biofilm disruptors can only eradicate as much as 75% of the 

matrix and reduce associated bacterial cells by 4-fold, which is not sufficient since regrowth can 

readily occur (Vickery et al., 2004).  These infections include dental plaque conditions, catheter 

infections, cystic fibrosis, endocarditis, and UTIs (Lewis, 2001). Elimination of biofilms on 

surfaces and in hospital equipment currently require physical methods in addition to chemical 

methods.  These methods include scrubbing, scraping, and ultrasonication.  If performed 

correctly, biofilms can be eliminated effectively, however this is difficult in practice (Vickery et 

al., 2004)     

Two major problems with successfully eliminating biofilm are penetration of 

antimicrobials into the biofilm matrix to reach bacterial cells, as well as ability to kill cells once 

they are reached.   Penetration of antimicrobials into biofilms is slow, or non-existent.  Slow 

diffusion of antimicrobials is due to various factors (Ishida et al., 1998).  Negatively charged 

extracellular DNA as well as polymers within the biofilm matrix bind any cationically charged 

antimicrobials such as tobramycin and other aminoglycosides used to treat biofilm-based 

infections (Quirynene et al., 2000; Cao et al., 2015).  Some antimicrobials without a cationic 

charge, such as ciprofloxacin and daptomycin, can penetrate the biofilm matrix to reach bacterial 

cells within the biofilm quickly, however may not be able to kill the bacteria once reached (Cao 

et al., 2015; Ishida et al., 1998).  If an antimicrobial can reach cells within the biofilm, the 

compound is less concentrated due to binding within the matrix as well as enzyme deactivation.  

Another contributor of antimicrobial resistance in biofilms is slow-growing cells within biofilms.  

Most antimicrobials are more potent against fast growing cells, and less effective against slow 

growing cells (Lewis, 2001).   
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Several different approaches to enhancing biofilm eradication have been considered, 

involving the use of combination therapy with currently used disinfectants and antibiotics (Uppu 

et al., 2015).   Addition of either specific enzymes that can dissolve biofilms, (Kaplan et al.,  

2012), antimicrobial peptides (AMPs) or other membrane disrupting compounds, (Gopal et al., 

2014), or quorum-sensing inhibitors (Paza et al., 2013) to currently used disinfectants have been 

considered, and have promising results.   

1.3 Amphiphiles as Antimicrobials  

Amphiphiles are molecules that possess both hydrophilic and hydrophobic structural 

features (Ladow et al., 2011; Figure 2).  Common examples are molecules that make up the lipid 

bilayer of cell membranes.  The hydrophilic headgroups face the extracellular and intracellular 

spaces and the hydrophobic carbon tails of the amphiphile face each other to minimize 

interaction with water.  

                     

Figure 2:  Generic amphiphile structure showing hydrophobic and hydrophilic regions on the same molecule.  

  

  

Amphiphiles can possess antimicrobial properties.  Both anti-microbial peptides (AMPs), 

and quaternary ammonium compounds (QACs) are amphiphilic molecules with antimicrobial 

properties currently in use as disinfectants and antibiotics.    
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AMPs are naturally occurring peptides produced by the innate immune system of most 

organisms to help eradicate infectious microorganisms in the body.  More than 600 different 

AMPs have been identified in various organ systems (Marr et al., 2006). AMPs can also be 

designed and synthesized in a laboratory.  AMPs are potent antimicrobials, however, their 

complex structure makes them time consuming and expensive to synthesize.  Colistin is currently 

the only used cationic amphiphile antibiotic; it is similar in structure to AMPs.  Colistin targets 

Gram-negative bacteria by binding to lipopolysaccharides (LPS) of the Gram-negative bacterial 

outer-membrane.  This binding disrupts the outer-membrane and leads to cell permeability and 

death (Benhamou et al., 2015).  Colistin is more toxic compared to most antibiotics, therefore is 

reserved for bacterial infections that possess high resistance to other drugs.  The use of colistin as 

an antibiotic further suggests that there should be more research on the broader use of 

amphiphiles as antibacterials, rather than solely as disinfectants.     

QACs are like AMPs but are smaller and less complex, leading to less time and expense 

in synthesis and production (Zhang et al., 2016).  In the early 1900’s, QACs started to be taken 

seriously as disinfectants (Domagk, 1935).  In the 1930’s, benzalkonium chloride (BZC), better 

known as the active ingredient in Lysol®, became the go-to disinfectant in cleaning household 

surfaces.  New QACs were developed over the past decade, with improved antimicrobial activity 

and with less toxicity (Forman et al., 2016). Benzalkonium chloride, for example, underwent 

substitutions of hydrogens on the aromatic ring with methyl, ethyl or chlorine to improve 

antimicrobial activity.  These compounds include BTC 471, and Riseptin.   

Today, due to increased concern for QAC toxicity, polymeric QACs with less potency and 

toxicity were developed.  Synergistic interactions between these QACs lowered the 
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concentration needed for each compound to function, further improving the toxicity profile, and 

making them popular disinfectants, once again (Merianos, 2001).   

AMPs and QACs have some advantages over conventional antibiotics and disinfectants 

including lower tendency of bacteria to develop resistance and easier avoidance of bacterial 

resistance mechanisms.  Resistance is observed relatively shortly after an antibiotic is used, 

however, amphiphilic compound exposure must be repeated many times for resistance to occur 

(Marr et al., 2006).   For instance, after 30 exposure passages of conventional antibiotics or 

cationic amphiphiles at sub-MIC concentrations, bacteria became 190-fold more resistant to 

antibiotics (Steinberg et al., 1997), whereas under the same conditions, only a 2 to 4-fold 

increase in resistance was seen with the amphiphiles (Zhang et al., 2005).  Even if resistance 

develops in a bacterial population, amphiphile structure can be changed easily without 

dramatically altering antimicrobial activity (Marr et al., 2006; Nizet, 2006). Mechanisms of 

resistance that are plausible to avoid are cell surface charge changes, and efflux pumps.  When 

cell surface charges are altered, amphiphile affinity for the bacterial cell membrane could be 

weakened (Nizet, 2006).  If more or fewer cations are added to the molecule, affinity for the 

bacterial cell membrane could be restored.  To avoid efflux pump triggering, cations on the 

amphiphile could be spread across a larger surface area, allowing a slower diffusion rate through 

the bacterial membrane (Forman et al., 2016).    

 The mechanism of action of amphiphiles against bacteria is hypothesized to be 

membrane disruption (Hancock and Rozek, 2002).  There are different ways antimicrobials can 

disrupt membranes.  If in monomer form, the molecules could intercalate into and even create 

holes in the bacterial membrane, but if they form micelles, the micelles disrupt by covering the 

membrane surface, interfering with its integrity in a detergent-like manner (Guillelmelli et al., 
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2013).  Most antibiotics cannot penetrate the outer membrane of Gram-negative bacteria as 

easily as can an amphiphile because an amphiphile can create its own pore instead of having to 

enter a porin.    

Charge as well as hydrophobicity are important structural features that allow cationic 

amphiphiles to be highly potent antibacterials.  The cationic charge increases the likelihood that 

the amphiphiles are preferentially targeting bacterial cells rather than eukaryotic cells.  The 

negatively charged LPS of the outer membrane in Gram-negative bacteria, and the negatively 

charged polysaccharides on the cell walls of Gram-positive bacteria facilitate a strong attraction 

of cationic antimicrobial compounds to bacteria.  Eukaryotic cells are inherently neutrally 

charged with much less negative charge than bacterial membranes, so positively-charged 

molecules should preferentially bind to bacteria (Guillelmelli et al., 2013; Denyer, 1995).  

Amphiphiles act as detergents, aggregating at high concentrations, or as membrane disruptors, 

working in monomer form at low concentrations.  If working as membrane disruptors, the 

compounds must have enough hydrophobicity in order to interact with the hydrophobic regions 

of the bacterial cell membrane (Danthe and Wieprect, 1999).  This interaction destabilizes the 

membrane structure which leads to cell death (Cheng et al., 2015; Zhang et al., 2016; Danthe and 

Wieprect, 1999).  If the compound has high hydrophobicity compared to hydrophilicity, the 

molecules will aggregate into micelles and become detergents.  The exact combination of 

structural features that have the lowest MIC value continues to be investigated by a number of 

research groups.    

Amphiphiles are some of the most potent biofilm disruptors.  Concentrations as low as  

25μM can disrupt preformed S. aureus, E. faecalis and A. baumannii biofilms (Jennings et al., 

2015; Feng et al., 2013).  The mechanism of action is theorized to happen by electrostatic 
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interactions between the negatively charged biofilm matrix and the positively charged 

amphiphile.  This interaction enables the amphiphiles to reach bacterial cells within the biofilm 

leading to cell lysis.  The most important amphiphile structural features required for biofilm 

disruption activity are similar to those that increase killing of planktonic cells: at least two 

cations with at least one hydrocarbon chain on an amphiphilic molecule (Jennings et al., 2015).  

1.4 Combination therapy  

  

One solution to antimicrobial resistance is combination therapy.    Bacteria resistant to 

one type of antimicrobial will likely respond to a second antimicrobial with a different 

mechanism of action with the hope that the antimicrobial resistant bacteria (AMRB) will not be 

resistant to more than one type of antimicrobial at the same time.  Combination therapy also in 

some cases causes a synergistic effect where the combination of two antimicrobials are more 

than simply an additive effect.   If a synergistic relationship occurs, the combination is better able 

to overcome resistance (Jorge et al., 2017).  Combination therapy can be used as an alternative to 

resorting to antibiotics with harsh side effects or can reduce the concentration of toxic 

antimicrobials to lessen or eliminate toxicity.  Combination therapy can also be used to avoid 

overusing antibiotics that are considered “last resort” against highly antibiotic resistant bacteria.    

Hundreds of studies identifying synergistic interactions between different types of 

antimicrobials have been explored and have promising results (Zhang et al., 2014; Patel et al.,  

2016; Gopal et al., 2014; Goswami et al., 2015; Ngu-schwemlein et al., 2015; Soren et al., 2015;  

Hesje et al., 2009).  One widely used combination is a combination of a β-lactam antibiotic and 

aminoglycosides for use against Enterococci, Streptococcus, and Staphylococcus species.  The β-

lactam antibiotics interfere with cell wall synthesis, enabling easier aminoglycoside access into 

the cell (Miller et al., 1987; Moellering et al., 1971).  One of the most used antibiotic 
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combinations is amoxicillin and gentamicin to kill Staphylococcus species resistant to each 

antibiotic (Goldstein et al., 2003).   Another reason for combination therapy is that a lower 

concentration of antibiotics reduce toxicity.  Colistin, a “last resort drug” is a lipoprotein that can 

cause nephrotoxicity or neurotoxicity (Lora-Tamayo et al., 2014).  A combination of polymyxin 

B, neomycin and bacitracin is used in the topical antibiotic ointment neosporin (Bonomo et al., 

2014).  Colistin acts by disrupting membranes, neomycin as a protein synthesis inhibitor, and 

bacitracin interferes with bacterial cell wall synthesis.    

In recent research, synergistic interactions were seen between amphiphilic antimicrobials 

and several antibiotics.  A variety of broad and narrow spectrum antibiotic classes have synergy 

with cationic amphiphiles or AMPs against bacteria, including tetracyclines, aminoglycosides, 

macrolides, fluoroquinolones, erythromycin, and chloramphenicol (Zhang et al., 2014; Patel et 

al., 2016; Gopal et al., 2014; Goswami et al., 2015; Ngu-schwemlein et al., 2015).   Membrane 

disrupting compounds, such as cationic amphiphiles, are theorized to create increased 

permeability of the bacterial cell membranes to allow antibiotic easier access into the cell (Ong 

et al., 2009; Gokel and Negin, 2012).  Most antibiotics need access into a bacteria cell to work, 

therefore, any feature that allows for easier access should lower the MIC value of antibiotics.  

Tobramycin in combination with both natural and synthetic AMP’s, including colistin, had 

synergy against antibiotic resistant strains of Enterobacteriaceae as well as  

K. pneumoniae (Pollini et al., 2017; Payne et al., 2017; Ozbek et al., 2015).   Beta-lactam 

antibiotics, ceftriaxone and ceftazidime had synergy with the AMP novicidin when combined 

against antibiotic resistant Gram-negative bacteria (Soren et al., 2015).      

Benzalkonium chloride (BZK) is readily used as a disinfectant in high concentrations and 

as a preservative in eye drops and nasal sprays in low concentrations (Hesje et al., 2009, and 
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Baron et al., 2016).  BZK in combination with gatifloxacin, an antibiotic used in eye drops also 

has synergy (Dyer et al., 1998).  Gatifloxacin based eye drops contain a small amount of 

benzalkonium chloride as a preservative, however, the combination was found to have an 

enhanced antimicrobial effect for the MIC of both benzalkonium chloride and gatifloxacin 

against S. aureus as well as MRSA (Hesje et al., 2009).  Combination therapy can also be used to 

better eradicate biofilms.  Several studies have demonstrated enhancement of benzalkonium 

chloride antimicrobial activity when combined with other antimicrobial substances.  

Benzalkonium chloride and sodium hypochlorite in combination can remove biofilm forming E. 

faecalis from teeth. (Baron et al., 2016).     

Synergy is also observed between antimicrobials and compounds that are not 

antimicrobials.  Sodium metaperiodate is an oxidative agent not used as an antimicrobial, but it 

has some antimicrobial properties.  In recent research, sodium metaperiodate was able to reduce 

bacterial capsule size, which contributes to increased cell susceptibility to antimicrobials 

(Klesius et al., 2010; Decostere et al., 1999).  Sodium metaperiodate in combination with 

antimicrobial citrate-based bio adhesives, used in marine organism studies, had a synergistic 

effect, lowering the MIC value against bacteria as well as fungus (Guo et al., 2015).  Sodium 

metaperiodate in combination with other antimicrobial agents have synergy against Gram 

negative bacteria as well as biofilm communities.  The combination of sodium metaperiodate, 

sodium bicarbonate, and sodium dodecyl sulfate were better at dispersing a P. aeruginosa 

biofilm than commercially used products, eradicating more than 90% of the biofilm (Gawande et 

al., 2008).    

1.5 Compounds in current study  
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Structural features of amphiphiles such as type of headgroup, spacer length between 

headgroups, number of tails, tail length, amount of total carbons in tails, and number of charges 

affect the antimicrobial activity of amphiphiles (Ladow et al. 2011; Grenier et al., 2012;  

Jennings et al., 2014; Marafino et al., 2015; Minbiole et al., 2016; Forman et al., 2016;  

Gallagher et al, 2017).  In the current study, several features were altered to explore the effect of 

these changes to antimicrobial activity.  

Headgroup substitution:  

Four series of tris cationic amphiphiles with two symmetrical hydrocarbon tails, were 

synthesized.   Each amphiphile possessed a mesitylene core, three positively charged head 

groups, separated evenly around the mesitylene core by a 5-carbon spacer with two symmetrical 

hydrocarbon tails.  Two of these head groups were dimethylalkylammonium groups with 

attached hydrocarbon tails.  The third head group was either with dimethylethanolamine for the 

M-E n,n series, dimethylaminopyridinium for the M-DMAP n,n series, isoquinolinium for the 

M-IQ n,n series, or 4-propanol pyridinium for the M-4PP n,n series.  Each series had tail lengths 

ranging from 8 to 16, depending on the series (Figure 3). 

  

        M-E n,n                          M-DMAP n,n                         M-IQ n,n                                         M-4PP n,n  
         (n = 8,10,12,14,16)      (n = 10,12,14,16)                      (n = 10,12)                                     (n = 10,12,14)  

  
Figure 3:  Amphiphile organic structure.  M = mesitylene core; n = number of carbons in each symmetrical 

hydrocarbon tail. E = dimethylethanolammonium, DMAP = dimethylaminopyridinium, IQ = isoquinolinium, and 

4PP = 4-propanol pyridinium.  
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Spacer variation and charge number:  

Three bis-cationic amphiphile series and three tetra-cationic series, each with two 

symmetrical tails were synthesized to determine effect of varied placement of headgroups and 

tails on the central benzene ring.  The bis-cationic amphiphile series consisted of two 

dimethylalkylammonium residues attached to the central ring in either the ortho (oX-n,n series), 

meta (mX-n,n series) or para orientation (pX,n,n series). One linear hydrocarbon chain was 

attached to each of the two dimethylalkylammonium groups, and contained 8-14 carbons for the 

oX-n,n series, 8-12 carbons for the mX-n,n series, and 8-16 carbons for the pX-n,n series (Figure  

4).  The tetra-cationic amphiphile series were structured similarly, however two 

dimethylalkylammonium head groups were attached to each of the same positions on the central 

ring, connected by a 2-carbon linker. The linear hydrocarbon tail connected to the head group in 

each of the tetra-cationic series contained 8-12 carbons for the oX-, mX-, and pX-(2,n)2 series 

(Figure 5).  

  

          oX-n,n                                        mX-n,n                                  pX-n,n      
(n = 8,10,12,14)                         (n = 8,10,12,14)                     (n = 8,10,12,14)  

  
Figure 4:  Structure of bis-cationic amphiphiles. n = number of carbons in each symmetrical hydrocarbon tail. oX = 

ortho-orientation; mX = meta-orientation; pX = para-orientation. 
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                          oX-(2,n)2    

                                (n = 8,10,12)  

  

  
        

mX-(2,n)2  
                 (n = 8,10,12)  

  
  

       pX-(2,n)2  
                 (n = 8,10,12)  

  
Figure 5:  Structure of tetra-cationic amphiphiles. n = number of carbons in each symmetrical hydrocarbon tail. oX = 

ortho-orientation; mX = meta-orientation; pX = para-orientation.  

  

Tail length variation:  

One series of hexa-cationic, triple tailed amphiphiles were synthesized.  Each amphiphile 

possessed 6 dimethylalkylammonium headgroups attached to a benzene ring, and three linear 

hydrocarbon tails of 8, 10, or 12 carbons in length (Figure 6).    
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Figure 6: Structure of the 6-headed, triple-tailed M-(2,n)3 series. M = mesitylene core; n represents the number of 

carbons per tail (8,10,12).  
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Chapter 2: The effect of head group substitution and tail length variation on synergistic 

combinations, kill time, and biofilm disruption  

  

2.1 Introduction  

  

  Antimicrobial resistance is a growing problem in the medical field, with antibiotic resistant 

bacteria responsible for approximately 2 million illnesses annually in the United States alone 

(CDC, 2013).  If a solution is not found to prevent the spread of antimicrobial resistance, the 

projected death toll worldwide due to antimicrobial resistance will rise from 700,000 per year to 

nearly 10 million per year by 2050, higher than death due to cancer (O’Neill, 2014; Figure 1). 

Preventative measures such as development of disinfectants and antiseptics that kill quickly and 

have antibiofilm capabilities would likely help prevent the spread of resistance.       

  Cationic amphiphiles are one possible solution to antimicrobial resistance, as they can be used 

as effective disinfectants and antiseptics.  Amphiphiles are molecules that possess both 

hydrophobic and hydrophilic structural features, and can have extensive antimicrobial properties 

(Ladow et al., 2013).  Structural features effect antimicrobial activity of amphiphiles such as 

type of headgroup, placement of headgroup on molecule, number of tails, tail length, amount of 

total carbons in tails, spacer length between headgroups, and number of charges.  Charge as well 

as hydrophobicity are important structural features that allow cationic amphiphiles to be highly 

active against bacteria (Marafino et al., 2015; Ladow et al., 2014).    

   Amphiphiles are some of the most potent biofilm disruptors.  Concentrations as low as  

25μM can disrupt preformed S. aureus, E. faecalis and A. baumannii biofilms (Jennings et al., 

2015; Feng et al., 2013).  The ideal structure for biofilm disruption is not known, however thus 

far, the most important structural features required for biofilm disruption activity is similar to 

that of killing planktonic cells; at least two cations with at least one hydrocarbon chain on an 

amphiphilic molecule (Jennings et al., 2015).  



19 

 

 

  

Combination therapy could be used with amphiphiles to help combat antibiotic resistance.  

Bacteria with resistance mechanisms against one type of antimicrobial will respond to a second 

antimicrobial with a different mechanism of action with the expectation that the antimicrobial 

resistant bacteria will not be resistant to more than one type of antimicrobial at the same time.  

Combination therapy also, in some cases causes a synergistic effect where the combination of 

two antimicrobials are more effective at killing bacteria than alone.   If a synergistic effect 

happens, combination therapy can overcome resistance to both compounds by combination 

(Jorge et al., 2017).  Recent research involving amphiphilic antimicrobials and certain types of 

antibiotic reveal that these compounds have synergistic interactions when combined.   A variety 

of broad and narrow spectrum antibiotic classes have been determined to have synergy with 

cationic amphiphiles or AMPs against certain bacteria, including tetracyclines (Ngu-schwemlein 

et al., 2015), aminoglycosides, macrolides, fluoroquinolones, erythromycin (Patel et al., 2016; 

Gopal et al., 2014; Goswami et al., 2015), and chloramphenicol (Zhang et al., 2014).   

Membrane disrupting compounds, such as cationic amphiphiles, are theorized to make bacterial 

cell membranes more permeable, allowing an antibiotic easier access into the cell (Ong et al., 

2009; Gokel and Negin, 2012).  Most broad-spectrum antibiotics need access into a bacteria cell 

to work, therefore any feature that allows for easier access should lower the MIC value of 

antibiotics.   

  Four series of tris-cationic, double tailed amphiphiles were synthesized.  Each series 

possessed three cationic head groups connected to a mesitylene core. Two of the head groups 

were dimethylalkylammonium groups, both with attached hydrocarbon tails, symmetrical in 

length. The third head groups were an dimethylethanolammonium (M-E series), 

dimethylaminopyridinium (M-DMAP series), isoquinolinium (M-IQ series), or 4-propanol 

pyridinium (M-4PP series; Figure 4).  Hydrocarbon tail lengths varied from 8 to 16.  The MIC of 
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each series with varying tail lengths was determined for several different bacterial species 

(Rogers, 2017). Tails with 12 carbons had the lowest MIC value for each series. Three of the 

four series with the 12-carbon tail length also possessed biofilm disruption capabilities on par 

with tobramycin at 65% biofilm disruption (Rogers, 2017).  In this study, biofilm disruption 

activity was further explored for effect of tail length variation.  Time to kill S. aureus and P.  

aeruginosa as well as combination studies with tobramycin, oxacillin, sodium metaperiodate and 

benzalkonium chloride against S. aureus and E. coli were performed to further explore 

amphiphile capabilities.    

2.2 Results and Discussion  

  

Time Kill  

  

Amphiphiles in the following series were tested against P. aeruginosa and S. aureus for 

amount of time needed to eradicate all bacterial cells in the sample.  Only amphiphiles in the four 

tris-cationic series with low MIC values against both Gram-positive and negative species were 

used.  All amphiphiles tested killed all S. aureus cells in sample between 15 minutes and 1 hour, 

and reduced cell number 2000-fold between one and five minutes.  The Gram-negative Species 

P. aeruginosa took 24 hours or longer to kill.  

   Amphiphiles with a twelve-carbon chain length had the fastest kill time (Table 1).  

MDMAP 12,12, M-E 12,12, M-4PP 12,12, and M-IQ 12,12, reduced cell number 2000-fold 

within one minute, and could kill all bacteria in the S. aureus sample in 15 minutes.  M-4PP 

10,10 and M-DMAP 14,14 reduced cell number 2000-fold within five minutes.  M-4PP 10,10 

killed all cells in sample within one hour, whereas M-DMAP 14,14 did so in 30 minutes.    
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Table 1:  Time kill results (in hours) of each amphiphile tested against P. aeruginosa and S. aureus at 100μM 

concentration.  MIC values for each amphiphile/bacteria pair are indicated in μM.   
 

 
Compound:  
(M-X n,n) 

P. aeruginosa S. aureus 

Time Kill (Hours) MIC (μM) Time Kill (Hours) MIC (μM) 

M-DMAP 12,12 24 16 0.25 4 

M-DMAP 14,14 72+ 63 0.5 4 

M-4PP 10,10 24 16 1 4 

M-4PP 12,12 24 16 0.25 2 

M-IQ 12,12 24 16 0.25 4 

M-E 12,12 72 16 0.25 4 

       ________________________________________________________ 

 

Amphiphiles with a twelve or ten carbon chain length, M-DMAP 12,12, M-E 12,12, 

M4PP 12,12, M-4PP 10,10, and M-IQ 12,12, reduced P. aeruginosa cell numbers 2000-fold 

within two hours with the exception of M-E 12,12, which took between three and 24 hours.  The 

time to kill all cells in the sample was 24 hours for all amphiphiles with the exception of M-E 

12,12, which took 72 hours, and M-DMAP 14,14 which did not reduce cell number within 72 

hours.  The MIC value of M-DMAP 12,12, M-4PP 12,12 and M-E 12,12 were the lowest at 

16μM, however M-E 12,12 took longer to kill by four-fold.  M-IQ 12,12 and M-4PP 10,10 had 

an MIC of 31μM, but had a time kill the same as M-DMAP 12,12 and M-4PP 12,12.  M-

DMAP14,14 had an MIC value of 63μM which was not potent enough to kill P. aeruginosa cells 

within 72 hours.  In summary, the 12-carbon tail length amphiphiles for each tris-cationic series 

tested killed the quickest, with M-DMAP 12,12 and M-IQ 12,12 having the fastest reduction in 

S. aureus cells within one minute.   

Combination Studies  



22 

 

 

  

Tris-cationic amphiphiles differing only in a single head group were tested for synergy 

when combined with either tobramycin, oxacillin, sodium metaperiodate (NaIO4) or 

benzalkonium chloride (BZK) against S. aureus and E. coli.    

The combination of benzalkonium chloride and M-DMAP 12,12 or M-IQ 12,12 against 

E. coli and S. aureus had synergy, with an FIC of 0.5, which is considered a synergistic 

interaction (Table 2).  The combination of tobramycin and M-E 12,12 against S. aureus had an 

FIC of 0.5 indicating synergy.  The rest of the combinations were not synergistic.  

  
Table 2: FIC values between amphiphile and tobramycin, benzalkonium chloride (BZK), sodium metaperiodate 

(NaIO4) or oxacillin against E. coli and S. aureus.  X = head group (E = dimethylethanolammonium; DMAP = 

dimethylaminopyridinium; IQ = isoquinolinium; 4PP = 4-propanol pyridinium), n= hydrocarbon tail length.  Values 

are FIC of each combination where ≤ 0.5 indicates synergy and are in bold.   
 

 

Compounds: 
(M-X n,n) 

E. coli S. aureus 

tobramycin BZK NaIO4 oxacillin tobramycin BZK NaIO4 oxacillin 

M-E 12,12 1 1 0.75 1.02 0.5 0.63 1 0.75 

M-DMAP 12,12 0.75 0.5 0.75 0.52 0.63 0.5 0.63 0.75 

M-IQ 12,12 0.75 0.5 0.51 0.53 0.75 0.5 0.63 0.63 

M-4PP 12,12 1 1.5 1 0.52 1.25 0.71 1 1 

       ______________________________________________________________________________ 

Oxacillin was further tested with amphiphiles varying in tail length against E. coli, a 

representative Gram-negative bacterial species.  All tail length variations were tested for 

MDMAP series (16, 14, 12, and 10 hydrocarbons).  A tail length of 10 hydrocarbons had synergy 

with oxacillin with an FIC of 0.19.  A 10-carbon length tail was not synergistic with oxacillin for 

all series tested.  M-IQ 10,10 had synergy however M-4PP 10,10 only had an additive effect 

when combined with oxacillin.  The FIC values were 0.31 and 0.52 respectively.    
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An additive effect was found with all 12-carbon length amphiphiles tested with the exception of 

M-E 12,12, which had an FIC of 1.02 (Table 3).  

Table 3:  FIC values between amphiphile and oxacillin against E. coli. X = head group (E = 

dimethylethanolammonium; DMAP = dimethylaminopyridinium; IQ = isoquinolinium; 4PP = 4-propanol 

pyridinium), n=hydrocarbon tail length.  Values were FIC of each combination where ≤ 0.5 indicates synergy. FIC 

with values ≤ 0.5 were bolded.  ND=Not done.  MIC values in µM.  
 

         Compound              FIC       MIC    

M-DMAP 10,10 0.19 63 

M-DMAP 12,12 0.52 8 

M-DMAP 14,14 0.55 16 

M-DMAP 16,16 1.06 31 

M-4PP 10,10 0.52 8 

M-4PP 12,12 0.52 2 

M-4PP 14,14 ND 16 

M-IQ 10,10 0.31 8 

M-IQ 12,12 0.53 8 

M-E 8,8 ND >250 

M-E 10,10 ND 125 

M-E 12,12 1.02 4 

M-E 14,14 ND 8 

M-E 16,16 ND 63 

 

Biofilm Disruption  

    

  Tris-cationic, double tailed amphiphile series M-DMAP n,n, was used to determine the effect 

of tail length on biofilm disruption activity.  Four different tail lengths derivatives of MDMAP 

n,n were tested including 10, 12, 14 and 16 (Figure 7).  Tail length had an effect on biofilm 

disruption, but only at the 250µM concentration.  M-DMAP 10,10 and M-DMAP 12,12 had 71% 

biofilm disruption at 250µM concentration, however M-DMAP 14,14 and M-DMAP 16,16 had 

85% biofilm disruption at the same concentration.       
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Figure 7:  Difference in percent biofilm disruption activity by 10,12,14 and 16 hydrocarbon tail length derivatives 

of M-DMAP(n,n) amphiphile series. n=hydrocarbons in tail.  Error bars represent standard deviation of at least two 

independent trials.  

  

2.3 Conclusions  

  

  Several trends emerged from this work that will help with developing amphiphiles with better 

biofilm disrupting activity, that kill faster, and interact synergistically with other compounds.  

For double tailed, tris-cationic amphiphiles, longer tail lengths at 250µM concentration 

contributed to higher biofilm disruption activity.  In general, double-tailed cationic amphiphiles 

have decreased MIC with tail lengths higher than 12 hydrocarbons.  A balance between 

increased hydrophobicity of the amphiphile and altering the headgroups to keep MIC value low 

could help with creating amphiphiles with low MIC against planktonic bacteria, while also 

disrupting a high percentage of preformed biofilms.    

The 12 hydrocarbon tail length derivatives of all four series were the amphiphiles that 

killed the fasted, killing S. aureus within 15 minutes and P. aeruginosa within 24 hours.  Head 

group substitution did not affect time kill value.       
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Synergistic combinations were seen primarily with M-DMAP n,n and M-IQ n,n series.  

Both M-DMAP 12,12 and M-IQ 12,12 had synergy with benzalkonium chloride against both S. 

aureus and E. coli. Both of these amphiphiles also had an additive effect when combined with 

tobramycin, oxacillin and sodium metaperiodate against both S. aureus and E. coli.     

When combining oxacillin with varied tail length derivatives of each tris-cationic 

amphiphile series, synergy was observed only with 10 hydrocarbon tail length derivatives of 

MDMAP and M-IQ.  We can take from this data that a tail length of 10 hydrocarbons was more 

synergistic with oxacillin, and therefore likely has more synergy with other compounds, than 12, 

14, or 16 hydrocarbon tail length amphiphiles with similar structure.  We can also conclude that  

M-DMAP and M-IQ series was more synergistic with all compounds tested than M-4PP and ME 

series.  The reason for this difference is unknown and needs further investigation.        

  

2.4 Methods and Materials  

  

Bacterial Strains and Growth Conditions  

The Gram-negative bacterial strains used in this study were Escherichia coli ATCC®  

25922™, Klebsiella pneumoniae, Pseudomonas aeruginosa ATCC® 27853™ for experiments 

with planktonic cells, and hyper-biofilm forming Pseudomonas aeruginosa strain PAO2 for 

biofilm disruption studies (Holloway, 1955).  The Gram-positive bacterial strains used were  

Staphylococcus aureus subsp. aureus ATCC® 29213™, Enterococcus faecalis ATCC® 29212™, 

Bacillus anthracis Sterne, Streptococcus agalactiae J48 (Seifert et al., 2006).  All bacterial 

strains, except for PAO2 were grown in MHB.  For biofilm studies, PAO2 was grown in Luria- 

Bertani (LB) broth.  

Minimum Inhibitory Concentration  
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The MIC was determined for each amphiphile against four Gram-positive and three 

Gram-negative bacterial strains as previously described (CLSI, 2012). Bacterial cultures were 

grown overnight at 37°C and diluted in MHB to a concentration of 5x106 cells/ml.  Aliquots of  

100μl were added to 96-wells plates along with 100μl of amphiphile being tested at 2-fold 

dilutions, from 500μM to 2μM in triplicate, yielding a final concentration of 5x105 cells/ml in 

each well.  Sterile deionized water was used as a control for bacterial growth. The plates were 

incubated at 37°C for 72 hours.  The wells with lowest concentration of amphiphile without 

visual growth were used to determine the MIC.  Each amphiphile was tested a minimum of 2  

trials.    

Time-kill   

Time-kill assays were performed as previously described (Ladow et al.,  

2011).  Overnight cultures of S. aureus and P. aeruginosa were diluted with Mueller-Hinton 

broth and amphiphile to 2.5x106 cells/ml.  Amphiphiles added to the broth culture had a final 

concentration of 100µM and were incubated at room temperature to mimic conditions when 

disinfectants are normally used.  Aliquots of 100µl were plated on THB (Todd Hewitt Broth) 

agar plates at 0, 1, 5, 15, 30 minutes, 1, 2, 24 and 48 hours after incubation at room temperature 

for S. aureus, and 30 minutes, 1, 2, 3, 24, 48 and 72 hours after incubation at room temperature 

for P. aeruginosa, and incubated at 37°C for 24 hours, and colonies counted. Values are reported 

as the time when no colonies were observed.   

Checkerboard Assay  

A checkerboard assay using 96-well microtiter plates were used to determine if synergy 

exists when amphiphiles are combined with other compounds against E. coli ATCC® 25922™ 

and S. aureus ATCC® 29213™ (ATCC, Manassas, VA, USA).  Bacteria diluted to 5x106 cell/mL 
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was added to each well followed by 100μL of treatment, yielding 5x105 cell/mL in each well.  

Wells with sterile deionized H2O treatment used as a control for bacterial growth and a 

comparison for turbidity, respectively.  In the checkerboard section of the assay, 50μl of each 

compound at 2-fold dilutions at concentrations below the previously determined MIC of each 

compound. The Fractional Inhibitory Concentration (FIC) was determined by comparing the  

MIC value of each compound alone and in combination using the following equation:   

FIC = FICA + FICB  

FICA = A/MICA  

FICB = B/MICB  

MICA and MICB represent the MIC of compound A and B alone and A and B represent the MIC 

values of compound A and compound B combined.  Synergy was defined as an FIC value of 

<0.5, and antagonism was defined as an FIC value of >4.  Synergy assays for each combination 

was performed at least 3 times.  

Biofilm Disruption Assay  

Biofilm disruption was determined as previously described (O’Toole, 2011). P.  

aeruginosa strain PAO2 was incubated overnight in LB broth at 37°C and diluted to 5x106 

cells/ml.  Aliquots of 100μl were added to each well and incubated at 37°C for 24 hours for 

biofilm to grow.  Serial 2-fold dilutions of amphiphile were added to wells containing bacteria 

and plates were incubated at 37°C for 24 hours. Tobramycin was used as a positive control for 

biofilm disruption.  Bacterial cells were stained using the crystal violet method as previously 

described.  Wells were rinsed with dH2O and allowed to air dry completely.  Crystal violet at a 

concentration of 0.01% was added to each well at 100μl aliquots and plates were incubated at 

room temperature for 15 minutes.  Crystal violet stain was then removed and wells were rinsed 
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3-4 times with gently running deionized water, allowed to dry for 40 minutes, followed by 

addition of 100μl of 95% ethanol into each well.  Plates were incubated with gentle shaking at 

room temperature for 1 hour.  The ethanol/stain resulting mixture was then transferred into a 

clean 96-well microtiter plate and absorbance read with a plate reader at 570 nm.  Absorbance 

values of treated wells were compared to the control to determine % biofilm disruption.    
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Chapter 3: The effect of spacer variation and tail length variation on bis- and tetra-cationic 
double-tailed amphiphile biofilm disruption, time kill and synergistic combinations with 

oxacillin.  

  

3.1 Introduction  

  Antimicrobial resistance is a growing problem in the medical field, with antibiotic resistant 

bacteria responsible for 2 million illnesses annually in the United States alone (CDC, 2013).  If a 

solution is not found to prevent the spread of antimicrobial resistance, the projected death toll 

worldwide due to antimicrobial resistance will rise from 700,000 per year to nearly 10 million 

per year by 2050, higher than death due to cancer (O’Neill, 2014). Preventative measures such as 

development of disinfectants and antiseptics with faster killing and antibiofilm capabilities 

would prevent the spread of resistance.       

  Cationic amphiphiles are one possible solution to antimicrobial resistance, as they can be used 

as effective disinfectants and antiseptics.  Amphiphiles are molecules that possess both 

hydrophobic and hydrophilic structural features, and can have extensive antimicrobial properties 

(Ladow et al., 2013).  Structural features affect antimicrobial activity of amphiphiles such as 

type of headgroup, placement of headgroup on molecule, number of tails, tail length, amount of 

total carbons in tails, spacer length between headgroups, and number of charges.  Charge as well 

as hydrophobicity are important structural features that potentially allow cationic amphiphiles to 

be highly active against bacteria (Marafino et al., 2015; Ladow et al., 2014).    

   Amphiphiles are some of the most potent biofilm disruptors.  Concentrations as low as  

25μM can disrupt preformed S. aureus, E. faecalis and A. baumannii biofilms (Jennings et al., 

2015; Feng et al., 2013).  The ideal structure for biofilm disruption is not known; however thus 

far, the most important structural features required for biofilm disruption activity are similar to 
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those for killing planktonic cells:  at least two cations with at least one hydrocarbon chain on an 

amphiphilic molecule (Jennings et al., 2015).  

Combination therapy could be used with amphiphiles to help combat antibiotic 

resistance.  Bacteria with resistance mechanisms against one type of antimicrobial will respond 

to a second antimicrobial with a different mechanism of action.   The expectation is that the 

antimicrobial resistant bacteria will not be resistant to more than one type of antimicrobial at the 

same time.  Combination therapy also in some cases causes a synergistic effect where the 

combination of two antimicrobials are more effective at killing bacteria than each is alone.  In 

some cases, combination therapy can overcome antimicrobial resistance mechanisms (Jorge et 

al., 2017).  Recent research involving amphiphilic antimicrobials and certain types of antibiotic 

revealed synergy when these were combined.   A variety of broad and narrow spectrum antibiotic 

classes have synergy with cationic amphiphiles or AMPs against bacteria, including tetracyclines 

(Ngu-schwemlein et al., 2015), aminoglycosides, macrolides, fluoroquinolones, erythromycin  

(Patel et al., 2016; Gopal et al., 2014; Goswami et al., 2015), and chloramphenicol (Zhang et al., 

2014).   Membrane disrupting compounds such as cationic amphiphiles are theorized to make 

bacterial cell membranes more permeable, allowing an antibiotic easier access into the cell (Ong 

et al., 2009; Gokel and Negin, 2012).  Most broad-spectrum antibiotics need access into a 

bacteria cell to work, therefore any feature that allows for easier access should lower the MIC 

value of antibiotics.    

  Three bis-cationic amphiphile series and three tetra-cationic series, each with two symmetrical 

tails, were synthesized to determine the effect of varied placement of headgroups and tails on the 

central benzene ring.  The bis-cationic amphiphile series consisted of two 

dimethylalkylammonium residues attached to the central ring in either the ortho (oX-n,n series), 
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meta (mX-n,n series) or para orientation (pX,n,n series). One linear hydrocarbon chain was 

attached to each of the two dimethylalkylammonium groups, and contained 8 to 14 carbons for 

the oX-n,n series, 8 to 12 carbons for the mX-n,n series, and 8 to 16 carbons for the pX-n,n series  

(Figure 5).  The tetra-cationic amphiphile series were structured similarly, however two 

dimethylalkylammonium head groups were attached to each of the same positions on the central 

ring, connected by a 2-carbon linker. The linear hydrocarbon tail connected to the head group in 

each of the tetra-cationic series contained 8 to 12 carbons for the oX-, mX-, and pX-(2,n)2 series.  

MIC values were determined previously (Rogers, 2017).  Consistent with previous research on 

similar amphiphiles, tail length had more of an effect on MIC value than position of hydrocarbon 

tail or head group around benzene ring.  The 12-carbon tail length for each series had the lowest 

MIC value (Rogers, 2017).    

One series of hexa-cationic, triple tailed amphiphiles were synthesized.  Each amphiphile 

possessed 6 dimethylalkylammonium headgroups attached to a benzene ring, and three linear 

hydrocarbon tails of 8, 10, or 12 carbons in length.  In previous research the hexa-cationic 

amphiphile with 10 hydrocarbon tail lengths had the lowest MIC (Rogers, 2017). Disruption of 

preformed P. aeruginosa biofilms were determined for effect of tail length variation, charge 

number, and spacer variation. Time kill studies on S. aureus and P. aeruginosa as well as 

combination studies with oxacillin against E. coli were performed to further explore amphiphile 

capabilities.   

3.2 Results and Discussion  

  

Time Kill:    

Bis, tetra and hexa-cationic amphiphiles were tested for time kill values against S. aureus 

and P. aeruginosa.  Number of charges, tail length, number of tails, and spacer variation were 
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tested for their effect of time kill values.  Spacer variation and tail length influenced time kill 

value against S. aureus.  Ox-12,12 reduced cell number by 2000-fold immediately after addition 

to S. aureus sample and was able to kill all cells within 1 minute.  Px-12,12 and mX-12,12 

reduced cell number by 2000 fold within one minute, and all cells within 5 minutes.  The  

MIC value of pX-12,12 was lowest compared to mX- and oX-12,12, at 2μM compared to 8μM 

but did not demonstrate faster bacterial killing.  Px-10,10 was slightly slower, reducing cell 

number by 2000-fold within 5 minutes, and all cells within 15 minutes (Table 4).      

Tetra-cationic amphiphiles with 12 carbon length tails were fastest at killing bacteria in 

the series.  mX-(2,12)2 killed S. aureus in 30 minutes, whereas pX-(2,12)2 killed S. aureus in 

an hour of exposure.  Both started working within 5 minutes, reducing cell count by 2000-fold.  

Bis-cationic amphiphiles with similar structure were faster at killing S. aureus cells than tetra-

cationic derivatives.  

Hexa cationic amphiphiles were similar to tetra cationic amphiphiles in time kill.  M-

(2,10)3 was able to kill S. aureus in one hour, and reduced cell count by 2000-fold within 5 

minutes.  M-(2,8)3, the only 8 carbon chain amphiphile with a low MIC against S. aureus was 

able to reduce cell count by 2000-fold within 24 hours and killed all cells in the sample within 72 

hours.  Despite having a very low MIC against S. aureus, 1μM, both hexa cationic amphiphiles 

were slow at killing bacterial cells (Table 4).  MIC value therefore is not always correlated with 

time kill value.   

All amphiphiles tested needed 24 hours or more to kill all P. aeruginosa cells in the 

sample.  Only four out of seven amphiphiles tested could kill all cells in the sample within 72 

hours.  The only bis-cationic amphiphile with a time kill of under 72 hours was mX-12,12.  Cells 

in the sample were reduced 2000-fold in 24 hours and killed all cells in 48 hours.  pX-12,12, oX- 
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12,12 and pX-10,10 did not reduce cell number within 72 hours of exposure.    

Both tetra-cationic amphiphiles tested reduced cell number within 24 hours and 

eradicated all cells in sample within 48 hours.  One hexa cationic amphiphile was tested.  M-

(2,10)3 reduced cell number between 3 and 24 hours and had the lowest time kill at 24 hours 

(Table 4).   

Table 4: Results of time kill assay (in hours) with bis-cationic compounds oX (n,n), mX (n,n), pX (n,n), tetra-

cationic compounds oX-(2,n)2, mX-(2,n)2, pX-(2,n)2 , (oX = ortho orientation; mX = meta orientation; pX = para 

orientation and n = the number of carbons per tail), and tris-cationic compound M-(2,n)3, against P. aeruginosa and 

S. aureus at 100μM concentration.  MIC values for each amphiphile/bacteria pair are indicated in μM.  0.017 hours = 

1 minute, and 0.083 hours = 5 minutes.  Time kill values of less than 10 minutes are bolded.  ND = not done 

 

 

Compound 

P. aeruginosa S. aureus 

Time Kill (Hours) MIC (μM) Time Kill (Hours) MIC (μM) 

oX-12,12 >72 16 0.017 8 

mX-12,12 48 16 0.083 8 

pX-10,10 >72 63 0.25 8 

pX-12,12 >72 16 0.083 2 

mX-(2,12)2 48 31 0.5 2 

mX-(2,10)2 >72 >250 72 16 

pX-(2,12)2 48 31 1 2 

oX-(2,12)2 48 31 1 2 

M-(2,8)3 ND >500 72 1 

M-(2,10)3 24 16 1 1 

          _____________________________________________________________________________________________ 

 

  

In conclusion, the number of charges had an effect on time kill values against S.  

aureus.  Bis-cationic amphiphiles tested had the fastest time-kill value against S. aureus, with the 

lowest time kill of 1 minute, seen with oX-12,12.  Tail length also had an effect on time kill, as 

the 12 carbon derivatives of bis- and tetra-cationic amphiphiles had a faster time kill compared to 

10.  A tail length of 10 hydrocarbons was better than 8 for hexa-cationic amphiphiles with three 
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tails.  Interestingly, the 8-carbon variation of the hexa-cationic series had the same MIC value as 

the 10-carbon variation against S. aureus, however the time kill values were vastly different 

between these two amphiphiles showing that MIC is not the only predictor.  Spacer variation had 

some effect on time kill, as bis-cationic amphiphiles in the ortho position killed S. aureus faster 

than those in the meta or para position on the benzene ring.          

Combination Studies  

  

  Oxacillin, a beta-lactamase resistant antibiotic, is normally only effective at killing Gram-

positive bacterial species.  Here we test if the addition of amphiphile will lower the MIC of 

oxacillin against Gram-negative bacteria.  Amphiphiles with bis, tetra or hexa cations were tested 

in combination with oxacillin against E. coli, a representative Gram-negative species, to 

determine FIC.  Synergy was defined as an FIC value of less than or equal to 0.5.  Combinations 

had an additive effect if between 0.51 and 1, no effect between 1.01 and 4 and antagonistic if 

greater than 4.  Bis-cationic amphiphiles with 8 or 10 carbon chain length had synergy with 

oxacillin.  Ox-8,8, mX-10,10, and pX-10,10 had FICs of 0.19, 0.32 and 0.38 respectively.  The 

8-carbon tail length had the lowest FIC.  Two 12 carbon tail length amphiphiles tested, oX-

12,12, and mX-12,12 had an additive effect when combined with oxacillin with FICs of 0.63, 

and 0.52 respectively.  Both 14 carbon tail length amphiphiles tested had no effect when 

combined (Table 5a).     

All tetra-cationic amphiphiles tested had synergy with oxacillin, which included one 

amphiphiles with an 8-carbon length tail, three with 10-carbon length tails, and 2 with 12-carbon 

length tails.  The lowest FIC values were seen with the 8 and 10 carbon tail length amphiphiles, 

ranging between 0.19 and 0.38 (Table 5b).   
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All hexa-cationic amphiphiles tested had synergy with oxacillin.  Only 8 and 10 carbon 

tail length amphiphiles in the series was tested.  M-(2,8)3 had an FIC of 0.19, and M-(2,10)3 had 

a slightly higher FIC of 0.27 (Table 5c).  

Table 5: Results of combination studies with oxacillin and a) bis-cationic compounds oX-n,n, mX-n,n, pX-n,n, or b) 

Tetra-cationic compounds oX-(2,n)2, mX-(2,n)2, pX-(2,n)2 , (oX = ortho orientation; mX = meta orientation; pX = 

para orientation and n = the number of carbons per tail), or c) tris-cationic compound M-(2,n)3, against E. coli. 

Combination values in FIC where ≤0.5 indicates synergy.  Synergic combinations were highlighted.  MIC values for 

each amphiphile/bacteria pair are indicated in μM. ND=Not done   

 

a.                                                                                            b. 

 
     Compounds        FIC           MIC            

oX-8,8 0.19 250 

oX-10,10 ND 16 

oX-12,12 0.63 4 

oX-14,14 1.02 63 

mX-8,8 ND  >250 

mX-10,10 0.32 31 

mX-12,12 0.52 4 

pX-8,8 ND 250 

pX-10,10 0.38 16 

pX-12,12 1.02 4 

pX-14,14 1.02 31 

 

c. 
 

       Compound        FIC           MIC 

M-(2,8)3 0.19 16 

M-(2,10)3 0.27 8 

M-(2,12)3 ND 31 

 

Although M-(2,10)3 FIC was not the lowest seen when combined with oxacillin against E.  

coli, the reduction in oxacillin MIC was the most dramatic.  The MIC of oxacillin against E. coli 

species was reduced 64-fold, from 1000μM to 16μM, near clinical strength when combined with 

M-(2,10)3 (Figure 8; Table 5c).  

    Compound          FIC           MIC 

oX-(2,8)2 0.19 >250  

oX-(2,10)2 0.25 31 

oX-(2,12)2 ND 8  

mX-(2,8)2 ND >250 

mX-(2,10)2 0.19 31 

mX-(2,12)2 0.38 16 

pX-(2,8)2 ND 250 

pX-(2,10)2 0.19 31 

pX-(2,12)2 0.38 16 
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Figure 8: MIC values of oxacillin and M-(2,10)3 when used alone and in combination to kill E. coli.  

  

Biofilm Disruption  

    

   Effect of spacer length  

  

Bis-cationic amphiphiles pX-12,12, mX-12,12 and oX-12,12, and tetra-cationic 

amphiphiles pX-(2,12)2, mX-(2,12)2 and oX-(2,12)2 biofilm disruption activity were compared to 

determine effect of spacer length.  P. aeruginosa preformed biofilms were exposed to 2-fold 

serial dilutions of each amphiphile and stained with crystal violet to find the percentage biofilm 

disruption compared to negative control.  For bis-cationic amphiphiles, biofilm disruption 

increased in a concentration dependent manner, peaking at 125µM with a maximum of 58% 

disruption (Figure 9).  Bis-cationic amphiphiles tested were identical in biofilm disruption at 

each concentration, indicating spacer variation had no effect on biofilm disruption activity.    
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Figure 9: Percent biofilm disruption of 12 hydrocarbon tail length derivatives of bis-cationic amphiphile series at 

the para, meta, or ortho position on a benzene ring.  Error bars represent standard deviation of at least two 

independent trials.       

  

Tetra-cationic amphiphiles tested did not have the same trend as with bis-cationic 

amphiphiles (Figure 10).  There was no difference in biofilm disruption activity between pX-

(2,12)2 and mX-(2,12)2, however oX-(2,12)2 was different at the 250µM concentration. All three 

amphiphiles had an increase in biofilm disruption in a concentration dependent manner, peaking 

at 63µM with a maximum of 62% disruption, followed by a slight decline at 125µM, and a steep 

decline at 250µM for pX-(2,12)2 and mX-(2,12)2.  At 63µM and higher, oX-(2,12)2 did not 

decline, but stayed the same.  Spacer variation for tetra-cationic amphiphiles effects biofilm 

disruption activity at 125µM concentration and higher.    
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Figure 10:  Percent biofilm disruption of 12 hydrocarbon tail length derivatives of tetra-cationic amphiphile series 

at the para, meta or ortho position on a benzene ring.  Error bars represent standard deviation of at least two 

independent trials.  

  

Effect of tail length  

Bis-cationic and hexa-cationic amphiphiles were tested to determine if biofilm disruption 

activity was correlated with tail length (Figure 11).  The bis-cationic amphiphile pX-n,n series 

with 10, 12, and 14 carbon tail length was tested. Tail length had an effect on biofilm disruption 

activity.  pX-10,10 had the highest biofilm disruption activity of 62% at a 63µM concentration, 

however percentage biofilm disruption dropped dramatically at 250µM.  At 250µM, tail length 

had the most effect on biofilm disruption activity; biofilm disruption increased with increase in 

tail length:  pX-14,14 disrupted 57%, pX-12,12 47% and pX-10,10 20%.  pX-10,10 had 

maximum biofilm disruption at 63µM (63%), pX-12,12 at 125µM (58%) and pX-14,14 at  

250µM (57%).   
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Figure 11: Percent biofilm disruption activity of bis-cationic amphiphile series with variation in tail length (10,12 or 

14 hydrocarbons).  Error bars represent standard deviation of at least two independent trials.      

  

Two hexa-cationic amphiphiles from the M-(2,n)3 series were tested for differences in 

biofilm disruption activity between 8 and 10 carbon tail length derivatives (Figure 12).  As with 

other amphiphiles tested, biofilm disruption increased for both hexa-cationic amphiphiles in a 

concentration dependent manner, however, peak disruption was observed at 125µM with an 

average biofilm disruption of 65%.  Little difference in biofilm disruption was observed between 

the 8 and 10 hydrocarbon versions.  Since only two tail lengths were tested for this series, it can 

be concluded that there was no difference in biofilm disruption between the 8 and 10 

hydrocarbon tail length derivatives.         
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Figure 12:  Percent biofilm disruption activity of 8 and 10 hydrocarbon tail length derivatives of hexa-cationic 

amphiphile series.  Error bars represent standard deviation of at least two independent trials.  

  

3.3 Methods and Materials  

  

Bacterial Strains and Growth Conditions  

The Gram-negative bacterial strains used in this study were Escherichia coli ATCC®  

25922™, Klebsiella pneumoniae, Pseudomonas aeruginosa ATCC® 27853™ for experiments 

with planktonic cells, and hyper-biofilm forming P. aeruginosa strain PAO2 for biofilm 

disruption studies (Holloway, 1955).  The Gram-positive bacterial strains used were  

Staphylococcus aureus subsp. aureus ATCC 29213™, Enterococcus faecalis ATCC® 29212™, 

Bacillus anthracis Sterne, and Streptococcus agalactiae J48 (Seifert et al., 2006).  All bacterial 

strains, except for PAO2 were grown in MHB.  For biofilm studies, PAO2 was grown in Luria 

Bertani (LB) broth.  

Minimum Inhibitory Concentration  

The MIC was determined for each amphiphile against four Gram-positive and three 

Gram-negative bacterial strains as previously described (CLSI, 2012). Bacterial cultures were 
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grown overnight at 37°C and diluted in MHB to a concentration of 5x106 cells/ml.  Aliquots of 

100μl were added to 96-wells plates along with 100μL of the amphiphile being tested at 2-fold 

dilutions, from 500μM to 2μM in triplicate, yielding a final concentration of 5x105 cells/ml in 

each well.  Sterile deionized water was used as a control for bacterial growth. The plates were 

incubated at 37°C for 72 hours.  The wells with lowest concentration of amphiphile without 

visual growth were used to determine the MIC.  Each amphiphile was tested in a minimum of 2  

trials.    

Time-kill   

Time-kill assays were performed as previously described (Ladow et al.,  

2011).  Overnight cultures of S. aureus and P. aeruginosa were diluted with Mueller-Hinton 

broth and amphiphile to 2.5x106 cells/ml.  Amphiphiles added to the broth culture had a final 

concentration of 100µM and were incubated at room temperature to mimic conditions when 

disinfectants are normally used.  Aliquots of 100µl were plated on THB (Todd Hewitt Broth) 

agar plates at 0, 1, 5, 15, 30 minutes, 1, 2, 24 and 48 hours after incubation at room temperature 

for S. aureus, and 30 minutes, 1, 2, 3, 24, 48 and 72 hours after incubation at room temperature 

for P. aeruginosa, and incubated at 37°C for 24 hours, and colonies counted. Values are reported 

as the time when no colonies were observed.   

Checkerboard Assay  

A checkerboard assay using 96-well microtiter plates were used to determine if synergy 

exists when amphiphiles are combined with other compounds against E. coli ATCC® 25922™ 

and S. aureus ATCC® 29213™ (ATCC, Manassas, VA, USA).  Bacteria diluted to 5x106 

cell/mL were added to each well followed by 100μl of treatment, yielding 5x105 cell/ml in each 

well.  Wells with sterile deionized H2O treatment used as a control for bacterial growth and a 
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comparison for turbidity, respectively.  In the checkerboard section of the assay, 50μl of each 

compound at 2-fold dilutions at concentrations below the previously determined MIC of each 

compound. The Fractional Inhibitory Concentration (FIC) was determined by comparing the  

MIC value of each compound alone and in combination using the following equation:   

FIC = FICA + FICB  

FICA = A/MICA  

FICB = B/MICB  

MICA and MICB represent the MIC of compound A and B alone and A and B represent the MIC 

values of compound A and compound B combined.  Synergy was defined as an FIC value of  

≤0.5, and antagonism was defined as an FIC value of  >4.  Checkerboard assays for each 

combination were performed at least 3 times.  

Biofilm Disruption Assay  

Biofilm disruption was determined as previously described (O’Toole, 2011). P.  

aeruginosa strain PAO2 was incubated overnight in LB broth at 37°C and diluted to 5 x 106 

cells/ml.  Aliquots of 100μl were added to each well and incubated at 37°C for 24 hours to allow 

biofilm to grow.  Serial 2-fold dilutions of amphiphile were added to wells containing bacteria 

and plates were incubated at 37°C for 24 hours. Tobramycin was used as a positive control for 

biofilm disruption.  Bacterial cells were stained using the crystal violet method. Wells were 

rinsed with dH2O and allowed to air dry completely.  Crystal violet at a concentration of  

0.01% was added to each well at 100μl aliquots and plates were incubated at room temperature 

for 15 minutes.  Crystal violet stain was then removed and wells were rinsed 3-4 times with 

gently running deionized water, allowed to dry for 40 minutes, followed by addition of 100μl of 

95% ethanol into each well.  Plates were incubated with gentle shaking at room temperature for 1 
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hour.  The ethanol/stain resulting mixture was then transferred into a clean 96-well microtiter 

plate and absorbance read with a plate reader at 570 nm.  Absorbance values of treated wells 

were compared to the control to determine % biofilm disruption.    

3.4 Conclusion  

  The goal of this research was to design amphiphiles with low MIC values against bacteria 

while also retaining high biofilm disruption activity, a time kill of less than 5 minutes, and the 

ability to act synergistically with other antimicrobial compounds.  Data gathered in the current 

study contributes to designing amphiphiles with increased antimicrobial properties.  Amphiphiles 

possessing low MIC values against both Gram-positive and negative species had low time kill 

values as well.  Bis-cationic amphiphiles with 12 carbon length hydrocarbon tails could kill S.  

aureus in 5 minutes or less.  Of particular interest, oX-12,12 killed S. aureus within one minute.  

This data suggests that amphiphiles with two cations and two tails can kill Gram-positive 

bacteria quicker than amphiphiles of similar structure with more than two cations.  It can also be 

concluded that P. aeruginosa cell count was not reduced significantly within 10 minutes of 

amphiphile exposure.   In order for amphiphiles to be used as disinfectants, Gram-negative 

bacteria must be killed within 10 minutes, or at least reduced significantly within 10 minutes 

since currently used disinfectants kill within this time.  In studies involving similar amphiphiles, 

E. coli was killed within 15 minutes or less.  Although not tested, it is possible that the 

amphiphiles in the current study are able to kill other Gram-negative species in similar times.    

The maximum amount of biofilm disruption with these compounds was approximately 

65% at a concentration of 63µM with one bis-cationic amphiphile pX-10,10 and both hexa 

cationic amphiphiles M-(2,8)3 and M-(2,10)3.  Biofilm disruption at the same concentration was 

seen with Tobramycin, an antibiotic with known biofilm disruption capabilities, used to treat  
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P. aeruginosa infections.  Development of even more biofilm active amphiphiles is likely.  In 

research conducted simultaneously in our lab, similar amphiphiles were able to disrupt 

approximately 90% of pre-established P. aeruginosa biofilms at a concentration of 250µM 

(unpublished).  Further adjustment of amphiphile structural features will likely identify 

amphiphiles that can eradicate 100% of biofilms with even lower concentrations.  Complete 

biofilm eradication of S. aureus and E. faecalis biofilms at 25µM has been seen with 

amphiphiles of similar structure (Jennings et al., 2014).    

Synergistic combinations between these amphiphiles and oxacillin against E. coli were  

surprisingly abundant.  Oxacillin is not normally active against Gram-negative bacterial species.  

It was successfully proven that bacteria resistant to oxacillin, could become more susceptible if 

combined with a membrane disrupting compound.  It is possible that the amphiphile allowed 

oxacillin easier access to the cell wall by acting on the outer membrane of the Gram-negative 

bacteria.  The 10 and 8 hydrocarbon chain length amphiphiles had better synergy with oxacillin 

than 12 in this study.  The reason for this trend requires further investigation to understand.    

In conclusion, this study identified important amphiphile structural features for more  

rapid bacterial killing and better biofilm disruption activity.  This information will help with 

design of compounds that could be used as disinfectants.  The ability of these compounds to have 

synergistic interactions with oxacillin against Gram-negative bacteria expands on how these 

antimicrobials could be used.  The amphiphiles in this study could be added to other antibiotics 

or disinfectants to possibly overcome bacterial resistance mechanisms, making them susceptible.                           
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Chapter 4: Conclusions  

  

4.1 Conclusions  

  

The goal of this research was to extend knowledge of novel amphiphile antimicrobial 

capabilities beyond MIC values.  MIC values may determine the potency of antimicrobials 

against bacterial species, however, MIC assays typically allow 72 hours for compounds to work.  

In order for amphiphiles to be useful as antimicrobials, the time to kill bacteria must take only a 

few minutes.  Currently-used disinfectants often advertise as killing 99.9% bacteria, however, 

the amount of time needed to do this is usually at least 10 minutes.  In reality, while disinfecting 

a surface, exposure time would likely be less than 10 minutes due to user oversight, allowing for 

more bacteria to continue proliferating than expected.  It is necessary to develop disinfectants 

with faster killing speed so the expected amount of bacteria are eliminated, preventing infection 

as well as the spread of antibiotic resistant bacteria.  Three amphiphiles in this study were 

capable of killing S. aureus in less than 10 minutes: oX-12,12, pX-12,12 and mX-12,12 with kill 

times between 1 and 5 minutes.  P. aeruginosa was not eliminated within 10 minutes of 

exposure with these amphiphiles, however this particular bacteria is more resistant to 

disinfectants (Russel and Chopra, 1996).  Previous studies with similar amphiphiles were able to 

kill the Gram-negative E. coli in the shortest amount of time tested, 15 minutes (Ladow et al, 

2011). It is likely the amphiphiles in the current study are able to kill E. coli and other Gram-

negative bacteria in a similar amount of time as Gram-positive bacteria.  Further testing is 

needed with a greater number of bacterial species to assess killing speed of the bis-cationic 

amphiphile series in this study.      

  Synergy when combining two compounds against bacteria is a rarity.  Surprisingly, many 

synergistic combinations were identified with amphiphiles against both E. coli and S.  
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aureus.  The most notable combinations were 10 or 8 hydrocarbon tail length amphiphile 

derivatives combined with oxacillin against E. coli, a Gram-negative species.  Oxacillin, a 

narrow spectrum antibiotic which is normally only active against Gram-positive species, was 

able to kill a Gram-negative species at a 64-fold reduced MIC value.  The MIC of oxacillin 

against E. coli was reduced from >1000µM to 16µM when combined with the amphiphile M-

(2,10)3.  The exact mechanism causing synergy is not well understood and requires further 

investigation.  It is likely the amphiphiles are acting on bacterial membranes, increasing 

membrane permeability to the antibiotic.  Without addition of the amphiphile, oxacillin cannot 

penetrate the outer-membrane of Gram-negative bacteria, blocking the oxacillin action of 

disrupting cell wall synthesis.   

Biofilm disruption capabilities of some amphiphiles in this study warrant further 

investigation.  Tris-cationic amphiphiles M-DMAP 14,14 and M-DMAP 16,16 could disrupt 

nearly 100% of established P. aeruginosa biofilms at a 250µM concentration.  Biofilms 

generally inhibit diffusion of cationic antimicrobials through the protective matrix, making it 

difficult to reach embedded bacteria.  This inhibition is due to the overall anionic charge of 

polysaccharides within the matrix.  A higher concentration of antimicrobials is needed in order 

for the MIC of the antimicrobial to reach cells within the biofilm.  M-DMAP 14,14 and 16,16 

both have high MIC values against P. aeruginosa planktonic cells, 63µM and 250µM 

respectively, therefore biofilm disruption is likely only at high concentrations.  M-DMAP 16,16 

was able to disrupt nearly 100% of the pre-established biofilm at MIC.  The ideal structure for 

biofilm disruption is not known, however thus far, the most important structural features required 

for biofilm disruption activity is similar to that of killing planktonic cells: at least two cations 

with at least one hydrocarbon chain on an amphiphilic molecule (Jennings et al., 2015).  Further 



47 

 

 

  

research is needed to understand biofilm disruption activity of these amphiphiles, and why 

MDMAP 14,14 and 16,16 had higher biofilm disruption activity than amphiphiles with lower 

MICs.  

Several compounds of interest were identified with high biofilm disruption activity, fast 

killing speed and synergistic when combined with other compounds.  These compounds could be 

used as powerful disinfectants.  Those with fast killing speeds could be useful as an active 

ingredient in disinfectants, reducing the required exposure time. The development of novel 

antimicrobials with fast action and biofilm disruption will help reduce the spread of resistant 

bacteria.       
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