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Abstract: The agricultural industry utilizes antibiotic growth promoters to promote livestock growth
and health. However, the World Health Organization has raised concerns over the ongoing spread of
antibiotic resistance transmission in the populace, leading to its subsequent ban in several countries,
especially in the European Union. These restrictions have translated into an increase in pathogenic
outbreaks in the agricultural industry, highlighting the need for an economically viable, non-toxic,
and renewable alternative to antibiotics in livestock. Probiotics inhibit pathogen growth, promote a
beneficial microbiota, regulate the immune response of its host, enhance feed conversion to nutrients,
and form biofilms that block further infection. Commonly used lactic acid bacteria probiotics are
vulnerable to the harsh conditions of the upper gastrointestinal system, leading to novel research
using spore-forming bacteria from the genus Bacillus. However, the exact mechanisms behind Bacillus
probiotics remain unexplored. This review tackles this issue, by reporting antimicrobial compounds
produced from Bacillus strains, their proposed mechanisms of action, and any gaps in the mechanism
studies of these compounds. Lastly, this paper explores omics approaches to clarify the mechanisms
behind Bacillus probiotics.
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1. Introduction

Probiotics are live microorganisms that can be consumed by its host to confer a range
of health benefits. These benefits include the production of antimicrobial metabolites,
restoration of the host microbiota, modulation of the immune system, and the release of
digestive enzymes to improve nutrient uptake [1]. For example, Bacillus subtilis MA139
restored microbiota diversity in finishing pigs, improved their resistance to pathogenic
illnesses, and promoted animal health and growth [2]. This increase in animal production
makes probiotics a suitable alternative to antibiotic use in animals, due to the WHO
advocating for its restricted use and its subsequent ban by the EU in 2006 [3].

Probiotics are commonly used in animal feed production, which do not contribute
to antibiotic resistance and may even reduce it [4]. Selective probiotic bacteria have been
used to treat antibiotic-associated diarrhea (AAD), a common side-effect of antibiotic use.
Antibiotics elevate the risk of AAD by disrupting the diversity of the gut biota, allowing
the proliferation of opportunistic pathogens such as Clostridium difficile [5]. This issue can
be tackled through the use of probiotics, which inhibit pathogen growth and restabilize
the intestinal microbiota back to normal levels [6]. Furthermore, probiotics can bind to the
intestinal walls of its host and competitively exclude competing pathogens. Additionally,
these probiotics produce a plethora of antimicrobial compounds that target pathogenic
bacteria, which has driven the search for a potent probiotic strain for industrial use.

The issue lies in the presence of antibiotic resistance genes, with the commonly used
Lactobacillus showing frequent resistance to vancomycin, ciprofloxacin, and aminoglyco-
sides [7]. This development has driven the research into other probiotic genera not yet
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explored such as Bacillus. Bacillus probiotics are pore-forming bacteria that can survive the
harsh conditions needed for pelletizing and can tolerate aerobic conditions for industrial
use, unlike Lactobacillus and Bifidobacterium [8].

Several review papers have been published in the literature summarizing Bacillus
metabolites, structural classes, and their antimicrobial activities [9–11]. However, no litera-
ture is available investigating the mechanisms of action of the antimicrobial metabolites
from Bacillus. In this review, we summarized 47 antimicrobial compounds based on their
molecular targets in the cell wall, plasma membrane, intracellular processes, and other
emerging targets.

2. A Glance of Bioactive Bacillus and Their Antimicrobial Metabolites

To gain a good understanding of antimicrobial Bacillus sp., and hence their potential as
a probiotic supplement, we conducted a literature review on antimicrobial Bacillus. Google-
Scholar, PubMed, Scopus, and Science-Direct electronic databases were used to identify
original scientific research papers. The terms ‘antimicrobial Bacillus’ and ‘mechanism of
action’ were used as filters, with the earliest possible time range. Our literature search
revealed that 1389 Bacillus strains have been reported for antimicrobial activity, composed
of 27 different species (Figure 1). The most commonly reported species included subtilis
(n = 348), amyloliquefaciens (n = 214), licheniformis (n = 114), circulans (n = 89), thuringiensis
(n = 73), pumilus (n = 61), velezensis (n = 60), megaterium (n = 17), and mojavensis (n = 17)
(Figure 1). The literature review also suggested that a substantial number of Bacillus species
were not identified (n = 293). From the antimicrobial Bacillus sp., 47 metabolites have been
identified and their mechanisms of actions reported [12]. We herein report the chemical
structures of the metabolites, their antimicrobial activity, and mechanism of action. Details
regarding these compounds, including source strain, anti-microbial activity, molecular
target, and references are provided in Supplementary Table S1.
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3. Antimicrobial Metabolites and Their Mechanism of Action
3.1. Metabolites Targeting the Cell Wall

The cell wall is a selectively permeable layer that has a distinct layer of polysaccharides,
peptidoglycans, and fungi-specific chitins and glucans [13]. This structure is located
outside the plasma membrane and acts as a permeable barrier, which regulates the entry of
metabolites into the cell and protects it against external stresses (Figure 2a). The cell wall is
a promising target for drug development due to its absence in mammalian cells, and several
Bacillus strains have been shown to target this structure by releasing enzymes (amylase,
cellulase, chitinase, chitosanase, glucanase, and protease) and antimicrobial metabolites.
From the reported 47 compounds with clearly defined mechanisms, 9 compounds target
the cell wall (Figure 2a).
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The peptidoglycan layer provides integrity and protection to the cell. This layer is
comprised of linear glycan strands, which alternate between N-acetylglucosamine (GlcNAc)
and N-acetylmuramic acid (MurNAc) residues linked by β-1-4 bonds [14]. Bacitracin, an
antibiotic first isolated from B. licheniformis, primarily acts on gram-positive bacteria such
as Streptococcus mutans (MIC = 78.12 µg/mL) [15,16]. This antibiotic is comprised of a
mixture of compounds, which include bacitracin A (1), B and C. Bacitracin A (Figure 3)
prevents the dephosphorylation of undecaprenyl pyrophosphate (C55-PP) to undecaprenyl
phosphate (C55-P), which prevents the formation of lipid I/II and the eventual disruption
of the peptidoglycan layer [17]. Additionally, recent scanning-electron microscopy (SEM)
analysis has shown that bacitracin inhibits the formation of biofilm by Streptococcus mutans
by downregulating several genes related to cell division and biofilm [16].

Glucosamine-6-phosphate synthetase (G6PS) is an enzyme that catalyzes the produc-
tion of uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), which is a precursor
for peptidoglycan synthesis [18]. Bacilysin (2) and its chlorinated derivative chlorotetaine
(3) (Figure 3) were first isolated from B. subtilis A14 and B. amyloliquefaciens ZJU-2011,
respectively [19,20]. Both compounds are active against a broad range of bacteria, with
bacilysin inhibiting E. coli at MIC = 0.001 µg/mL and chlorotetaine inhibiting Candidas spp.
and Aspergillus niger at an MIC value of 1.8–7.8 µg/mL [20,21]. Bacilysin first enters the
cell by binding to a transmembrane transport protein and is subsequently hydrolyzed to
anticapsin, a G6PS inhibitor [22]. Kanosamine (4) (Figure 3) produced from B. cereus UW85
inhibits a wide array of plant-related pathogens (i.e., Phytophthora medicaginis M2913 with
an MIC = 25 µg/mL) [23]. Kanosmine inhibits Candida albicans by utilizing the glucose
transport system to transport itself into the cell, where it is subsequently phosphorylated
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to kanosamine-6-phosphate [24]. Kanosmine-6-phosphate inhibits G6PS, leading to the in
septum deformation and cell agglutination of C. albicans.
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Lipid II is a peptidoglycan intermediate, which is formed when the glycosyltransferase
MurG catalyzes the addition of N-acetylglucosamine (GlcNAc) to lipid I [25]. Lipid II subse-
quently translocates across the plasma membrane, where it transfers MurNaC and GlcNAc
to the peptidoglycan layer [26] (Figure 2a). Lipid II is generally conserved throughout
microbes and has been studied as a target for various antimicrobial compounds, especially
lantibiotics [27]. Lantibiotics are a class of large ribosomal compounds, typically around
3000kDa, and contain unique lanthionine and β-methyllanthionine residues [28]. These
lantibiotics are often further divided based on the enzymes involved in their biosynthesis,
which includes class I (5, 6) and class II (7, 8, 9) lantibiotics (Figure 4). Subtilin (5) is a
class I lantibiotic isolated from B. subtilis 6633 [29]. This metabolite inhibits gram-positive
bacteria, with MIC of 0.05 µg/mL (Micrococcus luteus NDCO8166) [29]. Binding studies
show that subtilin binds to lipid II and pyrophosphate-containing intermediates. These
pyrophosphate intermediates coat the outer cell membranes, and subtilin attaches to these
intermediates, forming membrane pores [30]. These pores release essential metabolites,
which eventually lead to cell death. Clausin (6), a class I lantibiotic produced by B. clausii
O/C, inhibits gram-positive microbes (e.g., Micrococcus luteus, MRSA with MICs = 16 mg/L
and 128 mg/L respectively) [31,32]. Clausin interacts with both lipid I/II and GlcNAc, form-
ing stable complexes, which obstruct its role in peptidoglycan biosynthesis and hindering
microbial growth [31].

A class II lantibiotic, mersacidin (7), was first isolated from Bacillus sp. HIL Y-85,54728
and shows activity against a range of gram-positive bacteria including Staphylococcus aureus
SG511 with an MIC = 1 µg/mL [33,34]. Mersacidin associates with lipid II, which interferes
with peptidoglycan biosynthesis and obstructs the growth of the microbe [35]. The class II
lantibiotic amylolysin A (8), produced by B. amyloliquefaciens GA1, targets gram-positive
bacteria such as Enterococcus faecium RFB128 with a MIC = 0.3µg/mL [36]. Amylolysin A
exerts its antimicrobial effect by two separate mechanisms [37]. First, amylolysin A interacts
with lipid II to hinder the biosynthesis of peptidoglycan. Secondly, amylolysin A induces
the formation of membrane pores, leading to cell lysis. Haloduracin (9), a class II lantibiotic
isolated from B. halodurans C-125, targets gram-positive bacteria such as Lactococcus lactis HP
ATCC 11602 (MIC = 0.4 µg/mL) [38]. Structural analysis has highlighted that haloduracin
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is comprised of two parts, Halα and Halβ. Halα binds to lipid II in a 2:1 stoichiometry,
preventing peptidoglycan biosynthesis. Halβ (2330 Da), however, binds to the anionic
lipids of the cell membrane, resulting in pore formation [39].
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3.2. Metabolites Targeting Plasma Membrane

The plasma membrane is composed of a phospholipid bilayer, which separates the
intracellular compartment from the extracellular environment and may selectively transport
metabolites across the membrane [40]. From the reviewed 47 Bacillus metabolites, 23 were
identified to target different processes of the cell membrane (Figure 2b).

The lipid bilayer controls the permeability and shape of the plasma membrane and
is affected by the negative-charged outer phospholipid layer [41]. Any changes to this
membrane, whether by altering its lipid composition or the phospholipid layer, may distort
its function as a barrier to the extracellular environment, releasing essential ions from the
cell, eventually leading to cell death. ε-Poly-L-lysine (10) (Figure 5) is a homopolymer pro-
duced from B. subtilis SDNS, which exerts antimicrobial activity against gram-positive and
gram-negative bacteria, as well as fungi (e.g., 600 µg/mL for Ralstonia solanacearum) [42].
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ε-Poly-L-lysine electrostatically attaches to the phospholipid layer of the plasma membrane,
which disturbs the membrane permeability to eventually lead to cell death [43,44]. Planta-
zolicin (11) (Figure 5), a product of B. velezensis FZB42, has been identified as a bacteriocin
of interest, due to its restrictive spectrum against clinically relevant pathogens, such as B.
anthracis, with an MIC value of 1–16 µg/mL [45]. This is highly relevant due to the very
serious nature of anthrax. Further mechanism studies revealed that plantazolicin induces
higher membrane fluidity and increases the proportion of cardiolipin, a cholesterol associ-
ated with higher osmotic stress [45]. Octapeptins are a class of lipooctapeptide antibiotics
that were first isolated from B. circulans and that primarily inhibit gram-negative bacteria,
with weaker activity on gram-positive bacteria and fungi [46]. Membrane microscopy stud-
ies show that octapeptin B (12) (E. coli SC 9251 MIC = 0.3 µg/mL) (Figure 5), produced from
B. circulans ATCC 21656, disrupts the ion permeability of the membrane, which reduces
the membrane proton gradient [47]. This translates into extensive membrane damage,
the efflux of charged metabolites, and cell lysis. The aurantinins B-D (13–15) (Figure 5), a
class of metabolites isolated from B. subtilis FMB60, exhibit similar MIC value for certain
clinically relevant strains (i.e., Clostridium sporogenes CICC 10385 with a MIC ≤ 0.78 µg/mL,
methicillin-resistant Staphylococcus aureus (MRSA) with an MIC = 6.25 µg/mL) [48]. SEM
and transmission electron microscopy (TEM) studies show that the aurantinins cause
plasma membrane lysis, leading to the efflux of metabolites from the cytoplasm [48]. How-
ever, these compounds require further structural elucidation to determine their precise
stereochemistry. Myriocin (16) (Figure 5), produced from B. amyloliquefaciens LZN01, exerts
antifungal activities against Candidas albicans (MIC = 1.0 µg/mL) [49]. SEM and TEM
microscopy studies have indicated that myriocin binds to serine palmitoyl transferase
and disrupts the plasma membrane, causing leakage and eventual pore formation [50].
Further omics analysis has revealed that myriocin alters the expression changes related
to sphingolipid metabolism, glycerophospholipid metabolism, steroid biosynthesis, ABC
transporters, and protein processing [51]. These genes are all relevant to the plasma mem-
brane, suggesting that myriocin may target the expression of DNA. Gramcidins are a class
of antibiotic decapeptides synthesized by Aneurinibacillus migulanus (formerly B. brevis)
and consist of linear gramicidin A, B, C, and the circular gramicidin S. Gramicidin A (17)
(Figure 5), a 15 amino-acid peptide, destroys gram-positive bacteria (Streptococcus pyogenes
with a MIC = 33 nM) [52]. Unlike other antimicrobial metabolites, gramicidin A forms a
single ion channel, which distorts the membrane and allows the passage of cations across
the membrane [53]. Once inside, gramicidin A can also induce the formation of reactive
oxygen species (ROS), which damages the intracellular DNA, mitochondria and triggers
necrosis [54]. The gram-positive bacteria Aneurinibacillus migulanus (formerly B. brevis natto)
inhibits several gram-positive, gram-negative, and fungi microbials (e.g., Staphylococcus
aureus with a MIC value of 3.9 µg/mL) by producing gramicidin S (18) (Figure 5) [55].
Gramicidin S interacts with the plasma membrane by forming oligomeric β-barrel pores,
which destroys the barrier properties of the membrane [56,57]. Further in vivo studies have
shown that gramicidin S binds to the DNA and inhibits transcription and cell growth [58].
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Pore-formation metabolites act in a concentration-dependent manner, by forming ion-
like channels that release vital ions from the cell, leading to cell death. At low concentrations,
these metabolites form unilamellar vesicles on the outer lipid membrane, distorting the
shape of the cell, and eventually, lead to apoptosis [59–61]. At higher concentrations, these
metabolites aggregate to form pores at the plasma membrane, causing the leakage of nucleic
acids, essential ions, and ATP from the cell to cause necrosis [59,62–64]. Bacillus metabolites
that typically utilize this mechanism includes the class of compounds known as lipopep-
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tides. Lipopeptides are composed of a cyclic oligopeptide, attached to a flexible lipid tail,
and consist of several groups including the surfactins, fengycins, and iturins [65]. Surfactins
were first isolated from a culture broth of B. subtilis and include the compounds surfactin A
(19), B (20), C (21), and lichenysin (22) (Figure 6) [66]. Surfactins exert their antibacterial
activities by acting on the plasma membrane through the pore-forming mechanism [67].
Additionally, surfactins (21-22) can breakdown bacterial biofilms by decreasing the percent-
age of alkali-soluble polysaccharides and downregulating the expression of genes involved
in biofilm formation such as icaA and icaD [68]. Lastly, surfactins can also induce the
grapevine immune system in response to infection [69]. Fengycins (23-26) (Figure 6) are
antifungal lipopeptides first isolated from B. subtilis F-29-3 (e.g., Rolani stolonifera with a
MIC = 400 µg/mL) [70]. These fengycin molecules are often reported as membrane disrup-
tors, either by deforming membrane shape or by causing pores, leading to cell death [71].
More recent studies have additional antimicrobial mechanisms of action for fengycin A
(23) and fengycin B (24). Fengycin A can alter the gene expression related to cell wall
synthesis, which alters cell components and increases hydrophobicity [72]. Furthermore,
fengycin B155, a mixture of fengycin A (23) and fengycin B (24), is able to disrupt multiple
intracellular components of the cell [73]. These processes include the inhibition of the
mitochondria membrane potential, the condensation of chromatin involved in replication,
the cleavage of DNA repair protein (poly (ARP-ribose) polymerase), and the accumulation
of ROS [73]. Lastly, fengycins have been shown to inhibit quorum sensing, due to their
structural similarity to S. aureus accessory gene regulator (Agr) [74]. Agr is a virulence fac-
tor that mediates the cell-to-cell communication between cells, and its inhibition prevents
the aggregation and biofilm formation needed to promote survival [75]. Plipastatin A (26)
is a lipopeptide commonly associated with the fengycin family due to its structural simi-
larity and antifungal properties (Fusarium oxysporum with a MIC = 16 µg/mL) [76]. TEM
analysis demonstrated that plipastatins disrupt the cell wall, membrane, and cytoskeleton
of Fusarium oxysporum, causing intracellular leakage and eventual cell death.
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Iturins (27–30) (Figure 7) are cyclic lipopeptides that includes iturin A (27), bacil-
lomycin D (28), bacillomycin L (29), and mycosubtilin (30) [77]. These peptides primarily
inhibit fungi by binding to the cell membrane with its fatty acid tail to form ion-conducting
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or phospholipid–lipopeptide sterol complexes [78]. Optical and fluorescence microscopy
studies have revealed that iturin A (27) severely damages the plasma membranes of Fusar-
ium graminearum at a MIC = 5 µg/mL by forming a large pore and inhibiting hyphae
growth [79]. Iturin A can stimulate oxidative stress, leading to mitochondria damage and
the eventual destruction of the cell [80]. Lastly, iturin A increases the transcription of im-
mune defense genes in several plants [81]. Bacillomycin D (28) exerts antifungal properties
against Colletotrichum gloeosporioides with an MIC of 2.2 µg/mL [82,83]. SEM and TEM
analysis confirmed bacillomycin D’s ability to target both cell wall and plasma membrane,
leading to the leakage of intracellular organelles [82]. Bacillomycin D can disrupt the
cell membrane by upregulating the expression of genes involved in ergosterol synthesis
and oxidative stress [84]. These sterols adjoin to the membrane, distorting its shape and
eventually releasing vital intracellular components to the environment [84]. Additionally,
bacillomycin D can increase the expression of specific genes to produce ROS molecules and
cellular antioxidant enzymes including deoxyivalentol, glutathione reductase, and thiore-
doxin [85]. Bacillomycin D has also been reported to act as a biofilm activator by binding to
the matrix complex KinB-Spo0A-SinI-SinR, which triggers the production of biofilm [86].
Lastly, bacillomycin D stimulates the expression of genes involved in mediated defense
responses and enzymatic proteins that can be released to target competing growth [86].
B. amyloliquefaciens K103 produces the potent antifungal metabolite bacillomycin L (29)
(Saccaromyces cerevisiae with a MIC = 30 µg/mL) [78,87]. Like other iturins, bacillomycin
L primarily acts on the plasma membrane, forming pores that releases its intracellular
components outside the cell [88]. Studies have shown that bacillomycin L binds to sterols
on the membrane, destroying the membrane and killing the cell [89]. Bacillomycin L can
also alter the expression of 39 different genes in Rhizoctonia solani related to cellular stress,
such as calcium homeostasis, energy metabolism, protein degradation, RNA processing,
and carbohydrate metabolism [90]. Mycosubtilin (30), an antibiotic from the iturin group,
inhibits the growth of fungal Saccharomyces cerevisiae with a MIC of 10 µg/mL [78]. In-
creased concentrations of mycosubtilin causes the lysis of the phospholipid layer, either by
the aggregation of lipopeptides or clustering of mycosubtilin [91]. This binding increases
membrane permeability, leading to metabolite release and the eventual lysis of the cell [92].
Mycosubtilin can also activate the salicylic acid and jasmonic acid signaling pathways
involved in the immune response to pathogenic microbes [69].
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Mycobacillin (31) (Figure 8), an antifungal polypeptide sourced from B. subtilis B3, is
active against Aspergillus niger at 20 µg/mL [93,94]. Mycobacillin has been reported to bind
to ATP transporter on the plasma membrane, leading to the excessive release of ATP and
the subsequent starvation of the cells [94,95]. Subtilosin A (32) (Figure 8) is a sactipeptide
produced by B. subtilis 168 that processes antibacterial activity against both gram-positive
and gram-negative pathogens (i.e., Gardnerella vaginalis MIC = 7.2 µg/mL) [96,97]. Its
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specific mechanism of action involves subtilosin A anchoring to a membrane receptor,
whilst electrostatically binding to the plasma membrane [98]. This electrostatic binding
dissipates the transmembrane pH gradient, causing an efflux of intracellular ATP that
starves the cell and eventually leads to its death. Subtilosin A has also been shown to
inhibit biofilm formation, presumably by blocking quorum sensing between cells [99].
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Figure 8. Chemical structures of mycobacillin (31) and subtilosin A (32).

3.3. Metabolites Targeting Intracellular Processes

Bacillus metabolites may cross the plasma membrane and bind to several intracellular
targets essential for cell survival. These intracellular processes include DNA transcription,
RNA translation, and protein metabolism needed for energy production. Transcription is
the first step in gene expression, in which information from a gene is used to construct a
functional product such as a protein. For a protein-coding gene, the RNA copy, or transcript,
carries the information needed to build a protein. From the 47 compounds reviewed in this
paper, 11 compounds primarily target the intracellular processes.
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Zwittermicin A (33) (Figure 9), an aminopolyl antibiotic produced by B. cereus UW85,
inhibits gram-positive and gram-negative bacteria, as well as fungi (i.e., Erwinia herbicola L
S005 with a MIC = 60 µg/mL) [100]. Zwittermicin A disrupts cellular growth by targeting
either DNA transcription and replication via inhibition of two enzymes, gyrase and topoi-
somerase [101]. Difficidin (34) (Figure 9), a highly unsaturated macrolide phosphate first
isolated from B. subtilis ATCC 39320, can inhibit both gram-positive and negative strains
such as Rolani solanacearum with a MIC value of 12.62 µg/mL of [102,103]. Microscopy
analysis has revealed that difficidin downregulates the genes related to cell wall synthesis,
protein production, and DNA replication [104]. Sublancin (35) (Figure 9), a glycosylated
peptide produced by B. subtilis 168, displays antibacterial activities (i.e., methicillin-resistant
Staphylococcus aureus ATCC43300 with a MIC = 15 µM) [105]. Mechanism investigations
suggest that sublancin enters the cytoplasm and reduces DNA transcription and transla-
tion [106].
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The amicoumacins are a class of dihydroisocoumarin compounds, produced by B.
pumilus, that exert antibacterial, antifungal, and anti-inflammatory properties. In particular,
amicoumacin A (36) (Figure 10), produced by B. pumilus BN-103, inhibits B. subtilis 1779
with an MIC = 20.0 µg/mL. Further studies have shown that amicoumacin A inhibits the
protein synthesis of methicillin-resistant Staphylococcus aureus by stabilizing the mRNA
at the terminal E site on the ribosome during protein synthesis [107]. This disruption
results in the perturbation of the membrane, leading to energy dissipation and eventual
cell death [107,108]. Prumycin (37) (Figure 10), isolated from a culture broth of B. amyloliq-
uefaciens SD-32, exerts bactericidal and fungicidal effects, such as on S. sclerotiorum, with
an MIC value of 1.56 µg/mL [109–111]. Prumycin inhibits the protein synthesis of Sacrina
lutea, preventing the activation of amino acids needed for protein synthesis and the transfer
of amino acids to RNA [110].
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Thiocillin (38) (Figure 10), produced by B. cereus ATCC 14579, has been previously
reported to only target gram-positive bacteria but has recently been shown to also target
gram-negative bacteria [112]. Its mechanism on gram-positive bacteria works by targeting
the 50S ribosome and inhibiting its role in protein synthesis [113]. In contrast, thiocillin
targets the gram-negative bacterium Pseudomonas aeruginosa by binding to ferrioxamine
receptor FoxA, which disrupts the proton motive force to inhibit translation [113]. Hetia-
macin E and F (39–40) (Figure 10) produced from B. subtilis PJS display antibacterial activity
against methicillin-resistant Staphylococcus aureus, with MIC values of 8–16 µg/mL and
32 µg/mL, respectively [114]. Hetiamacin E and F inhibit protein biosynthesis, resulting
in the disruption of mRNA translation, leading to cell death [114]. Rhizocticin A (41)
(Figure 10) is a potent antifungal first produced from B. subtilis 6633. Its bioactivity data
shows that it is active against a range of budding and filamentous fungi (bioactivity not
avaliable) [115]. Mutant analysis suggests that rhizocticin utilizes the peptide transport
system to enter the cytoplasm, where it forms the fungitoxic L-2-amino-5-phosphono-3-cis-
pentenioc acid (L-APPA). L-APPA interferes with threonine metabolism, which inhibits cell
growth [116].

Macrolactin N (42) (Figure 10), a novel macrolactin produced by B. subtilis A29,
is shown to inhibit Staphylococcus aureus peptide deformylase (PDF), with an MIC of
100 µM [117]. PDFs are essential bacterial specific metalloenzymes, which removes formyl
groups during polypeptide elongation [117]. The inhibition of these PDFs leave bac-
teria unable to hydrolyze these polypeptides and hinder its ability to synthesize pro-
teins [117]. Azoxybacilin (43) (Figure 10), first isolated from B. cereus NR2991 and B. cereus
Frankland, is active against a broad spectrum of mycelial fungi, such as Candida albicans
(IC50 = 1.2 mg/mL) [118,119]. Its mechanism involves the interruption of the sulfur fixation
pathway, an essential support system for microbial growth, by decreasing the expression of
sulfate assimilation genes including MET10 and MET4 [118]. MET10 regulates the expres-
sion of sulfite reductase, and MET4 is the transactivator of MET10. The reduction of the
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gene expression in the sulfur-fixation pathway disrupts this support system and eventually
leads to cell growth inhibition.

3.4. Metabolites Interacting with Other Emerging Targets

Quorum sensing, also known as cell-to-cell communication, is the regulation of a
microbial gene expression in response to its cell density [120]. This mechanism relies on
small chemical indicators and has been linked to pathogen virulence, due to its effect on
cell reproduction, mobility, and biofilm formation [121]. Biofilms are extracellular adhesive
structures produced by various strains of bacteria that assist in their tolerance to UV, acidity
conditions, and vulnerability to antimicrobial metabolites [122]. Several key groups of
Bacillus metabolites have been shown to interfere with this process [123]. Nonetheless,
Bacillus metabolites such as stigmatellin Y (44) (Figure 11) have been identified as a biofilm
inhibitor [124]. Stigmatellin Y is shown to inhibit Pseudomonas aeruginosa biofilm formation,
presumably by acting as a competitive inhibitor to the quorum sensing mediator PqsR [124].
Bacillaene (45) (Figure 11) has been identified as a biofilm inhibitor produced by numerous
B. subtilis strains [125]. Analysis of mutant strains revealed that bacillaene inhibits the
biofilm of Campylobacter jejuni, preventing the formation of microcolonies and eventually
disrupting their microbial growth.
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Siderophores are small molecules secreted by microorganisms that are involved in
iron (Fe2+) uptake from the environment [126]. Iron is an essential metabolite for microbial
growth and strategies have been developed to starve pathogenic microorganisms using
these siderophores. Siderophores produced by Bacillus strains include bacillibactin (46) and
schizokinen (47) (Figure 11), which were first isolated from B. subtilis and B. megaterium
ATCC 19213, respectively [127,128]. These metabolites facilitate the uptake of ferric ions
(Fe3+) from the environment to the bacterial cell using specific membrane receptors to enter
the host cell [129]. Once inside, these ions are reduced to ferrous (Fe2+) ions for use in
microbial growth [130].
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4. Conclusions Remarks and Future Directions

This paper reviews the current literature on antimicrobial compounds from Bacillus sp.
and their mechanism of action. Further analysis on the source of antimicrobial compounds
and their mechanism of action revealed some interesting trends. In terms of number of
strains that produce antimicrobial metabolites, the most prolific is subtilis (n = 73), followed
by amyloliquefaciens (n = 52) and velezensis (n = 22) (Figure 12a). B. subtilis is a common
bacterium in soil and one of the most-studied Bacillus sp. Research has shown that these
species are strongly related to each other, with several papers suggesting that amyloliquefa-
ciens be renamed as velezensis due to its similarity in conserved genomic sequence [131,132].
The least reported of these Bacillus sp. is B. thuringiensis, with only two strains producing
antimicrobial compounds in the literature. This highlights the lack of studies for this species
and may warrant further investigation.
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Further analysis on mechanism of action (Figure 12b) reveals that the cell membrane
is the most popular target of different species of Bacillus and their metabolites (n = 122),
followed by quorum sensing (n = 79), intracellular processes (n = 73), and the cell wall
(n = 57). Quorum sensing is an interesting emerging target, as more species and metabolites
(n = 79) hinder the process and hence, inhibit cell-to-cell communication. Further analysis
also notes that many Bacillus species and their metabolites exert their antimicrobial activity
through not only one but multiple mechanisms.

Several publications noted the geographic location of Bacillus, as well as the source
of the bacteria. Further analysis based the information provided in the literature reveals
that the majority of identified strains are from Asia (n = 37), followed by South America
(n = 8) and the Middle East (n = 4). This observation may indicate that these strains share
genomic similarities or properties, however, it may also stem from the research laboratories
located in these sites and could be a byproduct of a focus on probiotic research at these



Antibiotics 2022, 11, 88 15 of 25

locations. Additionally, the top three sources that these strains were isolated are from soil,
local produce, and waterways. These findings reinforce the use of soil-based screening as
a rich source of microorganisms. It also highlights the recent trend in investigating food
produce as a source of Bacillus isolates. This is either guided by historical evidence of their
antimicrobial properties or the anecdotal knowledge of their safe use and consumption.

The advancements of omics technologies are essential for the rapid screening of future
probiotics. The characterization of the genome and biochemical properties allows the
selection of particular strains with properties suitable for industrial use. A number of omics
techniques have been developed to provide valuable information on the characteristics,
optimization, and metabolic pathways behind antimicrobial activity [133]. One example
uses omics to a rapid screen of selected Bacillus strains for specific gene markers known
for antimicrobial activity [133]. For example, the genomic screening of B. velezensis CC09
revealed the loci for iturin A previously not identified in its initial screening [134].

In-depth analysis of these pathways and the precursors may reveal optimal conditions
needed to produce these metabolites [135]. Wiegand utilized metabolomics and genome
mining to provide insight into the expression of DNA under various fermentation condi-
tions. These conditions includes pH levels, temperatures, and oxygen levels, which result
in the discovery of optimal conditions needed to express the antimicrobial gene of interest
and maximizing their yield [136]. This technique, alongside computational modelling
systems, may reveal other conditions unexplored such as the ratio of carbon to nitrogen
in fermentation media and the presence of small metabolites and co-culturing in order to
further maximize the production of antimicrobial metabolites. As production is required,
especially when optimizing for commercial purposes, these techniques can open up the
field in the use of bacteria as a source of antimicrobial compounds to tackle the declining
rate of antimicrobial compounds being discovered.
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