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Antimicrobial peptides:
Defending the mucosal
epithelial barrier

Karen F. Johnstone and Mark C. Herzberg*

Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota,

Minneapolis, MN, United States

The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates

the importance and vulnerability of the mucosal epithelial barrier against

infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial

barrier, providing immunity against microbes. In primitive life forms, AMPs

protect the integument and the gut against pathogenic microbes. AMPs have

also evolved in humans and other mammals to enhance newer, complex

innate and adaptive immunity to favor the persistence of commensals over

pathogenic microbes. The canonical AMPs are helictical peptides that form

lethal pores in microbial membranes. In higher life forms, this type of AMP

is exemplified by the defensin family of AMPs. In epithelial tissues, defensins,

and calprotectin (complex of S100A8 and S100A9) have evolved to work

cooperatively. The mechanisms of action di�er. Unlike defensins, calprotectin

sequesters essential trace metals from microbes, which inhibits growth. This

review focuses on defensins and calprotectin as AMPs that appear to work

cooperatively to fortify the epithelial barrier against infection. The antimicrobial

spectrum is broad with overlap between the two AMPs. In mice, experimental

models highlight the contribution of both AMPs to candidiasis as a fungal

infection and periodontitis resulting from bacterial dysbiosis. These AMPs

appear to contribute to innate immunity in humans, protecting the commensal

microflora and restricting the emergence of pathobionts and pathogens. A

striking example in human innate immunity is that elevated serum calprotectin

protects against neonatal sepsis. Calprotectin is also remarkable because of

functional di�erences when localized in epithelial and neutrophil cytoplasm

or released into the extracellular environment. In the cytoplasm, calprotectin

appears to protect against invasive pathogens. Extracellularly, calprotectin

can engage pathogen-recognition receptors to activate innate immune and

proinflammatory mechanisms. In inflamed epithelial and other tissue spaces,

calprotectin, DNA, and histones are released from degranulated neutrophils

to form insoluble antimicrobial barriers termed neutrophil extracellular traps.

Hence, calprotectin and other AMPs use several strategies to provide microbial

control and stimulate innate immunity.
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Introduction

Encounters with infectious agents or tissue injury cause

inflammation, the initial response for tissue repair and innate

immune defense [1]. The recent epidemic caused by SARS-

CoV-2 resulted in millions of deaths worldwide in only 2

years [2–6]. Infections caused by this airborne virus [7, 8]

reveal the vulnerability of our mucosal epithelial barriers against

infections. Among the oldest known immune defensemolecules,

antimicrobial proteins/peptides (AMPs) are ubiquitous through

evolution and across species. The first identified AMPs in

Precambrian protozoans date to 1,000 million years ago [9].

Most prominent at the epithelial barrier where most infections

occur, AMPs are crucial to host defense, and about 45 AMPs have

been identified in human saliva and in the oral environment

[10]. To understand the contribution to epithelial barrier

defense, AMP function in higher animals must be distinguished

from adaptive and other innate immune mechanisms. Some

AMPs show broad-spectrum activity across phyla, whereas

others are more specific. Even in the face of posited resistance

mechanisms, therapeutic strategies are in development to

fortify antimicrobial defense at the epithelial barrier. Indeed,

translation of knowledge of the structure and function of AMPs

may herald a post-antibiotic era.

The epithelial barrier in resistance to
microbial infection

Barrier protection against infection by exogenous bacteria,

fungi, and viruses is essential for survival. Formed by epithelia,

the barrier physically partitions the underlying connective

tissues from the external environment [11]. Barrier breaches are

defended by host adaptive and innate immune mechanisms.

Innate responses are activated by the engagement of

signaling pathways including Toll, Immune deficiency (IMD),

and Janus Kinase and Signal Transducer and Activator of

Transcription (JAK/STAT) [12]. These three pathways are found

in virtually all life forms, both ancient and contemporary.

For example, recognition and responses to pathogen-associated

molecular patterns (PAMPs) in insects involve signaling

pathways that are highly homologous to humans [12]. Crosstalk

between the Toll and IMD signaling cascades induce the

production of AMPs. The three pathways, however, partition

antimicrobial responsibility. JAK/STAT is activated by infection

or sepsis [13], producing the downstream effectors cytokines

and stress response proteins [14]. The Toll family of receptors

distinguish and signal in response to PAMPs originating

from Gram-positive and Gram-negative bacteria, fungi, viruses

[15, 16], and damage/danger-associated molecular patterns

(DAMPs) that are released from injured tissues [16–18]. The

IMD effects humoral immunity against Gram-negative bacteria

and fungi [14], illustrating a redundancy in primitive immune

function. Indeed, immunity in lower life forms reflects low

specificity and broad, overlapping recognition and signaling

responses to pathogens.

Functioning to protect epithelial barriers, the effectors of

innate immune functions in the host span phylogeny and

evolutionary time. Produced as part of the transcriptional

response to engagement of PAMPs, many AMPs are highly

conserved in invertebrates and serve as the primary humoral

response [19]. In contrast, a minimally competent cell-mediated

immune response is provided by hemocytes. In lower life

forms, the AMP-mediated innate immune response is central to

resistance against pathogenic microbes and survival.

To illustrate the scope of AMP production across species,

Drosophila [19], the domesticated silk moth, Bombyx mori

[20], and Rhynchophorus ferrugineus (red palm weevil) [21]

use the Spätzle-mediated activation of the Toll pathway to

upregulate genes for multiple AMPs. AMPs produced in

response to activation of the Toll-Spz pathway also provide

antimicrobial immunity in Manduca sexta [22], Antheraea

pernyi [23], mosquito species [24], and shrimps [25]. Using

genome wide analysis, Manduca potentially express 86 different

AMPs [26]. Remarkably, Manduca also show intergenerational

immunity, whereby offspring show increased AMP production

after mothers were infected with Serratia marcescans [27]. The

upregulated AMPs provide immunity against many common

bacterial and fungal pathogens.

In the mealworm beetle, Tenebrio molitor, a frank breach

in the cuticle epithelium accompanied by microbial challenge

triggers local epithelial production of AMPs such as cecropins

[28, 29] and melanin to thwart parasitic infection of plants

and attenuate parasites and pathogens, including fungi [30].

Mealworms, then, illustrate that the cuticular epithelium

can deploy different AMPs, eliciting somewhat specialized

antimicrobial responses as an infection becomes more invasive.

More closely related to vertebrates, Tunicates including

Ascidiae, inhabit marine environments, where they encounter

infectious agents such as viruses, bacteria, and fungi in the

pharynx [31]. The pharynx functions for breathing and food

collection and is the primary immune organ [31]. Reflecting

an innate response of greater sophistication, Ciona robusta

utilize hemocytes in the hemolymph to initiate inflammation

[32]. Unique to these invertebrates, C. robusta express innate

immune receptors including secreted immunoglobulin Variable-

region containing Chitin Binding Proteins (CrVCBPs) early in

the response [32]. CrVCBPs behave as antibodies of restricted

specificity enabling a response to lipopolysaccharides that are

common to their colonizing microbes. AMPs produced by

Tunicates act as the first line of epithelial defense against

pathogens including bacteria, fungi, viruses, and parasites [33].

This discussion illustrates that the lowest life forms express

AMPs, which enable organisms to resist human pathogens such

as Staphylococcus aureus. In the skin of a frog, the antimicrobial
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products of different genes can work synergistically in the same

tissue. The granular glands of the splendid leaf frog, Cruziohyla

calcarifer, produce cruzioceptins which are 21–23 residue alpha

helical cationic peptides with antimicrobial activity against E.

coli, S. aureus, and C. albicans [34]. In the Australian tree frog,

the three AMPs from the skin (e.g., aurein 1.2, maculatin 1.1,

and caerin 1.1) function synergistically against Gram-negative

Escherichia coli and Gram-positive Staphylococcus aureus [35].

Expressed by species through evolution, two or more unique

AMPs work synergistically to provide overarching defense

against infection by exogenous organisms and control or limit

the growth of commensal species [9]. In lower animals, AMPs

function typically in the absence of adaptive immunity. Virtually

every life form employs AMPs to provide anti-bacterial and

anti-fungal defense.

Since most human infections require that microbes breach

the epithelial barrier, epithelial cells have evolved to contribute

to resistance to infection by providing robust local immunity.

During oral mucosal health, constitutive expression of AMPs

likely serves to control the overgrowth of commensal species,

the emergence of pathobionts, and dysbiosis. Antimicrobial

proteins are expressed by epithelial cells from tissues ranging

from the gingiva [36–38] to the cornea of the eye [39] and

to the Paneth cells of the intestines [40]. These epithelial

AMPs confer protection against infection by bacteria [41–43],

protozoa [44], fungi [45, 46], and viruses [47, 48]. By studying

interactions between AMPs and the transcriptional response

of bacterial cells and applying artificial intelligence algorithms,

AMPs could be engineered in the future to overcome microbial

resistance mechanisms.

Microbes drive the development of
innate oral immunity

The pressure of early colonizing commensal bacteria

appears to drive epithelial development, maturation, and AMP

expression. Using reconstituted human gingiva, incubation with

the prominent salivary organisms Granulicatella, Veillonella,

and Streptococcus promotes keratinocyte proliferation,

thickening, and greater organization of the epithelial layer [49].

Epithelial maturation was accompanied by increased expression

of several key regulated AMPs including elafin, hBD2, hBD3,

adrenomedullin, and cathelicidin (LL-37), and secretion of

antimicrobial AMPs (e.g., IL-6, CXCL8, CXCL1, CCL2). Except

for hBD1, other AMPs were not studied. These in vitro data

suggest that in the absence of leukocytes, the commensal

microbiota drives the development of the epithelial barrier

against infection.

The role of the oral microbiota in driving mucosal

maturation including innate immunity is supported by in vivo

studies in mice. In mouse neonates, microbes colonize the

oral mucosa at high levels. The prenatal oral mucosa expresses

the chemotactic cytokine, IL-17, which apparently recruited

neutrophils since these phagocytes were not seen in Il-17−/−

mice [50]. IL-17 and neutrophils virtually disappear by 4-week

of age in the buccal mucosa, while persisting in the gingiva and

the junctional epithelium into adulthood. The presence of IL-17

and neutrophils was directly associated with the presence of γδT

cells. After weaning, the density of oral mucosal microorganisms

reduces to adult levels, and the Streptococcaceae and other

genuses outgrow the Pasteurellaceae in mice. The microbiota

drive the maturation of the oral epithelium including loss of

permeability, lower turnover rate, and increased expression of

AMPs as marked by CRAMP, the murine analog of human LL-

37, and β-defensins 4 and 14. Postnatally, the production of

AMPs in saliva reduces the oral microbial load [50]. Microbial

colonization is essential for normal mucosal maturation and the

development of local innate immunity in this in vivomodel.

In epithelia, the control of AMP expression involves

pathogen-recognition receptors (PRRs) that are conserved in

insects, worms, and in humans and other mammals [9]. By

engaging a pathogen-associated molecular pattern (PAMP)

representing virulence factors on microbes, PRRs activate

the mTOR and NF-kB pathways to promote expression of

many immune response genes including AMPs. The AMPs

produced in higher life forms are generally conserved from

lower life forms [9]. AMPs such as hCAP-18, which is cleaved

to release the bioactive peptide LL-37, and calprotectin (e.g.,

complexed S100A8 and S100A9; S100A8/A9) are found in

humans and other mammals and are inducible in epithelia

[51–53]. The more evolutionarily modern epithelial AMPS

such as calprotectin present new antimicrobial mechanisms

and function by sequestering essential trace metals from

microbes [54, 55], whereas more ancient AMPs form pores

in microbial membranes [56]. Given the very different modes

of action, the two mechanisms of AMP activity can function

synergistically [57–59].

In humans and other mammals, AMPs in the extracellular

milieu protect epithelia against tissue-invasive microbes. In this

environment, insoluble neutrophil extracellular traps (NETs)

form after dead and dying cells release AMPs, DNA, and histones

[60–62]. These structures trap proximal microbes and use the

bound AMPs to kill or prevent bacterial and fungal growth.

Within viable resting cells, AMPs, including defensins and

cathelicidins, typically localize in cytoplasmic granules [63–66]

and calprotectin in the cytoplasm [67, 68].

Within cells, AMPs in granules and in the cytoplasm

(e.g., calprotectin) contribute to antimicrobial defense.

During microbial invasion or phagocytosis, AMP-containing

granules fuse with phagosomes or endosomes where invasive

microbes localize [69–72]. After release into the endosome

or phagolysosome, AMPs cooperate with other antimicrobial

mechanisms, including the production of reactive oxygen

species to inactivate and kill intracellular pathogens.
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AMPs found exclusively in the cytoplasm of viable cells

include calprotectin and LL-37 and appear to protect cells from

invasive pathogens that escape endosomes and phagosomes.

Some invasive pathogens like Listeria monocytogenes use

listeriolysin O (LLO) and lipases to digest the endosome

and phagosome membranes and escape into the cytoplasm

[73–75]. Cells have apparently co-evolved to protect against

microbial invasion into the cytoplasm. Human α-defensins

block LLO-dependent membrane pore formation, release of

LLO from the bacteria, and intracellular multiplication [76].

Listeria counter by activating type I interferons, which suppress

phagosome maturation and proteolysis of LLO and facilitate

escape and spread of infection [77]. As Listeria exits the

phagosome, however, calprotectin in the cytoplasm of epithelial

cells and neutrophils limits intracellular bacterial growth [68].

The antimicrobial activity of calprotectin against Listeria is

enhanced by ubiquitination of InlC, which stabilizes the

S100A9 subunit of calprotectin and causes an increase in

ROS production by neutrophils in mice [78]. At 2 h in the

cytoplasm, growth of Listeria and Salmonella typhimurium

are inhibited by calprotectin and LL-37 [68, 79, 80]. At

the same time, up to 10–12% of epithelial cells show LLO-

dependent calprotectin mobilization; mobilized calprotectin

complexes with polymerized cytoplasmic microtubules [68].

When complexed with microtubules, anti-Listeria activity is

subverted. Listeria also causes epithelial cells to upregulate IL-

1a, which signals the IL-1 receptor in an autocrine loop to

upregulate calprotectin [81–83]. Cytoplasmic AMPs, therefore,

largely function to control microbes within cells or resist

intracellular invasion.

Spectrum of AMP activity across
microbial kingdoms

Many species of bacteria and fungi are cell invasive, and

cytoplasmic AMPs limit the extent of intracellular invasion.

Common fungi that can be identified in the oral epithelial tissues

include Candida, Malassezia, Cryptococcus, and Trichoderma

spp. [84]. Candida albicans and other fungal species persist as

low abundance commensals which emerge prominently in the

immunocompromised [85] (Figure 1). These fungi appear to

be kept in check by neighboring mucosal microbiota and may

overgrow because of interkingdom changes centering on the oral

microbiome [87]. Antifungal proteins of the oral cavity include

the histatins [88], α- and β-defensins [89], and calprotectin

[90, 91]. In saliva, fungal growth is controlled by several known

antimicrobial proteins including CCL28 [92], histatin 5 [93],

the cystatins [94], and MUC7 [95]. Proximal to the mucosal

surfaces, pathogenic Candida albicans, the most common

pathogenic fungus in the oral cavity, secrete candidalysin

from hyphae [96]. Candidalysin activates oral epithelial cells

via EGFR to produce a robust antifungal response [97].

The epithelial response includes the release of anti-fungal

hBD2 and hBD3, LL37, S100A8, and ATP, which appears to

transactivate neighboring epithelial cells. Released S100 proteins

and defensins from epithelial cells into the tissues serve to recruit

neutrophils containing a potent redundant armamentarium

of AMPs [97]. The antifungal responses of epithelial cells

are made more robust by epithelial IL-17 signaling, which

increases expression of β-defensin 3 and thwarts oropharyngeal

candidiasis in mouse models [98]. Similarly, deficiency in mouse

β-defensin-1 results in IL-17 deficiency and mucosal candidiasis

upon infection with C. albicans [99] (Figure 1).

Viruses that typically infect oral epithelial tissues include

the herpesviruses: Herpes Simplex type 1 (HSV-1), Epstein-Barr

virus (EBV), cytomegalovirus (CMV), and Kaposi’s sarcoma-

associated herpesvirus (KSHV) [100]. Antimicrobial peptides

appear to mitigate infections by acting directly on herpes

simplex type 1 [101–104], SARS-CoV-2 [105], and KSHV

[48]. The AMP LL-37 appears to inhibit infection by KSHV

[48], whereas α-defensin-derived peptide HD5 suppresses

infection by CMV [106], and lactoferrin attenuates HSV-1 [107].

Generally acquired by sexual activity, human papilloma virus

(HPV) is thwarted by α-defensin 5 [108] and theta-defensins

[109], although clearance is multifactorial [110]. To produce a

new generation of therapeutic agents, naturally occurring AMPs

are being packaged [111] and re-engineered [112] to optimize

direct antiviral activity.

Although not considered an oral virus, HIV-1 interactions

with oral mucosal epithelium result in non-permissive infection

and the virus does not replicate in the oral mucosa [113].

In the oral tissues, AMPs could contribute to local viral

restrictions that curtail replication since the anatomically

similar genital mucosa do become infected. Upon oral

exposures, HIV-1 must translocate across mucosal epithelia

to infect subepithelial CD4T cells, which may be facilitated

by the induction of epithelial-mesenchymal transition [114].

Translocation of HIV-1 may also be enabled by a co-infection

with the periodontal pathogen, P. gingivalis [113, 115–117].

Rapid uptake by epithelial cells enables HIV-1 to escape

inactivation by human saliva [118] without appearing to

permit productive infection of keratinocytes [113]. Among the

restrictions of HIV-1 replication in mucosal epithelial cells

and vaginal fluid are cationic antimicrobial peptides including

calprotectin, hBD-1 and 2, and the secretory leukocyte protease

inhibitor (SLPI) [119]. Although LL-37 appears to inhibit

HIV-1 replication in peripheral blood mononuclear cells [120,

121], this AMP enhances HIV-1 infection in intraepithelial

Langerhans cells [122]. The contribution of AMPs to resist

productive HIV-1 infection in the oral mucosa has not been

definitively established.

Recently SARS-CoV-2 has been shown to infect salivary

glands, which express the cognate ACE2 receptor [123].

In the salivary glands, SARS-CoV-2 harbors, replicates, and

is subsequently released in saliva [124, 125]. Surprisingly,
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FIGURE 1

A schematic view of oropharyngeal candidiasis showing the complex participants in the infection. The oral microbiome associated with

candidiasis is di�erent from the oral microbiome in health [86]. The outgrowth of C. albicans hyphae may be facilitated by or drive the changes

associated with the dysbiotic microbiome. C. albicans in a dysbiotic community leads to inflammation and upregulation of many AMPs including

calprotectin, LL-37, and defensins. At the site of infection, the expression of AMPs, the dysbiotic microbiome, and the outgrowth of C. albicans

can individually or collectively signal for infiltration by immune cells, including neutrophils, macrophage, and T cells. Neutrophils and

macrophage phagocytose Candida. Neutrophil degranulation provides the components for neutrophil extracellular traps, which contain the

spread of Candida amid high concentrations of AMP calprotectin [67].

SARS-CoV-2 infections are mitigated by antimicrobial peptides

(as is HSV-1) [105]. Binding of hBD-2 blocks ACE2-mediated

entry of SARS-CoV-2 into target epithelial cells [126].

Tissue-specific expression of AMPs could explain tropisms

that govern the mucosal sites of viral infections. Consider

that influenza type A virus (IAV) infection is confined to the

upper respiratory tract although it is contiguous with but does

not infect the oral mucosa. The anatomic site sequestration

is somewhat paradoxical. The major AMPs in the salivary

film coating the oral mucous membranes include HNPs,

hCAP18/LL-37, hBDs [127], and salivary mucins [128]. Studies

in primates suggest that many more AMPs are expressed in

the microbially responsive gingival epithelium [129]. Indeed,

human saliva also contains the antifungal histatins [93, 130]

and the antifungal/antibacterial AMP, calprotectin [131]. The

known antiviral proteins/peptides are high molecular mass

glycoproteins [132]. Similar to the oral content, the predominant

AMPs produced at the mucosal surfaces of the upper airways

are neutrophil α-defensins/HNPs, HBDs, LL-37, sPLA2-IIA

[133], and calprotectin [134]. Perhaps critically, upon infection

the airway secretions become acidified which mitigates the

effectiveness of the AMPs. The saliva and oral mucosal

surfaces contain mechanisms that limit acidification [135], with

specialized microbial domes that appear to contain acid that

demineralizes the tooth structure [136].

We speculate that acidification of the airway fluids during

infection mitigates the effectiveness of the AMPs, facilitating

common co- or secondary-infection with Streptococcus

pneumoniae in the respiratory epithelium caused by influenza

[137]. Proximal IAV infection would appear to be stimulated

by the neuraminidase-expressing streptococci, which include

certain oral mitis group streptococci. Resulting interferon

signaling increases the production of mucins [138], contributing

to the release and spread from epithelial cells [139, 140]. The

streptococci would be expected to be sensitive to the local AMPs

if the secretions were not acidified [133]. Furthermore, IAV
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replication in airway epithelial cells appears to be stimulated by

uncharacterized products of S. oralis and S. mitis, among Mitis

group streptococci [141]. Although Mitis group streptococci are

the most frequently recovered bacteria from bronchoalveolar

lavage during aspiration pneumonia [142, 143], the seeming

resistance of oral tissues to IAV infection is surprising. During

IAV infection, both type I interferon production [138] and

TGF-β-mediated expression of host cell integrin receptors

[144] promote bacterial co-infection. Signaling through the

IL-17 receptor upregulates anti-fungal AMPs [98, 145]. Unlike

pulmonary fluids, the buffering capacity of saliva may allow

for sustained AMP activity and suppression of intruding S.

pneumoniae and provide a mechanistic explanation for the

resistance of the oral cavity to IAV infection.

Specific contribution of AMPs to
antimicrobial defense

In higher animals, the efficacy of AMPs has been determined

by isolating and purifying the respective proteins/peptides

followed by in vitro testing for antimicrobial function. In the

host, however, the contribution of AMPs to broad antimicrobial

defense is less clear because of the complexity and seeming

functional redundancies of the innate and adaptive immune

responses. And indeed, the AMPs can signal and modify

adaptive immune responses [146–149], thereby providing points

of convergence with innate immunity.

To resolve the functions of AMPs with greater clarity, animal

models are useful. Animal models can facilitate understanding

of modes of action, including knowledge of how interactions

with inflammatory responses and adaptive immunity affect

the composition of the microbiome. The microbiome can

profoundly affect host health. Shifts in the microbiome can

lead to dysbiosis and the emergence of pathobionts or to the

acquisition of pathogens that are related to many diseases,

including metabolic and neurologic disorders. AMPs that are

constitutively expressed or upregulated during inflammation

can contribute to homeostasis of the microbiome.

Defensins function as pore-forming
antimicrobials in humans and other
mammals

Defensins are cationic peptides that bind and form pores in

bacterial and fungal membranes causing increasing membrane

permeability and cell death [150]. A query of the genome

sequences of 29 vertebrate species revealed that humans have

genes for 31 β-defensin peptides, mice have 38, rats have 41, and

cattle have 42 [151]. Only a few of the gene protein products

have been evaluated for antimicrobial activity and immune

function. Since studies analyze one family member at a time,

the seeming redundancy in defensins (and other AMPs) leaves

open the question of whether AMPs synergize or compliment

their activities. The effectiveness of the defensins may be limited

by environmental factors including inactivation by high salt

concentration and degradation by protease activity. Clearly,

expression and AMP effectiveness can differ.

There are two main families of defensins found in saliva

[152, 153]. The α-defensins (HNP1, HNP2, HNP3, HNP4) are

made by neutrophils [154] and are released into the saliva

during infections and inflammation. β-defensins (hBD1, hBD2,

hBD3, hBD4) are synthesized by mucosal epithelial cells and

can be found at the mucosal surface in gingival crevicular fluid

and saliva [49]. Although regulated in response to viral agents

[47, 155], human β-defensin 1 (HBD1) is generally constitutively

expressed [156], whereas HBD2 and HBD3 are induced by

microbial insults and pro-inflammatory cytokines in various

mucosal epithelial tissues [49].

Oral candidiasis or thrush is common in denture

wearers, in people with salivary gland defects, and in the

immunocompromised. In a model of oral infection by Candida

albicans, wild type mice (DEFB1+/+) showed an influx of

neutrophils at the sites of intraepithelial infection and adjacent

to the fungal hyphae [99] (Figure 1). Mice deficient in the

constitutively expressed mouse β-defensin-1 (DEFB1−/−)

showed more sparse neutrophil infiltrates and increased fungal

burdens at days 3 and 7 after inoculation [99]. The increased

susceptibility to infection by C. albicans in DEFB1−/− mice

may also be explained by reduced induction of mucosal AMPs

including cathelicidin antimicrobial peptides (CAMP), LL-37,

mBD2, and mBD4. The risk of infection may also increase if

levels of calprotectin, chemokine CXCL1, and cytokines Il-17A,

IL-17F, Il-6, and IL-1β are also reduced. In the DEFB1−/−

mice, which are also deficient in CAMP, mouse β-defensin-1

appears to contribute to persistent antifungal activity and

regulate host inflammatory responses [99]. Neutrophils and

macrophages from the DEFB1−/− and wild type mice were

similar in in vitro neutrophil killing assays and IL-1β release.

Mouse genotype-specific differences in infection by C. albicans

could also be attributed to competition with co-colonizing

microbiota and the responses of T cells and other immune

response elements.

In DEFB1−/− mice, IL-17 cytokines are associated with

susceptibility to oral Candida infection [98]. In wild type mice,

IL-17 signaling recruits neutrophils to the oral epithelium which

can clear infections [50]. The IL-17 receptor pathway and the

expression of the IL-17 receptor on surface mucosal epithelial

cells (keratin 13 expressing) are also crucial to upregulating the

AMPs that aid in controlling the Candida infection [98]. IL-

17R plays a part in regulating the oral epithelial cell response

to infection by Candida. When challenged with Candida, the

susceptibility to infection of Il17ra−/− and Il17r conditional

deletion (Il17ra1K13) mice was similar and associated with

induction of the AMP, murine β-defensin-3 [157]. DEFB1
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expression was also similar in control mice and those with

oral (local) or complete IL-17 receptor deficiency. The IL-

17 receptor controls the expression of several antimicrobial

peptides including S100A8, S100A9, lipocalin 2, and mBD3

[145]. DEFB3−/− mice had the same susceptibility to oral

candidiasis as the Il17ra−/− mice, highlighting the importance

of IL-17 receptor and murine β-defensin-3 in antifungal

immunity by immunocompetent mice [98].

The different dependencies ofmBD1 (DEFB1−/− mice) [99]

and mBD3 (Il17ra−/− mice) [98] on mitigating oropharyngeal

candidiasis is interesting. In both models, the expression of non-

inducible mBD1 is expected, but mBD3 is upregulated, however,

by IL-17 receptor signaling in association with lipocalin-2

and calprotectin [98]. IL-17 promotes a 10–40-fold increase

in calprotectin expression in keratinocytes in vitro and in

mouse oropharyngeal candidiasis [158]; inflammation caused by

experimental periodontitis also upregulates calprotectin [159].

The diminished antifungal activity in the Il17ra−/− mice

may reflect a loss of synergy between several different AMPs

including mBD3, lipocalin-2, and calprotectin. Indeed, purified

calprotectin with lactoferrin completely inhibits C. albicans

in vitro. Calprotectin and lactoferrin can both be released from

neutrophils suggesting that they could also work cooperatively

at sites of inflammation to clear C. albicans [160].

In the oral cavity, β-defensins may also protect against

bacterial infections. Using a mouse model, a P. gingivalis-soaked

ligature was used to induce experimental periodontitis, and

HBD3 was applied to the periodontal pocket [161]. After three

applications of HBD3, ligated sites showed reduced osteoclast

and alveolar bone loss, and markers of periodontitis: MMP-

9, TNF-α and IL-6. Incubation of HBD3 with a macrophage

cell line attenuated polarization into a proinflammatory M1

phenotype. While it is unclear whether the human BD3 affected

the expression of mouse β-defensins, calprotectin, or other

synergistic oral AMPs, application of HBD3 appears to have

therapeutic potential.

Calprotectin as a
location-dependent AMP

Extracellular calprotectin

Calprotectin, a heterodimer of S100A8 and S100A9

(S100A8/A9), is a multifunctional AMP expressed in the

cytoplasm of mucosal epithelial cells and neutrophils. In

neutrophils, calprotectin comprises about 45% of the total

cytosolic protein. Functionally prominent in the oral cavity,

calprotectin is also found in the saliva [162, 163] and gingival

crevicular fluid [164–167]. During infection and inflammation,

the function of calprotectin can change in response to the local

conditions (Figure 2).

FIGURE 2

Localization of calprotectin at the epithelial barrier specifies

function. (A) Calprotectin released from degranulated

neutrophils and epithelial cells complex with DNA and histones

to form antimicrobial neutrophil extracellular traps. (B) When

calprotectin is released from cells in a high calcium

concentration inflammatory environment, the soluble AMP

forms heterotetramers, providing increased a�nity for trace

metal divalent cations. Successful sequestration of the trace

metals from microbes results in reduced growth and “nutritional

immunity.” (C) Calprotectin localized within the cytoplasm of

epithelial cells or neutrophils appear to protect against invasive

microbes that seek to reside intracellularly as part of their life

cycle. Whether intracytoplasmic calprotectin with AMP activity

exists as monomers, heterodimers. or heterotetramers,

assuming increased cytoplasmic calcium upon release from

intracellular stores, remains to be studied. (D) Released

calprotectin can engage a range of receptors on cells in the

inflammatory environment. Engagement with specific receptors

link this AMP with a range of innate cellular immune responses.

Calprotectin has no signal sequence and is not secreted

via the classical endoplasmic reticulum-Golgi pathway. At the

mucosal surface, calprotectin enters the extracellular space

when released by activated monocytes [168] or neutrophils

[67]. Extracellular calprotectin can also undergo oxidation

[169], thereby increasing its vulnerability to proteolysis and

fragmentation into smaller peptides of yet unknown biological

activity [170]. In the extracellular space, calprotectin is available

to bind receptors (Table 1, Figure 2), assemble heterodimers and

other oligomeric forms [189], and sequester metal ions [190].

Soluble calprotectin may be recognized as a damage-associated

molecular pattern (DAMP) or alarmin to activate neutrophils
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TABLE 1 Cell receptors for calprotectin.

Calprotectin receptor* Putative function Tissue/cell References

TLR4 and RAGE Secretion of proinflammatory cytokines BV-2 microglial cells [171]

Upregulation of MDSCs; inhibition of dendritic cell differentiation Myeloid-derived suppressor cells;

dendritic cells

[172, 173]

TLR4 Regulate the inflammatory cascade during sepsis Phagocytes [174]

Regulates inflammation during virus infection Lung [175]

Costimulatory enhancer of inflammation to upregulate IL-17 via ligation of

TLR4 on CD8+Tcells

CD8+ T cells [176]

Induces IL-6 and MCP-1 via TLR4 signaling viaMAPK and NF-κB, resulting

in the progression of periodontitis

Fibroblasts [177]

RAGE(s100A9) Induces NET formation in humans Neutrophils [178]

Induces NET formation in mice Neutrophils [179]

RAGE Decreased cardiac contractility cardiomyocytes [180]

Promotes inflammatory microenvironment required for tumor development Immune cells in the epidermis [181]

Enhanced cytotoxic activity of NK cells S100A8/A9 expressing pancreatic tumor

cells/Natural killer cells

[182]

Induces chemotaxis of neutrophils and secretion of proinflammatory cytokines [183]

CD36 Fatty acid uptake by endothelial cells Endothelial cells [184]

CD36(S100A9) MRP-14 binding to platelet CD36 regulates arterial thrombosis Platelets [185]

CD33(S100A9) Expansion of MDSC perturbs hematopoiesis and contributes to the

development of myelodysplastic syndromes

Myeloid-Derived suppressor

cells (MDSCs)

[18]

CD69 T-cell differentiation T cells [186]

TLR3 (S100A9) regulator of TLR3 signaling; functions during pre-TLR3 activation by enabling

maturation of TLR3 containing early endosomes into late endosomes

Bone marrow–derived macrophages [187]

TLR2 TLR2/S100A9/CXCL-2 signaling network for neutrophil recruitment Neutrophils [188]

*The receptors respond experimentally to calprotectin or the indicated subunit. In general, the multimeric form of S100A8/A9 is not reported.

or function as an antimicrobial protein to suppress microbial

growth [191]. Antimicrobial activity is increased locally when

calprotectin incorporates into neutrophil extracellular traps

(NETs) [191].

NETs are an insoluble mesh formed primarily from the

released granular and cytoplasmic contents of dead and dying

neutrophils, which include DNA, histones, and calprotectin

among other AMPs [192]. Calprotectin in NETsmay be essential

to clear infections in the tissues as observed in a mouse model

of Candida albicans infection [67]. When complexed in NETs,

calprotectin can activate neutrophils by upregulating CD11b

and increasing cellular adhesion [191]. S100A9 released from

the neutrophil can bind the neutrophil RAGE receptor and

potentiate further release of NETs [178].

In the extracellular space, calprotectin sequesters nutritional

metal ions which promotes antimicrobial “nutritional

immunity” [190, 193, 194]. Each S100 subunit contains

two Ca2+ binding sites [195, 196]. In the absence of Ca2+

ions, S100A8/A9 exists as a heterodimer, and upon Ca2+

binding, the two heterodimers self-associate to form a

heterotetramer [189, 196]. Hetero-multimerization can also be

promoted by oxidative cross-linking during inflammation

[197]. In comparison to its human ortholog, murine

calprotectin requires 10-fold more Ca2+ equivalents to

form a heterotetramer [198]. Each heterodimer contains

two distinct transition-metal-binding sites. When compared

with the heterodimer, calcium-induced tetramers show

enhanced binding affinity for Mn, Fe, Ni, Cu, and Zn and

increased protease stability [189, 196]. By sequestering

transition metals, calprotectin heterotetramers starve

microbes that infect the surrounding inflammatory tissue.

Calprotectin heterotetramers also lose DAMP activity because

this multimer shows reduced access to the TLR4/MD2-

binding site, which mitigates a broader inflammatory

response [199]. By reducing the inflammatory response,

off-target tissue damage is minimized during clearance of the

infection [200–203].

Some bacterial pathogens have evolved to thwart nutritional

immunity. To compete with calprotectin and commensal

species for nutritional metal ions, pathogens utilize and can

increase avidity of metal ion transporters [204, 205]. By

sequestering Mn++, for example, Salmonella resists killing

after phagocytosis by inhibiting neutrophil Mn++-dependent

enzymes that detoxify reactive oxygen species [205].

Frontiers inOralHealth 08 frontiersin.org

https://doi.org/10.3389/froh.2022.958480
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org


Johnstone and Herzberg 10.3389/froh.2022.958480

Some Gram-positive species may benefit when calprotectin

binds zinc. In Streptococcus pneumoniae, for example

calprotectin reverses toxic sensitivity to zinc [190]. The zinc

is bound by the solute-binding proteins of the ABC transport

system. When calprotectin successfully chelates this divalent

trace metal, however, the cells increase binding of Mn++,

favoring growth and persistence [190]. Environment counts

also, and the decreasing pH found in inflamed tissues reduces

calprotectin heterotetramer formation and the chelation of trace

metals [206]. By reducing the effectiveness of metal binding

by calprotectin, solute binding proteins become more effective

at capturing Mn++. Nutritional immunity mitigates against

certain bacteria, including S. pneumoniae and S. aureus [190].

Indeed, many bacteria express solute-binding proteins as part of

their ABC transporter systems, which bring nutritional solutes

into the bacterial cell to aid cell growth. Many streptococci,

including the oral species S. gordonii [207, 208], S. mutans

[209], and other related species [210] have ABC transporter

systems. In oral streptococci, calprotectin compromises the

function of the ABC transporters and the utilization of trace

metals, which negatively impacts growth [211]. Most microbes

live in complex communities. More must be learned about

how calprotectin affects commensal and pathogenic microbes

existing in a complex community and whether sequestration

of zinc or other trace metals might favor growth of commensal

bacteria while limiting pathobionts and pathogens.

Intracellular calprotectin

Calprotectin localizes after synthesis in the cytoplasm of

cells including neutrophils, monocytes, and mucosal squamous

epithelial cells [212, 213]. In neutrophil cytoplasm, calprotectin

is the most abundant protein on a molar basis. Cytosolic

calprotectin appears to directly protect the interior of squamous

epithelial cells against invasive microbes by antimicrobial

activity [36, 68, 80, 195] and indirectly by activating NADPH

oxidases leading to production of reactive oxygen species

(ROS) [214, 215]. After phagocytosis, neutrophils effect indirect

calprotectin-dependent antimicrobial mechanisms [216, 217].

In neutrophils, calprotectin appears to act as a calcium

relay to activate antibacterial ROS production [218], but

direct antimicrobial activity by calprotectin in the cytosol of

neutrophils has not yet been shown definitively.

In epithelial cells, calprotectin expression increases in

response to microbes including Fusobacterium nucleatum and

P. gingivalis [219, 220] and PAMPs such as lipopolysaccharide

(LPS) [221] and flagellin [222]. Indeed, when bacteria bind,

epithelial cells upregulate IL1α, which is released and then

engaged by the IL1 receptor [82, 83]. Engagement of

the IL-1 receptor signals through the p38-MAP kinase

pathway, increasing CCAAT/enhancer binding protein β

(C/EBPβ) transcriptional activity, which upregulates expression

of calprotectin.

To counter intracellular calprotectin, bacterial species

have evolved countermeasures. For example, Listeria induces

calprotectin co-localization with the actin cytoskeleton and

reduction in antimicrobial activity [68]. Fungi such as Candida

albicans survive by promoting AMP effectors and efflux

pumps and regulating downstream signaling pathways [45].

Encounters with phagocytosed bacteria such as Porphyromonas

gingivalis, a prominent periodontal pathobiont, can also

trigger the release of calprotectin from neutrophils into the

extracellular environment [223]. Both monomers are vulnerable

to oxidation on methionine and cysteine residues, which

mitigates antimicrobial activity [169]. Clearly, the role of

calprotectin in antibacterial defense depends on the cell source,

multimerization state, which optimizes nutritional immunity,

and cooperative mechanisms such as activation of ROS

production, the cellular or pericellular localization, and the

ability of the microbe to evade or subvert calprotectin.

The antimicrobial e�ectiveness of
calprotectin in vivo

In vivo studies can provide a deductive approach to

understanding the contribution of calprotectin to innate

immunity. In a study of experimental periodontitis in mice

that compared wild type and S100A9−/− (calprotectinnull),

expression of calprotectin minimized the emergence of a

dysbiotic periodontal microflora, gingival inflammation, and

periodontitis with loss of alveolar bone [159]. In wild type mice,

the density of neutrophil infiltrate was lower and emergence of

a dysbiotic microbial community was mitigated when compared

to periodontitis in the calprotectinnull mouse. In the presence

of calprotectin, the lower gingival inflammatory cell infiltrate

could increase the alkaline pH environment, albeit with lower

tissue Ca++ which is released from neutrophils. Inflammation

is also generally accompanied by interstitial acidosis, which

serves as another danger signal [224], and release of cellular

calcium into the tissues [189]. In human periodontitis [164, 165],

the neutrophil-rich inflammatory environment would also be

expected to contain increased extracellular levels of calprotectin

[191]. The elevation in calcium promotes tetramerization

of calprotectin, increasing antimicrobial activity. In contrast,

lower tissue pH would mitigate the ability of calprotectin to

sequester Mn++ and tetramerize [206]. Tetramerization and

stronger nutritional immunity in low tissue pH would, however,

occur in the presence of higher Ca++ environments [190].

Given the complexity of inflammatory tissue environments,

the effectiveness of antimicrobial calprotectin may be difficult

to predict.

In wild type calprotectin-expressing mice, PMN-rich

inflammation was dampened 2 days after ligature placement,

Frontiers inOralHealth 09 frontiersin.org

https://doi.org/10.3389/froh.2022.958480
https://www.frontiersin.org/journals/oral-health
https://www.frontiersin.org


Johnstone and Herzberg 10.3389/froh.2022.958480

whereas inflammation was robust in calprotectinnull mice

[159]. At 5 days of ligature placement, inflammation was

greater in the wild type mice. Hence, early inflammation was

suppressed by calprotectin but over time inflammation was

enhanced. The role of calprotectin appeared dichotomous

over time. Eventually, extracellular soluble calprotectin

heterodimer appears to serve as a proinflammatory alarmin

by engaging TLR4 [171, 174, 176], RAGE [225–227], CD36

[184, 225], CD69 [186, 228], and perhaps other receptors.

CD33, a highly conserved sialic-acid-binding immunoglobulin-

like lectin (Siglec) expressed primarily on monocytes and

myeloid progenitors [229], binds S100A9. Little is known,

however, about engagement of other forms of calprotectin [18].

Signaling through these receptors activates proinflammatory

signaling pathways (Table 1, Figure 2). Receptor engagement

by calprotectin is cell type and tissue specific. Human oral

epithelial cells and gingival fibroblasts express TLR4; human

oral epithelial cells also express TLR2 and RAGE which, like

TLR4, interact with the calprotectin heterodimer [177].

Calprotectin stimulates murine neutrophils to migrate and

adhere to integrin substrates [183]. Loss of calprotectin inmouse

models make neutrophils less sensitive to chemotactic agents

including IL-8 [230]. The N1 neutrophil phenotype is more

proinflammatory than the N2 phenotype. The N1 neutrophils

respond to calprotectin (S100A9) by chemotaxis and elevated

expression of NADPH-oxidase [231]. Hence, the response to

calprotectin by neutrophils will depend on the prevalence

of N1 and N2 phenotypes in vivo. In reported infection

models to date, the predominance of N1 or N2 neutrophil

phenotypes is generally not reported. For example, in a murine

model of S. pneumoniae-induced lung infection, calprotectin

is required for the appearance of a robust neutrophil infiltrate

with the regulated production of G-CSF and a reduction of

the infectious load in the lungs [232]. Whether calprotectin

acts dichotomously as an alarmin or as an inflammation-

dampening protein complex is strongly suggested to depend on

the prevalence of a dominant N1 phenotype in the response

to infection.

Calprotectin expression in human infants (and newborn

mice) sustains the composition of the healthy developing

gut microbiome [233]. Infants with high fecal concentrations

of calprotectin had greater abundance of Actinobacteria and

Bifidobacteriaceae and fewer Gammaproteobacteria including

opportunistic Enterobacteriaceae. Low calprotectin expression

was associated with sepsis and obesity by 2 years of age [233].

Stability of the human infant gut microbiome is supported

by breast milk, which contains concentrations of calprotectin

that are six-times higher than in the serum of newborns [234].

In infants, calprotectin is anti-inflammatory. After term vaginal

delivery, calprotectin levels in breast milk are higher than after

pre-term andCaesarian section deliveries. Twoweeks after birth,

breast milk calprotectin decreases to the levels in adult sera.

At these levels, breast milk calprotectin significantly inhibited

growth of Mn++-sensitive bacteria such as Staphylococcus

aureus and group B streptococci (neonatal sepsis related

bacteria) [234]. After term deliveries, higher levels of calcium

in breast milk were associated with a reduction in the amount

of calprotectin needed to inhibit pathogens, presumably due to

heterotetramer formation. For comparison, in S100A9−/− mice,

GI Enterobacteriaceae were more abundant when compared

to wild-type mice. Simulating neonates with low levels of

calprotectin, S100A9−/− mice also showed altered intestinal

macrophage phenotypes and reduced numbers of T-regulatory

cells [234]. These characteristics may predispose human and

murine neonates to sepsis. Neonatal sepsis may be prevented

or mitigated by the high concentration of calprotectin in breast

milk and protect against lactational mastitis in the mother.

AMPs in the oral cavity

The oral cavity contains an estimated 700 microbial species

that organize into communities reflecting the unique anatomic

and nutritional features of the local habitats [235]. Hence,

the communities residing on the tongue differ from those on

the smooth enamel surfaces, which differ from those in the

gingival crevice or within gingival epithelial cells. The microbes

recovered in saliva cannot be viewed as a resident community

since saliva in the mouth replenishes continually, with about

1mL secreted and swallowed each minute by healthy adults.

The salivary microbiome reflects the organisms shed from the

oral surfaces on an ongoing basis [236] and can change due to

underlying conditions such as inflammatory bowel disease [237].

In the oral cavity, AMPs produced in different anatomic sites

are among the factors that control the growth and complexity

of resident microbes (Table 2). There are no fewer than 18

discrete molecular families that confer antimicrobial control in

the oral cavity. The relative abundance of different AMPs in

intraoral sites serves as an important ecological determinant

that contributes to the abundance, organization, complexity,

and stability of the resident microbial communities [99, 135,

159, 267, 268]. At the epithelial interfaces, each AMP and

cooperation between them are poorly understood as influences

of the composition and pathogenicity of the oral communities.

Use of mouse genetic models and
the development of AMP
therapeutics

Use of mouse models to identify candidate genes has proven

invaluable in increasing our understanding of many diseases.

As we illustrate, a gene of interest can be shown to contribute

to a functional or disease phenotype. Typically, however, the

results show only that the gene product is necessary but not

necessarily sufficient or the sole protein of interest. In the case
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TABLE 2 Antimicrobial proteins in the oral cavity.

AMPs Roles References

α-Amylase Binds adhesins to block surface binding

Inhibits bacterial growth

Conversely, may aid biofilm formation

[238]

Adrenomedullin Found in gingival crevicular fluid and saliva

cationic peptide creates membrane pores, cell leakage and rupture

[239]

Antibodies

Secretory IgA

Salivary IgG

Bind bacteria, fungi, and viruses

Agglutination and clearance

Inhibition of binding

Promote phagocytosis, degranulation, and/or cytokine production by immune cells

[240]

Azurcidin (CAP37; heparin binding

protein, HBP)

Antibacterial, Gram-negative preference

Chemoattractant and activator of monocytes, macrophages, and T lymphocytes

[241, 242]

Bactericidal/permeability increasing

protein (BPI); BPI-like, salivary PLUNC

proteins

LPS-binding N-terminal domain bactericidal, endotoxin neutralizing

C-terminal domain opsonic, binds phagocytes

BPI and short type S-PLUNC have N-terminal domains, presents Gram-negative bacteria and

LPS-rich particles

Long type L-PLUNC has both the N-terminal LPS-binding domain and the C-terminal opsonic

domain

Parotid secretory protein (PSP) binds surface LPS to promote agglutination

[243]

Calprotectin Found in saliva, gingival crevicular fluid, oral mucosal epithelial cells

Antibacterial and antifungal

Sequesters essential trace metals from microbes leading to nutritional immunity

Functions intra- and extracellularly

[36, 67, 80, 160, 162,

164–167, 169, 177, 197,

211, 219]

Cathelicidins (LL-37) 18 kDa cationic peptide, when cleaved releases smaller peptides (including LL-37) of higher

antimicrobial activity

Mode of action: cationic peptide aggregation on bacterial membranes resulting in pore

formation, membrane leakage, and rupture

Immunomodulatory agonist of certain cell membrane receptors

[244]

C-C motif chemokine 28 (CCL28) Antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi

Causes membrane permeability

As a chemokine, regulates chemotaxis of cells that express CCR3 and CCR10

[245, 246]

Cystatins Cysteine protease inhibitors

Immunomodulatory properties

Antagonizes P. gingivalis

[247]

Defensins Present in saliva and expressed by cells and tissues

Broad spectrum antibacterial and antifungal

Immunomodulatory properties

Histatins Broad range fungicidal

Most effective against yeast, C. albicans

Non-lytic release of ATP leading to cell death

Formation of oxygen radicals

Most abundant in oral cavity

[248–250]

Lactoferrin/lactotransferrin Active against bacteria, fungi, and viruses

Potent iron chelator, sequesters free iron resulting in antimicrobial, and bacteriostatic effects

Binds and damages bacterial membranes

Binds viral particles and receptors

Proteinase inhibitor, anti-virulence factor

[251–253]

Lysozyme Antibacterial; muramidase activity weakens bacterial cell wall leading to lysis

Aggregates bacteria promoting clearance

[254–256]

(Continued)
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TABLE 2 Continued

AMPs Roles References

Activates bacterial autolysins which destroy cell walls

Anti-fungal and antiviral activity

Salivary Mucins Promotes bacterial agglutination

MUC5B and MUC7 protect host cells from viral entry

[257]

Neuropeptides Direct antimicrobial activity against oral pathogens and fungi [258, 259]

Peroxidases (lactoperoxidase and

myeloperoxidase)

Catalyze the oxidation of thiocyanate in the presence of hydrogen peroxide creating a

bactericidal hypothiocyanite (OSCN−)

[260]

Deleted in malignant brain tumor 1

(DMBT1/DMBT1, gp340)

Salivary agglutinin DMBT1(SAG)

Aggregates and clears S. mutans, S sanguinis and influenza A virus from oral cavity

Prevents binding of C. albicans to receptors

surface absorbed SAG: role in complement activation

[261–263]

Secretory leukocyte protease inhibitor Present in saliva, produced by oral keratinocytes

Serine protease inhibitor

Cationic peptide, creates membrane pores, membrane leakage, and rupture

Antibacterial, antifungal, and antiviral

[264–266]

of studying AMPs and innate immunity, we see functional

redundancy in the control of the microbiota. We can also be

confounded by interactions between AMPs and immune cells

that contribute to an observed phenotype. AMPs can contribute

to the development of the murine immune system and sustain

the development of a healthy microbiome. As investigators

translate data about a protein/peptide into a treatment, results

in the human clinical trials may not mirror the potency or

effectiveness predicted by genetic data in mice. To identify the

cells and tissues responsible for the AMP activity, the use of

conditional knockout strains may be useful when expression

is under control of cell and tissue-specific promoters. Knock-

in studies that add or increase expression of a specific gene

would make the experimental paradigm more robust. Bacteria

and fungi are generally sensitive to AMPs including calprotectin

and have co-evolved successfully, but resistance mechanisms in

key pathogens have been characterized [269–273]. Engineered

AMPs have been suggested as therapeutics to compliment or

replace the use of antibiotics [274] where resistance is a major

therapeutic problem [275–278]. To replace or serve as an adjunct

to antibiotics, specific AMP therapeutics can be developed in

animalmodels. One interesting strategy would target production

by the native AMP-producing cells. Indeed, we may be able

to develop AMP therapeutics that target the mucosal barrier

epithelium where infections originate.

Conclusions

The contribution of AMPs to antimicrobial immunity

is a crucial first defense of the epithelial barrier. The AMPs

differ in structure and include the evolutionarily conserved

families of pore-forming peptides and the essential trace

metal binding proteins that create antimicrobial nutritional

immunity. Functioning in affected tissues, AMPs serve

cooperatively to thwart bacterial, fungal, and viral infections.

In epithelial tissues spaces, the AMPs can present in microbe-

trapping antimicrobial NETs to circumscribe and neutralize

invading pathogens. Functioning intracellularly, AMPs protect

cells against invasive microbes. Given their presence in

different anatomic sites in the oral cavity, AMPs appear to

confer site-specific microbial control. During the immune

response to infection, parsing out the role of the AMPs

even when mutated or deleted in genetic models can be

challenging. Each AMP functions in the constellation of related

proteins and peptides and adaptive immunity. Furthermore,

crosstalk between systems can upregulate compensatory

mechanisms. Nonetheless the evolution of AMPs in lower

species indicates that innate immunity fortifies the epithelial

barrier in the absence of the complex immunity common to

humans and other mammals. Given that AMPs have broad-

spectrum antimicrobial activity and do not readily promote

microbial resistance, translational development of AMPs as

therapies appears warranted in the face of growing microbial

resistance to conventional antibiotics. Indeed, AMPs may be

applied therapeutically to fortify the oral epithelial barrier

against infection.
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