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natural strategy to combat bacterial infections

D. SCHILLACI1, M. G. CUSIMANO1, D. RUSSO1,2, & V. ARIZZA1,2*

1
Dip. STEBICEF, Università degli Studi di Palermo, Italy, and

2
Dip. Key-SET, Istituto Euromediterraneo di Scienza e

Biotecnologia, Italy

(Received 26 November 2013; accepted 29 April 2014)

Abstract

Increased attention has been focused on marine invertebrates as a source of bioactive molecules for biomedical applications.
Many bioactive molecules are part of the innate immune system. Some more recently isolated compounds, mainly from the
sea urchin and the sea cucumber, are antimicrobial peptides (AMPs) active against Gram-positive and Gram-negative
bacteria, and fungi. In this review we described the most recent studies on AMPs isolated from echinoderms. AMPs are
small peptides (< 10 kDa) with cationic charge and amphipathic structure. Recently, it was demonstrated that in the
coelomocyte lysates of Paracentrotus lividus and Holothuria tubulosa, AMPs possess activity against staphylococcal and
Pseudomonas aeruginosa biofilms. The data shows a great potential for application of AMPs in biotechnology for developing
novel therapeutic agents that are either alternative or complementary to conventional antibiotic therapy to combat multi-
resistant pathogens.
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Biofilms and antimicrobial peptides

Biofilms are a complex community of microbial cells,

enclosed in three-dimensional networks of microbial

cells embedded in a self-produced polymeric matrix

(slime) (Figure 1). The capacity to organize a biofilm

community is present in almost all Gram-negative

and Gram-positive bacteria. The process of building

a biofilm structure consists, generally, of four stages:

(1) adherence of planktonic cells to the abiotic surface

or tissue through weak van derWaals forces where the

colonists are anchored tightly or irreversibly by pili

(Pratt & Kolter 1998) (Figure 1a); (2) the microcolo-

nies’ recruitment of other planktonic cells and growth.

Normally, they are surrounded by a large amount of

extracellular polymeric protective matrix (extracellu-

lar polymeric substance: EPS) (Lawrence et al. 1991).

The matrix includes a wide variety of proteins, glyco-

proteins and glycolipids, and, in some cases, surpris-

ing amounts of extracellular DNA (e-DNA) (Hall-

Stoodley & Stoodley 2009), and can interact with

the environment, e.g., by attaching biofilms to sur-

faces, and through its sorption properties, which allow

for sequestering of dissolved and particulate sub-

stances from the environment, providing nutrients

for biofilm organisms and influencing predator-prey

interactions (Joubert et al. 2006). These components

are very important targets for overcoming both bio-

films and drug-resistant bacteria (Hancock &

Diamond 2000), (Figure 1b). (3) Biofilm maturation

involving the development of water channels and spe-

cialized zones (Figure 1c), and (4) dispersion of cells

and/or parts of the biofilm with subsequent coloniza-

tion of other locations (Costerton et al. 1981; Donlan

& Costerton 2002; Fey 2010; Høiby et al. 2010)

(Figure 1d). The architecture of a mature biofilm is

variable, ranging from flat, homogeneous layers of

cells to highly organized cell clusters with a mush-

room-shaped structure containing water-filled chan-

nels (Wimpenny et al. 2000).

Although there is great scientific interest and there

have been important research advances in the biofilm

area, we are still far from being able to control and

suppress biofilms. Approximately 80% of human bac-

terial infections are caused by biofilms (Harro et al.
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2010), mainly due to healthcare-associated infections

related to the implantation of medical devices, e.g.

urinary catheters, intravascular catheters and prosthe-

tic heart valves. As such, microbial adhesion onto

surfaces and the subsequent formation of biofilms

are critical concerns for many biomedical applications

(Donlan & Costerton 2002; Fey 2010). Indeed, the

increasing resistance of biofilms to traditional antimi-

crobial treatments is considered the major cause of

dissemination of antibiotic resistance in nosocomial

infections (Fey 2010; Spizek et al. 2010).

Antibiotics can be effective against planktonic

(free-living) pathogens but are quite often barely

effective against the bacteria organized in a commu-

nity, which can increase antibiotic resistance by 10–

1000 fold (Nickel et al. 1985; Evans & Holmes 1987;

Gristina et al. 1987; Prosser et al. 1987). It has been

estimated that biofilms are associated with nosoco-

mial infections and represent the fourth leading

cause of death in the US with ~10% of American

hospital patients leading to more than $5 billion in

added medical costs per annum (Wenzel 2007). The

bacteria structured in biofilms develop a multifactor-

ial mechanism of resistance to antibiotics (Obst et al.

2006) and there are several factors that contribute to

biofilm resistance. The biofilm environment allows a

higher frequency of mutation and horizontal gene

transmission when compared to planktonic bacteria,

which explains the rapid development of antibiotic

resistance in biofilms (Ghigo 2001). Within the struc-

ture of the biofilm are formed oxygen and nutrient

gradients, which cause some form of nutrient limita-

tion. This induces the bacteria to enter into a station-

ary phase, like dormancy, and under this form

bacteria are tolerant to antimicrobials (Brown et al.

1988; Wentland et al. 1996). The resistance can also

be due to a general stress response initiated by growth

within a biofilm (Brown & Barker 1999). So, bacteria

can resist, protecting themselves from the detrimental

effects of heat shock, cold shock, changes in pH and

many chemical agents (Hengge-Aronis 1996). The

matrix is able to delay antibiotic penetration into the

biofilm structure, which contains polymers that bind

to antibiotics and hinder their action, and antibiotic-

degrading enzymes that deactivate them (Hoyle et al.

1992; Tseng et al. 2013).

The difficulty of successfully treating biofilm-asso-

ciated infections, and the increasing resistance of

microbes to traditional treatments, call for the dis-

covery of compounds with novel mechanisms of

action. Most of the antimicrobial products that

have been developed are derivatives of compounds

that are already known, and hit the same targets, so

their action can only be somewhat better. Now,

research is drifting towards the discovery of non-

traditional sources of antimicrobials, and a series of

natural compounds that exhibit antimicrobial activity

has been isolated in the past 20 years from many

plant, insect and animal species (Roch et al. 1996;

Andreu & Rivas 1998; Bulet et al. 1999; Zasloff

2002; Rosetto et al. 2003; Dalla Valle et al. 2013)

as defense molecules as humoral parts of the innate

immune response (Table I). Animals, in particular,

are the most important source of antimicrobial com-

pounds, and several hundreds of antimicrobial pep-

tides have been found in a wide range of invertebrate

and vertebrate species. These natural antimicrobial

substances, named antimicrobial peptides (AMPs),

stand out because they have a much higher hit rate in

high-throughput screens than the combinational

libraries of traditional antimicrobials. Moreover, nat-

ural products are usually much more complex than

synthetic products and present scaffolds with viable

and biologically validated starting points for the

design of chemical libraries (Spizek et al. 2010).

According to antimicrobial peptide databases, more

than 10,000 AMPs have been discovered to date

(Table I).

Figure 1. The cycle of biofilm. (a) Attachment of planktonic cells to a surface; (b) recruitment of other planktonic cells and production of

extracellular polymeric substance (EPS); (c) growth and development of biofilm through cell division and recruitment; (d) dispersion of

bacteria from biofilm.
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The largest group of AMPs is that of cationic

molecules, which are widely distributed in animals

and plants. They have a small molecular size with no

more than 100 amino acids and a molecular weight <

10 kDa. They differ considerably in amino acid

sequence and structural conformation, and most of

them are positively charged, showing a net positive

charge of +2 to +9 due to an excess number of basic

amino acids like arginine or lysin, with 50% or more

of the amino acids hydrophobic and forming a

hydrophobic face opposite to a hydrophilic one

(Brogden 2005; Hancock & Sahl 2006). On the

basis of their structural features, cationic AMPs can

be divided into linear peptides forming α-helical

structures, cysteine-rich open-ended peptides con-

taining single or several disulfide bridges and mole-

cules rich in specific amino acids such as proline,

glycine or histidine. These chemo-physical charac-

teristics allow these peptides to be soluble in water

but react simultaneously with the hydrophobic layer

of microbial membranes. Such peptides are found in

all species of life including bacteria, fungi, plants,

insects, birds, crustaceans, amphibians and

mammals. A single animal can contain different

classes of peptides and a number of variants in a

given class.

The mode of action of AMPs has rarely been

addressed and is therefore not yet understood

(Brogden 2005). It is generally agreed that the pre-

valent mechanism of action of the AMPs is due to

their ability to permeabilize and/or to form pores

within the cytoplasmic membranes. AMPs are initi-

ally recruited on the microbial surface through elec-

trostatic interaction between the cationic portion of

the peptides and the negatively charged microbial

cell walls and/or membranes. Bacterial pathogens’

membranes are composed predominantly of phos-

phatidylglycerol, cardiolipin or phosphatidylserine

and tend to be highly electronegative. Studies sup-

port a non-receptor type interaction for antimicrobial

peptides with most pathogen membranes (Bessalle

et al. 1990; Wade et al. 1990). When the peptide/

lipid ratio increases, the peptides start forming multi-

mers or self-associating on top of the membrane.

When the peptides reach a high concentration, they

orientate perpendicularly and insert into the bilayer,

Table I. List of antimicrobial web databases.

Name

No. of listed

antimicrobial

peptides Origin Web address

4020 Prokaryotes and

eukaryotes

http://www.bicnirrh.res.in/

antimicrobial/

2525 Eukaryotes http://yadamp.unisa.it/default.aspx

1232 Prokaryotes and

eukaryotes

http://apps.sanbi.ac.za/dampd/

2308 Prokaryotes and

eukaryotes

http://aps.unmc.edu/AP/main.php

895 Eukaryotes http://www.bbcm.units.it/~tossi/

amsdb.html

177 Bacteriocin http://bactibase.pfba-lab-tun.org/

statistics.php

363 Defensin http://defensins.bii.a-star.edu.sg/

271 Plant http://phytamp.pfba-lab-tun.org/

main.php

Antimicrobial peptides 3
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thereby interfering with membrane integrity. The

microorganisms are then destroyed via either mem-

brane destabilization and/or pore formation

(Brogden 2005; Yount et al. 2006), or through inter-

ference with several essential metabolic functions,

such as protein, nucleic acid and cell wall syntheses

acting on nucleic acids and/or enzymatic proteins,

leading to bacterial cell death (Kamysz et al. 2003;

Brogden 2005; Yount et al. 2006; Hale & Hancock

2007; Nicolas 2009). Moreover, it appears that many

AMPs may be multifunctional microbicides, acting

simultaneously at the cell membrane and internal

sites (Yount et al. 2006).

Recent research has shown that AMPs also have a

high potential for inhibiting the formation of or

destroying biofilm. In fact, they can act at several

stages of biofilm formation and with different

mechanisms of action: they may minimize the initial

adhesion of microbial cells to abiotic surfaces by

altering the adhesive features of abiotic surfaces,

reducing flagellum-dependent swimming motility,

stimulating twitching motility, a type of surface moti-

lity that promotes the disassembly of biofilm struc-

tures or by binding to microbial surfaces via

electrostatic interactions; they may prevent biofilm

maturation by killing the early surface colonizers, or

by inhibiting quorum sensing (QS) – that is, the

communication system used by many bacteria to

build a biofilm. QS is a system composed of small

molecules that control collective behaviors, such as

bioluminescence, virulence factor production and

biofilm formation (Spoering & Gilmore 2006;

Horswill et al. 2007; Picioreanu et al. 2007; Huang

et al. 2010; Brogden & Brogden 2011; de la Fuente-

Nunez et al. 2012).

AMPs are produced by living organisms through-

out the bacteria and animal kingdoms, including also

fungi and plants (O’Keefe 2001; Rodriguez et al.

2002; Zasloff 2002; Castro & Fontes 2005; Cotter

et al. 2005; Riley & Chavan 2007; Strominger 2009;

da Rocha Pitta et al. 2010). Currently, more than

4000 peptides have been isolated and characterized

from tissues and organisms, and have been listed in

the main databases or in journal publications

(Thomas et al. 2010).

In invertebrates, AMPs are ubiquitously distribu-

ted, found especially in hemolymph and in tissues

such as epidermis, gut and respiratory organs where

exposure to pathogenic microorganisms is most

likely to occur, expressed constitutively or in

response to a pathogen stimulus. The AMPs defend

the organism not only through their ability to kill

bacteria, but it has been shown that they have anti-

tumor effects and mitogenic activity and, most

importantly, participate in immunoregulatory

mechanisms by modulating signal transduction and

cytokine production and/or release (Hancock &

Diamond 2000; Zasloff 2002; Bals & Wilson 2003;

Kamysz et al. 2003; Bowdish et al. 2005; Brown &

Hancock 2006; Hancock et al. 2006; Yount et al.

2006; Easton et al. 2009; Lai & Gallo 2009; Guani-

Guerra et al. 2010).

The purpose of this review will be to present the

most recent data on microbial antibiofilm peptides

isolated and characterized in the phylum

Echinodermata. In particular we will focus on their

structure and biological functions, and on their

potential application as antimicrobial and antibiofilm

agents to combat human pathogens.

Antimicrobial and antibiofilm peptides in

echinoderms

Echinoderms are deuterostome invertebrates, an

ancient group of marine invertebrates that live in

both the intertidal and deep-sea benthos, composed

of approximately 7000 extant species including sea

stars (asteroids), sea urchins (echinoids), sea cucum-

bers (holothurians), brittle stars (ophiuroids) and sea

lilies (crinoids). Because many species live in or near

the coastal or estuary waters overloaded with infec-

tious organisms – such as viruses, bacteria, fungi and

other parasites – they are exposed to a broad variety

of challenges to their self-integrity. They have

evolved efficient defense strategies in order to survive

in these high-impact environments.

Echinoderms, similarly to other invertebrates, do

not possess a specific immune response. Therefore,

they ensure the protection of their organism and its

homeostasis using natural immunity responses.

The echinoderm humoral immune response con-

sists of the production of proteins that are seques-

tered within the cells, having hemolytic and

hemagglutinating properties (Canicattì 1987, 1988,

1992; Arizza et al. 2007), and also includes the

synthesis of AMPs that are secreted from the

coelomocyte.

Beauregard et al. (2001) discovered, for the first

time in echinoderms, the presence of AMPs, a

peptide of ~ 6 kDa active against Gram-positive

and Gram-negative bacteria, in the coleomic fluid

of the sea cucumber Cucumaria frondosa

(Gunnerus, 1767). Since 2001, the number of

such discovered molecules has increased steadily.

Stabili et al. (1996) found in coelomic fluid and in

coelomocytes of Paracentrotus lividus (Lamarck,

1816) the effector cells of immunity, a peptide of

60 kDa that was able to inhibit the growth of

Vibrio alginolyticus. Other antimicrobial activity

was found in the jelly coat, in seminal plasma

4 D. Schillaci et al.
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(Stabili & Canicattì 1994) and in the larval lysate

of the same species (Stabili et al. 1994). In some

cases, antimicrobial proteins were also found in the

gastrointestinal organs and in the eggs of

Strongylocentrotus droebachiensis (Müller, 1776) and

Asterias rubens (Linnaeus, 1758) (Haug et al. 2002;

Li et al. 2008). Many AMPs are derived from

larger proteins that could be enzymatically digested

and produce active fragments. This has been

demonstrated by (Ghanbari et al. 2012). In fact,

digesting the tissues of sea cucumber Actinopyga

lecanora (Jaeger, 1833) with bromelain, peptides

with inhibitory activities against Pseudomonas sp.,

P. aeruginosa, and Escherichia coli, respectively,

were obtained and one papain-digested fraction

showed antibacterial activity against Staphylococcus

aureus. Maltseva et al. (2007) found that among

the AMPs isolated in the starfish Asterias rubens,

two peptides were part of the histone molecule

H2A. Maltseva and co-workers also found that

two other peptides were fragments of actin, while

one peptide was a fragment of filamin A. Gowda

et al. (2008) showed that an agglutinin that can

agglutinate Gram-positive and Gram-negative bac-

teria exhibited strong antibacterial activity both

under in vivo and in vitro conditions. Defensin-

like peptides were isolated by Ng et al. (2013) in

Strongylocentrotus droebachiensis. In a recent study,

Li et al. (2010) showed, in S. droebachiensis, an

AMP heterodimer structure named centrocin.

Centrocins possess a strong activity, not only

against Gram-positive and Gram-negative bacteria,

but also against fungi and yeasts.

The simultaneous presence of diverse AMPs found

in the same echinoderms as S. droebachiensis, probably

acting in synergy or complementary to each other,

may provide the organisms with an extended defense

against a wide range of pathogenic microorganisms.

Such interactions have been reported, at least in vitro,

between different AMPs isolated from the horseshoe

crab (Iwanaga et al. 1998) and the oyster, Crassostrea

gigas (Thunberg, 1793) (Gueguen et al. 2009).

Recently, our research group has found novel

cationic peptides in the echinoderm species

Paracentrotus lividus and in Holothuria tubulosa

(Gmelin, 1788). They were isolated from coelomo-

cyte lysate supernatant and showed good activity in

preventing the biofilm formation of important patho-

gens involved in human and animal diseases, like

staphylococcal or P. aeruginosa strains (Schillaci

et al. 2010, 2013).

The antimicrobial peptides were discovered in a

protein fraction at low molecular weight (< 5 kDa)

from acid extract of coelomocytes. P. lividus showed

a peptide, Paracentrin 1, of 1251.7, the peptide

belonging to a segment (9–19) of a β-thymosin, a

ubiquitous peptide that exerts several biological

effects such as the induction of metalloproteinases,

chemotaxis, angiogenesis and inhibition of inflam-

mation (Huff et al. 2001). The β thymosins are a

family of highly conserved polar 5-kDa peptides ori-

ginally thought to be thymic hormones. They are

present at high concentrations in almost every cell

from vertebrate phyla and have several biological

functions due to direct and indirect effects on the

actin cytoskeleton. β-Thymosin is also described as

one of the AMPs of platelets from animals, including

human beings (Tang et al. 2002). There is little

information about the function of thymosins in

invertebrates, but their presence has been reported

in marine invertebrates (Safer & Chowrashi 1997;

Saelee et al. 2013) and in insects where they are

up-regulated by microbial infections (Zhang et al.

2011). H. tubulosa possessed two peptides,

Holothuroidin 1 and Holothuroidin 2, whose mole-

cular weights are respectively 1389.5 and 1547.6 Da

(Schillaci et al. 2013).

The peptides of both species showed a similarity

with other antimicrobial peptides produced by dif-

ferent organisms. Indeed, Paracentrin 1 had a amino

acid sequence similarity of 38.46% with Jelleine-III,

a short peptide presenting a broad spectrum of activ-

ity against Gram-positive and Gram-negative bac-

teria, and also against yeasts present in the royal

jelly produced by Apis mellifera (Linnaeus, 1758)

worker bees (Fontana et al. 2004); both

Holothuroidin 1 and Holothuroidin 2 showed an

amino acid sequence similarity ≥ 35% respectively

with protonectins, peptides present in the venom of

the neotropical social wasp Agelaia pallipes

(Lepeletier, 1836), with a potent antimicrobial

action against both Gram-positive and Gram-nega-

tive bacteria (Mendes et al. 2004) and signiferins, a

naturally occurring cationic peptide produced by an

Australian frog, Crinia signifera (Girard, 1853), that

showed a wide spectrum of activity against Gram-

positive and Gram-negative bacteria including

Bacillus cereus, Enterococcus faecalis, Lactococcus lactis,

Listeria innocua, Micrococcus luteus, Staphylococcus

aureus, Staphylococcus epidermidis and Streptococcus

uberis (Maselli et al. 2004).

The peptides of both species had α-helix structures

with a considerable amphipathic character, with the

polar and mainly cationic residues segregated on one

polar face and the hydrophobic or nonpolar residues

on the opposite, apolar face. (Figure 2). They were

cationic peptides with a net charge of +0.9, with a

total hydrophobic ratio and deduced pI ranging

respectively from 36.36 and 8.72 for Paracentrin 1

to 42.86 and 7.56 for both Holothuroidins (Table II).
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The activity of synthetic peptides constructed from

the sequences indicated by the tandem mass spectro-

metry (MS/MS) data were active against free-living

(planktonic) Gram-positive and Gram-negative

pathogens as Staphylococcus aureus, Staphylococcus

epidermidis and Pseudomonas aeruginosa (Table III)

(Schillaci et al. 2010).

The three echinoderm antimicrobial peptides were

also active to combat the biofilm formation at sub-

minimum inhibitory concentration (MIC) concentra-

tions. Indeed, Paracentrin 1 was able to inhibit either

the formation of a young biofilm (6-h old) of S. epider-

midis 1457 or the formation of a mature biofilm (24 h

old) of the same clinical strain Figure 3 (Schillaci et al.

2010). The antimicrobial peptides from H. tubulosa

were able to inhibit the biofilm formation of two staphy-

lococcal reference strains, S. aureus ATCC 25923 and

S. epidermidis ATCC 35984 (Schillaci et al. 2013).

We observed that synthetic Paracentrin 1,

Holothuroidin 1 and Holothuroidin 2 did not

show, in phosphate buffered saline (PBS), hemolytic

activity, probably because the high ionic strength of

PBS allows negatively charged sialic acid present on

the erythrocyte membrane to neutralize the peptides.

On the basis of this evidence, they could be classified

as peptide antibiotics (Saberwal & Nagaraj 1994).

Conclusions

AMPs are evolutionarily ancient defensive mole-

cules. Their extraordinary distribution in all king-

doms, within both unicellular and multicellular

organisms, suggests that they have a key and funda-

mental role in the biology of organisms that probably

has evolved through positive selection (Tennessen

Table III. Antimicrobial activity (MIC) of < 5-kDa peptide fraction from celomocytes lysate supernatant (Paracentrin 1) or

synthetic peptides (Holothuroidin 1 and 2). Values expressed in mg/mL.

Strain Paracentrin 1 Holothuroidin 1 Holothuroidin 2

Staphylococcus aureus ATCC 29213 126.8 > 12.5 12.5

Staphylococcus aureus ATCC 25923 63.4 12.5 12.5

Staphylococcus aureus ATCC 43866 63.4 nd nd

Staphylococcus aureus ATCC 6538 nd 12.5 12.5

Staphylococcus epidermidis ATCC 35984 nd 12.5 12.5

Enterococcus faecalis ATCC 29212 nd >12.5 12.5

Pseudomonas aeruginosa ATCC 15442 nd 12.5 12.5

(Schillaci et al. 2010) (Schillaci et al. 2013)

nd = not determined.

Figure 2. A ribbon representation of (A) Paracentrin 1, (B) Holoturoidin 1 and (C) Holoturoidin 2. The amphipathic nature of the peptide

is shown in this representation with the hydrophilic side above and the hydrophobic side below the polypeptide backbone. The potential

surface is superimposed. Color code: acidic residues in red, basic residues in blue and hydrophobic residues in white.

Table II. Chemical-physical characteristics and amino acid sequences of echinoderm antibiofilm peptides.

Peptides

Sequence, and hydrophobic

amino acids on

the sameface (underlined)

Molecular

weight (Da)

Net charge

(pH 7.0)

Total hydrophobic

ratio (%) pI

Paracentrin 1 EVASFDKSKLK 1251.4 +0.9 36.36 8.72

Holothuroidin 1 HLGHHALDHLLK 1389.5 +0.9 41.67 7.56

Holothuroidin 2 ASHLGHHALDHLLK 1547.6 +0.9 42.86 7.56
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2005; Viljakainen & Pamilo 2008; Fernandes et al.

2010).

AMPs from marine invertebrates could play a

complementary but critical role in helping

acquired immunity in vertebrates to combat bac-

terial infections that normally confound and even

suppress the immune system with their sophisti-

cated and multiantigenic cycle of life (Chiu et al.

2013).

AMPs from marine invertebrates can be applied in

biotechnology and in medicine. These natural com-

pounds constitute potential candidates for the devel-

opment of alternative strategies to prevent and treat

bacterial infections, including biofilm-associated

infections that are particularly resistant to conven-

tional antibiotics.

In conclusion, the discovery of novel peptides

in echinoderms represents a good starting point to

design new synthetic derivatives with modified

chemical-physical properties, with the aim

being to improve their antimicrobial activity

against pathogens, and their pharmaceutical

potential (Huang et al. 2010; Brogden &

Brogden 2011).
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