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Abstract: Molecular dynamics simulations of the magainin MG-H2 peptide interacting with a model

phospholipid membrane have been used to investigate the mechanism by which antimicrobial peptides

act. Multiple copies of the peptide were randomly placed in solution close to the membrane. The peptide

readily bound to the membrane, and above a certain concentration, the peptide was observed to

cooperatively induce the formation of a nanometer-sized, toroidally shaped pore in the bilayer. In sharp

contrast with the commonly accepted model of a toroidal pore, only one peptide was typically found near

the center of the pore. The remaining peptides lay close to the edge of the pore, maintaining a predominantly

parallel orientation with respect to the membrane.

Introduction

Magainins are peptides found in the skin of the African

clawed frog Xenopus laeVis1 that exhibit a wide range of

antimicrobial and antifungal activity. They are cationic and

amphipathic peptides that bind to the membrane surface,

adopting a predominantly R-helical structure.2,3 At high con-

centrations they permeabilize the lipid matrix,4,5 forming water-

filled, nanometer-sized pores6 that lead to cell death. Experi-

mentally, it is observed that as the concentration of bound

peptide is increased past the permeabilization threshold there

is a change in the orientation from the peptides being essentially

parallel7,8 to at least a proportion of the peptides having a

perpendicular orientation.4 This is associated with an increase

in lipid flip-flops and the translocation of peptide across the

membrane.5 On the basis of these findings, it is commonly

accepted that magainins (as well as many other antimicrobial

peptides) form toroidal pores.4,5,9 The main characteristic of a

toroidal pore is that it is hydrophilic. The peptides are believed

to stabilize the pore by interacting strongly with the lipid

headgroups that line the pore. In fact, despite being very

intensively studied experimentally, relatively little is known

regarding the mechanism of pore formation or the structure of

the pore itself.

Here, we present the results of atomistic molecular dynamics

(MD) simulations of magainin peptide interacting with a

dipalmitoylphosphatidylcholine (DPPC) phospholipid bilayer.

The specific peptide used in this study is the 23 amino acid

(aa) MG-H2 peptide, an analogue of the well-studied anti-

microbial peptide magainin-2 (MG-2).10 MG-H2 (IIKKF-

LHSIWKFGKAFVGEIMNI) is positively charged (+3) at

physiological pH (see Figure 1) and was chosen for this study

as unlike other members of the magainin family MG-H2 has a

high affinity for neutral phospholipids such as DPPC. Besides

the advantage that MG-H2 can be used in combination with

the well-modeled lipid DPPC, it forms pores more easily than

the parent magainin. This is attributed to its higher hydrophobic

moment.10 Note that the charge-charge interactions between

the peptide and the anionic lipids are not directly involved in

pore formation; it is hypothesized that they only provide the

long-range attraction needed to bring the peptides close to the

surface.11

Methods

Setup. The systems simulated contained 1, 2, or 4 MG-H2 peptides,

128 DPPC lipids, and 6000 water molecules. The corresponding peptide/

lipid (P/L) ratios are 1/128, 2/128, or 4/128. Multiple simulations were

performed for each system, starting from different initial random

velocity distributions. Initially, the peptides are in an R-helical

configuration and are solvated in the water phase close to one of the

monolayers of an equilibrated bilayer (see Figure 1). The asymmetric

distribution of the peptides mimics the addition of peptide to a solution

containing cells or liposomes, in which peptides adsorb to one
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monolayer only. To test whether the pores obtained were fully

equilibrated, three additional simulations were performed starting from

a random distribution of lipids, peptides, and water at P/L ) 1/128,

2/128, and 3/128. An overview of the simulations performed is given

in Table 1. Most systems were run between 20 and 100 ns, depending

on when, and if, a pore was actually formed. Two simulations were

extended to 250 ns to study the long-time behavior of the pore.

Simulation Parameters. The GROMACS software package12 was

used to perform all the MD simulations. The force field for DPPC was

taken from a previous study (setup E13). The GROMOS force field

43a214 was used to describe the peptide interactions. Both force fields

were parametrized for use with a group-based twin range cutoff scheme

(using cutoffs of 1.0/1.4 nm and a pairlist update frequency of once

per 10 steps) including a reaction field correction15 with ǫ ) 78 to

account for long-range electrostatic interactions. The water was modeled

as SPC.16 A time step of 2 fs was used. Bond lengths were constrained

using the LINCS algorithm.17 The simulations were performed in the

NP|PzT ensemble using periodic boundary conditions. The temperature

was weakly coupled18 (coupling time 0.1 ps) to T ) 323 K, above the

main-phase transition temperature of DPPC. The pressure was also

weakly coupled18 (coupling time 0.5 ps, compressibility 5 × 10-5 bar-1)

using a semiisotropic coupling scheme in which the lateral (P|) and

perpendicular (Pz) pressures are coupled independently. Two sets of

simulations were performed, one in which both P| ) Pz ) 1 bar,

resulting in a bilayer under stress-free conditions (γ ) 0), and another

set using P| ) -30 and Pz ) 1 bar, which correspond to a bilayer

under a lateral tension of 20 mN/m. Although the first set more

realistically models the stress-free conditions in typical experimental

setups, the second set was (wrongly) anticipated to speed up the pore

formation process. See Table 1 for an overview of the conditions used

in each of the simulations performed. Note that a tension of 20 mN/m

is actually larger than a phospholipid membrane would be able to

withstand in an experimental situation. Rupture typically occurs around

a few millinewtons per meter.19,20 However, pore formation preceding

membrane rupture is a kinetic process and therefore depends on the

loading rate of the applied tension.20 In MD simulations the effective

loading rate is high enough to prevent pore formation in pure DPPC

membranes up to tensions of ∼90 mN/m.21

Analysis. The lipid bilayer was characterized by analysis of the

membrane thickness, interfacial width, and lipid tail order parameters.

The thickness was defined as the average phosphate-phosphate

distance. The interfacial width was measured by the standard deviation

of the phosphate distribution. Lipid tail order parameters were computed

with respect to the membrane normal axis.23 The size of the pore was

estimated from the diameter of a circle fitted to the glycerol/water

interface of the pore (see Figure 4, lower panel). Taking the limits of

the pore to be the region lying between the two planes corresponding

to the glycerol/water interfaces, the average number of water molecules

and lipid headgroups in the pore could be estimated. The permeation

rate of water through the pores was estimated by counting the amount

of water molecules that crossed both of the interfacial planes during

the simulation. Lipid flip-flops were monitored by crossing of the

bilayer midplane of the phosphate moiety of the lipid headgroup. The

helicity of the peptides was determined using the DSSP criteria.24 The
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Figure 1. Snapshot of the starting configuration of a system containing 4
magainin (MG-H2) peptides and 128 lipid (DPPC) molecules. The lipid
headgroups are represented as blue (choline) and purple (phosphate) spheres.
The lipid tails are gray, and water is blue. The backbones of the different
peptides are shown in yellow, orange, red, and white. The image to the left
shows key functional side chains in green (hydrophobic residues) or brown
(charged lysines and N-terminal).

Table 1. Overview of Simulations Performeda

label

no. of

peptides conditions

aggregation

state

simulation

time (ns)

pore formation

time (ns)

A1 1 stress-free monomeric 80
A2 2 stress-free monomeric 113
B2 2 stress-free monomeric 64
C2 2 stressed monomeric 121
D2 2 stressed cluster 134
E2 2 stressed cluster 152
F2 2 stressed cluster 88 44
A4 4 stress-free partly clustered 80
B4 4 stress-free cluster 250 35
C4 4 stress-free cluster 20 17
D4 4 stress-free cluster 122 63
E4 4 stress-free cluster 250 55
F4 4 stressed partly clustered 60
G4 4 stressed cluster 193
H4 4 stressed cluster 220 107
R1 1 random 60 unstable
R2 2 random 134 unstable
R3 3 random 144 stable

a The number of peptides in the system is varied between 1 and 4.
Simulations were performed at either stress-free (γ ) 0 mN/m) or stressed
(γ ) 20 mN/m) conditions. The total simulation time is indicated, plus the
time required for a pore to form. The aggregation state of the peptides on
the surface at the time of pore formation or at the end of the simulation
when no pore was formed is indicated as monomeric for peptides that do
not strongly interact or clustered if all peptides are aggregated together.
Partly clustered denotes that only two out of four peptides aggregated. A
few simulations were performed starting from a random mixture of the
components. During the spontaneous aggregation of lipids into a bilayer, a
pore always forms as a metastable intermediate.22 Only in the case of three
peptides the pore remained stable throughout the simulation.
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aggregation of peptides on the bilayer interface was monitored by visual

inspection. All visual analysis and graphical images were made using

VMD.25

Results and Discussion

Antimicrobial Peptides in Action. Figure 2 shows a series

of snapshots from a simulation (B4) in which four copies of

the magainin MG-H2 peptide spontaneously induce the forma-

tion of a stable transmembrane water pore. Initially placed

randomly in solution close to the surface of the membrane, the

peptides rapidly (within 10 ns) bind to the lipid interface. Upon

binding to the membrane, the peptides aggregate and orient such

that the hydrophobic side chains of the peptide, in particular

the phenylalanine and the tryptophan side chains, interact with

the interior of the membrane. Shortly after binding to the

membrane, one of the peptides begins to embed deep into the

interface (snapshot at t ) 30 ns). This appears to be a

cooperative process resulting from the interaction of the

overlying peptides with the lipid headgroups. Although the

peptide is embedded quite deeply within the membrane, the

charged lysine residues remain hydrogen bonded with the

glycerol and phosphate moieties of the lipid headgroups. The

system is metastable in this state for ∼10 ns until a fluctuation

in the membrane/water interface leads to solvent molecules from

the peptide-free interface interacting with hydrophilic groups

of the embedded peptide. Once solvent molecules make contact

with the peptide, a contiguous pore opens rapidly (within a few

nanoseconds). During this process, the peptide together with

some lipid molecules moves across the membrane (snapshots

at t ) 40 and 60 ns). The final stage of the process involves

the relaxation of the pore toward a toroidal shape (t ) 250 ns).

This basic sequence of events (i.e., the initial embedding of

a single peptide deep within the bilayer and increased structural

fluctuations leading to translocation and relaxation to a toroidal

pore) was observed in six independent simulations (see Table

1). The time required for pore formation varied between 10 and

100 ns, indicating that it is a stochastic event. Although the

statistics obtained from the set of simulations are limited,

spontaneous pore formation appears to be favored by two

conditions: (i) a critical concentration is required, and (ii) the

peptides need to be aggregated.

Pore Formation is Concentration Dependent. The first

condition is apparently met for systems containing more than

two copies of the peptide. When only one or two peptides are

placed in the simulation box, the peptides bind to the interface

but, except for one case, do not induce pore formation.

Experimentally, magainin peptides only induce pore formation

above a specific threshold concentration, 1/100 < P/L <

1/30.4,7,26,27 While this is similar to the concentration at which

pore formation was observed in the simulations (P/L ) 1/32),

a direct comparison is not possible, as we cannot rule out the

(25) Humphrey, W. Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 33-
38.

(26) Dempsey, C. L.; Ueno, S.; Avison, M. B. Biochemistry 2003, 42, 402-
409.

(27) Bechinger, B. Biochim. Biophys. Acta 1999, 1462, 157-183.

Figure 2. Antimicrobial action in atomic detail: Snapshots from a simulation showing the spontaneous formation of a pore in a DPPC lipid bilayer by the
antimicrobial magainin peptide MG-H2. The peptide/lipid ratio was P/L ) 4/128 ) 1/32. Initially placed in the aqueous phase (t ) 0 ns; see Figure 1), the
peptides aggregate during binding to the membrane interface (t ) 10 ns). After binding, one peptide moves toward the bilayer interior (t ) 30 ns). This
induces stress in the membrane, resulting in the sudden formation of a pore (t ) 40 ns). The pore rapidly adopts a toroidal shape. One peptide can be seen
penetrating through the membrane; the other peptides line the mouth of the pore (t ) 60 ns). This structure remains stable for the remainder of the simulation
(t ) 250 ns). The backbones of the different peptides are shown in yellow, orange, red, and white. Key functional side chains are highlighted (upper panel).
The lipid tails are gray, and water is cyan. The headgroups are represented as blue (choline) and purple (phosphate) spheres in the upper panel or as
pink/purple spheres (phospate) in the lower panel depending on whether the group was initially located in the monolayer to which the peptides bound.
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possibility that pores form on time scales beyond those

accessible in the simulations. The absence of pore formation

on the time scale of the simulations is not proof that interfacially

adsorbed peptides are the true equilibrium state at low concen-

trations. The system might be kinetically trapped. Besides, in

the macroscopic system local fluctuations in concentration exist

which are absent in the microscopic simulation box. Neverthe-

less, pore formation in the simulations, like in experiments,

requires a certain threshold concentration. One mechanism of

pore formation which would give rise to a threshold concentra-

tion and for which there is some theoretical justification28,29 is

based on the proposition that the adsorption of peptide induces

tension within the membrane which is relieved by pore

formation. According to this model, only when the membrane

tension reaches a critical value (corresponding to the threshold

peptide concentration) is the opposing line tension overcome.

At this point pore formation becomes favorable.

Our results indicate that the binding of the peptide to the

membrane creates a local tension. The tension being induced

is, however, asymmetric and differs in nature between the two

monolayers. The tension, or stress, experienced in the monolayer

to which the peptides are binding is of compressive nature. The

excluded volume of the peptides forces the lipids to be squeezed

more tightly together. Due to the intrinsic coupling between

the two leaflets, the tension experienced by the other, peptide-

free, monolayer is of opposite nature; i.e., the lipid area increases

beyond the equilibrium area. The maximum expansion in area

is observed in the simulations where four peptides bind. The

area expands from 0.655 nm2 for the pure membrane to 0.675

nm2 when the peptides are fully bound but a pore has not yet

formed. Comparison to previous simulations in which the effect

of external stress on DPPC bilayers was studied reveals that an

area expansion of ∼3% is also obtained when an external tension

of ∼15 mN/m is applied.21 The expansive stress on the peptide-

free monolayer is thus on this order. Under stress-free external

conditions (γ ) 0), the stress in the monolayer to which the

peptides bind will be of the same magnitude but of compressive

nature. Simulations were performed also at γ ) 20 mN/m (see

Table 1). Application of external stress does not seem to enhance

pore formation, implying that it is the difference in stress created

between the monolayers upon peptide binding that is important.

This might explain why pore formation has not been observed

in previous MD simulations of antimicrobial peptide binding

which have focused on isolated peptides and/or a symmetric

distribution of the peptide on both sides of the bilayer.30-32 Note

that the effective tension of 15 mN/m experienced by the

peptide-free monolayer is already larger than the experimental

rupture limit of phospholipid membranes.19,20 The straightfor-

ward conclusion stating that the geometric effect of peptide

binding alone is sufficient to explain the action of the peptides

is an oversimplification, however. On the time scales employed

by the simulations, membranes can withstand much higher

tensions (up to 90 mN/m21) due to energy barriers involved in

pore formation.20 The observation that pore formation in the

presence of the peptides occurs at a much lower effective tension

thus points to a specific role of the peptides themselves.

Peptide Aggregation Favors Pore Formation. Our simula-

tions further indicate that an aggregate involving multiple

peptides promotes pore formation. Clustering occurred some-

times during binding to the interface, as indicated in Table 1.

In all cases where pore formation was observed, the peptides

were clustered together. There is some controversy in the

literature regarding whether the direct interaction between

peptides as observed in the simulations is required for pore

formation. Certainly, experimental measurements suggest pep-

tide aggregation is favorable. For example, a dimerized magainin

analogue26 shows enhanced activity. Nevertheless, theoretical

arguments both in favor of aggregation29 and against it33 have

been proposed. Aggregation would favor the hypothesis that

pore formation by charged peptides is essentially similar to

electroporation.34,35 Accordingly, the strong local electrostatic

field induced by an aggregated cluster of peptides suffices to

trigger pore formation. The importance of the charged residues

is further implicated by preliminary results which show that

pore formation is less favorable at increased salt concentrations.

Our simulations are insufficient to determine whether aggrega-

tion is essential. Nevertheless, our results indicate that aggrega-

tion at the interface enhances pore formation. On the basis of

the two observations that (i) a threshold concentration is required

to create enough stress in the membrane and (ii) pore formation

is facilitated by aggregation of the peptides on the membrane

interface, we conclude that pore formation, at least for the

magainin analogue studied here, is a cooperative process.(28) Huang, H. W.; Chen, F. Y.; Lee, M. T. Phys. ReV. Lett. 2004, 92, 198304.
(29) Zemel, A.; Ben-Shaul, A.; May, S. Eur. Biophys. J. 2005, 34, 230-242.
(30) Shepherd, C. M.; Vogel, H. J.; Tieleman, D. P. Biochem. J. 2003, 370,

233-243.
(31) Kandasamy, S.; Larson, R. G. Chem. Phys. Lett. 2004, 132, 113-132.
(32) Appelt, C.; Eisenmenger, F.; Kühne, R.; Schmieder, P.; Söderhäll, J. A.

Biophys. J. 2005, 89, 2296-2306.

(33) Huang, H. W. Biochemistry 2000, 39, 8347-8352.
(34) Miteva, M.; Andersson, M.; Karshikoff, A.; Ottig, G. FEBS Lett. 1999,

462, 155-158.
(35) Gurtovenko, A. A.; Vattulainen, I. J. Am. Chem. Soc. 2005, 127, 17570-

17571.

Figure 3. Lipid tail order parameters of the Sn1 chain obtained from a
simulation with two peptides bound to the interface (A2). The upper panel
distinguishes between lipids in the peptide-free monolayer and in the
monolayer to which the peptides bind, divided between peptide-associated
and nonassociated lipids. The lower panel compares the averaged order
parameter profile for all lipids with and without peptides bound.
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Bilayer Order Changes Asymmetrically upon Peptide

Binding. The differential effect of peptide binding on the two

monolayers is also reflected in asymmetric perturbation of lipid

order. This is illustrated in Figure 3, which shows the order

parameter profile for lipid tails in the peptide-free monolayer

and in the peptide-binding monolayer. In the latter case a

distinction is made between lipids in direct contact with the

peptides and lipids not in direct contact. In comparison to that

of the peptide-free bilayer, the lipid order is increased for the

lipids that are in the peptide-bound monolayer when not in direct

contact with the peptides. For the lipids adjacent to the peptides

the order is decreased. In the peptide-free monolayer the lipid

tails are also more disordered in comparison with those in a

peptide-free bilayer. Averaged over the two monolayers, the

total order of the lipids does not change significantly. The

thickness of the bilayer also shows no apparent shift on peptide

binding in our simulations. The phosphate-phosphate distance

remains at 0.375 ( 0.005. Experimentally, both disordering36

and ordering37 of lipid tails in the presence of magainin have

been measured. A small decrease in thickness, between 0.1 and

0.2 nm, has been reported.38 Previous MD simulations report

mixed observations30-32 with respect to both lipid order and

bilayer thickness. It therefore appears that the effect of peptide

binding on the structural properties of bilayers is subtle and

system dependent. The clear difference in order between the

two monolayers is in line with recent simulation results.39 A

concomitant result of the local stress experienced by the peptide-

free monolayer is an increase in structural fluctuations within

the water-lipid interface. Such fluctuations of the interface are

reflected in, for example, the width of the phosphate distribution

of the peptide-free monolayer, which increases from 0.33 to

0.47 nm in the case of four peptides binding. The enhanced

fluctuations facilitate the formation of the pore. Once the pore

forms, the stress difference is rapidly released.

Peptide Conformation and Orientation Show a Large

Spread. Another aspect which is apparent from the simulations

is that the peptides are not highly structured and that a helical

conformation is not required for pore formation. The peptides

were initially placed in solution in a helical conformation.

Unfolding takes place while the peptides are still in the aqueous

phase. CD measurements suggest that magainin peptides are

not structured in solution,40 whereas bound to PC bilayers MG-

H2 is approximately 50% R-helical.10 In the simulations the

average helicity is somewhat lower (15-50%), although it is

not possible to make a direct quantitative comparison between

the two measures. It also cannot be ruled out that the refolding

takes place over longer time scales. However, it is clear from

our results that R-helicity is not a prerequisite for pore formation.

In fact, as experimental studies involving stabilized R-helical

peptides have shown reduced antimicrobial activity,41 partial

unfolding might facilitate pore formation. Note that the amphi-

paticity is retained even when MG-H2 is largely unfolded.

Figure 4 shows the final equilibrated structure of pores

obtained from four independent simulations of peptide-induced

pore formation (B4, D4, E4, H4), plus an additonal pore

obtained through spontaneous aggregation of the components

starting from a random distribution (R3). In all cases the pores

are toroidal in shape, with an internal diameter of 2 ( 0.5 nm,

and 3 ( 1 nm at the rim. The size of the pores observed in the

simulations closely matches the estimated size of 2-3 nm on

the basis of experimental measurements.4 The pores contain on

average 7 ( 1 headgroups and 90 ( 10 water molecules. In no

simulation do we find an arrangement of peptides that is similar

to that proposed in commonly accepted models of a toroidal

pore4,5 in which multiple peptides line the central water channel

in a perpendicular orientation. In contrast, only one or two(36) Münster, C.; Spaar, A.; Bechinger, B.; Salditt, T. Biochim. Biophys. Acta
2002, 1562, 37-44.

(37) Boggs, J. M.; Jo, E.; Polozov, I. V.; Epand, R. F.; Anantharamaiah, G.
M.; Blazyk, J.; Epand, R. M. Biochim. Biophys. Acta 2001, 1511, 28-41.
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Figure 4. Diversity of toroidal pore structures formed by magainin peptides. Shown are the final structures of five independent simulations: (A-C) pores
formed under stress-free external conditions, (D) pore formed in a bilayer at γ ) 20 mN/m, (E) pore formed by the aggregation of an initially random
mixture of water, lipid, and peptide. Color code: The backbones of the peptides are shown in yellow, orange, red, and white. Lipid tails are gray. The
phosphate atoms of the headgroups are pink spheres or purple depending on whether they initially resided in the monolayer to which the peptides adsorbed.
The upper panel shows cross-sections through the bilayer. The lower panel shows a top view. The water above the bilayer and the lipid headgroups have
been removed for clarity. The gray spheres represent the glycerol moieties.
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peptides are located near the center of the pore. The other

peptides remain bound at the surface of the membrane close to

the mouth of the pore. In addition, there is considerable variation

in the orientation of the peptides with respect to the membrane

surface. The orientation of the peptides is in general close to

parallel. The average angle of the peptide backbone with respect

to the membrane surface is 25° with a standard deviation of

20°. The primary difference between the pores formed by the

spontaneous aggregation of all components and pores formed

by the addition of peptide to a preformed bilayer is the

distribution of the peptide. Random aggregation results in the

peptide being distributed on both sides of the bilayer. As the

passage of peptide through the pore is slow on the time scale

of the simulations (>100 ns), we do not achieve this state with

the preformed bilayers.

Pore Permeable to Lipids and Water. Although peptide

transport across the pore is too slow to be observed in the

simulations, redistribution of lipids is observed. This is clearly

evident in both Figures 2 and 4, where the headgroups of the

lipids are colored according to which monolayer the lipid was

in in the initial configuration. The number of flip-flops observed

in the simulations ranges from one to five, with an average rate

of two flip-flops per 100 ns. The flip-flops are always observed

to take place from the peptide-enriched monolayer to the

peptide-free monolayer. The number of water molecules that

are able to permeate the pore is much larger. During the final

150 ns interval of a pore formed by four peptides under stress-

free conditions (B4), unidirectional fluxes of 475 and 480 water

molecules in each direction are observed. As expected in the

absence of a driving force, the two unidirectional fluxes are of

equal magnitude and do not lead to a net flux. The unidirectional

flux J can be used to estimate the single-pore permeability

coefficient P ) J/C, where C ) 55 mol/L denotes the

concentration of pure water. With J ≈ 3 waters/ns we obtain P

≈ 1 × 10-13 cm3/s. This is of the same magnitude as the single-

channel permeability of aquaporin AQP4,42 a channel with a

relatively high permeation rate. As far as we know, no

experimental measurements exist of single-pore permeability

in the case of pores formed by antimicrobial peptides.

Disordered Toroidal Pore Model. Experimentally, it is also

not possible to directly determine the number of peptides within

the pore. The commonly cited number of ∼4-7 peptides4,7 has

been indirectly inferred from a combination of neutron scattering

data and oriented circular dichroism (OCD) measurements. The

interpretation of these data is, however, dependent on two critical

sets of assumptions. The first is that the pores are cylindrical.

The second is that the peptides are helical and that all peptides

involved in pore formation are oriented perpendicular to the

plane of the membrane. In light of our simulations, these

assumptions must be reconsidered. First, the pore is far from

cylindrical. At the openings the pore is almost twice as wide as

at the center. Second, the peptides are largely disordered and

adopt a variety of orientations. The fact that the pores are not

cylindrical could alter the estimate of the total area covered by

the pores. The findings regarding the orientation of the peptide

are, however, more significant. Currently, the available CD data

are interpreted using a simple two-state (parallel/perpendicular)

model. The fact that in the simulations the peptides stabilize

the pore by binding close to the rim and do not necessarily adopt

a fully perpendicular orientation has profound implications for

interpretation of CD spectra and the estimation of the fraction

of peptides involved in pore formation. In this regard we note

that the irregular structure observed in the simulations is in fact

in line with the conclusions drawn from recent NMR studies

of magainin.40 To capture the irregularity of the pore structure

obtained from the simulations, we coin the term “disordered

toroidal pore model” (DTP model), opposing the standard

toroidal pore model. A representative snapshot illustrating this

model is presented in Figure 5.

Conclusions

The simulations in this work have for the first time allowed

the elucidation of the mechanism by which a specific member

of the magainin family of antimicrobial peptides, MG-H2, can

induce a toroidal pore within a model phospholipid membrane.

The significance of the work is that pore formation was observed

to occur spontaneously and was not induced by artificial

constraints. Notably, the structure of the pore that formed in

the simulations while compatible with the available experimental

data differs significantly from current idealized models of a

toroidal pore. In particular, in the simulations the pore is

stabilized by a diffuse distribution of peptides which bind to

the rim of the pore, adopting a largely parallel orientation with

respect to the plane of the membrane.
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Figure 5. Disordered toroidal pore model. In the disordered toroidal pore
model the peptides do not adopt a regular structure inside the pore, but
rather maintain a diffuse distribution across the pore. The final structure (t
) 250 ns) of a spontaneously formed pore is shown. For the color code,
see the other figure captions.
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