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Over the past decades the use of medical devices, such as catheters, artificial

heart valves, prosthetic joints, and other implants, has grown significantly. Despite

continuous improvements in device design, surgical procedures, and wound care,

biomaterial-associated infections (BAI) are still a major problem in modern medicine.

Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site

of infection. The presence of biofilms on the biomaterial and/or the multidrug-resistant

phenotype of the bacteria further impair the efficacy of antibiotic treatment. Removal

of the biomaterial is then the last option to control the infection. Clearly, there is a

pressing need for alternative strategies to prevent and treat BAI. Synthetic antimicrobial

peptides (AMPs) are considered promising candidates as they are active against a broad

spectrum of (antibiotic-resistant) planktonic bacteria and biofilms. Moreover, bacteria

are less likely to develop resistance to these rapidly-acting peptides. In this review we

highlight the four main strategies, three of which applying AMPs, in biomedical device

manufacturing to prevent BAI. The first involves modification of the physicochemical

characteristics of the surface of implants. Immobilization of AMPs on surfaces of medical

devices with a variety of chemical techniques is essential in the second strategy. Themain

disadvantage of these two strategies relates to the limited antibacterial effect in the tissue

surrounding the implant. This limitation is addressed by the third strategy that releases

AMPs from a coating in a controlled fashion. Lastly, AMPs can be integrated in the

design and manufacturing of additively manufactured/3D-printed implants, owing to the

physicochemical characteristics of the implant material and the versatile manufacturing

technologies compatible with antimicrobials incorporation. These novel technologies

utilizing AMPs will contribute to development of novel and safe antimicrobial medical

devices, reducing complications and associated costs of device infection.

Keywords: antimicrobial peptide, biomaterial-associated infection, biofilm, antimicrobial resistance, implant,

device manufacturing

BIOMATERIAL-ASSOCIATED INFECTIONS

The use of medical devices, including catheters, artificial heart valves, prosthetic joints, and other
implants, increased dramatically over the past century (Darouiche, 2004; Anderson and Patel, 2013;
Kwakman and Zaat, 2013), and has become a major part of modern medicine and our daily life.
With the aging society, the demand for medical devices to restore body functions and quality of life
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increases, and so do the numbers of cases of biomaterial-
associated infection (BAI). The risk for BAI may in part be
explained by the reduced efficacy of the local immune defense
induced by the foreign body. In agreement, the number of
bacteria required to cause an infection is significantly lower
in the presence of a foreign body, such as a stitch or an
implant, than when such devices are not present (Elek and
Conen, 1957; James and Macleod, 1961; Noble, 1965; Taubler
and Kapral, 1966; Zimmerli et al., 1982; Southwood et al., 1987).
Another contributing factor is that the bacteria—often derived
from the commensal skin flora or the hospital environment—
can adhere to the foreign body, replicate, and form a biofilm
from which they can invade the peri-implant tissues and cause
an infection. The most common causative microorganisms in
BAI are Staphylococcus aureus and Staphylococcus epidermidis
(Anderson and Marchant, 2000; O’Gara and Humphreys, 2001;
Zimmerli et al., 2004). Depending on the type of device and
location of application, other coagulase-negative staphylococci,
enterococci, streptococci, Propionibacterium acnes, and yeasts
such as Candida spp., can also cause BAI (Waldvogel and
Bisno, 2000; Holmberg et al., 2009). Infections following primary
implant surgery occur in 0.5–1% of the patients receiving an
artificial hip or knee and in over 5% of those receiving a
prosthetic elbow or ankle implant (Zimmerli et al., 2004; Krenek
et al., 2011). As treatment of BAI is complex, combinations
of antibiotics, such as vancomycin or ciprofloxacin with
rifampicin, are recommended. Such combinations show some
efficacy against biofilms, although much higher concentrations
of antibiotics are required than effective against planktonic cells
(Saginur et al., 2006). Nevertheless, treatments with antibiotic
combinations often fail with the only option being removal of the
medical device (Burns, 2006). Catheters suspected for infection
are removed and replaced by a new device at a different location,
as re-implantation at the original site is strongly discouraged
because of the high re-infection risk (Safdar et al., 2002). Revision
surgery of infected orthopedic devices in most cases involves
removal of the implant, thorough debridement of the infected
site and prolonged (4–8 weeks) antibiotic treatment before a
new implant is placed (Zimmerli, 2006). Still, revision surgery
is associated with high frequencies of infection due to extensive
surgical procedures and more severe tissue damage.

Biofilm Formation
Bacterial biofilm formation is considered to play a major role
in the pathogenesis of BAI (Costerton et al., 1999; Holmberg
et al., 2009; Anderson and Patel, 2013). Biofilm formation
is initiated by bacterial cells attaching to the surfaces of
medical devices. Subsequently, bacteria replicate and produce
extracellular matrix forming complex communities consisting
of bacteria, bacterial exopolysaccharides, proteins, extracellular
DNA, and host proteins (Costerton et al., 1999). Bacteria in
biofilms are considerably more tolerant to antibiotics and less

Abbreviations: AMPs, antimicrobial peptides; BAI, biomaterial-associated
infections; CM, cecropin melittin; PEG, polyethylene glycol; PET, polyethylene
terephthalate; pHEMA, poly-hydroxyethylmethacrylate; PLEX, polymer-lipid
encapsulation; matrixPS, polystyrene; PU, polyurethane; SAAP, synthetic
antimicrobial and anti-biofilm peptide; TiO2, titanium oxide.

accessible to cells and molecules of the human immune defense
system than their planktonic counterparts (Otto, 2009; Chen
et al., 2013). This might be due to the extracellular polymeric
matrix of the biofilm, making the bacteria less accessible for
phagocytes and effectormolecules, and to the persister state of the
bacteria. Persisters are metabolically-inactive, antibiotic tolerant
bacteria that maintain the ability to multiply after antibiotic
treatment (Harms et al., 2016), thus explaining the recurrence of
BAI (Gerdes and Semsey, 2016; Fisher et al., 2017).

Tissue Colonization
Another important element in the pathogenesis of BAI is
bacterial colonization of the tissue surrounding the implant
(Boelens et al., 2000a; Ciampolini and Harding, 2000). In vivo
studies showed that S. epidermidis applied on the surface of
titanium implants, both as adherent cells and as a pregrown
biofilm, rapidly relocated from the implants to the surrounding
tissue (Riool et al., 2014). Similarly, large numbers of S. aureus
were cultured from mouse tissues around infected titanium
(Riool et al., 2017a,b) and silicon elastomer implants (de Breij
et al., 2016). In amurinemodel of chronic osteomyelitis, S. aureus
was found in osteoblasts and osteocytes, as well as in canaliculi of
live cortical bone (de Mesy Bentley et al., 2017).

Bacterial invasion of the peri-implant tissue and subsequent
development of infection is facilitated by dysregulation of
the local immune response resulting from the presence of a
foreign body. The phagocytic and intracellular killing activities of
neutrophils andmacrophages are reduced due to altered cytokine
tissue levels in the presence of a biomaterial (Boelens et al.,
2000a,b,c; Broekhuizen et al., 2010; Zimmerli and Sendi, 2011).
In agreement, microscopical examination has revealed that many
of the bacteria reside within these inflammatory phagocytes
(Broekhuizen et al., 2010). Interestingly, studies in mice infected
with S. epidermidis as well as in infected peri-catheter tissue
biopsies obtained from deceased intensive care unit patients
showed that bacteria present in tissue surrounding the implants
had incorporated bromodesoxyuridine, demonstrating that the
bacteria can replicate in the peri-implant tissue (Broekhuizen
et al., 2010). Furthermore, bacteria may adapt to the tissue and
intracellular micro-environment by the formation of so-called
small colony variants. The presence of such intracellular small
colony variants further complicates treatment as they are more
resistant to antimicrobial compounds (Tuchscherr et al., 2010;
Zaat, 2013).

Antimicrobial Resistance
In addition to the limited activity of antibiotics against biofilm-
encased bacteria, persisters, and intracellular bacteria, the
emergence of resistance among staphylococci as well as other
bacterial species causing BAI constitutes a major challenge to
the efficacy of (combinations of) conventional antibiotics. The
emergence of multidrug-resistant (resistant to at least one agent
in three or more antimicrobial classes), extensively drug-resistant
(resistant to at least one agent in all but one or two antimicrobial
classes), and pan-drug-resistant (resistant to all agents in all
antimicrobial classes) pathogens, is accelerated by the selective
pressure exerted by extensive use and abuse of antimicrobials
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(Magiorakos et al., 2012). Bacteria belonging to the so-called
ESKAPE panel (Enterococcus faecium, S. aureus, Klebsiella
pneumoniae,Acinetobacter baumannii, Pseudomonas aeruginosa,
and Enterobacter species) are increasingly prevalent and resistant
and thereby a particularly dangerous group of bacteria (Rice,
2008). Currently, the majority of hospital infections in the
United States is caused by multidrug-resistant ESKAPE bacterial
strains (Boucher et al., 2009). The World Health Organization
recently endorsed a global action plan to tackle antibiotic
resistance to avoid the dark scenario of a “post-antibiotic era”
(Chan, 2015). One of the key objectives of this plan is to develop
novel antimicrobial drugs with a mode of action different from
those of current antibiotics.

ANTIMICROBIAL PEPTIDES

Antimicrobial peptides (AMPs)—effector molecules of the innate
defense of animals, plants, and microorganisms (Zasloff, 2002;
Hancock and Sahl, 2006)—have recently attracted considerable
interest as agents that may subvert many of the problems
related to BAI, i.e., they display antimicrobial activity against
bacteria resistant to antibiotics and residing within biofilms.
A specialized biofilm-active AMPs database lists most of the
published AMPs with anti-biofilm activity (Di Luca et al., 2015).
AMPs are mostly amphipathic, cationic peptides that display
antimicrobial activity against bacteria, fungi and (enveloped)
viruses. They interact with specific constituents of the bacterial
cell envelope resulting in depolarization, destabilization, and/or
disruption of the bacterial plasma membrane leading to bacterial
cell death within minutes (Pasupuleti et al., 2012). Due to
the rapid and non-specific mechanisms of action, the risk of
resistance development is generally thought to be low (Zasloff,
2002). Nonetheless, resistance to AMPs in bacteria does occur
and several mechanisms of resistance have been described,
including membrane and cell envelope structure alterations
increasing positive charge, upregulation of efflux pumps, and
proteolytic degradation of the peptides (Goytia et al., 2013;
Ernst et al., 2015). For instance, resistance against the human
cathelicidin LL-37 has been reported to involve degradation of
the peptide by bacterial proteolytic enzymes, up-regulation of
efflux pumps as well as bacterial-induced down-regulation of
LL-37 expression in host cells (Bandurska et al., 2015). Under
low calcium or magnesium ion concentrations, as in blood
plasma, P. aeruginosa activates the pmr (polymyxin resistance)
operon, which medicates the addition of N-arabinose to its
lipopolysaccharide. This renders the outer surface of the bacterial
cell more positively charged, repelling the cationic AMPs (Goytia
et al., 2013). So, resistance of bacteria against AMPs is possible
for several bacterial species, however development of such
resistance against novel synthetic AMPs has not often been
studied.

In addition to direct antimicrobial activity, AMPs display
immunomodulatory activities. For example, they can prevent
excessive activation of pro-inflammatory responses due to
bacterial endotoxins such as lipopolysaccharide of Gram-
negative bacteria, and peptidoglycan and lipoteichoic acid

of Gram-positive bacteria. AMPs may improve clearance of
bacterial biofilms by host defense systems (Mansour et al., 2014,
2015) as they may prevent derangement of immune responses
after implantation of foreign bodies (Zaat et al., 2010; Heim
et al., 2014, 2015). Other favorable characteristics of AMPs relate
to wound healing (Nakatsuji and Gallo, 2012), angiogenesis
(Salvado et al., 2013), and osteogenic activity (Kittaka et al., 2013;
Zhang and Shively, 2013). Regarding the latter activity, it has
been reported that in a trabecular bone growth in vivo study,
cylindrical titanium implants coated with the antimicrobial
peptide HHC36 had osteoconductive properties (Kazemzadeh-
Narbat et al., 2012). Similarly, fusion peptide P15-CSP showed
anti-biofilm activity and pro-osteogenic activity (Li et al., 2015)
and LL-37 promoted bone regeneration in a rat calvarial bone
defect model (Kittaka et al., 2013) and accelerated bone repair in
NOD/SCID mice (Zhang and Shively, 2013).

Naturally occurring AMPs have been used as design templates
for a large variety of synthetic AMPs, some of which have reached
the stage of phase 2 and 3 clinical trials (Fox, 2013; Greber
and Dawgul, 2016), such as OP-145 (Peek et al., 2009), LL-37
(Grönberg et al., 2014), Iseganan (IB-367; Mosca et al., 2000),
Omiganan (MBI-226; Sader et al., 2004), and Pexiganan (MSI-
78; Fuchs et al., 1998). With respect to the development of
synthetic peptides for the treatment of BAI we will focus on
a few of the most promising peptides. The synthetic peptide
IDR-1018 prevented biofilm formation by S. aureus and various
other species by blocking (p)ppGpp, which is a signal molecule
in persister development (Harms et al., 2016) and biofilm
formation (Mansour et al., 2015). In a murine model of S. aureus
implant infection, IDR-1018 showed to be potentially useful in
reducing orthopedic infections by recruiting macrophages to the
infection site, blunting excess cytokine production and reducing
osseointegration failures (Choe et al., 2015).

In an attempt to meet the requirements for the treatment
of BAI as much as possible, a series of novel synthetic AMPs
was recently developed based on two human AMPs, i.e.,
thrombocidin-1, themajor antimicrobial protein of human blood
platelets (Krijgsveld et al., 2000; Kwakman et al., 2011), and LL-
37, a principal human AMP produced by mucosal epithelial cells
and multiple immune cells. The LL-37-inspired peptide OP-145
(formerly designated as P60.4Ac; Nell et al., 2006) proved to be
safe and efficacious for treatment of therapy-resistant otitis media
patients (Peek et al., 2009). In vitro, OP-145 (de Breij et al., 2016),
and the newer generation LL-37-inspired peptides SAAP-145 and
SAAP-276 (Riool et al., 2017a) and the trombocidin-1-derived
peptide TC19 (Zaat et al., 2014) inhibited biofilm formation by
a clinical S. aureus BAI isolate in a dose-dependent fashion.
The mode of action of these synthetic peptides may involve
inhibition of adherence of bacteria to surfaces and/or reduction
of expression of genes involved in biofilm formation, as has been
reported for LL-37 (Overhage et al., 2008). These novel synthetic
peptides all rapidly permeabilize the membrane of S. aureus
bacteria (Riool et al., 2017a), explaining why they are highly
effective against dividing as well as non-dividing, biofilm-encased
bacteria whether or not resistant to antibiotics. Interestingly,
these newer generation peptides display good bactericidal activity
in the presence of human plasma, despite possible binding of the
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peptides to plasma components (de Breij et al., 2016). In contrast,
the first generation AMP OP-145 showed strong reduction of
antimicrobial activity in plasma in vitro. Despite this OP-145
proved to be effective in preventing S. aureus colonization
of subcutaneous implants in mice and protected rabbits from
experimental intramedullary nail-associated osteomyelitis (de
Breij et al., 2016). Apparently, in vitro activities in the presence
of human plasma do not necessarily predict the in vivo potency
of AMPs.

The physical properties of synthetic AMPs, i.e., cationic charge
and peptidic nature, present challenges to their biological stability
and balance between antimicrobial efficacy and host cell toxicity.
Fortunately, several solutions can be considered to address these
issues. For example, PEGylation is a well-accepted method for
minimizing cytotoxicity while maintaining antimicrobial activity
of AMPs and reducing elimination of the peptides by the liver
and kidneys (Morris et al., 2012). D-enantiomers—peptides that
are comprised of unnatural amino acids—and (retro-)inverso
peptides are insensitive to most peptidase activity (Guichard
et al., 1994; Feng and Xu, 2016). In this connection, a series of
modified HHC10 peptides were synthesized, including inverso-
CysHHC10 (i.e., different stereo isomer). Inverso-CysHHC10
was stable in human serum, showed microbicidal activities at
lowmicromolar concentrations against Escherichia coli, S. aureus,
and S. epidermidis and was active in a polyethylene glycol (PEG)-
based hydrogel in serum (Cleophas et al., 2014). Of note, serum
may be a worst-case scenario for peptides, since Fibrinopeptide
A peptides were degraded in serum, but not in fresh blood
(Böttger et al., 2017). Serum may have a level of proteolytic
activity not encountered in blood or plasma, since preparation
of serum involves blood coagulation, which leads to activation
of coagulation pathway proteases (Chambers and Laurent, 2002).
Therefore, inhibition/degradation is best studied in plasma or
fresh blood.

Another area of potential improvement of synthetic AMPs
is that of intracellular antimicrobial activity, required to treat
intracellular infections. In general, AMPs do not effectively
penetrate host cells due to their high positive charge. Several
cell-penetrating peptides have been developed for intracellular
“delivery” of peptides. Such peptides may be utilized to deliver
AMPs and PEGylated peptides into host cells to facilitate
elimination of intracellular pathogens, e.g., staphylococci,
residing within inflammatory and other cells, such as osteoblasts
(Iwase et al., 2016).

PREVENTIVE STRATEGIES

For prevention of BAI, various types of antimicrobial
biomaterials have been developed, including (i) antifouling
surfaces, (ii) contact-killing surfaces, and (iii) surfaces which
incorporate and release antimicrobials (Busscher et al., 2012).
These approaches all have their benefits and limitations, which
need to be taken into account when designing an antimicrobial
strategy for a particular device (Brooks et al., 2013). Importantly,
both biofilm formation on the implant and colonization of the
peri-implant tissue need to be taken into consideration when

designing preventive strategies against BAI. Here, we will discuss
various combinations of these strategies and AMPs to prevent
BAI (summarized in Figure 1).

Antifouling Surfaces
Already in 1987, Gristina suggested that adhering tissue cells
and bacteria compete for a spot on the implant’s surface,
the so-called “race for the surface” concept (Gristina, 1987).
In case this race is won by the bacteria, this will result in
infection instead of tissue integration. Gristina also realized that
colonization of the tissue around implants was another possible
mechanism of infection (Gristina, 1987). Bacterial adhesion and
subsequent biofilm formation may be prevented by modifying
the physicochemical surface properties of biomaterials such as
the surface charge, hydrophobicity/hydrophilicity, and surface
chemistry. One strategy is to use hydrophilic polymer coatings,
e.g., immobilized PEG, as applied on contact lenses, shunts,
endotracheal tubes, and urinary catheters (Banerjee et al., 2011;
Busscher et al., 2012). Another approach is functionalization
of the surface with a dense layer of polymer chains commonly
known as polymer brush coatings (Nejadnik et al., 2008; Neoh
et al., 2013; Keum et al., 2017). Large exclusion volumes of
tethered polymer chains result in surfaces difficult to approach
by proteins or bacteria.

Contact Killing Surfaces
Another approach to prevent implant colonization is the
immobilization of AMPs on surfaces of medical devices, which
can be performed with a variety of chemical techniques. An
excellent overview of immobilization strategies has recently been
published by Silva et al. (2016). There are several common
“rules” for success. The structural characteristics important for
the antimicrobial activity of the peptides should not be altered
by the immobilization process. Length, flexibility, and kind
of spacer connecting the peptide to the surface, orientation
of the immobilized peptides, and the AMP surface density
are additional important parameters (Costa et al., 2011).
Interestingly, even short surface-attached peptides not likely to
have a free interaction with the bacterial cytoplasmic membrane,
have antimicrobial activity (Hilpert et al., 2009). This is thought
to be due to destabilization of the bacterial membrane by
displacement of positively charged counter-ions, disrupting the
ionic balance, changing bacterial surface electrostatics, and
activating autolytic enzymes (Hilpert et al., 2009). An example
of a contact-killing surface is the hydrogel network with
the covalently attached stabilized inverso-CysHHC10 peptide
(Cleophas et al., 2014). This coating demonstrated high in vitro
antimicrobial activity against S. aureus, S. epidermidis, and E.
coli. Furthermore, brush coating molecules may also possess
active functional groups with antimicrobial activity, e.g., by
conjugation with the AMPs Tet20 (Gao et al., 2011a) and
Tet213 (Gao et al., 2011b). Another example is polyurethane
with a brush coating tethered with the AMP E6 for the
prevention of catheter-associated infections (Yu et al., 2017).
This surface coating reduced bacterial adhesion on the catheter
surface in a mouse urinary catheter infection model. A variety
of AMPs, like GZ3.27 (De Zoysa and Sarojini, 2017), GL13K
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FIGURE 1 | Schematic overview of the strategies to prevent implant (Right) and implant and tissue (Left) colonization.

(Chen et al., 2014; Zhou et al., 2015), SESB2V (Tan et al.,
2014), bacitracin (Nie et al., 2016, 2017), hLF1-11 (Costa
et al., 2014; Godoy-Gallardo et al., 2015), LL-37, Melimine,
lactoferricin, and Mel-4 (Chen et al., 2016; Dutta et al., 2016)
have been covalently coupled onto various surfaces, such as
glass, silicon, and titanium, with different degrees of success
(summarized in Table 1). Chimeric peptides comprised of both
a titanium binding domain and an antimicrobial motif are
also used to create contact-killing surfaces (Yucesoy et al.,

2015; Liu et al., 2016; Yazici et al., 2016). Due to their
titanium-binding domain, the peptides preferentially bind the
implant, while the freely exposed antimicrobial domain is
available for combatting invading bacteria. Titanium surfaces
modified with these chimeric peptides were found to significantly
reduce adhesion of different Streptococcus species, S. aureus,
S. epidermidis, P. aeruginosa, and E. coli, compared to bare
titanium. Immobilization of GL13K onto titanium dental
implants even enabled osseointegration when tested in rabbit
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TABLE 1 | Overview AMP contact-killing surfaces.

AMP Coating type1 Surface2 Antimicrobial activity References

Bacitracin Surface tethering Titanium Reduction surface adhesion by S. aureus in vitro, and

reduction implant and tissue colonization by S. aureus in a rat

femur implant infection model

Nie et al., 2016, 2017

Chimeric peptidea Binding domain Titanium Surface bactericidal activity against Streptococcus gordonii

and S. sanguinise in vitro

Liu et al., 2016

Chimeric peptideb Binding domain Titanium Reduction surface adhesion by Streptococcus mutans,

S. epidermidis, and E. coli in vitro

Yucesoy et al., 2015; Yazici

et al., 2016

E6 Polymer brushes PU Reduction catheter surface colonization by P. aeruginosa,

S. aureus, and Staphylococcus saprophyticus in vitro and by

P. aeruginosa in mouse urinary catheter infection model

Yu et al., 2017

GL13K Surface tethering Titanium Surface bactericidal activity against S. gordonii and

Porphyromonas gingivalis in vitro

Chen et al., 2014; Zhou

et al., 2015

GZ3.27c Surface tethering Titanium, glass, silicon Surface bactericidal activity against P. aeruginosa and E. coli

in vitro

De Zoysa and Sarojini, 2017

hLF1-11 Polymer brushes Titanium Surface bactericidal activity against S. sanguinis and

Lactobacillus salivarius in vitro

Godoy-Gallardo et al., 2015

hLF1-11 Surface tethering Titanium, chitosan Reduction surface colonization by S. aureus (both surfaces)

and S. sanguinis (chitosan) in vitro

Costa et al., 2014;

Hoyos-Nogués et al., 2017

Inverso-CysHHC10 Hydrogel PET Surface bactericidal activity against S. aureus, S. epidermidis,

and E. coli in vitro

Cleophas et al., 2014

Magainin I Self-assembling silk PS Reduction surface adhesion by S. aureus in vitro Nilebäck et al., 2017

Melimine Surface tethering Titanium Reduction surface adhesion by P. aeruginosa in vitro, and

reduction implant and tissue colonization by S. aureus in

mouse and rat subcutaneous implant infection

Chen et al., 2016

Melimine, Mel-4, LFcd,

LL-37

Surface tethering pHEMA Surface bactericidal activity against P. aeruginosa (LL-37,

Mel-4, and Melimine) and S. aureus (Mel-4 and Melimine)

in vitro

Dutta et al., 2016

SESB2V Surface tethering Titanium Reduction tissue colonization by S. aureus and P. aeruginosa

in a rabbit keratitis model

Tan et al., 2014

Tet20 Polymer brushes Titanium Surface bactericidal activity against P. aeruginosa and

S. aureus in vitro, reduction surface adhesion by S. aureus in

rat subcutaneous implant infection

Gao et al., 2011a

Tet213 Polymer brushes Titanium Surface bactericidal activity against P. aeruginosa in vitro Gao et al., 2011b

1Surface tethering by covalent immobilization of AMP to surface; Chimeric peptide consists of titanium-binding domain and antimicrobial motif.
2PET, polyethylene terephthalate; PU, polyurethane; pHEMA, poly-hydroxyethylmethacrylate; PS, polystyrene.
aChimeric peptides consist of minTBP-1 and JPH8194 motifs.
bChimeric peptides consist of TiBP(S)1–3 and E14LKK/H14LKK or KWKRWWWWR motifs.
cGZ3.27 with an added N-terminal cysteine is designated GZ3.163.
dLFc, lactoferricin.
eFormally known as Streptococcus sanguis, as mentioned in the reference.

femurs (Chen et al., 2017). Another promising strategy is the
development of multifunctional coatings by combining the
well-known RGD cell adhesive sequence with the lactoferrin-
derived AMP LF1-11, resulting in in vitro cell integration as
well as inhibition of bacterial colonization by S. aureus and
Streptococcus sanguinis (Hoyos-Nogués et al., 2017). Recently,
others described a self-assembling coating of recombinant
spider silk protein fused to the AMP Magainin I for different
biomaterials, which reduced numbers of live bacteria on the
coated surfaces (Nilebäck et al., 2017). It should be noted that
not in all studies described above the absence of unbound
peptide within the coating is verified. Thus, in those cases
it cannot be excluded that the antimicrobial activity of the
coating is caused by a combination of bound and released
AMP.

It should be noted that surface attachment of peptides does
suffer from some disadvantages. The antimicrobial activity of
the surface with immobilized AMPs is critically dependent on
the chemical tethering procedure and the orientation of the
covalently attached AMPs. The antimicrobial activity of the
resulting coating may be strongly reduced compared to the
activity of the peptide in free form (Bagheri et al., 2009; Onaizi
and Leong, 2011; Dutta et al., 2016). Apart from this reduction
of activity due to the tethering process, proteins, blood platelets,
and dead bacteria may block the antimicrobial groups on the
surface. Moreover, since the antimicrobial activity is restricted to
the surface of the implant, there is a lack of antimicrobial impact
on bacteria in the tissue surrounding the implant. Contact-killing
surfaces will only eradicate bacteria that are in direct contact with
the active surface, meaning that clearance of any bacteria further
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away from the surface will depend on efficient phagocytosis and
systemic or local antibiotics. However, as mentioned before, due
to the presence of a biomaterial the local host immune response
is dysregulated, and therefore phagocytosed bacteria may not
be killed and may even persist intracellularly (Boelens et al.,
2000a,b).

Release Systems
As described above, the peri-implant tissue is an important niche
for bacterial survival. Therefore, antimicrobial-releasing surfaces
or coatings from which the antimicrobial agent also reaches this
niche are preferred to prevent BAI. Antibiotic-releasing coatings
are widely used for medical devices such as sutures and central
venous catheters and urinary tract catheters. However, these
coatings have two major disadvantages: (i) a patient may be
infected with a bacterium resistant to the released antibiotic, and
(ii) due to the local release a gradient of the antibiotic will be
present near the implant thereby increasing the risk to select for
resistant bacteria. Coatings releasing antibiotics for orthopedic
devices remain mainly experimental (Lucke et al., 2003; Kälicke
et al., 2006; Darouiche, 2007; Moojen et al., 2009; Alt et al.,
2011). The first commercially available gentamicin-releasing
intramedullary tibia nail has recently shown promising results
in a first prospective study (Fuchs et al., 2011; Metsemakers
et al., 2015; Alt, 2017). In view of the increasing development
of antibiotic resistance among bacteria, the use of antibiotics
in medical devices is discouraged by government regulatory
agencies like the American Food and Drug Administration
(FDA, 2007; Brooks et al., 2013). Obviously, coatings releasing
antimicrobial agents that are less likely to induce resistance, such
as AMPs, are preferred in view of both managing resistance
development and compatibility with use of antibiotics for
prophylaxis or treatment. To prevent the spread of bacteria from

the implant surface to the surrounding tissue, and to eradicate
bacteria contaminating tissue during surgery, a rapid initial
release of antimicrobials is required. If this release is delayed,
bacteria may “escape” into host cells before effective levels of
the antimicrobial agent have been established. Subsequently,
prolonged local release of the antimicrobial agent at sufficiently
high concentrations will be required to eradicate any residual
bacteria (Zilberman and Elsner, 2008; Emanuel et al., 2012).

Application of AMPs in antimicrobial surface coatings is
a subject of increasing interest and different types of release-
coatings have been described, including hydrogels, nanotubes,
microporous calcium phosphate coatings, and polymer coatings
(summarized in Table 2). Hydrogels with the AMP Cateslytin
strongly adhere to dental implant surfaces. The hydrogels showed
potent antimicrobial activities against Porphyromonas gingivalis,
an important causative agent of peri-implantitis, without signs
of toxicity (Mateescu et al., 2015). Another example is a gelatin-
based hydrogel on titanium surfaces allowing for the controlled
release of the short cationic AMP HHC36 preventing S. aureus,
S. epidermidis, E. coli, and P. aeruginosa biofilm formation
(Cheng et al., 2017).

Self-organized and vertically oriented titanium oxide
nanotubes loaded with the broad spectrum AMP HHC36
showed in vitro bactericidal activity against S. aureus in liquid
surrounding the nanotubular surface and reduced bacterial
colonization on the surface ∼200-fold (Ma et al., 2012). GL13K-
eluting coatings on these titanium oxide nanotubes prevented
growth of Fusobacterium nucleatum and P. gingivalis in an in
vitro disk-diffusion assay (Li et al., 2017). In vitro release of
Tet213 from microporous calcium phosphate coatings applied
on titanium showed bactericidal activity against S. aureus and
P. aeruginosa (Kazemzadeh-Narbat et al., 2010). In a similar
approach, release of PSI 10 frommicroporous calcium phosphate

TABLE 2 | Overview AMP release coatings.

AMP Coating type1 Surface Antimicrobial activity References

Cateslytin (CTL) Hydrogel Titanium, gingivab Surface bactericidal activity against P. gingivalis in vitro Mateescu et al., 2015

GL13K TiO2 nanotubes Titanium Antimicrobial activity against F. nucleatum and P. gingivalis in vitro Li et al., 2017

HHC36 TiO2 nanotubes Titanium Bactericidal activity against S. aureus in solution and on surface

in vitro

Ma et al., 2012

HHC36 Hydrogel Titanium Surface bactericidal activity against S. aureus, S. epidermidis,

E. coli, and P. aeruginosa in vitro

Cheng et al., 2017

OP-145 PLEX Titanium Bactericidal activity against planktonic S. aureus in vitro,

prevention of S. aureus BAI in a rabbit intramedullary implant

infection model

de Breij et al., 2016

PSI 10 Microporous calcium

phosphate

Magnesium alloy Bactericidal activity against S. aureus in solution in vitro Tian et al., 2015

SAAP-145, SAAP-276 PLEX Titanium Reduction implant and tissue colonization by S. aureus in a

subcutaneous mouse implant infection model

Riool et al., 2017a

Tet213 Microporous calcium

phosphate

Titanium Bactericidal activity against S. aureus and P. aeruginosa in solution

in vitro

Kazemzadeh-Narbat

et al., 2010

Tet213 Collagena Titanium Antimicrobial activity against P. gingivalis and S. aureus in solution

in vitro

Shi et al., 2015

1PLEX, polymer-lipid encapsulation matrix; TiO2, titanium oxide.
aBiodegradable coating of Tet213 linked to collagen.
bHydrogel adheres upon injection.
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coated magnesium alloy inhibited S. aureus growth in vitro and
promoted in vivo bone repair (Tian et al., 2015). Furthermore,
controlled release of Tet213 linked to collagen IV inhibited
S. aureus biofilm formation in vitro (Shi et al., 2015). However,
these types of coatings have not yet been tested in vivo.

Injection of the LL-37-inspired AMPs OP-145 (de Breij et al.,
2016), SAAP-145, and SAAP-276 (Riool et al., 2017a) along
subcutaneous implants in mice did not reduce the numbers
of S. aureus in the surrounding tissue. This might be because
the AMPs did not effectively penetrate the tissue or were not
taken up by the host cells and thereby not capable of killing
internalized bacteria. However, when these AMPs were released
from Polymer-Lipid Encapsulation Matrix (PLEX) coatings, the
numbers of viable S. aureus bacteria were reduced in the peri-
implant soft tissue in mice (Riool et al., 2017a) and even in
bone in a rabbit humerus intramedullary nail infection model (de
Breij et al., 2016). This clearly illustrates the benefit of the PLEX
coating technology allowing controlled and prolonged release of
the AMPs at the implant-tissue-interface. The SAAP-276-PLEX-
coated implants were able to significantly, but not completely,
reduce the number of doxycycline-resistant S. aureus in the
peri-implant tissue, in contrast to the doxycycline-PLEX coated
implants which failed to reduce their numbers in the tissue (Riool
et al., 2017a). This underlines the potency of SAAP-276-PLEX
coatings in the fight against BAI caused by multidrug-resistant
staphylococci.

Although the AMPs mentioned above reduced the
colonization of the peri-implant tissue in vivo when released
from a coating, they might still not be able to act against
intracellular bacteria. Apparently, the rapid initial release of
the AMPs killed the vast majority of the infecting bacteria,
preventing biofilm formation on the implant surface as well
as colonization of the tissue, thereby protecting both these
sites against colonization. Treatment of infections featuring
intracellular bacteria remains difficult, as observed with the
conventional antibiotic vancomycin (Broekhuizen et al., 2008),
and likely with the novel AMPs as well. A possible way to
improve the intracellular entry of AMPs is by adding a specific
domain (“tag”) to the peptides as a signal for uptake by the
host cells (Splith and Neundorf, 2011; Ye et al., 2016). However,
intracellular localization of bacteria does not seem to occur
to a large extent when AMPs are used in BAI prevention, as
shown for instance with the AMP-PLEX coatings described
above. By directly killing the bacteria on the implant-tissue
interface the AMPs prevented bacterial invasion into the tissue
and internalization by and survival in host cells.

Novel Manufacturing Techniques for
Biomaterials, a Role for AMPs?
Several novel technologies are arising for manufacturing
implants with particular focus on the possibility of
personalization. We will briefly address additive manufacturing
and electrospinning with regards to the strategies of
incorporation of antimicrobial agents and potential for AMPs.

Additive Manufacturing

Additive manufacturing (3D-printing) of medical devices is a
major breakthrough that enables the production of implants

customized in size and shape, and potentially with high
porosity, thereby increasing the surface area. These aspects make
this technique attractive for personalized implants. However,
as with conventional implants, the 3D-printed implants are
susceptible to infection. Therefore, different approaches are
currently explored to develop 3D-printed medical devices with
antimicrobial functionalities. For example, antimicrobials may
be added by surface modification of the 3D-printed implants,
using plasma electrolytic oxidation, also known as micro-arc
oxidation (Fidan et al., 2017). In this process, a titanium oxide
layer is generated and compounds or nanoparticles present
in the electrolyte are incorporated in the growing surface
oxide layer (Necula et al., 2009; Lara Rodriguez et al., 2014;
Fidan et al., 2017). One antimicrobial agent often used for
the implants is silver. Silver is used in numerous medical
applications (Bach et al., 1999; Rupp et al., 2005; Osma et al.,
2006; Kuehl et al., 2016) and has broad-spectrum antimicrobial
activity (Bürgers et al., 2009; Sussman et al., 2015). In a recent
study silver nanoparticles were embedded in the titanium oxide
layer of 3D-printed titanium implants (van Hengel et al., 2017)
using a plasma electrolytic oxidation protocol developed for
conventional medical grade titanium implants (Necula et al.,
2009, 2012). These 3D-printed implants released silver ions over
time, and showed in vitro bactericidal activity against MRSA
including prevention of biofilm formation, and eradicatedMRSA
in an ex vivo mouse femur implant infection model (van Hengel
et al., 2017).

The antibiotics rifampin and vancomycin have been
incorporated in 3D-printed calcium-phosphate scaffolds
during manufacturing. Due to their local delivery these
incorporated antibiotics rendered the scaffolds capable
of controlling murine implant-associated bone infection
(Inzana et al., 2015). A similar approach might very well
be suitable to incorporate AMPs for local delivery, as an
alternative for the use of conventional antibiotics. AMPs
might also be incorporated in hydrogels to coat the 3D-
printed implants, similar to approaches utilizing polymers
to create antibiotic release systems (ter Boo et al., 2015,
2016).

Another novel approach currently explored for prevention
or treatment of BAI is the use of gold nanoparticles with
tethered AMPs to increase the in vivo stability of AMPs
and decrease possible toxicity. This technology would be
readily applicable to 3D-printed implants. Gold nanoparticles
conjugated with the hydrophilic cationic peptide cecropin
melittin (CM) demonstrated higher antimicrobial activity and
stability in serum than the CM peptide in solution, The CM-
gold nanoparticles had favorably low cytotoxicity for human
cells and demonstrated high antimicrobial activity in mouse
chronic wound infection and system infection models (Rai et al.,
2016a,b).

Electrospinning

Electrospinning is an entirely different technique which offers
many possibilities for manufacturing medical devices. An
example is the electrospun prosthetic heart valve, which has
reached the phase of advanced preclinical testing (Kluin
et al., 2017). By electrospinning, biocompatible nanofibers can
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be produced that have a large surface area mimicking the
extracellular matrix of the body. The porosity of the matrices
may however allow colonization by bacteria. To reduce the risk
of infection of electrospun materials, antimicrobial agents have
been incorporated in the polymers used for the electrospinning
process. Examples include antibiotics such as vancomycin and/or
rifampicin (Waeiss et al., 2014; Song et al., 2016), moxifloxacin
(Song et al., 2016), silver nanoparticles (Tian et al., 2013;
Almajhdi et al., 2014), or combinations of silver nitrate and
chlorhexidine (Song et al., 2016). Recently, studies have also
reported on the use of AMPs to render electrospun materials
antimicrobial. Poly(E-caprolactone) nanofibers have been loaded
with the synthetic AMP inverso-crabrolin (Eriksen et al., 2013),
and poly(vinyl alcohol) nanofibers with pleurocidin (Wang et al.,
2015) or the antifungal peptide Cm-p1 (Viana et al., 2015). In
view of the increasing importance of electrospinning applications
in the medical field, this is an area where additional studies
on the use of AMPs will be highly relevant and novel forms
of AMP structures may be highly desired. In this respect a
novel class of antimicrobial agents is emerging. This is the class
of structurally nanoengineered antimicrobial peptide polymers
(SNAPPs). In the form of 16- or 32-arm star-shaped peptide
polymer nanoparticles, these SNAPPs showed in vitro activity at
sub-micromolar concentrations against a wide panel of Gram-
negative bacteria, including multidrug-resistant pathogens. They
were effective in vivo against an multidrug-resistant strain
of A. baumannii and did not induce resistance (Lam et al.,
2016).

CONCLUSIONS AND FUTURE
PERSPECTIVE

Prevention and treatment of BAI is a major medical challenge,
in particular due to the involvement of biofilm-encased
and intracellular multidrug-resistant bacteria. Synthetic AMPs,
displaying broad spectrum activity including activity against
multidrug-resistant pathogens, anti-biofilm activities, little/no
development of resistance, and in vivo activity in preventing
BAI, are important candidates. Tethering of these AMPs to the
biomaterial surfaces, and particularly combining AMPs with
formulations to release the peptides in a controlled fashion
is expected to protect both the implant and the surrounding
tissue, both for conventional implants and biomedical devices
manufactured by 3D-printing and electrospinning.
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