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Abstract: Prosthetic joint infections (PJIs) ensued from total joint replacement (TJR) pose a severe
threat to patients that involve poor health outcomes, severe pain, death (in severe cases), and negative
influence patients’ quality of life. Antibiotic-loaded bone cement (ALBC) is frequently used for the
prevention and treatment of PJI. This work aims to study gentamicin release from carbon nanotubes
(CNTs) incorporated in polymethyl methacrylate (PMMA) bone cement to prolong release over
several weeks to provide prophylaxis from PJIs after surgery. Different CNT concentrations were
tested with the presence of gentamicin as a powder or preloaded onto carboxyl functionalized CNTs.
The different types of bone cement were tested for drug release, mechanical properties, water uptake,
antimicrobial properties, and cytocompatibility with human osteoblast cells (MTT, LDH, alizarin
red, and morphology). Results showed prolonged release of gentamicin from CNT-loaded bone
cements over several weeks compared to gentamicin-containing bone cement. Additionally, the
presence of CNT enhanced the percentage of gentamicin released without adversely affecting the
nanocomposite mechanical and antimicrobial properties needed for performance. Cytotoxicity testing
showed non-inferior performance of the CNT-containing bone cement to the equivalent powder
containing cement. Therefore, the developed nanocomposites may serve as a novel PMMA bone
cement to prevent PJIs.

Keywords: PMMA; bone cement; carbon nanotubes; gentamicin; antimicrobial; cytotoxicity;
compression trength

1. Introduction

Total joint replacement (TJR) is performed mainly in end-stage arthritis and for hip
and knee replacements, with aging and obesity as risk factors [1]. Prosthetic joint infections
(PJI) can occur in patients following TJR, mostly in the first few months after surgery [2,3].
PJIs can pose a severe threat to patients’ health that can involve severe pain and death (in
severe cases), and which can negatively influence patients’ quality of life [4,5]. Moreover,
PJIs inflict a substantial economic burden on healthcare systems, as their management
requires repeated surgeries and longer hospitalization duration [6].

PMMA bone cement is frequently used in cemented TJRs, where PMMA can fix the
implant in place and release loaded antibiotics. Antibiotic-loaded bone cements (ALBCs) are
frequently employed for the prevention and treatment of PJI after joint replacement [7]. The
most commonly used antibiotics in ALBCs are aminoglycosides, particularly gentamicin [8].
Aminoglycosides have broad-spectrum antibacterial action and can bear high temperatures
caused by the exothermic PMMA polymerization reaction. Gentamicin is available as a
powder, either premixed with the powder part of the cement formulation or added as an
off-label formulation [9].
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Despite the wide use of ALBCs, many concerns have been raised about the release
profile of antibiotics [10–12]. In particular, the release profile is described by a burst release
for hours or a few days after surgery, which falls below the inhibitory levels needed to
prevent infections [13]. A prolonged-release profile is needed for the prophylaxis from
both early and delayed infections that can occur in the first few weeks to months after
surgery [14]. Furthermore, less than 10% of the loaded antibiotic is released, and the bulk
remains trapped within the cement matrix [15,16]. Therefore, improving local antibiotic
release for ALBCs is essential for the management of PJIs, without affecting other properties
required for the performance and function of the bone cement.

Many studies have been aimed at improving the release profile for gentamicin from
PMMA bone cement by nanoparticle incorporation, including silica nanoparticles [17,18],
liposomes [19], clay nanotubes [20], hydroxyapatite, and multi-walled carbon nanotubes
(CNTs) [21]. Among these nano-delivery systems, CNTs have the ability to enhance the
thermal, mechanical and structural properties of PMMA cement [22–24]. Furthermore,
CNTs containing cements have been reported to have satisfactory cytocompatibility and
biological properties [25–28]. However, the effect of CNT on the delivery of antibiotics from
bone cements has not been adequately studied, because most of the studies were focused
on improving cytocompatibility and mechanical properties of the PMMA cement without
studying the effect on antibiotic release. To the best of our knowledge, Shen et al. (2016) is
the only study that reported enhanced elution of gentamicin from CNT-containing PMMA
cement; however, the high percentage of CNT (5.3%) impaired the cement mechanical prop-
erties [21]. In this study, lower concentrations of CNT were studied for optimizing antibiotic
release without adversely affecting other properties needed of cement performance.

This study aims to prolong gentamicin release from CNT-incorporated PMMA bone
cement for several weeks to provide prophylaxis from PJIs after surgery. Different CNT
concentrations were tested with the presence of gentamicin as a powder or preloaded onto
carboxyl functionalized CNTs by wet impregnation. The different cements were tested for
drug release, mechanical performance, water uptake, antimicrobial properties, and cyto-
compatibility with human osteoblasts (MTT, LDH, alizarin red, and morphology). It was
hypothesized that CNT concentration can be optimized for enhancing gentamicin release
without adversely affecting the PMMA nanocomposite properties needed for performance.

2. Materials and Methods
2.1. Chemicals

The carboxyl functionalized CNT powder, containing a 10% carboxylic acid con-
centration, was used in this study (Sigma-Aldrich code: 755125, supplier: Nanocyl Inc.,
Sambreville, Belgium). The average diameter of the CNT was 9.5 nm and length was
1.5 µm. Gentamicin sulphate, phosphate buffer solution (PBS) tablets, glutaraldehyde,
o-phthaldialdehyde reagent solution (OPA), dimethyl sulfoxide, alizarin red S, β-glycerol
phosphate, ascorbic acid, and dexamethasone were purchased from Sigma-Aldrich, Gilling-
ham, UK. The bone cement brand used was Cemex® (Tecres® SpA, Verona, Italy) and was
used based on supplier guidelines.

2.2. Preparation of Gentamicin-Loaded CNT

Gentamicin was loaded into the CNTs by wet impregnation, as previously described
(with some modifications) [21]. Typically, 0.20 g of gentamicin was dissolved in 3 mL
deionized water. 0.30 g of CNT powder was then impregnated with the gentamicin solution
under stirring for 24 h. The mixture was dried under vacuum for 48 h at room temperature.
The dried gentamicin-loaded CNTs were manually ground to fine powder, and the required
quantity of nanoparticles was mixed with the powder part of the commercial cement.
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2.3. Characterization for CNT and Gentamicin-Loaded CNTs

Transmission electron microscope (TEM)

TEM images were taken by a Morgagni FEI 268 (FEI Company, Eindhoven,
The Netherlands) microscope at 60 kV equipped with Megaview 3 digital camera, at
100,000× magnification. One drop of nanoparticles suspension was placed on a
Formvar/carbon-coated (200 mesh) copper grid and allowed to evaporate at
room temperature.

Fourier-transformed infrared (FTIR)

The FTIR spectra were measured using a Thermo Nicolt NEXUS 670 FT-IR spectrom-
eter (Thermo Nicolet Corporation, Madison, WI, USA) in the range 4000–400 cm−1 with
a resolution of 4 cm−1. The filler was mixed with potassium bromide (KBr) after drying,
then, ground and pressed into thin sheets for testing.

Zeta potential measurements

Dynamic light scattering was utilized to measure the electrophoretic mobility for the
CNTs by a Malvern Zetasizer Nano ZS (Malvern Instruments, Malvern, Worcestershire,
UK). Smoluchowski model was used to convert the measured electrophoretic mobility to
zeta potential value (ζ). For each measurement, the CNTs were dispersed in buffer solutions
at a concentration of 1 mg/mL at pH ranging from 4 to 7. Each zeta value represented an
average for three different measurements.

2.4. Bone Cement Preparation

Four cement formulations were studied: Cemex with 3% gentamicin powder, Cemex
with 3% of gentamicin-loaded CNTs (prepared in Section 2.2), Cemex with 0.3% CNT and
3% gentamicin powder, and Cemex with 1% CNT and 3% gentamicin powder. Cement
preparation was performed according to the ISO5833:2002 (Implants for Surgery—Acrylic
Resin Cements) and manufacturer’s instructions [29]. The constituents of the bone cement
were stored as per manufacturer’s guidelines (8–15 ◦C for the liquid in the dark and
20–25 ◦C for the powder). Before mixing, the constituents were conditioned to room
temperature (22 ◦C) for 2 h.

Both components (powder and liquid) were manually mixed in a polypropylene bowl
using a polypropylene spatula for 1 min. Then the cement dough was poured into a
polytetrafluoroethylene (PTFE) mold with specific shapes and dimensions suitable for the
chosen tests. The mold was then clamped with two PTFE film-covered steel endplates.
After 2 h, the samples were removed from the mold and cured at 23 ◦C for 24 ± 2 h. Finally,
320-grit silicon carbide paper was used to sand down the samples, smoothing the edges to
have the correct dimensions.

2.5. Gentamicin Release Quantification

Cylindrical samples with 10 mm height and 6 mm diameter were prepared using
a suitable PTFE mold. The samples (weighed 0.40 ± 0.01 g) were incubated in 3 mL
PBS buffer (pH 7.4) at 37 ◦C. The buffer was replaced every day to achieve sink condi-
tions to keep the concentration of the released drug insignificant compared to saturation
solubility [17,18].The samples were stored in a refrigerator (2–8 ◦C) for 3 days before
analysis. Three replicates were used for each cement type. The amount of gentamicin re-
leased was measured using o-phthaldialdehyde reagent through fluorescence spectroscopy,
which gives a fluorogenic product through the reaction with the amino groups of gen-
tamicin [30]. In a black 96-well plate, 100 µL of release medium was added with (100 µL)
o-phthaldialdehyde reagent and (100 µL) isopropanol. The plate was incubated for 30 min
at room temperature in the dark, and then fluorescence determination was performed
(λ excitation = 340 nm, λ emission = 450 nm) by a FL ×800 fluorescence microplate reader
(BIO-TEK instruments, Winooski, VT, USA). Each time point was an average of 3 sam-
ples. For all black 96-well plates, three standard antibiotic solutions with known con-
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centrations (0–100 µg/mL) were measured concurrently with release samples to create a
calibration curve.

The release graphs were plotted both as cumulative concentration released and per-
centage gentamicin released. One of the drawbacks for PMMA bone cement is that less
than 10% of the loaded antibiotic is released, and the bulk remains trapped within the
cement matrix [15,16]. Therefore, it is important to plot the release as a percentage to have
an idea about the total amount of drug released and the amount of drug that stays inside
the cement. Additionally, it is important to plot gentamicin as cumulative concentration
released, because the antimicrobial action for aminoglycoside antibiotics is concentration
dependent, and high peak to minimum inhibitory concentration ratios could reduce the
emergence of resistant mutants [31].

The gentamicin-loaded CNT were dispersed (10 mg in 1 mL) in PBS (pH 7.4). Gentam-
icin release was investigated at 37 ◦C for samples in Eppendorfs. Release samples were
taken every 24 h by replacing all release media with a fresh PBS media. Eppendorfs were
centrifuged before replacing media to prevent withdrawal of CNTs.

2.6. Mechanical Testing

Compressive testing was conducted according to the ISO 5833:2002 [29], where cylin-
drical shaped samples were used (diameter and height are 6 mm and 12 mm, respectively).
The machine used was a Shimadzu AGX-V (SHIMADZU corporation, Kyoto, Japan) with
a software package (TRAPEZIUM™ X-V) at 20 mm/min crosshead speed. Compressive
strength was performed after 3 months of sample aging in PBS at 37 ◦C.

2.7. Water Uptake Testing

The cement specimens (6 mm diameter and 10 mm height) were incubated in 3 mL
PBS at 37 ◦C for 30 days. In the first 2 weeks, the samples were weighed every day. Then,
they were weighed every three days [17,18]. Water uptake was determined by dividing
weight gain by the initial mass of the sample, and samples were tested in triplicate.

2.8. Agar Diffusion Assay

Cylindrical cement samples 10 mm diameter by 2 mm height were prepared as previ-
ously described in the bone cement preparation section. Staphylococcus aureus (S. aureus,
NCIMB 9518) was cultured in brain heart infusion (BHI) agar for 18–24 h at 37 ◦C. The
inoculum was spread across a BHI Petri dish using a sterile cotton swab. The Petri dish was
turned 60 degrees, and the process was repeated for full coverage. A 10 µg gentamicin disc
(Oxoid, Southampton, UK) was placed on the Petri dish as control, and pressure was applied
to the top of the disc to ensure complete surface contact. The Petri dish was then incubated
at 37 ◦C for 24 h. After that, the zones of inhibition around the gentamicin disc and samples
were measured. Images of the zones of inhibition were taken and analyzed using ImageJ®

software (Available online: https://sourceforge.net/projects/x264vfw/files/x264vfw64/
(accessed on 25 March 2022)). Zone of inhibition was calculated as the zone’s radius minus
the sample’s radius (the experiment was repeated in triplicate, n = 3) [19].

2.9. Cytotoxicity Analysis

Human dental fibroblasts (HDFs) were gifted from the faculty of Medicine, Uni-
versity of Jordan. HDFs were maintained in complete medium including Dulbecco’s
Modified Eagle’s Medium (DMEM, Hyclone, Locan, UT, USA) supplemented with 10%
fetal bovine serum (FBS, Welgene, Daejeon, Korea) and 1% v/v of a solution of 100 U/mL
penicillin and 100 µg/mL streptomycin (Sigma-Aldrich, Gillingham, UK) in a 5% CO2
humidified incubator at 37 ◦C. When the confluence reached 70%, HDFs were sub-cultured
with a split ratio of 1:8. HDFs conducted in this study were between passage 3 and 5
in all investigations with the cement specimen’s disc (diameter and height of 10 and
5 mm, respectively).

In vitro differentiation of HDFs

https://sourceforge.net/projects/x264vfw/files/x264vfw64/
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HDFs were seeded at passage 3 in a 24-well plate at 104 cells/well density and
incubated for 48 h in a complete medium. For osteogenic differentiation, the medium was
replaced with osteogenic medium including complete medium supplemented with 10 mM
β-glycerol phosphate, 50 µg/mL ascorbic acid, and 100 nM dexamethasone. The osteogenic
medium was replaced every 2 days and incubated for a further 24 days [32].

MTT Assay

MTT reagent (Thermo fisher scientific, Paisley, UK) was used to determine cell viability.
Each cement specimen was incubated in growth complete medium in a 24-well plate
containing 1 × 105 of differentiated osteoblast cells per well for 7 days at 37 ◦C in a
humidified atmosphere with 5% CO2. MTT tests were performed after incubation for 1, 2,
4, and 7 days. For each test, the medium present in the well was replaced with phenol free
medium and MTT reagent (5 mg/mL). Then, the plate was incubated for a further 24 h at
37 ◦C. The medium was then removed, dimethyl sulfoxide was added in each well, and the
plates were incubated for 10 min. Finally, the dissolved formazan solution was transferred
from each well into a 96-well plate for absorbance determination by a microplate reader
(Multiscan sky, Thermo Fisher Scientific, Vantaa, Finland) at λ = 560 nm. The results were
plotted as percentage viability compared to the cells only control.

LDH (lactate dehydrogenase) measurement

An in vitro Toxicology Assay Kit, LDH-based (Roche, Mannheim, Germany) was
utilized to study the viability of cells according to the manufacturer’s protocols. Osteoblast
cells were grown in a 24-well plate and as described above (In vitro Differentiation of
HDFs). The released LDH was quantified in the media before and after the addition of
cell lysis solution (total LDH). Cell viability was determined according to the following
equation:

Viability (%) =
(Total cells − Dead cells)

Total cells
× 100%

Total and released LDH were determined as optical density (OD), at λ = 490 nm, after
correcting the reading by a negative control.

Detection of calcium deposits (mineralization)

For the mineralization assay, a 24-well plate containing 1 × 105 of osteoblast cells was
incubated with cement specimens at 37 ◦C for 7 days in a humidified atmosphere with
5% CO2. The medium in each well was replaced with glutaraldehyde 10% (v/v), and the
plates were then incubated for 15 min and washed three times with deionized water. Next,
alizarin red S 1% (w/v) was added to each well, and the plates were incubated for 20 min.
After washing three times with deionized water, acetic acid 10% (v/v) was added to each
well, and the plates were incubated for a further 30 min. Finally, the solution from each
well was moved in the 96-well plate and analyzed using a microplate reader (Multiscan sky,
Thermo Fisher Scientific, Vantaa, Finland) at 450 nm. All stained images were evaluated
and pictured under a microscope (20× magnification) (Nikon Eclipse TS100, Tokyo, Japan).
The results were plotted as percentage viability compared to the cells only control.

2.10. Statistical Analysis

Experimental data were presented as mean ± standard deviation (SD) for at least three
values. A one-way analysis of variance (ANOVA) was performed to assess the significance
between different groups. Statistical significance was conducted at a 95% confidence level
(p < 0.05). All analyses were run using PRISM®9.0 software (GraphPad Software Inc., San
Diego, CA, USA).
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3. Results
3.1. Characterization of CNT and Gentamicin-Loaded CNT

Specific characterization conducted by Nanocyl Inc., Sambreville, Belgium, demon-
strated the basic properties of the purchased carboxyl functionalized MWCNT powder
(Table 1) as mentioned in the certificate of analysis [33].

Table 1. Specific characterization of CNTs (Sigma-Aldrich code: 755125, Nanocyl Inc., Belgium) and
methods of measurements.

Property Unit Value Method of Measurement

Average diameter 10−9 m 9.5 TEM
Average length µm 1.5 TEM
Carbon content % >87 TGA (thermal gravimetric analyzer)

Surface area m2/g 500 BET (Brunauer, Emmett, and Teller)
–COOH groups

(surface modification) % 10 XPS (X-ray photoelectron
spectroscopy)

The TEM images for the CNTs and gentamicin-loaded CNTS are shown in Figure 1.
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Figure 1. TEM images for CNTs (left) and gentamicin-loaded CNTs (right).

The FTIR spectra are shown in Figure 2. A broad diffuse band in the scope of
3650–2500 cm−1 designate the gentamicin molecules. The adsorption bands near 1626 cm−1

and 3415 cm−1 are related to the bending of N–H bond of the primary and secondary amines
in gentamicin [34]. The N–H bending vibration peaks at 1634 cm−1 and 3446 cm−1 in the
gentamicin-loaded CNT reflect the presence of gentamicin and clearly show that gentam-
icin molecules were incorporated in the CNT. The characteristic peak of CNT–COOH can
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be found at 3417 cm−1, which belongs to the OH stretching mode, and the peak near
1100 cm−1 belongs to the C–O stretching mode [35]. In the infrared curve of gentamicin-
loaded CNT, the characteristic peaks of pure CNT, –NH2 of gentamicin could still be
found, and the two peak patterns are shifted to 3446 cm−1, which could be attributed to
electrostatic interaction.
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Figure 2. FTIR spectra for (a) CNTs, (b) gentamicin, and (c) gentamicin-loaded CNTs.

Zeta potential measurements were performed for the CNT, gentamicin, and gentamicin-
loaded CNTs (Figure 3). The zeta potential for the pure CNTs was negative and reached
−17 mV at pH 7 because of the presence of carboxylate groups. Gentamicin had a small zeta
potential close to zero, because it is a weak polyelectrolyte with only five ionizable amino
groups that become protonated, giving a positive charge. Gentamicin-loaded CNT zeta
potential was close to zero because of the neutralizing effect of the electrostatic interaction
between the amino group of gentamicin and the carboxylate group on CNT.

3.2. Gentamicin Release from CNTs

More than 80 percent of the antibiotic was released in the first 5 days from gentamicin-
loaded CNT, as shown in Figure 4a,b. After day 5, gentamicin release reached a plateau,
where no significant increase in gentamicin release was observed over time. Gentamicin
release from gentamicin-loaded CNT (before incorporation into the cement matrix) was
100%, because the release was not hindered by any surrounding matrix, and the hydrophilic
drug escaped the hydrophobic CNT surface.
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3.3. Gentamicin Release from Bone Cement

Gentamicin release from different cement types was studied at pH 7.4 in PBS media,
which simulates the pH in healthy joints [36]. Figure 5 shows the cumulative gentamicin
release from different bone cements as concentration or percentage for 25 days. All the
CNT-containing bone cements released a significantly higher amount of gentamicin than
the gentamicin powder containing cement (p < 0.05) (Figure 5a), while the CNT containing
bone cements had a similar release profile above 1000 µg/mL (p > 0.05). In terms of percent-
age release, not all of the gentamicin added to the bone cement dough was released from
the cement release samples (Figure 5b). The gentamicin-loaded CNT cement showed signif-
icantly higher percentage release (45%) than other types of bone cement (p < 0.05), which
had nearly the same percentage of drug release (15%). However, the release continued for
25 days from all bone cement types tested at different concentrations and percentage levels
according to the cement type. The presence of CNT in the cement enhanced gentamicin
release in all cement types. Moreover, increasing CNT levels to 3% increased concentration
and percentage released as observed in gentamicin-loaded CNT cement.
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3.4. Mechanical Properties

The CNT-containing cements had similar compressive strength compared to the
gentamicin powder-containing bone cement (p > 0.05) (Figure 6).
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3.5. Water Uptake Study

The water uptake was comparable between different types of bone cement after
30 days of incubation (p > 0.05) (Figure 7). The cement samples gained weight in the first
7 days. After that, the weight of the samples and water content remained stable, where
gentamicin powder cement had lower uptake than CNT-containing cements.
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3.6. Antimicrobial Activity

Figure 8 displays the zones of inhibition and average radii attained from the agar
diffusion assay. The gentamicin powder 3% and gentamicin-loaded CNT 3% cement demon-
strated a lower zone of inhibition than the gentamicin disc (p < 0.05), while
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CNT 0.3% + gentamicin powder 3% and CNT 1% + gentamicin powder 3% had simi-
lar zones of inhibition to the gentamicin disc (p > 0.05). These findings highlight the
availability of the incorporated gentamicin sulfate to inhibit S. aureus growth.
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3.7. Cytotoxicity Analysis

MTT assay

The mitochondrial activity showed no significant difference between 0.3 and 1% CNT-
containing bone cement in each time point (days 1, 2, 4, and 7) nor with 3% CNT bone
cement at days 4 and 7 (p > 0.05) (Figure 9). However, the gentamicin powder-containing
cement without CNT had higher mitochondrial activity than 0.3 and 1% CNT-containing
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bone cement in day 1, 2, and 4 (p < 0.05). All cements tested had similar mitochondrial
activity at day 7.
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Figure 9. Mitochondrial activity (MTT assay) for osteoblasts with different types of cement
(n = 6 ± SD).

LDH assay

The viability of the cement gentamicin powder-containing bone cement was higher
than other gentamicin-loaded CNT 3% bone cement at days 2 and 4 (p < 0.05) (Figure 10).
However, the viability was the same for all different types of cement at day 7 (p > 0.05). The
CNT-containing bone cements showed variable viability in days 1, 2, and 4, reaching the
lowest viability level of less than 30% on day 7.

Alizarin red

Production of calcium from osteoblasts was not significantly different from all types
of bone cement (p > 0.05), with the presence of CNT or not (Figure 11). However, calcium
production was increased at each time point, reaching the highest levels at day 7 in all
types of cement. Figure 12 shows stained images with alizarin red for different types of
bone cement at day 7.



Nanomaterials 2022, 12, 1381 13 of 19

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

1 day 2 days 4 days 7 days
0

20

40

60

80
Vi

ab
ili

ty
 (%

)
gentamicin loaded CNT 3%

CNT 0.3% + gentamicin powder 3%

CNT 1.0% + gentamicin powder 3%

gentamicin powder 3%

cells only

 
Figure 10. Cytocompatibility test (LDH assay) for osteoblasts with different cements types (n = 6 ± 
SD). 

Alizarin red. Production of calcium from osteoblasts was not significantly different 
from all types of bone cement (p > 0.05), with the presence of CNT or not (Figure 11). 
However, calcium production was increased at each time point, reaching the highest lev-
els at day 7 in all types of cement. Figure 12 shows stained images with alizarin red for 
different types of bone cement at day 7. 

1 day 2 days 4 days 7 days
0

50

100

150

200

Vi
ab

ili
ty

 (%
)

gentamicin loaded CNT 3%

CNT 0.3% + gentamicin powder 3%

CNT 1.0% + gentamicin powder 3%

gentamicin powder 3%

cells only

 
Figure 11. Cytocompatibility test (alizarin red assay) for different osteoblasts with different types of 
cement (n = 6 ± SD). 

Figure 10. Cytocompatibility test (LDH assay) for osteoblasts with different cements types
(n = 6 ± SD).

Nanomaterials 2022, 12, x FOR PEER REVIEW 14 of 20 
 

 

1 day 2 days 4 days 7 days
0

20

40

60

80

Vi
ab

ili
ty

 (%
)

gentamicin loaded CNT 3%

CNT 0.3% + gentamicin powder 3%

CNT 1.0% + gentamicin powder 3%

gentamicin powder 3%

cells only

 
Figure 10. Cytocompatibility test (LDH assay) for osteoblasts with different cements types (n = 6 ± 
SD). 

Alizarin red. Production of calcium from osteoblasts was not significantly different 
from all types of bone cement (p > 0.05), with the presence of CNT or not (Figure 11). 
However, calcium production was increased at each time point, reaching the highest lev-
els at day 7 in all types of cement. Figure 12 shows stained images with alizarin red for 
different types of bone cement at day 7. 

1 day 2 days 4 days 7 days
0

50

100

150

200

Vi
ab

ili
ty

 (%
)

gentamicin loaded CNT 3%

CNT 0.3% + gentamicin powder 3%

CNT 1.0% + gentamicin powder 3%

gentamicin powder 3%

cells only

 
Figure 11. Cytocompatibility test (alizarin red assay) for different osteoblasts with different types of 
cement (n = 6 ± SD). 

Figure 11. Cytocompatibility test (alizarin red assay) for different osteoblasts with different types of
cement (n = 6 ± SD).



Nanomaterials 2022, 12, 1381 14 of 19
Nanomaterials 2022, 12, x FOR PEER REVIEW 15 of 20 
 

 

 
Figure 12. Alizarin red images for (a) cement only, (b) 0.3% CNT, (c) 1% CNT, and (d) 3% gentami-
cin-loaded CNT. 

4. Discussion 
TJR is the last choice for the treatment of end-stage osteoarthritis patients to retrieve 

their mobility. This procedure is performed increasingly in patients suffering from osteo-
arthritis with obesity and age as risk factors [37]. ALBCs are typically used to fix the im-
plant in place and release antibiotics, preventing PJIs. Novel approaches for prolonging 
antibiotic release from the bone cement after the surgery are urgently needed for fighting 
the life-threatening implications of PJIs [38]. This study aimed to explore the incorporation 
of CNT into the bone cement for sustaining antibiotic release without negatively affecting 
the cement properties. Therefore, different types of bone cement (different compositions 
of CNT/gentamicin) were prepared and characterized with different concentrations of 
CNT and gentamicin. 

In vitro release studies were conducted to study gentamicin release from commercial 
gentamicin powder and CNT-containing bone cements at pH 7.4, which represents 
healthy joints before infection-induced acidosis occurs [39,40]. Sink conditions were at-
tained by maintaining the highest concentration in all release samples below the gentami-
cin solubility concentration, which is more than 10 mg/mL in PBS. The CNT-containing 
bone cements exhibited prolonged release at a higher concentration than the commercial 
(gentamicin powder cement, Figure 5), despite having an equivalent amount of gentami-
cin or less (as in the case of gentamicin-loaded CNT). The reason for this behavior is that 
gentamicin needs to be released first from the CNT before the migration from the cement 
matrix. Gentamicin is a small molecule with higher diffusivity through PMMA, giving 
burst release in the first few days, which gradually slows down over a longer time. The 
presence of CNT at 1% concentration gave the highest concentration profile, while gen-
tamicin-loaded cement had a higher percentage of drug release. These results could be 
attributed to the homogenous distribution of CNT, which could facilitate the diffusion of 
gentamicin by forming a nano-channel network [17,21]. Many studies have shown that 
less than 10% of the added antibiotic is released from the PMMA cement [15,16], which is 
caused by the antibiotic being deeply entrapped in the cement matrix. Moreover, a low 
percentage of drug released could be attributed to the inactivation of the drug during the 
bone cement setting free radical polymerization reaction [10,17]. Therefore, the encapsu-
lation of the drug in nanocarrier systems could protect the antimicrobial drug, resulting 
in greater release yield and reduced drug loss, such as liposomes or silica nanocarriers 
[17,19], explaining the release observed in Figure 5. The release profiles from encapsulated 

(a) 

(d) (c) 

(b) 

Figure 12. Alizarin red images for (a) cement only, (b) 0.3% CNT, (c) 1% CNT, and (d) 3% gentamicin-
loaded CNT.

4. Discussion

TJR is the last choice for the treatment of end-stage osteoarthritis patients to retrieve
their mobility. This procedure is performed increasingly in patients suffering from os-
teoarthritis with obesity and age as risk factors [37]. ALBCs are typically used to fix the
implant in place and release antibiotics, preventing PJIs. Novel approaches for prolonging
antibiotic release from the bone cement after the surgery are urgently needed for fighting
the life-threatening implications of PJIs [38]. This study aimed to explore the incorporation
of CNT into the bone cement for sustaining antibiotic release without negatively affecting
the cement properties. Therefore, different types of bone cement (different compositions of
CNT/gentamicin) were prepared and characterized with different concentrations of CNT
and gentamicin.

In vitro release studies were conducted to study gentamicin release from commercial
gentamicin powder and CNT-containing bone cements at pH 7.4, which represents healthy
joints before infection-induced acidosis occurs [39,40]. Sink conditions were attained by
maintaining the highest concentration in all release samples below the gentamicin solubility
concentration, which is more than 10 mg/mL in PBS. The CNT-containing bone cements
exhibited prolonged release at a higher concentration than the commercial (gentamicin
powder cement, Figure 5), despite having an equivalent amount of gentamicin or less (as
in the case of gentamicin-loaded CNT). The reason for this behavior is that gentamicin
needs to be released first from the CNT before the migration from the cement matrix.
Gentamicin is a small molecule with higher diffusivity through PMMA, giving burst
release in the first few days, which gradually slows down over a longer time. The presence
of CNT at 1% concentration gave the highest concentration profile, while gentamicin-loaded
cement had a higher percentage of drug release. These results could be attributed to the
homogenous distribution of CNT, which could facilitate the diffusion of gentamicin by
forming a nano-channel network [17,21]. Many studies have shown that less than 10% of
the added antibiotic is released from the PMMA cement [15,16], which is caused by the
antibiotic being deeply entrapped in the cement matrix. Moreover, a low percentage of
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drug released could be attributed to the inactivation of the drug during the bone cement
setting free radical polymerization reaction [10,17]. Therefore, the encapsulation of the drug
in nanocarrier systems could protect the antimicrobial drug, resulting in greater release
yield and reduced drug loss, such as liposomes or silica nanocarriers [17,19], explaining the
release observed in Figure 5. The release profiles from encapsulated systems incorporated
into PMMA bone cement usually follow first release kinetics [41]. The release of gentamicin
from CNT nanoparticles (Figure 4) alone was faster than PMMA bone cement, as the
cement matrix further slowed down drug release. Thus, drug release from the cement
matrix is the rate-limiting step because complete release from CNT needs 7 days, compared
to 25 days from bone cement. The presence of CNT in the bone cement increased the
percentage of drug released as observed in gentamicin-loaded CNT 3%, where 45% of the
drug was released compared to 15% drug release from commercial gentamicin powder
cement (Figure 5). This observation agrees with previous studies on antibiotic elution from
PMMA bone cement [15,16], which can be explained by drug entrapment inside the PMMA
composite stopping the migration of the drug from bulk to the cement surface.

In the literature, different plating protocols are employed to assess the antimicrobial
activity of bone cement, because there is no standardized method for assessing the antimi-
crobial properties of bone cement. For example, Berchert et al., 2000 studied the duration of
the lag phase between different treatments [42], while Ayer et al. (2016) measured the zones
of inhibition in liposomal formulations using the agar diffusion test [19]. In this study, the
agar diffusion test confirmed the bioavailability of the encapsulated gentamicin in the CNT
containing bone cement, as obtained from the reproducible zones of inhibition (Figure 8).
Consistent shape and size between different CNT and powder-containing cement suggest
good gentamicin dispersion on the cement surface, resulting in even diffusion through
agar. The inhibition zones were higher in some CNT-containing bone cements because of
higher gentamicin concentrations. In this study, the antimicrobial efficacy was only tested
against one type of bacterial strain (Staphylococcus aureus) as an indicator of antimicrobial
activity of the developed CNT-containing nanocomposites compared to the gentamicin
powder-containing cement. However, other studies tested the antimicrobial activity for
different microbial strains in PJIs, including: coagulase-negative Staphylococci, Strepto-
cocci, Gram-negative bacilli (i.e., Escherichia coli and Pseudomonas aeruginosa), anaerobes,
and Enterococci [43].

The compressive strength of bone cement was not influenced by the presence of
the CNT (Figure 6). Many studies in the literature reported that the addition of CNT
to bone cement improved the mechanical properties [44–46]. Carbon nanotubes are
known for a more significant aspect ratio and higher modulus [47]. A study reported
that the tensile strength of polypropylene fibers reinforced with CNT was increased by
40% [48]. CNT/PMMA composites prepared by melting blending were well dispersed in
the nanocomposite, and the storage modulus of the cement was significantly increased [44].
In another study, a polymer extrusion technique was used to prepare CNT mixed in a
PMMA matrix and concluded that the cement strength was significantly enhanced by even
small amounts of CNTs [46]. This could be explained by strong combining interface for-
mation between PMMA and CNT caused by CNT participation in the PMMA free radical
polymerization reaction [45].

Bone cement fluid absorption inside the body affects the mechanical and surface
properties, resulting in a molecular weight decrease over time [49]. Therefore, determining
the initial amount of water uptake is crucial for studying the physicochemical characteristics
of bone cement. Furthermore, the increased water uptake at physiological conditions
negatively affects the mechanical strength, because of the water plasticizing effect that
minimizes the attraction and increases flexibility between polymeric chains [50]. In this
study, bone cement samples had comparable water uptake in the first 7 days (Figure 7),
when in contact with PBS, after which gentamicin powder containing cement had lower
uptake than the others. The higher uptake for the CNT-containing cements can be attributed
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to the possible formation of microchannels during the cement setting reaction, allowing
more PBS absorption.

Device osseointegration and osteoblast growth on the PMMA cement are needed for
having a successful TJR. However, there are always concerns about PMMA osseointegra-
tion and cytocompatibility, as it does not provide the optimal substrate characteristics that
support cell growth [51]. However, bone cement is routinely used in clinical practice as it
provides sufficient cytocompatibility. Nano-hydroxyapatite offers biocompatibility and has
many dental applications because of its resemblance to the nonorganic bone structure [52].
However, nano-hydroxyapatite does not have enough mechanical properties for application
in high load bearing joint such as in TJR [21]. The response of osteoblast cells when in con-
tact with PMMA is important for the assessment of novel bone cements [52]. In this study,
the viability and mineralization of cells were not affected by the presence of CNT in the
cement after 7 days of incubation (Figures 9–12). To validate and assess different variables,
our experiments employed a range of cytotoxicity assays (MTT, LDH, alizarin red, and
imaging). For example, MTT assesses mitochondrial activity, LDH assesses cell membrane
integrity, alizarin red measures calcium production, and imaging evaluates cell morphology.
Shen et al. (2016) reported that 5.3% CNT incorporation into bone cement resulted in 85%
cell viability when tested on 3T3 mouse fibroblast cells [21]. Orsmby et al. (2012) studies
viability, cell adhesion, and morphology for the effect of CNT PMMA nanocomposites in
contact with MG-63 cells [53]. The study concluded that PMMA cement containing 1%
CNT showed the best cell adhesion without significant differences in cell morphology and
viability at day 7. Wang et al. (2019) reported a significant enhancement in the integration
between cement and bone in an animal bone defect model (New Zealand rabbit) at a 1%
CNT level, leading to a 42.2% bone ingrowth ratio after 12 weeks of implantation [54].
This finding suggests that the osteointegration and cytocompatibility of the cement can be
improved by adjusting CNT loading. In summary, our in vitro results presented that the
developed CNT PMMA cement is safe to use.

5. Conclusions

CNT nanoparticles were successfully incorporated in PMMA bone cement loaded with
gentamicin sulphate antibiotic. The developed nanocomposite displayed prolonged-release
that continued for 25 days, as observed in gentamicin-loaded CNT 3%, where 45% of the
drug was released compared to 15% drug release from commercial gentamicin powder
cement. Furthermore, the CNT containing nanocomposite preserved the antimicrobial
activity as demonstrated by the agar diffusion test. Additionally, the mechanical prop-
erties of the nanocomposites were not adversely affected by the presence of CNTs in the
nanocomposites, as displayed by compressive strength testing. Finally, CNT-containing
nanocomposites showed cytocompatibility towards differentiated human osteoblast cells,
as demonstrated by MTT, LDH, alizarin red, and microscopy. Therefore, the developed
CNT nanocomposites may serve as a novel PMMA bone cement for the treatment and
prophylaxis from PJIs.
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