
REVIEW

Antimicrobial resistance (AMR) nanomachines—mechanisms
for fluoroquinolone and glycopeptide recognition, efflux
and/or deactivation

Mary K. Phillips-Jones1 & Stephen E. Harding1

Received: 24 November 2017 /Accepted: 5 February 2018 /Published online: 10 March 2018
# The Author(s) 2018. This article is an open access publication

Abstract

In this review, we discuss mechanisms of resistance identified in bacterial agents Staphylococcus aureus and the enterococci

towards two priority classes of antibiotics—the fluoroquinolones and the glycopeptides. Members of both classes interact with a

number of components in the cells of these bacteria, so the cellular targets are also considered. Fluoroquinolone resistance

mechanisms include efflux pumps (MepA, NorA, NorB, NorC, MdeA, LmrS or SdrM in S. aureus and EfmA or EfrAB in

the enterococci) for removal of fluoroquinolone from the intracellular environment of bacterial cells and/or protection of the

gyrase and topoisomerase IV target sites in Enterococcus faecalis by Qnr-like proteins. Expression of efflux systems is regulated

by GntR-like (S. aureus NorG), MarR-like (MgrA, MepR) regulators or a two-component signal transduction system (TCS)

(S. aureus ArlSR). Resistance to the glycopeptide antibiotic teicoplanin occurs via efflux regulated by the TcaR regulator in

S. aureus. Resistance to vancomycin occurs through modification of the D-Ala-D-Ala target in the cell wall peptidoglycan and

removal of high affinity precursors, or by target protection via cell wall thickening. Of the six Van resistance types (VanA-E,

VanG), the VanA resistance type is considered in this review, including its regulation by the VanSRTCS. We describe the recent

application of biophysical approaches such as the hydrodynamic technique of analytical ultracentrifugation and circular dichro-

ism spectroscopy to identify the possible molecular effector of the VanS receptor that activates expression of the Van resistance

genes; both approaches demonstrated that vancomycin interacts with VanS, suggesting that vancomycin itself (or vancomycin

with an accessory factor) may be an effector of vancomycin resistance. With 16 and 19 proteins or protein complexes involved in

fluoroquinolone and glycopeptide resistances, respectively, and the complexities of bacterial sensing mechanisms that trigger and

regulate a wide variety of possible resistance mechanisms, we propose that these antimicrobial resistance mechanisms might be

considered complex ‘nanomachines’ that drive survival of bacterial cells in antibiotic environments.

Keywords Antimicrobial resistance .Glycopeptide .Fluoroquinolone .Hydrodynamics .Analyticalultracentrifugation .Circular

dichroism spectroscopy

Introduction

The term ‘Antimicrobial Resistance (AMR) Nanomachine’ (or

‘AMR Nanomachine’) has not to our knowledge been coined

previously. Yet it may be considered an appropriate term to use

for the cascade of molecular mechanisms that drive antimicro-

bial drug resistances in microorganisms, including drug recog-

nition by intricate microbial sensing and signal transduction ma-

chinery and the subsequent efflux and/or deactivationmachinery

that remove the antimicrobials death threat from microbial cells.

Our definition of the AMR nanomachine therefore encompasses

the initiation, activity and control of AMR in response to a given

antibiotic in bacterial cells. The AMR nanomachine has one

overarching goal—one machinery—aimed at the overall pro-

cess of achieving resistance to an antibiotic (AMR). The indi-

vidual processes are not able to function independently of each
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other if AMR is to be achieved—indeed, they are very much

interconnected through the antibiotic to which they are reacting,

and dependent on each other to achieve the AMR goal. After all,

when antibiotic is removed, all these processes are either re-

duced or cease to function. The AMR nanomachine can be

switched on and off by levels of antibiotic present. Together,

these machines facilitate the survival of microorganisms in en-

vironments containing elevated levels of antimicrobial drugs.

Unfortunately, one such environment includes our hospitals

and clinics that utilise antimicrobial agents to combat microbial

infections. Possession of the resistance ‘nanomachinery’ by

pathogenic microorganisms poses a serious threat to our ability

to treat serious microbial infections with current therapies.

Indeed, resistance exhibited by bacterial pathogens to current

antibacterial agents is now recognised to be a major global prob-

lem in the fight against infections. Currently 25,000 people per

annum die in Europe as a result of infections caused by micro-

organisms that are untreatable with antimicrobial agents (EARS-

Net 2014; Public Health England Report 2015) and it is predict-

ed that there will be 10 million deaths every year globally by

2050 unless action is taken to safeguard the effectiveness of our

antibiotics (HM Government (UK) Review 2015). Antibiotic-

resistant infections are also estimated to cost the European

Union €1.5 billion per year with regard to healthcare expenses

and lost productivity; by 2050, costs worldwide are predicted to

soar to £66 trillion (Public Health England Report 2015; HM

Government (UK) Review 2015).

Major causes of the emergence and development of

resistance machines amongst microbial populations are the

intense use and misuse of antibiotics (reviewed in Barbosa

and Levy 2000). The more that antibiotics are used and dis-

tributed in the environment, the greater the generation of

multi-antibiotic resistances (e.g. Mladenovic-Antic et al.

2016; Tammer et al. 2016; Barnes et al. 2017; Mascarello

et al. 2017; Pitiriga et al. 2017; also see CMO Report 2011;

Public Health England and Veterinary Medicines Directorate

Report 2015). After all, resistance can be considered a natural

phenomenon and, as already mentioned above, a means by

which microorganisms protect themselves against exposure

to antibiotics in the environment. In the UK human healthcare

sector, 531 tonnes of active antibiotics were prescribed in

2013 (Public Health England Report 2013). In spite of high

usage, the importance of rational use of antibiotics has been

highlighted previously (Aliabadi and Lees 2000). Dosing reg-

imens and durations of antibiotic treatments should be

optimised so that they are sufficiently high as to maximise

antibacterial effect but as low as possible to reduce the risk

of the emergence of resistance (Baquero and Negri 1997;

Guillemot et al. 1998; Negri et al. 1994). The use of sub-

optimal antibiotic dosages, as well as excessive dosages, in-

crease selection of resistant strains (Odenholt et al. 2003;

Baquero et al. 2008; Gullberg et al. 2011); mathematical

modelling methods are being explored to investigate optimal

doses and durations (e.g. Bonhoeffer et al. 1997; Bergstrom

et al. 2004; D’Agata et al. 2008; Geli et al. 2012; Peña-Miller

et al. 2014; Paterson et al. 2016).

In an era in which fewer new and novel antibiotics (that

might overcome the resistance issue) are being discovered, the

Chief Medical Officer for England has called for antimicrobial

stewardship measures to be put in place, encompassing the

promotion and monitoring of the judicious use of existing

antimicrobials to preserve their future effectiveness (CMO

Report 2011). Two of the most important classes of antibiotics

recognised as critically important to both medicine and agri-

culture are the fluoroquinolones and the glycopeptides (WHO

2011; OiE 2015). These antibiotic classes are considered of

utmost priority with regard to risk management of resistance

generation amongst microbial populations (WHO 2011; OiE

2015). This review will focus on these priority classes, de-

scribing the fluoroquinolone and glycopeptide resistance ma-

chinery found in enterococci and staphylococci (bacteria that

are of significance (and common) to both animal husbandry

and human medicine practices). It is relevant to mention that

most natural variants of resistance determinants arise through

point mutations in target sites as well as resistance enzymes

and efflux systems, affecting antibiotic binding strengths and

catalytic efficiencies (Raquet et al. 1997; Crichlow et al. 1999;

Nukaga et al. 2003; Rubtsova et al. 2010; King and Strynadka

2011; Sarovich et al. 2012; Ramirez et al. 2013; Kaitany et al.

2013; June et al. 2014; Shaheen et al. 2015; Mehta et al.

2015). Changes induced by mutations in the sensory/

regulatory proteins that control the production of resistance

determinants have also been documented (Baptista et al.

1997; DeMarco et al. 2007; Resch et al. 2008; Noguchi

et al. 2004; Schmitz et al. 1998). Therefore, a summary of

the sensitive target sites in bacterial cells as well as the

AMR nanomachinery governing sensing of and resistance to

antibiotics (Table 1) is included in the following review of

fluoroquinolone and glycopeptide nanomachines.

Fluoroquinolones

The sensitive cellular targets

Fluoroquinolones (and the older generation quinolones that are

currently used much less in the clinic) are used to treat infections

caused by both Gram-positive and Gram-negative bacteria

(Andersson and MacGowan 2003; Andriole 2005; Heeb et al.

2011; Aldred et al. 2014) (and references therein). Research in

the early 1990s revealed interactions with either the A subunit of

DNA gyrase or a complex of DNA gyrase and DNA (through

the A subunit) to inhibit enzyme activity (Hooper and Wolfson

1991). It was later shown that another cellular target for quino-

lones occurs in a member of the bacterial type II topoisomerases

(specifically, topoisomerase IV) as well as the gyrase (Hooper

348 Biophys Rev (2018) 10:347–362



T
ab
le
1

F
lu
o
ro
q
u
in
o
lo
n
e
an
d
g
ly
co
p
ep
ti
d
e
re
si
st
an
ce

n
an
o
m
ac
h
in
es

(r
es
is
ta
n
ce

m
ec
h
an
is
m
s
an
d
as
so
ci
at
ed

re
g
u
la
to
ry

sy
st
em

s)
in

st
ap
h
y
lo
co
cc
i
an
d
en
te
ro
co
cc
i
o
f
an
im

al
an
d
/o
r
h
u
m
an

o
ri
g
in

R
es
is
ta
n
ce

(o
r
in
cr
ea
se
d

re
si
st
an
ce
)
to
:

M
ec
h
an
is
m

o
f
re
si
st
an
ce

R
es
is
ta
n
ce

g
en
e(
s)

A
n
ti
b
io
ti
c
re
ce
p
to
r
m
o
le
cu
le
,
o
r
ef
fl
u
x
/

tr
an
sp
o
rt
er

p
ro
te
in

an
d
(f
am

il
y
)

R
eg
u
la
to
ry

sy
st
em

s
co
n
tr
o
ll
in
g
ex
p
re
ss
io
n
o
f

re
si
st
an
ce

g
en
es

(r
eg
u
la
to
r
fa
m
il
y
)

R
ef
er
en
ce
s

F
lu
o
ro
q
u
in
o
lo
n
es

M
D
R
ac
ti
v
e
ef
fl
u
x
/t
ra
n
sp
o
rt

n
o
rA

n
o
rB

n
o
rC

N
o
rA

(M
F
S
)

N
o
rB

(M
F
S
)

N
o
rC

(M
F
S
)

M
g
rA

(f
o
rm

er
ly

N
o
rR
)(
M
ar
R
-l
ik
e)

A
rl
S
R
(T
C
S
)

N
o
rG

(G
n
tR
-l
ik
e)

U
b
u
k
at
a
et
al
.
(1
9
8
9
)

Y
o
sh
id
a
et
al
.
( 1
9
9
0
)

K
aa
tz
et
al
.
( 1
9
9
1
)

K
aa
tz
et
al
.
(1
9
9
3
)

F
o
u
rn
ie
r
et
al
.
( 2
0
0
0
)

F
o
u
rn
ie
r
an
d
H
o
o
p
er

(2
0
0
0
)

T
ru
o
n
g
-B
o
ld
u
c
et
al
.

(2
0
0
3
)

T
ru
o
n
g
-B
o
ld
u
c
et
al
.

( 2
0
0
3
)

K
aa
tz
et
al
.
(2
0
0
5
b
)

T
ru
o
n
g
-B
o
ld
o
c
et
al
.

(2
0
0
6
)

T
ru
o
n
g
-B
o
ld
o
c
an
d

H
o
o
p
er

( 2
0
0
7
)

D
in
g
et
al
.
(2
0
0
8
)

S
an
to
s
C
o
st
a
et
al
.

(2
0
1
3
)

C
o
rr
ei
ra

et
al
.
( 2
0
1
7
)

m
ep
A

M
ep
A
(M

A
T
E
)

M
ep
R
(M

ar
R
-l
ik
e)

K
aa
tz
et
al
.
(2
0
0
5
a)

K
aa
tz
et
al
.
(2
0
0
6
)

m
d
eA

M
d
eA

(M
F
S
)

H
u
an
g
et
al
.
(2
0
0
4
)

lm
rS

L
m
rS

(M
F
S
)

F
lo
y
d
et
al
.
( 2
0
1
0
)

sd
rM

S
d
rM

(M
F
S
)

Y
am

ad
a
et
al
.
( 2
0
0
6
)

ef
m
A

E
fm

A
(M

F
S
)

N
is
h
io
k
a
et
al
.
(2
0
0
9
)

ef
rA
B

E
fr
A
B
(A

B
C
tr
an
sp
o
rt
er
)

L
ee

et
al
.
( 2
0
0
3
)

U
n
k
n
o
w
n

cf
x-
o
fx

U
n
k
n
o
w
n

T
ru
ck
si
s
et
al
.
( 1
9
9
1
)

G
y
ra
se

p
ro
te
ct
io
n

q
n
r-
li
k
e

Q
n
r
E
.f
a
e
c
a
li
s

A
rs
en
e
an
d
L
ec
le
rc
q

(2
0
0
7
)

G
ly
co
p
ep
ti
d
es

V
an
co
m
y
ci
n

T
y
p
es

A
-E
,
G
.

1
.
T
ar
g
et
m
o
d
if
ic
at
io
n
;

2
.
R
em

o
v
al
o
f
p
re
-e
x
is
ti
n
g

su
sc
ep
ti
b
le
ta
rg
et
s

T
y
p
e
A
:

va
n
R
S
H
A
X
Y
Z

T
y
p
e
B
:

va
n
R
S
Y
W
H
B
X

T
y
p
e
C
:

va
n
C
X
Y
T
R
S

T
y
p
e
D
:

va
n
R
S
Y
H
D
X

T
y
p
e
E
:

va
n
E
X
Y
T
R
S

T
y
p
e
G
:

va
n
U
R
S
Y
W
G
X
Y
T

V
an
S

V
an
S
(S
)

V
an
R
(R
)

(T
C
S
)

C
o
u
rv
al
in

(2
0
0
6
)

D
ep
ar
d
ie
u
et
al
.
( 2
0
0
7
)

W
ri
g
h
t
( 2
0
11
)

P
h
il
li
p
s-
Jo
n
es

et
al
.

(2
0
1
7
a)

H
u
g
h
es

et
al
.
(2
0
1
7
)

P
h
il
li
p
s-
Jo
n
es

et
al
.

( 2
0
1
7
b
)

T
ar
g
et
p
ro
te
ct
io
n

(c
el
l
w
al
l
th
ic
k
en
in
g
)

vr
a
T
S
R

g
ra
S
R

w
a
lK
R

U
n
k
n
o
w
n

V
ra
S
R

G
ra
S
R

W
al
K
R

H
o
w
d
en

et
al
.
( 2
0
1
0
)

H
ir
am

at
su

et
al
.
(2
0
1
4
)

Biophys Rev (2018) 10:347–362 349



1999, 2001; Anderson and Osheroff 2001; Drlica et al. 2008,

2009); reviewed in Aldred et al. (2014). The normal roles of

these enzymes are to generate double-stranded breaks in the

chromosome; DNA gyrase then introduces negative supercoils

in DNA in front of the replication fork, whilst topoisomerase IV

controls DNA supercoiling and is involved in the decatenation of

daughter chromosomes following replication (Aldred et al. 2014;

Tomašić and Mašič 2014). Quinolones bind at the interface of

enzyme and DNA in the cleavage-ligation active sites and they

do so non-covalently (Wohlkonig et al. 2010; Laponogov et al.

2009, 2010; Bax et al. 2010; Aldred et al. 2014). In the case of

quinolone-topoisomerase binding, a water-metal ion bridge pro-

vides the link between the antibiotic and the enzyme (Fig. 1).

Resistance determinants

Fluoroquinolones appear to interact with a wide range of cel-

lular components, possibly facilitating and/or enhancing the

generation of a number of mechanisms by which resistance

can be mounted. Kaatz et al. (1991, 1993) first described three

means by which resistance to fluoroquinolones may be gen-

erated in Staphylococcus aureus:

(1) Mutational change in DNA gyrase, evidenced by the

isolation of several point mutations in gyrA that confer

high-level fluoroquinolone resistance (Sreedharan et al.

1990; Goswitz et al. 1992); mutations in the

topoisomerases have similarly subsequently been shown

to provide the bases for bacterial resistance generation

(Wohlkonig et al. 2010; Aldred et al. 2012, 2013); in

general, the more resistant a clinical isolate is, then the

more quinolone resistance-associated mutations it con-

tains (Komp Lindgren et al. 2003; reviewed in Jacoby

2005).

(2) The cfx-ofx locus described by Trucksis et al. (1991),

which confers lower-level resistance than that generated

by gyrA mutations (Table 1); and

(3) Efflux of (fluoro)quinolones from the cell by efflux

pumps. In Gram-positive bacteria, the majority of efflux

membrane proteins which include quinolones in their

substrate profiles belong to the Major Facilitator

Superfamily (MFS) of membrane transporters, e.g.

NorA, NorB, NorC, MdeA, LmrS and SdrM in

S. aureus (Table 1; Fig. 2) (Ubukata et al. 1989; Kaatz

et al. 1991, 1993; Yoshida et al. 1990; Ding et al. 2008;

Truong-Boldoc et al. 2006; Huang et al. 2004; Floyd

et al. 2010 for LmrS efflux of gatifloxacin; Yamada

et al. 2006; and reviewed in Santos Costa et al. 2013

and Correira et al. 2017) and EfmA in Enterococcus

faecium (Nishioka et al. 2009). An efflux protein belong-

ing to the Multiple Antibiotic and Toxin Extrusion fam-

ily (MATE) includes MepA in S. aureus (Kaatz et al.

2005a, 2005b), whilst the ATP-binding cassette familyT
a
b
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(ABC) includes EfrAB of Enterococcus faecalis (Lee

et al. 2003) (Table 1; Fig. 2).

Amongst Gram-positive bacteria, a further low-level resis-

tance mechanism has been described that is plasmid-borne,

Qnr E. faecalis. Qnr proteins resemble DNA mimics and de-

crease the binding of gyrase and topoisomerase IV to chromo-

somal DNA. This results in a reduction in the number of

available enzyme targets on the bacterial chromosome. Qnr

proteins also bind to the gyrase and topoisomerase IV them-

selves, thereby denying access for quinolones into the cleav-

age complexes (Fig. 2). These proteins were first discovered

in Gram-negative species (reviewed in Tran and Jacoby 2002,

Jacoby 2005 and Strahilevitz et al. 2009; Rodriguez-Martinez

et al. 2011; and Aldred et al. 2014) but QnrE. faecalis originating

from the Gram-positive bacterium Enterococcus faecalis was

identified and characterised as a Qnr-like protein that confers

intrinsic resistance to fluoroquinolones (Arsene and Leclercq

2007). It is not yet known whether or not Qnr proteins or

indeed the cfx-ofx locus constitute separate independent

AMR nanomachines from efflux proteins and their regulators.

Resistance regulation determinants

Three systems that regulate expression of the S. aureus Nor

MFS multidrug transporters have so far been described

(Table 1). MgrA (formerly known as NorR) possesses a

helix-turn-helix motif within a region resembling the MarR

family of transcriptional regulators (Fig. 2). MgrA positively

regulates norA expression (Truong-Bolduc et al. 2003) and

negatively regulates the transcription of norB, a gene (tet38)

that encodes another more selective transporter Tet38

(Truong-Boldoc et al. 2005) and norC (Truong-Boldoc et al.

2006). Subsequent work established that MgrA is a global

regulator affecting approximately 350 genes (Luong et al.

2006) including those involved in autolytic activities and pro-

duction of alpha-toxin, nuclease and protein A virulence fac-

tors (Ingavale et al. 2003; Luong et al. 2003; Truong-Boldoc

et al. 2005). MgrA exhibited only weak binding to the norB

and tet38 promoter regions and therefore it was proposed that

MgrA acts as an indirect regulator of these genes (Truong-

Boldoc et al. 2005).

NorG was first identified as a transcriptional regulator of

norA (Truong-Boldoc and Hooper 2007). NorG is a member

of the GntR-like family of transcriptional regulators (Fig. 2)

and it was shown to bind to the promoter regions of norB,

norC and abcA as well as norA (Truong-Boldoc and Hooper

2007). It was shown to directly activate norB transcription but

repress abcA (an ATP-dependent transporter of the ABC fam-

ily that confers beta-lactam resistance) (Truong-Boldoc and

Hooper 2007).

The third system identified as a regulator of Nor transporter

expression in S. aureus is the ArlSR two-component signal

transduction system (Fournier et al. 2000; Fournier and

Hooper 2000) (Fig. 2; Table 1). Expression from the norA

promoter was dependent on the ArlS histidine protein kinase.

An arlS mutant which lacks ArlS exhibited increased norA

expression (Fournier et al. 2000). Multiple putative binding

sites upstream of the transcriptional start point were identified

for an 18-kDa DNA-binding protein which could have been

ArlR itself or another unidentified protein under ArlSR regu-

lation; the identity of the 18-kDa protein was later shown to be

MgrA (Truong-Bolduc et al. 2003; Kaatz et al. 2005b).

Finally, the arlS mutant displayed altered growth-phase regu-

lation of NorA confirming the role of the two-component

system in norA expression (Fournier et al. 2000). The arlS

phenotype also displayed changes in the ability to form

biofilms, perform autolysis functions and produce peptidogly-

can hydrolase, indicating the importance of the two-

component system in multiple cellular functions in addition

to quinolone export (Fournier and Hooper 2000).

Amongst the remaining quinolone efflux pumps listed in

Table 1, the only other regulator identified so far in S. aureus is

MepR (Fig. 2) which is a MarR-like transcriptional repressor

of the MepA MATE-type multiple drug resistance pump

(Kaatz et al. 2005a; Kaatz et al. 2006). MepR bound upstream

of both mepA and its own gene mepR demonstrating

autoregulatory activity. Repression of mepA expression by

MepR is relieved in the presence of MepA substrates such

as benzylalkonium chloride, dequalinium, ethidium bromide

Fig. 1 Schematic representation of moxifloxacin binding to

topoisomerase IV via a water-metal ion bridge, adapted and redrawn

from Aldred et al. (2014) for ciprofloxacin. For clarity, the DNA has been

omitted. Moxifloxacin is shown in black; the Mg2+ ion that is chelated by

the C3-C4 ketoacid of the antibiotic is shown in pink; the four water

molecules coordinated by the Mg2+ ion are shown in blue. The side

chains of the conserved acidic Glu88 (Asp in Escherichia coli and

Streptococcus pneumoniae) and Ser84 residues of Acinetobacter

baumanii topoisomerase IV are shown in orange, together with their

hydrogen bonding to the water molecules
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and pentamidine. Presumably such relief might also possibly

occur using fluoroquinolone substrates, since MepA is an ef-

flux pump with specificity for some fluoroquinolones as well

as a wide range of other drugs (Kaatz et al. 2005a; Fabrega

et al. 2009; Fernandez and Hancock 2012; Correira et al.

2017).

If, then, the term ‘AMR nanomachine’ can indeed be suc-

cessfully applied to the cascade of bacterial signal sensing and

transduction events required to detect fluoroquinolones and to

the subsequent coupling of these detection systems to resis-

tance machinery such as efflux pumps and other protection

systems in bacterial cells, then one of the next questions is

whether the same term can also be legitimately and

appropriately applied to other resistancemechanismsmounted

against other families of antibacterial agents. The following

section addresses this question by considering the different

detection and resistance mechanisms that have evolved for

survival in the presence of another important and distinct fam-

ily of antibacterial agents, the glycopeptides.

Glycopeptides

Glycopeptide antibiotics have been identified as one of the

highest priority classes of antimicrobial agents for risk man-

agement in clinical and agricultural settings (WHO 2011).

Fig. 2 The fluoroquinolone

resistance nanomachine. For full

details, see text
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Glycopeptide antibiotics are relatively large in size—for

example, vancomycin has a molar mass of 1449 Da

(Phillips-Jones et al. 2017a)—and therefore, unlike the

smaller fluoroquinolones, glycopeptide drugs do not

penetrate the membranes of bacterial cells and instead exert

their inhibitory effects through interference with crucial

bacterial processes outside the cell (Courvalin 2006). Yet

bacterial cells must be able to mount resistance to

glycopeptides to secure their survival (see below). But

unlike the nanomachinery of fluoroquinolone resistance, an

arsenal of efflux pumps will of course be redundant against

antibiotics that do not enter bacterial cells. Glycopeptide

resistance must be exerted by a quite different means. The

question is whether the mechanisms for glycopeptide

resistance and resistance regulation described below may

also be considered parts of a nanomachine.

The sensitive cellular targets

Vancomycin and teicoplanin are two important members of

the glycopeptide class which are used to combat serious in-

fections caused by Gram-positive bacteria such as blood-

stream infections, infections of the skin, bones and joints,

endocarditis and meningitis (Rayner and Munckhof 2005;

Kristich et al. 2014; Alvarez et al. 2016). Use of vancomycin

in the clinic increased markedly in the 1970s to combat

methicillin-resistant Staphylococcus aureus. Indeed, vanco-

mycin has become a drug of last resort to combat infections

that are otherwise resistant to other front-line antibiotics. The

main reasons why vancomycin is used so reservedly are as

follows: (1) the toxicity of the antibiotic and (2) the poor

absorption of the drug upon oral administration (Moellering

2006; Levine 2006). Vancomycin administration is carefully

monitored to ensure that the concentrations are sufficiently

high to be effective against Gram-positive bacterial pathogens

(a serum peak level of 25–40 μg/ml and a trough serum con-

centration of 15–20 μg/ml, the former being equivalent to

eight times the minimum inhibitory concentration), but suffi-

ciently low as to minimise the toxic effects of the antibiotic on

the patient (Tobin et al. 2002; Levine 2006; Jones 2006;

Rybak et al. 2009; van Hal et al. 2013; MacDougall et al.

2016). Vancomycin is typically administered intravenously

to adult patients at a starting concentration of 2.5–5.0 mg/ml

(Rybak 2006). Recent biophysical investigations of vancomy-

cin in physiologically relevant buffer conditions at both

starting and therapeutic concentrations have suggested that

the drug adopts two different conformations at these differing

concentrations. Using sedimentation equilibrium techniques

in the analytical ultracentrifuge, the SEDFIT-MSTAR algo-

rithm and other analyses, it was shown that all the glycopep-

tide is dimerized at the point of clinical infusion (5 mg/ml) but

at the trough serum concentration of 19 μg/ml the drug is

mainly monomeric (< 20% dimerized) (Phillips-Jones et al.

2017a). Experiments employing a range of different loading

concentrations were consistent with a monomer-dimer equi-

librium that is completely reversible and dissociation con-

stants indicative of relativelyweak association betweenmono-

mers (Phillips-Jones et al. 2017a). This is of significance be-

cause there is still relatively little understanding about the

conformationally relevant form of the antibiotic during its

inhibitory activity (see below).

Glycopeptides such as vancomycin inhibit bacterial cell

wall biosynthesis by binding to the C-terminal D-Ala-D-Ala

residues of the muramyl pentapeptide of peptidoglycan pre-

cursor Lipid II (Fig. 3). Vancomycin binding results in inhibi-

tion of transpeptidase and transglycosylase activities during

peptidoglycan biosynthesis, affecting crosslinking, formation

of glycan chains and incorporation of peptidoglycan precur-

sors, resulting in osmotic shock and cell lysis (Nieto and

Perkins 1971; Reynolds 1989; Kahne et al. 2005; Jia et al.

2013). It has been established that for many glycopeptides,

ligand binding is accompanied by the presence of asymmetric,

back-to-back homodimers of the antibiotic formed through

sugar-sugar recognition (see Phillips-Jones et al. 2017a for

references therein). Experimental evidence shows that dimer-

ization and binding of D-Ala-D-Ala in vitro are generally

cooperative phenomena leading to the conclusion that dimer-

ization is important for enhancing antibiotic activity (Mackay

et al. 1994). Face-to-face dimers have also been reported

(Mackay et al. 1994; Loll et al. 1998), as have higher order

dimer-to-dimer, trimers of dimer and hexamer conformations

for glycopeptide antibiotics (Loll et al. 2009; Nitanai et al.

2009), though the significance of these higher order confor-

mations regarding inhibitory action and affinity remains to be

established. There are examples of glycopeptides that do not

dimerize at all; for example, lipophilic monomeric teicoplanin

inserts into the membrane through the lipid moiety and it is

thought to do so in such a way as to be positioned optimally

for inhibitory activity (Beauregard et al. 1995; Sharman et al.

1997).

Resistance determinants

High-level resistance to glycopeptide antibiotics was first re-

ported amongst the enterococci in 1988 (Leclercq et al. 1988;

Uttley et al. 1988) and subsequently spread to Staphylococcus

aureus including MRSA strains (Sievert et al. 2002).

Glycopeptide resistant strains of enterococci and staphylococ-

ci have spread across the world at a rapid rate (e.g. Lu et al.

2001; Iverson et al. 2002; Eisner et al. 2005; and reviewed in

Schouten et al. 2000; Werner et al. 2008; Périchon and

Courvalin 2009).

Resistance to vancomycin occurs by two main mecha-

nisms: (1) target modification—production of low-affinity

precursors for peptidoglycan biosynthesis so that instead of

D-Ala-D-Ala being incorporated into peptidoglycan
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monomers, other depsipeptides (D-Ala-D-lactate or D-Ala-D-

serine) are synthesised and incorporated instead (Fig. 3).

Vancomycin exhibits an approximately 1000-fold reduced

binding affinity for D-Ala-D-Lac because of the reduced num-

ber of hydrogen bonding sites available (one crucial hydrogen

bond is lost (bond 2 in Fig. 3)); and (2) removal of the high

affinity precursors usually synthesised in the cell so there are

no vancomycin-binding targets available (reviewed in

Reynolds and Courvalin 2005; Courvalin 2006; Wright

2011). Amongst the enterococci, there are six types of resis-

tances found (VanA-, VanB-, VanC-, VanD-, VanE- and

VanG-type) which execute the above two mechanisms and

these have been comprehensively described in Courvalin

(2006) and Depa rd i eu e t a l . ( 2007 ) . Amongs t

Staphylococcus aureus isolates, only one of these types

(VanA-type) has so far emerged and is thought to have been

transferred from enterococci (Sievert et al. 2002; Sievert et al.

2008; Périchon and Courvalin 2009; McCallum et al. 2010).

Broadly, the glycopeptide resistance nanomachine comprises

(1) enzymes to synthesise the D-Ala-D-Lac or D-Ala-D-Ser

dep s i p ep t i d e s , ( 2 ) enzymes fo r hyd ro l y s i s o f

antibiotic-‘susceptible’ peptidoglycan precursors and (3) a

regulatory system to control production of these resistance

enzymes. In the following sections, discussion is mainly con-

fined to the VanA-type resistance because it is the most com-

mon type amongst clinical enterococci and the first (and, to

date, only) to have disseminated to staphylococci (Table 1).

The reader is referred to the review by Depardieu et al. (2007)

for a detailed comparison of the genes/elements involved in

each of the six vancomycin resistance types. In the VanA-type

resistance, there are nine genes involved in production of

transposition ability (orf1 and orf2) (associated with replica-

tive transposition when in the Tn1546 element), regulation of

resistance gene expression (the vanS and vanR genes encoding

the VanSR two-component regulatory system, described be-

low), vanH and vanA encoding enzymes required for synthe-

sis of D-Ala-D-Lac (dehydrogenase and ligase, respectively),

hydrolysis of peptidoglycan precursors by a D,D-dipeptidase

Fig. 3 Schematic representation of vancomycin (top left) adapted and

redrawn from Phillips-Jones et al. (2017a) showing the vancosamine -

glucose disaccharide (purple) attached to a heptapeptide (green, N-

methyl-D-leucine (residue 1); gold, m-chloro-β-hydroxy-D-tyrosine

(residue 2); red, asparagine (residue 3); blue, D-phenyl glycine (residue

4); green-grey, p-hydroxy-D-phenylglycine (residue 5); pink, m-chloro-

β-hydroxy-D-tyrosine (residue 6) and dark orange, m,m-dihydroxy-L-

phenylglycine (residue 7)). Vancomycin binding to its sensitive target

sequence (D-Ala-D-Ala) in bacterial peptidoglycan via five hydrogen

bonds is shown by the dashed black lines. Hydrogen bond 2 is formed

from residue 4 of vancomycin and the N-H group in D-Ala-D-Ala shown

in red (middle structure). This hydrogen bond is not formed with the

peptidoglycan of vancomycin-resistant bacteria that contain D-Ala-D-

Lactate instead of D-Ala-D-Ala (bottom right) resulting in a total of

only four hydrogen bonds for vancomycin binding which results in a

1000-fold reduced affinity of the glycopeptide for the peptidoglycan—

essentially, resistance to the antibiotic
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(encoded by vanX) and D,D-carboxypeptidase (vanY) and a

ninth gene (vanZ) of unknown function (Fig. 4a; Courvalin

2006; Depardieu et al. 2007). This cluster of genes was orig-

inally associated with the plasmid-borne Tn1546 transposable

element but are also plasmid- and chromosome-borne follow-

ing horizontal gene transfer to the enterococci (Courvalin

2004; Palmer et al. 2010) and S. aureus (Haaber et al. 2017).

S. aureus possesses another mechanism of glycopeptide resis-

tance known as ‘glycopeptide (or vancomycin) intermediate

S. aureus’ (GISA or VISA). This type of resistance was first

reported in 1997 (Hiramatsu et al. 1997) and strains possessing

it characteristically exhibit reduced susceptibility to glycopeptides

(Hiramatsu 2001). GISA strains possess thickened peptidoglycan

in their cell walls or poorly cross-linked peptidoglycan. Such

conditions result in restriction of glycopeptides to the outermost

layers of peptidoglycan where they quickly become sequestered

by the increased numbers of free D-Ala-D-Ala target binding

sites, thereby never reaching the inner layers of peptidoglycan

and the crucial sites of active peptidoglycan biosynthesis (Cui

et al. 2006) or at least diffuse more slowly to them (Pereira

et al. 2007). Alterations andmutations in several genetic loci have

been identified as responsible (Table 1) (Howden et al. 2010;

Hiramatsu et al. 2014; Hu et al. 2016).

Additional resistance to teicoplanin in S. aureus has also

been characterised (Chang et al. 2013, 2014 and refs therein).

The transcriptional regulator known as teicoplanin-associated

locus regulator (TcaR) belongs to the MarR family of multi-

drug efflux regulators (Fig. 2) (Grove 2013), involved in

teicoplanin and methicillin resistance in staphylococci

(Brandenberger et al. 2000).

Fig. 4 The VanA-type

glycopeptide resistance

nanomachine. a The VanS-VanR

two-component signal

transduction system and

organisation of the vanA operon.

Open arrows represent coding

sequences and indicate the

direction of transcription. The

regulatory and resistance genes

are cotranscribed from promoters

PR and PH, respectively; b

synthesis of peptidoglycan

precursors in a VanA-type

resistant strain. Ddl, D-Ala:D-Ala

ligase; penta, L-Ala-γ-D-Glu-L-

Lys-D-Ala-D-Ala; Pentadepsi, L-

Ala-γ-D-Glu-L-Lys-D-Ala-D-

Lac; Tetra, L-Ala-γ-D-Glu-L-

Lys-D-Ala; Tri, L-Ala-γ-D-Glu-

L-Lys
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Resistance regulation determinants

Here we consider the A-type resistance to vancomycin only, as it

is common to both enterococci and staphylococci. For regulators

of other glycopeptide resistances, the reader is referred to Table 1

and Depardieu et al. (2007) and Hong et al. (2008).

The A-type vanHAXYZ resistance genes are regulated by the

VanSR two-component signal transduction system (Arthur et al.

1992). VanS is the membrane-bound sensor kinase component

involved in signal sensing and VanR is the partner response reg-

ulator component responsible for activating resistance gene ex-

pression at the PH promoter (Fig. 4b) (Arthur et al. 1992; Wright

et al. 1993; Holman et al. 1994; Courvalin 2006). Expression of

equivalent genes of other resistance types (Types B-E and G) is

also under VanSR control (Depardieu et al. 2007). Expression of

the vanSR genes themselves is initiated from the distinct PR pro-

moter which is under autoregulatory control (Arthur et al. 1997).

In the presence of glycopeptides, VanR is phosphorylated by

VanS~P. VanR~P binds to the PR and PH promoters, promoting

transcription of the vanHAXYZ genes and its own synthesis

(Arthur et al. 1997). However, in the absence of glycopeptides

(or VanS), VanR~P is still generated due to the activities of low

molecular weight phosphodonors such as acetyl phosphate and/or

cross-talking histidine kinases resulting in constitutive low-level

activation of the PR and PH promoters (Fig. 4b). In the absence of

glycopeptides, it is suggested that VanS serves as a phosphatase,

removing phosphate from VanR through its phosphatase activity

and reducing resistance gene expression in the absence of inducer.

Conversely, when inducer is present, VanS transitions from phos-

phatase to kinase mode, resulting in increased VanR phosphory-

lation and elevated levels of VanR~P for induction of the

vanHAXYZ resistance genes (Arthur et al. 1997, 1999).

The precise nature of the activating ligand for VanS has

been the subject of intense interest for many years (see the

comprehensive review by Hong et al. 2008). Using a variety

of approaches such as reporter genes, VanX activity assays,

measurements of induction of Lac-containing precursors or

through detection of induced vancomycin resistance of

pretreated cultures, all the evidence pointed towards vanco-

mycin or teicoplanin as inducers of VanA-type resistance

(Ulijasz et al. 1996; Arthur et al. 1999; Lai and Kirsch 1996;

Mani et al. 1998; Grissom-Arnold et al. 1997; Baptista et al.

1996; Allen and Hobbs 1995; Handwerger and Kolokathis

1990; reviewed in Hong et al. 2008). However, because the

structurally unrelated antibiotic moenomycin also induces

VanA resistance, it was thought that the molecular effector

for VanS must be a cell wall intermediate such as Lipid II

which would accumulate in cells exposed to both

Fig. 5 a Sedimentation

coefficient concentration

distribution, c(s) vs s20,b, (where

s20,b is the sedimentation

coefficient at 20.0 oC in buffer

b) profile for intact VanS

(5.4 μM) (black line) in HGN

buffer (containing 20% glycerol)

pH ~ 7.9, I = 0.1, at 20.0 °C. The

rotor speed was 40,000 rpm. The

profile for 12.8 μM vancomycin

is shown (grey line). VanS and

vancomycin is shown by the red

line under the same conditions. b

(leftmost): VanS (9 μM)

difference CD spectrum (solid

black line); VanS in the presence

of 5-fold vancomycin (45 μM)

difference spectrum (dashed

black line); (rightmost):

vancomycin (45 μM) difference

spectrum. Reactions contained

10 mM HEPES, 20% (v/v)

glycerol, 100 mM NaCl and

0.05% n-dodecyl-β-D-maltoside,

pH 7.9. Unsmoothed data shown.

Both panels reproduced with

permission from Phillips-Jones

et al. (2017b)
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moenomycin and vancomycin cell wall-active antibiotics (Lai

and Kirsch 1996; Mani et al. 1998; Grissom-Arnold et al.

1997; Baptista et al. 1996; Allen and Hobbs 1995;

Handwerger and Kolokathis 1990).

Two biophysical approaches—hydrodynamic methods in

an analytical ultracentrifuge and circular dichroism spectros-

copy—recently established that the purified intact VanS mem-

brane protein from E. faecium B4147 interacts directly with

vancomycin and teicoplanin (Phillips-Jones et al. 2017a, b)

(Fig. 5). Hydrodynamic experiments in buffers containing

20% glycerol (to maintain VanS solubility) revealed that van-

comycin elicits an increase in VanS sedimentation coefficient,

s, of over 33% with the appearance of additional higher s

components suggesting higher oligomeric forms of the recep-

tor in the presence of the antibiotic (Fig. 5a) (Phillips-Jones

et al. 2017b). These results demonstrate that VanS interacts

with vancomycin. Circular dichroism measurements con-

firmed this finding; difference spectra obtained in the near-

UVregion (which interrogates changes in the tertiary structural

environments of aromatic residues) for VanS alone and for

VanS + 5-fold vancomycin were clearly different especially

in the 280–300-nm region contributed by tyrosine and trypto-

phan residues (Fig. 5b) (Phillips-Jones et al. 2017b). CD-based

titration experiments in the presence of detergent using in-

creasing concentrations of vancomycin and teicoplanin re-

vealed Kd values in the regions of 70 μM, and 30 and

170 μM, respectively (Hughes et al. 2017). Such Kd values

are indicative of relatively weak binding. Weak binding may

be a feasible explanation for signal transduction processes that

are rapid and reversible, though it has not yet been demonstrat-

ed that the weak binding by vancomycin demonstrated in

Phillips-Jones et al. (2017b) is accompanied by increased

levels of VanR phosphorylation by VanS. Alternatively, the

weak binding measured in these studies may reflect the ab-

sence of an essential binding accessory factor in this in vitro

system, or it could reflect the absence of the natural membrane

environment required for full VanS function. The latter possi-

bility seems reasonable as VanS remained monomeric

throughout all experimental conditions tested, in the presence

or absence of detergent, including those associatedwith ligand

binding which are known to induce dimerization in other sen-

sor kinases (Phillips-Jones et al. 2017a, b). But the demonstra-

tion in these studies of vancomycin binding to VanS, albeit

weakly, provides the first evidence in the clinical enterococci

for the involvement of vancomycin as a molecular effector of

VanA-type VanS activation. Indeed, Hughes et al. (2017) test-

ed components of Lipid II to determine whether they too dem-

onstrated interactions with VanS and no spectral changes were

found (Hughes et al. 2017). Studies of distantly related VanS

sensors in actinomycetes andVanB-type enterococci have pre-

viously provided evidence that the antibiotic itself or the anti-

biotic bound to the D-Ala-D-Ala substrate serves as the induc-

ing effectors (Koteva et al. 2010; Kwun et al. 2013).

Conclusion

Based on the above considerations of two quite different sets

of resistance mechanisms, namely fluoroquinolone and glyco-

peptide resistances, it is clear that the enterococci and staphy-

lococci expend significant levels of energy into ensuring sur-

vival in an antibiotic environment. There are 16 possible pro-

teins and/or distinct complexes that have arisen amongst dif-

ferent strains for resistance to fluoroquinolones—though not

all are likely to be present in any one individual cell (Table 1).

For VanA-type glycopeptide and teicoplanin resistances, there

are up to 19 proteins or complexes involved (Table 1).

Therefore, in the same way that the term ‘antibiotic resistome’

has been used for all antibiotic resistance genes and their pre-

cursors in bacteria (Wright 2007), the term ‘antimicrobial re-

sistance (AMR) nanomachines’ proposed here seems appro-

priate (for both fluoroquinolone and glycopeptide resistances)

to reflect the large number of gene products (encoded by

resistome genes) that are responsible for coordinating the

sensing of these antibiotics, for transferring signal informa-

tion, and for the expression of a wide variety of resistance

options such as efflux pumps and efflux regulatory machinery,

target protection and target modification.

Biophysical investigations have played an important role in

identifying how some of the AMR nanomachines work. In

this review we have focused on the use of hydrodynamic

studies and circular dichroism spectroscopy to investigate

the interactions between glycopeptides and the sensory recep-

tor VanS. Such techniques are likely to prove useful for inves-

tigating the interactions between other nanomachine compo-

nents in the future.
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