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Abstract: Several studies have showed that a dog-to-human transmission of Staphylococcus aureus
occurs. Hunting dogs do not have as much contact with their owners as dogs that live in the
same household as the owners; however, these dogs have contact with their owners during hunting
activities as well as when hunting game; therefore, we aimed to isolate S. aureus from hunters and their
hunting dogs to investigate a possible S. aureus transmission. Nose and mouth samples were collected
from 30 hunters and their 78 hunting dogs for staphylococcal isolation. The species identification
was performed using MALDI-TOF. The antimicrobial susceptibility profiles were accessed using
the Kirby–Bauer method and respective antimicrobial resistance genes were investigated by PCR.
Multilocus sequence typing (MLST) and spa- and agr-typing was performed in all S. aureus isolates.
S. aureus were detected in 10 (30%) human samples and in 11 (15.4%) dog samples of which 11
and 5 were methicillin-resistant S. aureus (MRSA). Other staphylococci were identified, particularly,
S. pseudintermedius. Most S. aureus isolates were resistant to penicillin, erythromycin, and tetracycline.
Evidence of a possible transmission of S. aureus between human and dogs was detected in three
hunters and their dogs. S. aureus isolates were ascribed to 10 STs and 9 spa-types. A moderate
colonization of S. aureus in hunting dogs and their owners was detected in this study. A few dog-to-
dog and dog-to-human possible transmissions were identified.

Keywords: Staphylococcus aureus; MRSA; transmission; dogs; human-to-dog

1. Introduction

Staphylococci are natural colonizers of humans and some animal species. S. aureus and
S. epidermidis are the most frequent colonizers of human skin and mucous membranes [1].
Approximately 30% of the human population are asymptomatic carriers of S. aureus [2].
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Humans colonized by S. aureus are at higher risk of subsequent infection, both nosocomial
and community-acquired [3]. Indeed, although considered a commensal organism, S. aureus
is an opportunist pathogen that can cause a wide range of diseases ranging from mild skin
infections to severe and potentially fatal ones [4]. Methicillin-resistant S. aureus (MRSA)
has been first described in 1961 and has become a priority pathogen causing infections
increasingly difficult to treat [5]. Despite a downward trend in the prevalence of MRSA
in the EU, 25% of European countries continue to have a rate of invasive isolates above
25% [6,7]. Methicillin-resistance is driven by the acquisition of the mec genes (mecA, mecB
or mecC) which encodes the penicillin-binding protein 2a (PBP2a) with a low affinity for
β-lactam antibiotics [8,9]. Healthcare-associated (HA) and community-associated (CA)-
MRSA strains have emerged and spread widely [10]. Although other studies have reported
a linkage between animal and human MRSA, it was not until 2005 that the first case of
transmission between humans and animals was demonstrated [11,12]. In that study, the
farmers and one pig were colonized by a MRSA strain different from those usually found
in HA-MRSA and CA-MRSA [12].

The role of animals in the spread and transmission of MRSA strains in the human
community is not well understood yet; however, several studies conducted with farm
workers, pet owners, and veterinarians, who are at greater risk of being colonized or
infected by MRSA, show epidemiological evidence that suggests MRSA transmission
between human and animal hosts occur in both directions [13–17]. MRSA transmission
between humans and their pets may be more favored due to intimate contact and sharing
of the same household [18]. Furthermore, studies have reported infections in pet owners
caused by methicillin-resistant staphylococci from pets and vice versa, which indicates
that MRSA colonization might also represent a potential health risk for both humans and
animals [19,20]. S. aureus is not generally considered part of the normal flora of dogs but
it can be found in dogs at rates between 5% and 10% [21–23]. Instead, S. pseudintermedius
predominates in dogs. It can also colonize humans at very low frequencies and usually
dog owners [19]. Nevertheless, HA-MRSA and CA-MRSA lineages have been increasingly
identified in dogs and cats [24,25]. Close interactions between dogs and their owners
creates favorable conditions for MRSA transmission; however, unlike other dogs, hunting
dogs do not live indoors with the owners, as they are primarily used in hunting activities.
Nevertheless, hunting dogs have direct contact with the natural environment and with
game species. Thus, in this study, we intend to analyze the possible transmission of S. aureus
between hunting dogs and their hunting owners, as well as to verify if the clonal lineages
of the isolates are related to strains frequently found in the environment and wild animals.
For this, S. aureus, MRSA, and other methicillin-resistant staphylococci were isolated from
hunting dogs and hunters, and the isolates were analyzed for their antibiotic resistance
profile, virulence, and clonal lineages.

2. Material and Methods
2.1. Samples and Bacterial Isolates

From August to December 2019, a total of 108 samples were collected from 30 hunters
and their 78 hunting dogs. Samples were collected using a nasal and oral swab (one swab
per individual). All hunters were males, and the dogs’ ages, sex and breed were variable
and are shown in Table S1. Swabs were inoculated into Brain Heart Infusion (BHI) broth
containing 6.5% NaCl and incubated at 37 °C for 24 h. An aliquot of 100 µL was then
seeded onto Baird–Parker agar and oxacillin resistance screening agar base (ORSAB) plates
supplemented with oxacillin (2 mg/L) and incubated at 37 °C for 24–48 h. Presumptive
S. aureus and MRSA colonies were selected and further identified. In cases where MRSA
was found, samples from dogs and/or dog owners that shared the same household were
screened for the presence of other methicillin-resistant staphylococci species. Confirmation
of staphylococci species was performed using Matrix-Assisted Laser Desorption/Ionization
Time-of-Flight (MALDI-TOF).
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2.2. Antimicrobial Susceptibility Testing and Resistance Genes

For all staphylococci identified, susceptibility to penicillin (1 U), cefoxitin (30µg),
gentamicin (10 µg), tobramycin (10 µg), tetracycline (30 µg), chloramphenicol (30 µg), ery-
thromycin (15 µg), clindamycin (2 µg), ciprofloxacin (5 µg), linezolid (10), and trimethoprim-
sulfamethoxazole (1.25 + 23.75 µg) was examined using the Kirby–Bauer disk-diffusion
method. The results were analyzed according to the EUCAST 2018 guidelines, except for
kanamycin, which followed the CLSI 2017 guidelines [26,27]. The reference strain S. aureus
ATCC 25923 was used for quality control.

According to the phenotypic resistance profile, each isolate was screened for the pres-
ence of the following antimicrobial resistance genes by PCR, as previously described [28]:
blaZ and mecA (β-lactam resistance), aac(6’)-aph(2”), aph(3’)-IIIa, ant(4’)-Ia and str (aminogly-
cosides), ermA, ermB, ermC, ermT, msr(A/B), mphC, lnuA, lnuB, vgaA and vgaB (macrolides
and lincosamide), tetK, tetM, tetL and tetO (tetracycline) and, fexA, fexB, catpC194, catpC221
and catpC223 (chloramphenicol).

S. aureus isolates were screened for genes encoding virulence factors: hemolysins
(hla, hlb and hld), exfoliative toxins (eta and etb), the leucocidin lukS/F-PV, and the toxic-
shock syndrome toxin (tst) [29–31]. Additionally, the detection of the immune evasion
cluster (IEC) system genes (scn, chp, sak, sea and sep) was also performed in S. aureus isolates
which enabled the classification into different IEC types [32]. Finally, the presence of the
virulence genes lukS/F-I and siet was investigated in all S. pseudintermedius isolates [33,34].

2.3. Molecular Typing in S. aureus Isolates

S. aureus isolates were typed by multilocus sequence typing (MLST) and spa-, agr- and
SCCmec-typing. MLST was performed by amplifying and sequencing the amplicons of
7 housekeeping genes as previously described [35]. Isolates were subjected to spa-typing
as previously described, and sequences were analyzed using Ridom Staph-Type software
(version 1.5, Ridom GmbH, Wurzburg, Germany) [36]. The agr type of all S. aureus isolates
was determined by the PCR as described in other studies [37]. Finally, all MRSA were
characterized by SCCmec typing (I–V) using specific primers [38].

3. Results

A total of 108 samples (30 hunters and 78 hunting dogs) were analyzed in this study.
From these samples, 21 (19.4%) S. aureus were isolated, of which 11 (52.4%) were MRSA.
S. aureus were detected in 10 (30%) human samples and in 11 (15.4%) dog samples. Re-
garding the 11 MRSA isolates, 4 were isolated from humans and 7 from dogs. In cases
when a hunter or a dog tested positive for S. aureus or MRSA, the remaining dogs and/or
hunter living in the same household were screened for methicillin-resistant staphylococci.
A total of 15 MRS were isolated from humans and dogs, namely, S. pseudintermedius (n = 5),
S. lentus (n = 6), S. sciuri (n = 2), S. cohnii, and S. vitulinus. S. lentus were isolated from five
dogs and one hunter who co-carried a MRSA strain (Table 1). S. pseudintermedius were
isolated only from dogs, of which three co-carried MRSA and one co-carried S. aureus.
S. sciuri and S. cohnii were isolated only from dog samples.
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Table 1. Genetic characterization of the S. aureus, MRSA and MRS isolates grouped by hunter and the respective dogs.

Isolate Host Species Molecular Typing Antimicrobial Resistance Virulence Factors

ST (CC) spa SCCmec agr Phenotype Genotype IEC
system Other genes

Case 1

VS3182 Hunter 1 S. aureus 7353 t10042 - NT PEN blaZ - hla, hlb, hld

VS3183 Dog 1 S. aureus 7353 t10042 - NT PEN blaZ E hla, hld

VS3184 Dog 2 S. aureus 7353 t10042 - NT PEN blaZ E hla, hld

VS3185 Dog 2 S. pseudinter-
medius - - - - PEN, FOX mecA lukS/F-I, siet

VS3186 Dog 3 S. cohnii - - - - PEN mecA

Case 2
VS3187 Hunter 2 S. aureus 30 (30) t012 - III Susceptible - E hla, hld, tst

VS3188 Dog 1 S. aureus 30 (30) t012 - III Susceptible - - hla, hlb, hld, tst

Case 3

VS3189 Hunter 3 S. aureus 9 (9) t2922 N.T. II PEN, FOX, CN, TOB,
KAN, CD, TET, FD

mecA, blaZ, aac(6’)-Ie-aph(2”)-Ia,
aph(3′)-IIIa, lnuB, vgaA, tetM,

tetK
- hla, hlb, hld

VS3190 Dog 1 S. aureus 9 (9) t2922 N.T. II PEN, FOX, CN, TOB,
KAN, CD, TET, FD, C

mecA, blaZ, aac(6’)-Ie-aph(2”)-Ia,
aph(3′)-IIIa, vgaA, lnuB, tetM,

tetK, catp221

- hla, hlb, hld

VS3191 Dog 2 S. aureus 9 (9) t2922 N.T. II PEN, FOX, CN, TOB,
KAN, CD, TET, FD, C

mecA, blaZ, aac(6’)-Ie-aph(2”)-Ia,
aph(3′)-IIIa, vgaA, lnuB, tetM,

tetK, catp221

- hla, hlb, hld

VS3192 Dog 5 S. lentus - - - - PEN mecA -

Case 4

VS3193 Hunter 4 S. aureus 8 (8) t121 IV I PEN, FOX mecA, blaZ, - hla, hlb, hld

VS3194 S. lentus - - PEN mecA

VS3195 Dog 1 S. aureus 5 (5) t179 IV II PEN, FOX, ERY mecA, blaZ ermC, E hla, hld

VS3196 S. pseudinter-
medius - - - - PEN, FOX mecA, blaZ - lukS/F-I

VS3197 Dog 2 S. aureus 5 (5) t179 IV II PEN, FOX, ERY mecA, blaZ, ermC, E hla, hld

VS3198 S. pseudinter-
medius - - - - PEN, FOX, CN, TOB,

KAN
mecA, blaZ, aac(6’)-Ie-aph(2”)-Ia,

aph(3′)-IIIa, str - lukS/F-I, siet
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Table 1. Cont.

Isolate Host Species Molecular Typing Antimicrobial Resistance Virulence Factors

ST (CC) spa SCCmec agr Phenotype Genotype IEC
system Other genes

VS3199 Dog 3 S. aureus 5 (5) t179 IV II PEN, FOX, ERY mecA, blaZ E hla, hld

VS3200 S. pseudinter-
medius - - - - PEN, FOX mecA, blaZ - lukS/F-I, siet

Case 5
VS3201 Dog 2 S. aureus 718 t11333 IV II PEN, FOX, ERY, CD mecA, blaZ, ermC, E hld

VS3202 Dog 3 S. aureus 718 t11333 IV II PEN, FOX, ERY mecA, blaZ, ermC, E hld

Case 6
VS3203 Dog1 S. aureus 398 (398) t5635 - I Susceptible - - hla, hld

VS3204 Dog 3 S. sciuri - - - - PEN mecA, blaZ -

Case 7

VS3205 Hunter 5 S. aureus 34 (30) t166 - III PEN, ERY blaZ, ermC E hld

VS3206 Dog1 S. pseudinter-
medius - - - - PEN, FOX mecA, blaZ - lukS/F-I, siet

VS3207 Dog2 S. lentus - - - - PEN mecA -

Case 8
VS3208 Hunter 6 S. aureus 718 t11333 II Susceptible - E hla, hld

VS3209 Dog 1 S. vitulinus - - PEN mecA

Case 9
VS3210 Hunter 7 S. aureus 398 (398) t5635 - I PEN, ERY blaZ, ermT scn hla, hld

VS3211 Dog1 S. lentus - - - PEN, CN, KAN, CD,
C

mecA, aac(6’)-Ie-aph(2”)-Ia,
aph(3′)-IIIa, mphC, catp221

- hla

Case 10
VS3212 Hunter 8 S. aureus 7343 t012 N.T. III PEN, FOX mecA, blaZ - hla, hlb, hld

VS3213 Dog S. sciuri - - PEN mecA

Case 11

VS3214 Hunter 9 S. aureus 5 (5) t179 IV II PEN, FOX, ERY, mecA, blaZ, ermA E hla, hld

VS3215 Dog 1 S. lentus - - - - PEN mecA, blaZ -

VS3216 Dog 2 S. lentus - - - - PEN mecA, blaZ, -

Case 12 VS3217 Hunter 10 S. aureus 7 t091 - I PEN blaZ G hla, hld

Abbreviation: NT: not typeable; PEN: penicillin; FOX: cefoxitin; CN: gentamycin; TOB: tobramycin; KAN: kanamycin; ERY: erythromycin; CD: clindamycin; TET: tetracycline; FD: fusidic
acid; C: chloramphenicol; IEC: immune evasion cluster; ST: sequence type; CC: clonal complex. MRSA isolates are presented in bold.
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Table 1 is divided into the cases of a hunter and their respective hunting dogs. In
general, MRSA isolates were ascribed to five STs (ST9, ST8, ST5, ST718, and ST7343)
and five spa-types (t2922, t121, t11333, t012 and t179) (Figure 1). Isolates belonging to
ST5, ST8, and ST718 were typed as SCCmec IV, whereas isolates ascribed to ST9 and
ST7343 were not typeable by SCCmec-typing. MRSA isolates were ascribed to agr type II
(n = 9), I and III. Only three MRSA isolates displayed a multidrug-resistant profile, all from
Case 3, showing resistances to penicillin, cefoxitin, gentamycin, tobramycin, kanamycin,
clindamycin, fusidic acid, and chloramphenicol encoded by the mecA, blaZ, aac(6′)-Ie-
aph(2”)-Ia, aph(3′)-IIIa, vgaA, lnuB, and catp221 genes. The remaining MRSA isolates showed
resistance mainly to penicillin, cefoxitin, and erythromycin conferred by the mecA, blaZ,
ermA, and ermC genes. Six out of the eleven MRSA isolates harbored the scn and sak genes
of the IEC system as were categorized as type E. Among the other virulence genes, hla
(n = 9), hlb (n = 5), hld (n = 11), and tst (n = 2) were detected among MRSA isolates.

Figure 1. Phylogenetic tree inferred from the analysis of the MLST analysis. The tree was created
using the Complete–Linkage method of Hierarchical Clustering. Hamming distance was used to
measure genetic distance.

Methicillin-susceptible S. aureus (MSSA) isolates were detected in 5 hunters and 5 dogs.
These isolates were ascribed to ST7353-t10042 (n = 3), ST30-t012 (n = 2), ST398-t5635 (n = 2),
ST34-t166, ST718-t11333 and ST7-t091. MSSA isolates were typed as agr type III (n = 3),
type I (n = 3) and type II (n = 1), and the ST7353-t10042 isolates were not typeable. From the
ten MSSA isolates, four were susceptible to all antibiotics tested. Resistance to penicillin
encoded by the blaZ gene was identified in five isolates and resistance to erythromycin was
identified in two isolates harboring the ermC and ermT genes. MSSA isolates were grouped
in IEC type E (n = 5) and G (n = 1), and one isolate carried only the scn gene.

As previously mentioned, in cases where MRSA was found, samples from dogs
and/or dog owners that shared the same household were screened for the presence of
other methicillin-resistant staphylococci species. Among the non-aureus staphylococci,
five S. pseudintermedius were isolated from five dogs. All S. pseudintermedius isolates were
resistant to penicillin and cefoxitin and carried the mecA gene, and therefore, they were
considered MRSP. One S. pseudintermedius also showed resistance aminoglycosides con-
ferred by the aph(2”)-Ia, aph(3′)-IIIa and str genes. All S. pseudintermedius harbored the
lukS/F-I genes and four also carried the virulence gene siet. All the coagulase-negative
staphylococci (CoNS) isolates were recovered from dogs except for one S. lentus. CoNS
were positive for the mecA gene and were resistant to penicillin. Only one CoNS (S. lentus
VS3211) had a multidrug-resistance profile showing resistance to penicillin, gentamycin,
kanamycin, clindamycin, and chloramphenicol encoded by the mecA, aac(6′)-Ie-aph(2′′)-Ia,
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aph(3′)-IIIa, mphC and catp221 genes. Moreover, this isolate was also the only CoNS to carry
a virulence gene, the hla gene.

4. Discussion

S. aureus is part of the normal human microbiome in approximately 30% of the human
population [39]. In fact, 20% of humans are permanent carriers of S. aureus and about 60%
are intermittent carriers [39]. This data is in accordance with the frequency of S. aureus
obtained in our study (30%) in healthy hunters. Half of the S. aureus isolates were MRSA,
which corresponds to 16.6% of the 30 hunters tested. MRSA frequency in healthy com-
munity humans is very variable and is influenced by geographic location, demographic
characteristics, sampling years, among others. Even so, several studies have reported
similar frequencies to those obtained in our study. In the study by Velasco et al. none of the
550 undergraduate students carried MRSA and only 7.6% were positive for S. aureus [40].
Other studies have reported a frequency of MRSA in healthy humans between 14,64% and
24.7 % [22,41,42]. In our study, the frequency of S. aureus and MRSA in hunting dogs was
15.4% and 9%, respectively. János et al. also reported similar results with a frequency of
S. aureus and MRSA of 11.62% and 9.30%, respectively, in kennel dogs from Romania [43].
Other studies have reported a lower prevalence of MRSA in dogs [44,45]. In contrast,
in a previous study from Portugal, a higher prevalence of MRSA (30%) was detected in
dogs [46]. In the only available study of S. aureus in hunting dogs, 36.9% and 23.7% of
the dogs were nasal carriers of S. aureus and MRSA, respectively, which is a much higher
frequency than that found in our study [47].

A few studies have reported transmission of S. aureus and MRSA between dogs and
humans in the same household and people working in close contact with dogs [45,48–51].
Most studies rely on molecular typing techniques, such as whole genome sequencing,
rep-PCR, and pulsed field gel electrophoresis, to verify dog-to-human transmission. In
our study, three cases (Cases 1, 2, and 3) concerning a possible transmission between dogs
and owners were identified. Our results demonstrate that hunting dogs and their owners
carried S. aureus and MRSA strains with clonal similarity, indicating a possible transmission
via direct transfer from animals to humans or vice versa. Nevertheless, it is important
to point out that whole genome sequencing should have been performed to confirm the
bacterial transmission. In Case 1, the hunter and his dogs share the same clonal lineage
ST7353-t10042. S. aureus ST7353 was first reported in this study and is a single locus variant
of the ST45 (CC45) with a single-point mutation in the pta gene. S. aureus belonging to CC45
is primarily known as a human-associated clone. Nevertheless, the CC45 is characterized
by its diversity since it has been associated with MRSA, MSSA, HA-MRSA, CA-MRSA,
commensal clones, and it has also been isolated from pets, livestock, wild animals, and
the environment [52–57]. Furthermore, S. aureus ST45 have unique genetic differences
from other S. aureus clades since it has been shown that ST45 branches off near the root
of the S. aureus population [58]. spa-type t10042 is a rare spa-type and it has only been
detected once since it was first reported in 2012, and is associated with human isolates
in Europe [59].

A transmission of MSSA might have also occurred in Case 2 since S. aureus ST30-
t012 was isolated from both the hunter and his hunting dog. Furthermore, the pattern of
antimicrobial resistance was similar in both isolates. MSSA-ST30 is an ancestral strain of
an epidemic MRSA clone which evolved into MSSA, and is also known as the Southwest
Pacific clone [60]. ST30 is an international successful clone since it has been found in
Australia, Europe and Asia [61]. This lineage is primarily associated with humans, but
it has been also found among animals and in the environment [55,62]. Moreover, ST30-
MSSA-t012 has been detected in hospitalized humans and livestock workers in Portugal,
in the same region where the samples of this study were collected [63,64]. Both ST30-
MSSA-t012 isolates carried the virulence gene tst, in addition to the hemolysins genes,
which is in accordance with other studies that have shown that S. aureus ST30 often carries
pathogenicity islands including the tst gene [65].
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In Case 3, MRSA strains with the same clonal lineage, ST9-t2922, were isolated from the
hunter and two hunting dogs. ST9 is a livestock-associated MRSA (LA-MRSA) lineage that
is predominant in Asia. As in our study, this lineage lacks several important virulence genes,
such as lukF/S-PVL. Furthermore, ST9 MRSA strains are usually multidrug resistant [66].
In our study, all ST9 isolates were resistant to penicillin, cefoxitin, aminoglycosides, clin-
damycin, and tetracycline encoded by the mecA, blaZ, aac(6′)-Ie-aph(2′′)-Ia, aph(3′)-IIIa, lnuB,
vgaA, tetK, and tetM genes. In addition, MRSA isolates from dogs were also resistant to
chloramphenicol and harbored the catp221 gene. These minor genetic variations between
the dogs and owner isolates may have evolved in the two different hosts after interspecies
transmission, as was the case in other studies in which S. aureus was transmitted between
dogs and humans [52]. MRSA spa-type t2922 is often associated with LA-MRSA, not so
much with ST9, but rather with ST398 which is the predominant LA-MRSA lineage in
Europe [67]. Even so, ST9-t2922 has been detected among pigs in China and Taiwan [68,69].
ST9-t2922 isolates were not typeable by SCCmec typing which may be due to the high
diversity of SCCmec types reported among ST9 MRSA strains [66,70,71].

Dog-to-dog staphylococci transmission has been documented, particularly dogs living
together in the same household [72,73]. Transmission between dogs may occur due to
several factors, such as dog-to-dog contact, sharing the same water and food, and sharing
the same environment. In our study, in Case 4, the hunter and three hunting dogs were
colonized by MRSA strains. All dogs’ isolates belonged to ST5-t179, which suggests a
possible dog-to-dog transmission. The MRSA isolates from dogs were assigned to IEC type
E which indicates a possible human origin [74]; however, transmission between the hunter
owner and the dogs does not seem to have occurred as the clonal lineages differ. MRSA
ST5-t179 SCCmec type IV, also known as the Pediatric clone, is a classic human pathogen
predominant in HA-MRSA, and has been repeatedly isolated from human infections in
Portugal [63,75]. Nevertheless, we believe that this is the first study reporting ST5-MRSA-
t179 in dogs. As for MRSA isolated from the hunter-owner, it belongs to ST8, spa-type
t121, and SCCmec IV. MRSA ST8 is a common CA-MRSA clone frequently detected in
the USA, which is often related with the USA300 clone; however, the presence of PVL
encoding genes is a marker of the USA300 clone, and in our study, the ST8 MRSA isolate
lacked this gene [76]. In fact, the epidemiology of the ST8 MRSA clone differs remarkably
among world regions. For instance, in Europe, ST8 is commonly detected in community
humans, but most of them are non-USA300 [76]. Nevertheless, in Case 4, a transmission of
MRSP may have occurred between dogs. Two MRSP showed resistance to penicillin and
cefoxitin and carried the blaZ and mecA genes; however, one MRSP isolate (VS3198) also
showed resistance to aminoglycosides conferred by the aac(6’)-Ie-aph(2”)-Ia, aph(3′)-IIIa,
and str which may have been acquired after the transmission. The MSRP isolates also
carried the virulence genes lukS/F-I and siet, which have been previously reported in both
commensal and clinical strains, indicating that these genes may be ubiquitous in this S.
pseudintermedius [77].

Another possible dog-to-dog transmission can be observed in Case 5. Both dogs
sharing the same household carried MRSA strains belonging to ST718, t11333, and SCCmec
IV, and they harbored the same resistance and IEC genes. S. aureus ST718 is a rare human-
associated clone that has been reported in a few countries with regard to human infections
and community humans [78–81]. Although this clonal lineage is most often associated
with MSSA strains, it has also been identified among MRSA isolates that are ascribed to
SCCmec type IV, similarly to the one obtained in this study [78]. Interestingly, in our study,
one ST718-t11333 MSSA strain was also isolated from a hunter (Case 8) which shows the
adaptability of this lineage. S. aureus ST718-t11333 has been identified among animals in
only one study that was conducted with owl samples in Portugal [62]. Since hunters and
their hunting dogs are in direct contact with wild game animals, transmission may also
occur, especially between dogs and wild game animals.

In no other Case does the transmission of S. aureus between dogs and humans appear
to have occurred; however, S. aureus was isolated from five more hunters and one dog.
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One hunter (Case 9) and one hunting dog (Case 6) shared the same S. aureus clone, ST398-
t5635, but with no apparent relationship or contact between them. Animals are considered
the main reservoir of S. aureus CC398; however, this lineage is divided into two clades:
the classical LA clade and the human clade [82]. It is believed that ST398 was originally
a human-associated clone, and it has adapted to animals through the loss of integrase
group 3 prophages containing the IEC system genes, and with it, they acquired tetracycline
resistance [83,84]; however, it has been shown that a re-adaptation of S. aureus CC398 to
humans may occur with the acquisition of IEC [83–85]. Both of our CC398 isolates lacked
the tetracycline resistance, which is a marker of animal adaptation; however, the human
isolate was resistant to penicillin and erythromycin carrying the blaZ and ermT genes.
Furthermore, this isolate also carried the scn gene of the IEC system. Studies have shown
that CC398 related to humans and human infections often carry the ermT and the chp and
scn genes, which may indicate a human adaptation [85,86]. It is important to point out
that most MRSA and MRSP isolates did not present a multidrug-resistant profile that is
common in methicillin-resistant isolates; therefore, MRSA that is simply β-lactam resistant,
as many in this study are, would be of lesser concern, as it is an opportunistic pathogen,
and thus, there are still a multitude of appropriate therapeutic options.

Methicillin-resistant CoNS (MRCoNS) were also isolated from both hunters and dogs
in this study. A few studies have been conducted investigating the frequency of CoNS and
MRCoNS in healthy dogs, and the CoNS species detected in those studies are very variable.
Ma et al. reported that the most frequent CoNS among dogs in Australia was S. sciuri,
whereas in Brazil and the United Kingdom, it was S. epidermidis followed by S. simulans
and S. epidermidis, followed by S. warneri, respectively [44,87,88]. In Thailand, the most
common CoNS species was S. chromogenes [89]. In our study, the most prevalent CoNS was
S. lentus, which was isolated from dogs and one human. Furthermore, among all MRCoNS
only one (S. lentus VS3211) was multidrug-resistant, and showed resistance to penicillin,
aminoglycosides, clindamycin, and chloramphenicol which was conferred by the mecA,
aac(6’)-Ie-aph(2”)-Ia, aph(3′)-IIIa, mphC, and catp221 genes. S. lentus is considered to be an
animal commensal and pathogen species [28]. Nevertheless, it has also been identified as
the etiological agent of human infections [90]. As expected, none of the MRCoNS isolates
showed phenotypic resistance to cefoxitin despite carrying the mecA gene. Studies have
shown that the mecA gene may have originated from the CoNS species belonging to the
S. sciuri group, which includes S. sciuri, S. viutlinus, and S. lentus, and these species often
carry mecA homologues that do not confer phenotypic resistance [91,92]. Transmission
of MRCoNS is harder to confirm since molecular typing methods are not available for all
species. Nevertheless, we can hypothesize that in Case 11, the hunting dogs may be sharing
the same S. lentus clone, since both isolates showed the same resistance pattern.

5. Conclusions

Genetic similarity was observed between S. aureus and MRSA isolates from hunters and
their hunting dogs, suggesting possible human-to-dog and dog-to-dog transmissions which
could pose a public health risk. S. aureus isolated from hunters and their hunting dogs living
in the same household showed identical STs, spa-, SCCmec-, and agr-types, as well as similar
resistance and virulence patterns. Most S. aureus isolates were classical human-associated
clones which may point to one-way transmission from humans to dogs. Furthermore, several
S. aureus isolates carried the genes encoding the IEC system, which reinforces a possible
human origin; therefore, the role of S. aureus as a zoonotic pathogen is potentiated; however,
although this study points to a possible S. aureus transmission, whole genome sequencing
should be carried to confirm the human-to-dog and dog-to-dog transmissions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pathogens11050548/s1, Table S1: Breed, gender, and age of all dogs
sampled in this study.
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