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Abstract 

Purpose: This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) 

of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position 

Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic 

outcomes in critically ill adult patients.

Methods: Literature review and analysis were performed by Panel Members nominated by the endorsing organi-

sations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill 

Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International 

Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimi-

crobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically 

for different antimicrobials/classes.

Results: TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and riba-

virin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for 

these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify 

therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel 
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Introduction

Despite numerous therapeutic innovations, infection-

related mortality in critically ill patients persists as a 

significant healthcare concern. Given the correspond-

ing high burden of infection, it is unsurprising that the 

consumption of antimicrobial agents (antibacterials, anti-

fungals and antivirals) in the intensive care unit (ICU) is 

ten times higher than in other wards [1]. It is essential to 

optimise the use of antimicrobial agents not only to max-

imise therapeutic success but also to prolong the clinical 

lifespan of these currently available drugs by limiting the 

emergence of resistance [2]. However, the process of opti-

mising antimicrobial therapy (including both spectrum 

and therapeutic exposure) is a massive challenge in ICU 

patients, who often manifest extreme inter- and intra-

individual pharmacokinetic (PK) variability [3]. It follows 

that conventional antimicrobial dosing may risk clinical 

failure in this patient population as most dose-finding 

studies only included non-ICU populations. Indeed, 

perhaps more than in any other patient population, non-

optimised antimicrobial dosing may more commonly 

lead to low drug exposure and therapeutic failure and/or 

antimicrobial resistance [4], or high drug exposure, lead-

ing to an increased risk of toxicity.

With an expanding knowledge on the relationships 

between antimicrobial dosing, pharmacokinetic/phar-

macodynamic (PK/PD) exposure and patient outcomes, 

there is now a strong rationale to individualise anti-

microbial dosing in critically ill patients with the aid of 

therapeutic drug monitoring (TDM). Traditionally, TDM 

was only employed to minimise the likelihood of toxic-

ity in drugs with narrow therapeutic indices (e.g. amino-

glycosides and vancomycin) and in drugs with complex 

pharmacokinetics (e.g. voriconazole) and has been hith-

erto underused for other antimicrobials. However, the 

recent surge in multidrug-resistant pathogens causing 

infections, combined with a declining antimicrobial pipe-

line, is causing a need to revise this approach. TDM of 

antimicrobials, even for those with a wide therapeutic 

index, is becoming more common [5, 6], whilst TDM 

for the “traditional” drugs, such as aminoglycosides and 

glycopeptides, is continually being studied for further 

improvement.

Currently, there is significant variation across institu-

tions on how TDM is applied in terms of antimicrobial 

and patient selection, sampling time points and antimi-

crobial assays for concentration monitoring, as well as 

PK/PD targets and the approach to dose modification 

[5, 6]. �is Position Paper aims to review and discuss the 

available data on TDM of antibacterials, antifungals and 

antivirals in critically ill adult patients. �is Paper will 

also provide a practical guide on how antimicrobial TDM 

can be applied in everyday clinical practice to improve 

therapeutic outcomes in critically ill adult patients. 

Finally, the Panel aims to recommend antimicrobials for 

which TDM should be routinely performed in critically 

ill patients.

Methods
Position Paper Panel composition

�e Position Paper Panel members were nominated by 

the endorsing organisations including European Society 

of Intensive Care Medicine (ESICM), Pharmacokinetic/

Pharmacodynamic (PK/PD) and Critically Ill Patient 

Study Groups of European Society of Clinical Microbi-

ology and Infectious Diseases (ESCMID), International 

Association for �erapeutic Drug Monitoring and Clini-

cal Toxicology (IATDMCT) and International Society of 

Antimicrobial Chemotherapy (ISAC).

Literature review and analysis

�is Position Paper was developed following a review 

of studies published in English before 1 July 2019. A lit-

erature search was performed on PubMed with no date 

restrictions using the following MeSH terms: (“anti-

bacterial agents” OR “antifungal agents” OR “antiviral 

agents”) AND (“drug monitoring” OR “pharmacokinet-

ics” OR “pharmacodynamics”) AND (“critical care” OR 

“critical illness” OR “intensive care units”). �e search 

was also performed for each antimicrobial (e.g. merope-

nem) and antimicrobial class of interest (e.g. carbapen-

ems). For clinical efficacy and toxicity, only studies on 

Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicopla-

nin, vancomycin and voriconazole in critically ill patients.

Conclusion: Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers 

need to be addressed before routine TDM can be widely employed worldwide.

Keywords: Antibacterials, Antifungals, Antivirals, Pharmacokinetics, Pharmacodynamics, Sepsis

Take-home message: 

The Panel Members recommend routine TDM to be performed 
for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, 
vancomycin and voriconazole in critically ill patients.
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critically ill adult patients were reviewed and included in 

the analysis.

Process overview

�e Panel members held face-to-face meetings and tel-

econferences to formulate the structure and content of 

this Position Paper. Members were divided into groups 

consisting of a lead author and co-authors for each sec-

tion. Each group was tasked to review the literature, eval-

uate the available data and summarise their findings in a 

draft document addressing whether TDM is indicated for 

a particular antimicrobial/antimicrobial class in critically 

ill patients. All members reviewed the full draft docu-

ment, and discrepancies were discussed and resolved by 

consensus.

Panel consensus for use of TDM

A seven-point Likert scale (1 = strongly disagree, 2 = dis-

agree, 3 = somewhat disagree, 4 = neutral, 5 = somewhat 

agree, 6 = agree and 7 = strongly agree) was used to score 

the recommendation of the Panel for performing TDM 

for each antimicrobial/antimicrobial class in critically ill 

patients. Consensus was achieved when the sum of 1 and 

2 (negative consensus) or 6 and 7 (positive consensus) 

was ≥ 75%.

Pharmacokinetic and pharmacodynamic issues 
in critically ill patients
Pharmacokinetic changes

Critically ill patients are those patients whose condi-

tions are life-threatening and require specialised care in 

the ICU. Such patients require intensive monitoring and 

treatment due to failure of vital organ functions (due to 

acute and/or chronic disease) or due to the sequelae of 

surgical or other intensive treatment associated with life-

threatening conditions. Critical illness is characterised by 

marked homoeostatic changes, driven by both the under-

lying disease process and the interventions required. 

�ese features profoundly affect organ function, resulting 

in a pathophysiological state that is not encountered in 

an ambulatory setting. Moreover, the presence of chronic 

comorbidity can further exacerbate the pathophysi-

ological changes commonly encountered during criti-

cal illness. All of these factors will significantly influence 

antimicrobial PK in the critically ill and can be broadly 

considered in terms of altered volume of distribution (Vd) 

and drug clearance (CL).

Altered volume of distribution

Endothelial dysfunction is common in critical illness and 

is characterised by expansion of the interstitial space 

through “capillary leakage”. �is is closely linked to the 

severity of the underlying disease process and the degree 

of systemic inflammation. Sepsis and major burn injury 

are classic examples. �is is then further exacerbated by 

intravenous (IV) fluid loading, a near-ubiquitous inter-

vention in the ICU. For hydrophilic antimicrobials (e.g. 

acyclovir, aminoglycosides, beta-lactams, daptomycin, 

fluconazole and glycopeptides), this can result in a sig-

nificantly expanded Vd [7]. Changes in protein binding 

associated with hypoalbuminaemia will also potentially 

influence antimicrobial PK [8]. Indeed, hypoalbuminae-

mia is commonly encountered (as a negative acute phase 

reactant), resulting in an increase in the Vd for highly pro-

tein-bound antimicrobials, such as ceftriaxone, daptomy-

cin, ertapenem, flucloxacillin and teicoplanin [8]. In these 

scenarios, the free (or unbound) fraction is increased, 

resulting in both greater distribution and potentially CL. 

Finally, extremes of body size and composition (typically 

obesity) will also influence Vd, although the magnitude 

of any such change will depend on the physicochemical 

properties of the antimicrobial (e.g. molecular weight, 

lipid solubility and degree of ionisation) [9].

Altered drug clearance

Many commonly prescribed antimicrobials are princi-

pally cleared by renal elimination. In this context, critical 

illness can have a profound impact on renal function and 

therefore drug CL. Augmented renal clearance (ARC) 

is being increasingly noted in critically ill sub-popula-

tions (incidence of 14–80%) [10]. ARC is defined as an 

increased creatinine clearance > 130  mL/min/1.73  m2 

measured by 8–24-h urine collection and refers to the 

enhanced renal elimination of circulating solute (such as 

metabolic waste and drugs) [11]. �e underlying mecha-

nisms are uncertain, although increased solute deliv-

ery related to a hyperdynamic high cardiac output state, 

in combination with tubular and/or neuroendocrine 

changes, is likely implicated [10]. Identifying patients 

with ARC is challenging as these patients may have ele-

vated renal function despite normal serum creatinine 

concentrations [12], and importantly, commonly used 

glomerular filtration rate mathematical estimates, such 

as the Cockcroft–Gault and Modified Diet in Renal Dis-

ease equations, are unlikely to be reliable as compared to 

urinary creatinine clearance data [13]. Younger patients 

with multiple trauma are at the highest risk [12], but 

ARC has also been described in other patient categories. 

Moreover, the presence of ARC has been associated with 

sub-optimal plasma antimicrobial concentrations [11], 

although the implications in terms of clinical outcomes 

remain unclear [14].

In contrast, many critically ill patients will develop 

acute kidney injury, requiring the use of renal replace-

ment therapy (RRT). In the acute setting, continuous 

veno-venous techniques are most frequently used, with 
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variable fractions of filtration and/or dialysis. Factors 

such as molecular weight, protein binding, hydrophilic-

ity, mode of RRT, filter porosity, surface area, blood flow 

rate and total effluent rate will all influence extracorpor-

eal drug handling [15]. Given the heterogeneity in clini-

cal practice and pathophysiology, antimicrobial dosing 

is generally empiric, resulting in substantial intra- and 

inter-patient variability in drug concentrations [16]. �e 

intensity of RRT and any residual native renal function 

are likely to be the most important variables in determin-

ing renal drug CL in this setting [17].

Other extracorporeal circuits (such as extracorporeal 

membrane oxygenation) may also contribute to altered 

drug CL, depending on the degree of adsorption, and any 

co-existing renal dysfunction [18].

Pharmacodynamic changes

For antimicrobials, PD links PK exposure with its ability 

to kill or inhibit the growth of a pathogen. �is relation-

ship can be described by relating the PK exposure of an 

antimicrobial to the minimum inhibitory concentration 

(MIC) of the offending pathogen. Antimicrobials classi-

cally have different PK/PD indices [19], and these can be 

categorised as: (a) the ratio of maximum drug concentra-

tion (Cmax) to MIC (Cmax/MIC); (b) the duration of time 

(T) that the free drug concentration remains above the 

MIC during a dosing interval  (fT>MIC); and (c) the ratio 

of the area under the concentration–time curve during a 

24-hour period to MIC (AUC 0–24/MIC) [20]. However, it 

is also important to note that individual MICs were rarely 

measured in most of the earlier studies and parameters 

such as  MIC50 and  MIC90 were used instead to describe 

the PK/PD relationships. For antivirals, in particular, 

measures other than the MIC have been used as the 

denominator of the PK/PD index such as the in vitro con-

centration required to obtain 50% of the maximum effect 

 (EC50). �e denominator in these indices is an important 

consideration because when it increases, the correspond-

ing PK exposure should also be increased to ensure that 

the optimal PK/PD index is still achieved. �is is mostly 

relevant in the ICU as at least bacterial pathogens may 

demonstrate higher MICs, as much as 2–4 times higher, 

when compared to the general wards [21].

Importantly, a recent review by Mouton et  al. high-

lights that the use of an individual MIC to guide antibac-

terial dosing may not be appropriate due to imprecise 

and highly variable (varying by 1–2 dilutions in both 

directions) measurements associated with MIC deter-

mination [22]. �erefore, an individual MIC measure-

ment should only be regarded as an estimate and not a 

“true” value of a pathogen’s susceptibility. MIC may vary 

according to determination methods (e.g. broth microdi-

lution vs. E-test®), and it is therefore important to aim for 

an appropriate MIC method-specific target, with broth 

microdilution (BMD) MIC being the preferred method, 

if they are available. Any potential dosing adjustments 

with the aid of TDM must consider MIC variation and 

should be interpreted in the context of assay variation, 

species identification and wild-type distributions. Meas-

ures of MIC distributions such as epidemiologic cut-off 

(ECOFF) values, which separate bacterial populations 

into those of a wild-type population and those with either 

a low- or high-level phenotypically detectable resistance, 

can be more useful to guide antibacterial dosing. Mou-

ton et  al. proposed several practical solutions in their 

review to optimise antibacterial dosing for patients, and 

one of the important recommendations included the use 

of ECOFF values as the PD target for dosing purposes 

when the measured MIC for the bacterial strain is within 

the wild-type distribution [22]. If the MIC is slightly 

above the ECOFF, a two-fold dilution of the MIC can be 

assumed for dosing purposes, whilst MIC-guided therapy 

should not be an option if the measured MIC is clearly 

far above the ECOFF and clinical resistance breakpoint.

Basic principles of therapeutic drug monitoring
An antimicrobial should fulfil certain criteria for TDM 

to be of potential benefit and some of these criteria 

include: (a) a significant intra- and/or inter-individual PK 

variability; (b) a defined exposure range associated with 

pharmacological responses (clinical responses and tox-

icities); (c) defined relevant sampling time points; and (d) 

accurate and timely bioanalytical assay methods for drug 

measurement.

Critically ill patients often demonstrate extreme vari-

ability in antimicrobial PK, which can be partly explained 

by patient covariates (e.g. body weight and renal func-

tion). Unexplained PK variability can be observed across 

patients (i.e. inter-individual variability) and also, within 

a patient (i.e. intra-individual PK variability). TDM-based 

dosing adjustment is clinically useful for an antimicrobial 

if the unexplained inter-individual PK variability exceeds 

the intra-individual variability. Otherwise, solely apply-

ing covariate-based dosing strategies would be sufficient, 

as is the case with Product Information and nomogram-

based dosing.

PK sampling for antimicrobial TDM is traditionally 

performed at the end of each dosing interval to obtain 

a trough sample (minimum concentration in dosing 

interval, Cmin). Whilst Cmin provides some information 

on drug CL, determination of Vd requires an additional 

sample earlier in the dosing interval. For the estimation 

of derived PK parameters, such as the AUC, and PK/PD 

targets, such as the  fT>MIC, an optimised PK sampling 

schedule is suggested for unbiased and precise parameter 

estimation. A limited sampling strategy (LSS), which uses 
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the most “informative” concentration–time points (com-

monly 1–3 sampling time points) to describe a drug’s PK, 

is relatively easy to be performed and may provide accu-

rate estimates of full drug exposure [23, 24]. �e optimal 

sampling time points for a drug can be identified during 

“limited sampling” studies where these time points will 

be estimated or calculated using PK models and Monte 

Carlo simulations. �e time points can then be used to 

predict AUC 0–24, and as such, this approach is beneficial 

for those antimicrobials in which AUC 0–24/MIC ratios 

are the major determinants for efficacy. For example, 

although 10–15 time points are conventionally needed 

to calculate 80% of the total AUC, Alsultan et al. demon-

strated that these can be reduced to only 2 time points 

(sampling at 4 and 6  h post-dose) with LSS to estimate 

levofloxacin AUC [25]. For antibacterials that are admin-

istered via continuous infusion, a sample at any given 

time during administration can be used.

Ideally, measuring antimicrobial concentration at the 

site of infection (e.g. epithelial lining fluid in pneumo-

nia and cerebrospinal fluid in meningitis) is preferred as 

most antimicrobial–pathogen interactions are thought to 

occur here. However, due to practical limitations, most 

centres have been using plasma concentrations as a sur-

rogate for concentrations at the actual site of infection. 

Importantly, some antimicrobials are unevenly distrib-

uted and plasma concentration does not always reflect 

concentrations at the infected tissues.

Bioanalytical assays for measuring antimicrobial con-

centrations should be precise, accurate, highly selec-

tive for a particular drug and, importantly, available in 

a timely manner (e.g. turnaround times of < 8  h, prefer-

ably shorter or within the same day of sampling). Regular 

quality control exercises through proficiency testing pro-

grams are recommended to ensure that the assays have 

sufficient accuracy, precision and specificity for routine 

TDM and patient management [26, 27]. Ideally, free drug 

concentrations should be measured at physiologically rel-

evant conditions [28] and reported, but due to practical 

limitations, most laboratories report only total concen-

trations. Further to this, exposure targets for some drugs 

have only been defined in terms of total exposure (e.g. 

vancomycin).

TDM-based dosing adjustments can be performed in 

several different ways. Whilst it is still popular to com-

pare and evaluate a single drug concentration (e.g. Cmin) 

against a therapeutic target range, and this method is the 

easiest, it is the least accurate method for dosing adjust-

ment. Dosing nomograms, on the other hand, can inte-

grate PK/PD data with measures of organ function (e.g. 

renal function described using creatinine clearance) 

and have demonstrated to be superior to conventional 

antimicrobial dosing [29, 30]. However, separating the 

sources of PK variability and incorporating > 1 covari-

ate for dosing adjustments (e.g. creatinine clearance and 

weight) are not possible with a single dosing nomogram. 

Additionally, the dose prediction from such nomograms 

would be inaccurate if the pre-defined PK sampling/dos-

ing schedule is not strictly adhered to. �e use of dos-

ing software overcomes these limitations [2], and these 

methods have been shown to be superior over conven-

tional antimicrobial dosing for vancomycin [31], particu-

larly in the context of:

(a) the first dose can initially be individualised for 

patients by using Monte Carlo simulations;

(b) the sources of PK variability can be separated into 

intra- and inter-individual variability;

(c) PK sampling before reaching steady state is possible; 

and

(d) through Bayesian estimation, the entire antimicrobial 

PK profile can be estimated from a single PK sample. 

Bayesian estimation is most accurate when an opti-

mal sampling time is chosen to provide the most 

information about the drug’s PK behaviour in the 

patient and a suitable population PK model matching 

the target population to serve as the Bayesian prior 

model [32]. After initial TDM, it is recommended 

to repeat TDM (within 1–2 days for most drugs) to 

confirm therapeutic exposures have been achieved 

and again thereafter if there are concerns of signifi-

cant changes to PK (e.g. enteral absorption, renal 

function).

�e following sections describe the specific TDM data 

relating to various antimicrobial classes. Tables 1, 2 and 

3 describe optimal PK/PD indices and magnitudes asso-

ciated with clinical efficacy and toxicity of antibacterials, 

antifungals and antivirals, respectively. TDM recommen-

dations for each antimicrobial are summarised in Table 4. 

Table 5 highlights relevant studies/data that demonstrate 

clinical outcome benefits of antimicrobial TDM. �e 

primary data that support each recommendation and 

the suggested empirical dosing of these antimicrobials 

in critically ill patients are included in Supplementary 

Tables. We highly recommend readers to use the infor-

mation presented in the following sections in conjunc-

tion with the data presented in Tables 1, 2, 3, 4 and 5, as 

well as those presented in Supplementary Tables 1–5, for 

specific suggestions on how TDM can be performed for 

a particular antimicrobial/antimicrobial class in critically 

ill patients.
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Antibacterials
Aminoglycosides

Pharmacokinetics

Aminoglycosides are hydrophilic with a low Vd and CL 

that is proportional to glomerular filtration rate. Signifi-

cant Vd and CL alterations have been widely described in 

critically ill patients.

Pharmacodynamics

Aminoglycosides demonstrate “concentration-depend-

ent” bactericidal activity, which is optimal when the Cmax 

is ≥ 8–10 × MIC [33–35]. Recent data, however, have 

suggested that the AUC 0–24/MIC ratio might be a better 

predictor of activity and is better suited to judge target 

attainment in extended-interval dosing of aminoglyco-

sides. High Cmin and AUC exposures over days have been 

associated with oto- and nephrotoxicity.

Dosing in critically ill patients

High, single-dose, extended-interval dosing should be used 

in patients with Gram-negative infections. Recent data 

suggest that higher-than-standard aminoglycoside dosing 

regimen may be required for critically ill patients [36, 37].

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when aminoglycosides are used in critically ill 

patients.

Table 1 Pharmacokinetic/pharmacodynamic (PK/PD) indices and  the magnitudes associated with  antibacterial clinical 

e�cacy and toxicity

AUC 0–24/MIC = the ratio of the area under the concentration–time curve during a 24-hour period to minimum inhibitory concentration; Cmax/MIC = the ratio of 

maximum drug concentration to minimum inhibitory concentration; Cmin = trough drug concentration; fAUC 0–24/MIC = the free (unbound drug concentration) 

ratio of the area under the concentration–time curve during a 24-h period to minimum inhibitory concentration;  fT>MIC = the duration of time that the free drug 

concentration remains above the MIC during a dosing interval; PK/PD = pharmacokinetic/pharmacodynamic

a Nephrotoxicity or ototoxicity

b Data only available for meropenem and related to nephrotoxicity or neurotoxicity

c Data only available for cefepime and related to neurotoxicity

d Data mostly on piperacillin and related to nephrotoxicity and neurotoxicity

e Myopathy indicated by creatine phosphokinase elevation

f Related to nephrotoxicity

g Related to haematological toxicity

h Exposure against Pseudomonas aeruginosa

i Exposure against Acinetobacter baumannii

Antibacterial class PK/PD index Pre-clinical PK/PD target 
for e�cacy

Clinical PK/PD target for e�cacy Clinical PK/PD 
threshold for toxicity

Aminoglycosides

 Amikacin AUC 0–24/MIC AUC 0–24/MIC: 80–100 Cmax/MIC ≥ 8–10 Cmin > 5 mg/La

 Gentamicin/tobramycin AUC 0–24/MIC AUC 0–24/MIC: 80–100 AUC 0–24/MIC ≥ 110
Cmax/MIC ≥ 8–10

Cmin > 1 mg/La

Beta-lactams

 Carbapenems %  fT>MIC 40%  fT>MIC 50–100%  fT>MIC Cmin > 44.5 mg/Lb

 Cephalosporins %  fT>MIC 60–70%  fT>MIC 45–100%  fT>MIC Cmin > 20 mg/Lc

 Penicillins %  fT>MIC 50%  fT>MIC 50–100%  fT>MIC Cmin > 361 mg/Ld

Co-trimoxazole Unclear Unclear Unclear Unclear

Daptomycin AUC 0–24/MIC AUC 0–24/MIC ≥ 517 AUC 0–24/MIC ≥ 666 mg/L Cmin > 24 mg/Le

Fluoroquinolones AUC 0–24/MIC AUC 0–24/MIC ≥ 100
Cmax/MIC ≥ 8

AUC 0–24/MIC ≥ 125–250
Cmax/MIC ≥ 12

Unclear

Glycopeptides

 Teicoplanin AUC 0–24/MIC AUC 0–24/MIC ≥ 610 Cmin ≥ 10 mg/L Unclear

 Vancomycin AUC 0–24/MIC AUC 0–24/MIC: 86–460 AUC 0–24/MIC ≥ 400
Cmin > 10–20 mg/L

AUC 0–24 > 700 mg h/Lf

Cmin > 20 mg/Lf

 Linezolid AUC 0–24/MIC AUC 0–24/MIC ≥ 100 AUC 0–24/MIC: 80–120
≥85%  T>MIC

AUC 0–24 > 300g

Cmin > 7g

Polymyxins

 Colistin AUC 0–24/MIC fAUC 0–24/MIC: 6.6–13.7h

fAUC 0–24/MIC: 3.5–17.6i
No data Cmin > 2.4 mg/Lf

 Polymyxin B AUC 0–24/MIC fAUC 0–24/MIC: 3.7–28.0 No data AUC 0–24 > 100f
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AUC-based monitoring with at least two time points 

collected combined with Bayesian dose adaptation best 

predicts aminoglycoside dosing requirements [38–40]. 

TDM-guided dosing with Bayesian dose adaptation has 

led to a shorter length of hospital stay and a reduced inci-

dence of nephrotoxicity in patients receiving gentamicin 

for Gram-negative infections [39].

Bioanalytical assay

Commercial immunoassays are available for ami-

kacin, gentamicin and tobramycin TDM. For other 

aminoglycosides (e.g. kanamycin and plazomicin), modi-

fied immunoassays or chromatographic assays need to be 

established.

Beta-lactam antibacterials

Pharmacokinetics

Beta-lactam antibacterials are generally hydrophilic, 

demonstrate low Vd and are predominantly cleared via 

renal elimination. Most beta-lactams have a moderate 

(30–70%) to low (< 30%) degrees of protein binding. Sig-

nificant Vd and CL alterations are common, and these PK 

Table 2 Pharmacokinetic/pharmacodynamic (PK/PD) indices and the magnitudes associated with antifungal clinical e�-

cacy and toxicity

AUC 0–24/MIC = the ratio of the area under the concentration–time curve during a 24-h period to minimum inhibitory concentration; Cave = average drug 

concentration; Cmin = trough drug concentration; fAUC 0–24/MIC = the free (unbound drug concentration) ratio of the area under the concentration–time curve during 

a 24-hour period to minimum inhibitory concentration;  fT>MIC = the duration of time that the free drug concentration remains above the MIC during a dosing interval; 

PK/PD = pharmacokinetic/pharmacodynamic; Prop = prophylaxis; Tx = treatment

a In patients receiving micafungin for invasive candidiasis/candidemia

b Related to haematological toxicity and hepatotoxicity

c Concentration determined by bioassay

d Mostly related to gastrointestinal toxicity

e Mostly related to hepatotoxicity and neurotoxicity

Antifungal class PK/PD index Pre-clinical PK/PD target 
for e�cacy

Clinical PK/PD target for e�cacy Clinical PK/PD 
threshold for tox-
icity

Echinocandins AUC 0–24/MIC fAUC 0–24/MIC: 10–20 AUC 0–24/MIC > 3000a No data

Fluconazole AUC 0–24/MIC AUC 0–24/MIC: 25–44 AUC 0–24/MIC ≥ 55–100 Unclear

Flucytosine fT>MIC ≥ 20–45%  fT>MIC No data Cmax > 100 mg/Lb

Isavuconazole AUC 0–24/MIC fAUC 0–24/MIC: 25–50 No data No data

Itraconazole AUC 0–24/MIC Cmax > 6 mg/Lc Cmin ≥ 0.25–0.5 mg/L (Prop)
Cmin ≥ 1 mg/L (Tx)

Cave ≥ 17.1 mg/Ld

Posaconazole AUC 0–24/MIC fAUC 0–24/MIC: 25–50 Cmin > 0.5 (Prop)
Cmin > 1 mg/L (Tx)

No data

Voriconazole AUC 0–24/MIC fAUC 0–24/MIC: 25–50 Cmin ≥ 1–2 mg/L Cmin ≥ 4.5–6 mg/Le

Table 3 Pharmacokinetic/pharmacodynamic (PK/PD) indices and  the magnitudes associated with  antiviral clinical e�-

cacy and toxicity

AUC = area under the concentration–time curve; AUC 0–4 = the ratio of the area under the concentration–time curve during a 4-h period; AUC 0–12 = the ratio of the area 

under the concentration–time curve during a 12-h period; Cmin = trough drug concentration; PK/PD = pharmacokinetic/pharmacodynamic; Prop = prophylaxis

a Whilst in vitro concentrations at which viral replication is inhibited by 50% (i.e.  EC50 representing antiviral activity) have been widely determined, there are no/

limited data which correlate these values with in vivo pharmacokinetic parameters (e.g. AUC) to describe magnitudes required for pre-clinical e�cacy

b Mostly related to anaemia

Antivirals PK/PD index Pre-clinical PK/PD 
target for  e�cacya

Clinical PK/PD target for e�cacy Clinical PK/PD 
threshold for tox-
icity

Aciclovir/valaciclovir Unclear Unclear Unclear Unclear

Foscarnet Unclear Unclear Unclear No data

Ganciclovir/valganciclovir AUC Unclear AUC: 40–60 mg h/L (Prop) Unclear

Oseltamivir/oseltamivir carboxylate Unclear Unclear Unclear Unclear

Ribavirin AUC Unclear AUC 0–4 > 1755 mg h/L
AUC 0–12 > 3014 mg h/L
Cmin ≥ 2 mg/L

Cmin > 2.3 mg/Lb
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Table 4 Recommendations for therapeutic drug monitoring (TDM) for antibiotics, antifungals and antivirals in critically 

ill  patientsa

Antibacterials TDM recommendation, suggested TDM sampling and targets in critically ill patients

Recommendation and suggested sampling scheme/strategy Target

Aminoglycosides TDM recommendation by Panel: “YES”

AUC-based monitoring
 Two  samplesb

 One taken 30 min after the end of infusion and the other one taken between 6 
and 22 h post-infusion

AUC: 80–120 mg h/L

Cmax/MIC monitoring
 One sample
 30 min after the end of infusion

Cmax/MIC ≥ 8–10

Cmin  monitoringc

 One sample
 30 min or just before the next dosing

Cmin

 Amikacin < 2.5 mg/L
 Gentamicin/tobramycin < 0.5 mg/L

Beta-lactams TDM recommendation by Panel: “YES”

Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur 24–48 h post-initiation of therapy

100%  fT>MIC

Css monitoring for continuous infusion
 One sample at any time point during the infusion

Css > MIC

Co-trimoxazole TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Daptomycin TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

AUC/MIC-based monitoring
 Two samples
 One taken between 1.5 and 3 h post-dosing and the other one taken within 1 h 

of the next infusion

AUC/MIC > 666

Cmin monitoring
 One sample
 Within 1 h of the next infusion
 Sampling should occur 72 h post-initiation of therapy

Cmin < 24 mg/L

Fluoroquinolones TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

AUC/MIC-based monitoring
 Two  samplesb

 One taken 2 h post-dosing and the other one taken 6 h post-dosing

fAUC 0–24/MIC ≥ 80

Cmax/MIC monitoring
 One sample
 30 min after the end of infusion

Cmax/MIC ≥ 8–12

Glycopeptides

 Teicoplanin TDM recommendation by Panel: “YES”

Cmin monitoring
 One sample
 30 min or just before the next dosing

Cmin ≥ 15–30 mg/L

 Vancomycin TDM recommendation by Panel: “YES”

AUC/MIC-based monitoring
 Two  samplesb

 One taken 1 h after the end of infusion and the other one taken within 1–2 h of 
the next infusion

AUC 0–24/MIC ≥ 400

Cmin monitoring for intermittent infusion
 One sample
 30 min or just before the next dosing

Cmin > 10 mg/L
Cmin ≥ 15–20 mg/L (severe infections)

Css monitoring for continuous infusion
 One sample at any time point during the infusion

Css: 20–25 mg/L

 Linezolid TDM recommendation by Panel: “YES”

Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur 48 h post-initiation of therapy

Cmin: 2–7 mg/L
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AUC = area under the concentration–time curve; AUC 0–24/MIC = the ratio of the area under the concentration–time curve during a 24-hour period to minimum 

inhibitory concentration; CI = continuous infusion; Cmax/MIC = the ratio of maximum drug concentration to minimum inhibitory concentration; Cmin = trough drug 

concentration; Css = average steady-state drug concentration;  fT>MIC = the duration of time that the free drug concentration remains above the MIC during a dosing 

interval; II = intermittent infusion

a Although consensus may not have been achieved for some of these antimicrobials/antimicrobial classes, suggested sampling strategies and targets for TDM are 

presented for those antimicrobials/antimicrobial classes where TDM data/experience have been reported

b Only one sample is needed with Bayesian dose adaptation/adaptive feedback control

c Only for treatment of more than 3 days

d Concentrations preventing resistance development based on in vitro pharmacokinetic model

Table 4 (continued)

Antibacterials TDM recommendation, suggested TDM sampling and targets in critically ill patients

Recommendation and suggested sampling scheme/strategy Target

Polymyxins

 Colistin TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Cmin monitoring
 One sample
 Just before the next infusion
 Sampling should occur 48–72 h post-initiation of therapy

Cmin: 2 mg/L

 Polymyxin B TDM recommendation: “NEITHER RECOMMEND NOR DISCOURAGE”

AUC-based monitoring
 At least one sample
 Sampling should occur 12–24 h post-initiation of therapy

AUC 0–24: 50–100 mg h/L

Antifungals Suggested sampling scheme/strategy Target

Echinocandins TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Fluconazole TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Flucytosine TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Cmax monitoring
 One sample
 2 h post-dose
 Sampling should occur 48 h post-initiation of therapy

Cmax < 100 mg/L

Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur 72 h post-initiation of therapy

Cmin ≥ 25 mg/Ld

Isavuconazole TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Itraconazole TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”
Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur within 5–7 days post-initiation of therapy

Cmin > 0.5–1 mg/L

Posaconazole TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur after 7 days of initiation of therapy

Cmin > 0.5–0.7 mg/L (prophylaxis)
Cmin > 1 mg/L (treatment)

Voriconazole TDM recommendation by Panel: “YES”

Cmin monitoring
 One sample
 30 min or just before the next dosing
 Sampling should occur between 2 and 5 days of initiation of therapy

Cmin: 2–6 mg/L (prophylaxis or treatment)

Antivirals Suggested sampling scheme/strategy Target

Aciclovir/valaciclovir TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Foscarnet TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Ganciclovir/valganciclovir TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Oseltamivir TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”

Ribavirin TDM recommendation by Panel: “NEITHER RECOMMEND NOR DISCOURAGE”
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alterations may lead to inadequate beta-lactam concen-

trations particularly in the earlier phase of critical illness. 

Hypoalbuminemia has been associated with an increase 

in the free fraction (non-protein bound) of highly pro-

tein-bound beta-lactams (e.g. ceftriaxone, ertapenem and 

semisynthetic penicillins such as flucloxacillin, oxacillin 

and temocillin) and low unbound concentrations towards 

the end of the dosing interval [8].

Pharmacodynamics

�e PK/PD index associated with optimal beta-lactam 

activity is the   %  fT>MIC (40–70%). Critically ill patients 

data suggest that patients may benefit from longer (e.g. 

100%  fT>MIC) [41–43] and higher (e.g. 2–5 × MIC) 

[42–44] beta-lactam exposures than those previously 

described. Although the beta-lactams generally have a 

wide therapeutic index, high exposures have been asso-

ciated with neurotoxicity. Although myelosuppression is 

well-known toxicity for the beta-lactams [45], no toxicity 

thresholds have been well established to date.

Dosing in critically ill patients

An initial loading dose (LD) followed by prolonged beta-

lactam infusion (continuous or extended infusion) max-

imises PK/PD target attainment and is likely to improve 

clinical outcomes in critically ill patients [46].

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when beta-lactam antibiotics are used in criti-

cally ill patients.

�e collateral damage of more aggressive beta-lactam 

dosing to account for altered drug PK, i.e. excessive drug 

exposure, has been increasingly reported over the last 

10  years, although it is probably still under-reported. 

TDM of beta-lactam antibiotics in critically ill patients 

is, therefore, becoming more common to optimise dos-

ing whilst minimising the likelihood of toxicity [5, 47]. 

Cmin samples at steady state are widely used, although the 

use of dosing software could enable even earlier sampling 

and dose optimisation [48].

Table 5 Comparative studies highlighting clinical bene�ts of  performing therapeutic drug monitoring for  gentamicin, 

voriconazole and ribavirin

DFL = Dutch �orin, i.e. the currency of Netherlands up to 2002; TDM = therapeutic drug monitoring

a An asterisk indicates a signi�cant di�erence between TDM and non-TDM groups

b Only 53 patients were included

c Target trough concentration of 1.0–5.5 mg/L

d Included either complete or partial response

e Only 37 patients were included

f Only 34 patients were included

g Reported in a research letter

h Cumulative ribavirin exposure above 224.3 mg/L was signi�cantly associated with sustained virological response

i Target concentration of 3.7 mg/L

Study/country/population Patients Study design Clinical  outcomesa TDM Non-TDM

Van Lent-Evers (1999) Total: 232 Multi-centre, non-randomised, 
before-and-after trial

Dose changes (%)* 48.6 80.4

 Netherlands TDM: 105 TDM: Bayesian-guided dosing Duration of therapy (days)* 5.9 ± 2.9 8.0 ± 4.9

 Gentamicin Non-TDM: 127 Non-TDM: standard or nomo-
gram

Length of stay (days)* 20.0 ± 13.7 26.3 ± 31.5

 Gram-negative sepsis Mortality (%)
Nephrotoxicity (%)*
Total costs (in DFL)*

9 (8.6%)
3 (2.8)
13,125 ± 9,267

18 (14.2)
17 (13.4)
16,862 ± 17,721

Park (2012) Total: 110 Single-centre, assessor-blinded, 
randomised controlled trial

Adverse events (%) 23 (42) 22 (42)b

 South Korea TDM: 55 TDM: concentration-controlledc Drug discontinuation (%)* 2 (4) 9 (17)b

 Voriconazole Non-TDM: 55 Non-TDM: standard therapy Treatment response (%)*,d 30 (81)e 20 (59)f

 Invasive fungal infections

Stickel (2013)g Total: 16 Multi-centre, open-labelled, 
randomised controlled trial

Sustained virological response 
(%)h

10 (62.5) 6 (37.3)

 Switzerland TDM: 16 TDM: concentration-controlledi Mean haemoglobin (g/L)* 99.6 106.3

 Ribavirin Non-TDM: 16 Non-TDM: weight-based dosing

 Chronic hepatitis C
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Bioanalytical assay

Several high-performance liquid chromatography with 

ultraviolet detection (HPLC–UV) and liquid chromatog-

raphy–tandem mass spectrometry (LC–MS/MS) assays 

have been applied to beta-lactam TDM.

Co-trimoxazole

Pharmacokinetics

Co-trimoxazole consists of a combination of sulfameth-

oxazole and trimethoprim in a 5:1 ratio. Both drugs are 

predominantly cleared by renal elimination and are mod-

erately bound to plasma proteins. Although the impact 

of critical illness on its PK has been scarcely reported, 

significant PK variability has been observed with weight-

based dosing of co-trimoxazole in older studies [49, 50].

Pharmacodynamics

Cmax and fAUC 0–24/MIC ratios have been linked with 

optimal sulfamethoxazole/trimethoprim activity. Higher 

doses and exposures may likely increase the likelihood 

of adverse events such as hyperkalemia and metabolic 

acidosis.

Dosing in critically ill patients

�ere are insufficient clinical data to support altering co-

trimoxazole dosing for maximal outcomes in critically ill 

patients. Weight-based dosing depending on the patho-

gen is appropriate.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

sulfamethoxazole (as the representative drug in co-tri-

moxazole) TDM in critically ill patients.

Bioanalytical assay

No commercial assays are currently available, and a chro-

matographic assay is required to facilitate TDM.

Daptomycin

Pharmacokinetics

Daptomycin demonstrates a low Vd and is predominantly 

cleared via renal elimination. Vd and CL alterations are 

common, leading to variable and low drug exposure. It is 

a highly protein-bound drug (92–94%) and the free frac-

tion increases in critically ill patients.

Pharmacodynamics

AUC 0–24/MIC ratios of ≥ 666 mg/L have been described 

for daptomycin efficacy in critically ill patients [51]. More 

recently, a Cmin of < 3.2  mg/L has been linked to poor 

clinical outcomes in hospitalised patients with various 

Gram-positive infections [52]. A Cmin of  ≥ 24.3 mg/L is 

associated with an increased likelihood of creatine phos-

phokinase (CPK) elevation by > 30-fold [53].

Dosing in critically ill patients

Current data suggest that optimal AUC 0–24/MIC ratios 

can easily be achieved with a Product Information dose of 

6 mg/kg but only for pathogens with an MIC of 0.1 mg/L. 

With increasing MICs, higher doses (10–12  mg/kg/day) 

are probably required to achieve these targets [51, 54, 55].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

daptomycin TDM in critically ill patients.

As daptomycin presents highly variable and unpredict-

able PK, several centres have performed TDM and have 

reported their clinical experience [52, 56, 57]. Previous 

work has aimed for Cmin < 24  mg/L at steady-state [52, 

57]. AUC-based monitoring, via LSS, can also be applied 

to guide daptomycin dosing to achieve AUC 0–24/MIC 

ratios of ≥ 666 [58].

Bioanalytical assay

HPLC–UV and LC–MS/MS assays have been published 

for daptomycin TDM.

Fluoroquinolones

Pharmacokinetics

Fluoroquinolones are moderately lipophilic with Vd gen-

erally unaffected by critical illness, with the exception of 

levofloxacin. Most fluoroquinolones have a moderate to 

low degree of protein binding, and some are cleared, at 

least to some degree, by renal elimination.

Pharmacodynamics

Fluoroquinolones exhibit “concentration-dependent” 

bactericidal activity, and the AUC 0–24/MIC ratio best pre-

dicts clinical efficacy. Higher Cmax/MIC ratios (> 8–20) 

may also be required for optimal bactericidal activity [59, 

60]. AUC 0–24/MIC ratios of 25–30 may suffice against the 

Gram-positive organisms, but higher values (≥ 125) are 

needed against the Gram-negative organisms [61, 62]. 

Several studies have also suggested that a ratio of > 100–

200 may suppress the emergence of resistance against 

Gram-negative organisms. Although increasing reports 

of fluoroquinolones-associated seizures have emerged 

[63–65], no toxicity thresholds have been established and 

causality is debated [66].

Dosing in critically ill patients

A quinolone dosing regimen that maximises the AUC 

0–24/MIC (e.g. LD with higher maintenance doses) should 

be considered in critically ill patients.
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TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

fluoroquinolone TDM in critically ill patients.

Given the inter-individual PK variability reported in 

critically ill patients and the high propensity for emer-

gence of resistance against quinolones, TDM may be use-

ful, particularly where pathogens have MICs close to the 

susceptibility breakpoint.

Bioanalytical assay

HPLC and LC–MS/MS assays have been published for 

fluoroquinolones TDM.

Glycopeptides

Teicoplanin

Pharmacokinetics

Teicoplanin is hydrophilic, with a Vd of 0.7–1.4 L/kg, and 

is predominantly cleared via renal elimination. It has a 

long elimination half-life (t½) due to its high plasma pro-

tein binding (≥ 90%). Variability of teicoplanin exposure 

is significant in critically ill patients [67–69].

Pharmacodynamics

A Cmin of ≥ 10–20 mg/L has been associated with favour-

able clinical response in uncomplicated infection [70, 71], 

but higher concentrations (≥ 20–30 mg/L) are advocated 

for severe Staphylococcal infections including endocardi-

tis and osteomyelitis. However, the clinical data support-

ing these higher concentrations are sparse. More recent 

data suggested that the AUC 0–24/MIC ratio (≥ 750) may 

better predict teicoplanin activity in serious methicillin-

resistant S. aureus (MRSA) infections [72, 73]. Unpub-

lished studies reported that a Cmin of > 60 mg/L increased 

the likelihood of nephrotoxicity.

Dosing in critically ill patients

Teicoplanin has a long t½ (150  h) with the use of LD 

essential to reduce the time to reach therapeutic 

exposures.

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when teicoplanin is used in critically ill patients.

Bioanalytical assay

HPLC–UV, LC–MS/MS and immunoassays have been 

published for teicoplanin TDM.

Vancomycin

Pharmacokinetics

Vancomycin is hydrophilic, demonstrates a low Vd and 

is predominantly cleared via renal elimination. Critical 

illness alters the Vd and CL of vancomycin leading to var-

iable and low drug exposure.

Pharmacodynamics

AUC 0–24/MIC ratios of ≥ 400 are recommended against 

Staphylococcus aureus infection, whereas higher expo-

sures are advocated when treating critically ill patients 

with septic shock [74–76]. Prolonged (≥ 7  days) 

and high vancomycin exposures are associated with 

nephrotoxicity.

Dosing in critically ill patients

Safely attaining optimal AUC 0–24/MIC ratios when treat-

ing pathogens with MICs of > 1 mg/L is highly challeng-

ing with vancomycin [77]. LD of 25–30 mg/kg, followed 

by 15–20  mg/kg every 8–12  h should be considered in 

critically ill patients without renal impairment. Con-

tinuous vancomycin infusion has been associated with a 

lower nephrotoxicity risk [78, 79], but clinical superiority 

has yet to be demonstrated over intermittent dosing. For 

practical reasons and ease of TDM, however, continu-

ous vancomycin infusion is sometimes preferred and has 

been increasingly used in some centres.

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when vancomycin is used in critically ill patients.

Monitoring Cmin (15–20  mg/L for intermittent infu-

sion) or average steady-state concentration (Css, 

20–25 mg/L for continuous infusion) for pathogens with 

MIC ≤ 1 mg/L has been widely used as a surrogate for the 

AUC 0–24/MIC target. However, current data have dem-

onstrated that Cmin is a poor surrogate for AUC 0–24 and 

may tend to underestimate the actual vancomycin expo-

sure [31, 80–83]. AUC-based monitoring with Bayes-

ian dose adaptation may likely be a better tool to guide 

vancomycin treatment in critically ill patients. Although 

the contemporary AUC 0–24/MIC target has always been 

approximated as ≥ 400 for vancomycin, this index was 

derived from BMD MIC, and the E-test equivalence to 

this might only be 226 [84].

Bioanalytical assay

Immunoassays are commercially available for vancomy-

cin TDM.

Linezolid

Pharmacokinetics

Linezolid is moderately lipophilic, demonstrates a Vd 

that approximates the total volume of total body water, 

is predominantly cleared via non-renal elimination and 

demonstrates significant intra- and inter-patient PK vari-

ability leading to variable linezolid exposure.
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Pharmacodynamics

Maximum efficacy is demonstrated at % T>MIC of ≥ 85% 

and AUC 0–24/MIC ratio of 80–120 [85]. Linezolid-

induced thrombocytopenia has been reported at Cmin 

and AUC 0–24 of > 7–10 and > 300–350, respectively.

Dosing in critically ill patients

Critically ill patients may benefit from higher linezolid 

doses and/or altered dosing approaches (e.g. front-loaded 

dosing regimen and continuous infusion) although these 

approaches should be supported with TDM if available. 

Subgroups of patients who may likely require higher-

than-standard linezolid doses include those who are 

obese, those with acute respiratory distress syndrome 

and ARC, as well as those who are infected with patho-

gens with MIC ≥ 2 mg/L [54, 86].

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when linezolid is used in critically ill patients.

Using an epidemiological MIC distribution, a Cmin tar-

get of > 2  mg/L is well correlated with an AUC 0–24/MIC 

ratio of ≥ 80 [87]. �erefore, maintaining linezolid Cmin 

between 2 and 7 mg/L is recommended for optimal drug 

exposure whilst minimising haematological toxicity [88]. 

Alternatively, TDM via LSS can be used [89].

Bioanalytical assay

HPLC–UV, LC–MS/MS and immunoassays have been 

published, but these assays are currently sparsely imple-

mented for routine TDM.

Colistin

Pharmacokinetics

Colistin is administered parenterally as the prodrug colis-

tin methanesulfonate (CMS). CMS and colistin demon-

strate a low Vd and have mixed elimination routes. �e Vd 

and CL of colistin may be altered in critically ill patients, 

potentially affecting colistin exposure. Colistin protein 

binding in critically ill patients was reported as 59–74% 

and was concentration dependent [90].

Pharmacodynamics

Colistin demonstrates “concentration-dependent” bac-

tericidal activity, and both in vitro and in vivo data have 

suggested that the free AUC 0–24/MIC (fAUC 0–24/MIC) 

ratio best predicts its activity. fAUC 0–24/MIC ratios of 

10.9–13.7 and 3.5–9.0 have been described for optimal 

killing against Pseudomonas aeruginosa and Acinetobac-

ter baumannii, respectively [91]. Prolonged high expo-

sures are associated with neuro- and nephrotoxicity 

[92–95]. A Cmin of > 2.4 mg/L increases the likelihood of 

colistin-induced nephrotoxicity [92, 96, 97].

Dosing in critically ill patients

A LD is recommended to compensate for the enlarged 

Vd in critically ill patients with the CMS dosing regimen 

also adapted to renal function. �e variability in conver-

sion from prodrug to active compound, particularly in 

patients with ARC, makes dosing highly challenging in 

this patient group, and as such, leading studies on colistin 

dosing define a singular dose for all creatinine clearance 

values > 90 mL/min [98].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

colistin TDM in critically ill patients.

�e therapeutic index for colistin is exceptionally nar-

row—if TDM is performed, due to the ongoing conver-

sion of CMS to colistin, it is recommended to collect 

Cmin samples when CMS concentrations and conversion 

are at the lowest (i.e. samples to be drawn just before the 

next dose or Cmin monitoring), and these samples should 

be processed immediately. It has been suggested that 

an average steady-state concentration (Css) of 2  mg/L 

predicts colistin efficacy whilst limiting the likelihood 

of nephrotoxicity [98, 99]. �is target concentration 

should achieve an fAUC 0–24/MIC ratio of ~ 12 for path-

ogens with an MIC of ≤ 2  mg/L, which corresponds to 

the European Committee on Antimicrobial Susceptibil-

ity Testing (EUCAST) breakpoint for susceptibility. As 

colistin concentrations are relatively constant with little 

fluctuations at steady state, this target concentration can 

also be applied for Cmin monitoring. However, this tar-

get concentration has not been correlated with clinical 

outcomes.

Bioanalytical assay

High-performance liquid chromatography with fluores-

cence detection (HPLC-FL) and LC–MS/MS assays have 

been published for colistin TDM.

Polymyxin B

Pharmacokinetics

Polymyxin B demonstrates a low Vd and is predominantly 

cleared via non-renal elimination. Protein binding was 

high and hugely variable in critically ill patients and was 

reported as 58–98.4%. Although the PK of polymyxin B 

is relatively favourable when compared to colistin, cur-

rent Product Information dosing recommendations may 

likely lead to sub-optimal drug exposure in critically ill 

patients.

Pharmacodynamics

Polymyxin B demonstrates “concentration-dependent” 

kill characteristics, and both in  vitro and in  vivo data 
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have suggested that the fAUC 0–24/MIC ratio best pre-

dicts its activity. fAUC 0–24/MIC ratios of 3.7–28.0 corre-

lated best with Klebsiella pneumoniae killing [100], and 

these indices are in line with those reported for colistin 

against P. aeruginosa and A. baumannii (3.5–13.9) [91]. 

A steady-state AUC 0–24 of 100 mg h/L has been proposed 

as the nephrotoxicity threshold [101].

Dosing in critically ill patients

Current data suggest that LD of 2.5  mg/kg followed by 

1.5–2.5 mg/kg/day (in two divided doses) may be appro-

priate for pathogens with an MIC of ≤ 1  mg/L [102, 

103]. Higher daily doses (up to 3  mg/kg/day), preceded 

by LD, should be considered for pathogens with an MIC 

of > 1–2  mg/L. Although it has been generally accepted 

that IV polymyxin B is best dosed by total body weight, 

emerging data have since disputed this approach [104].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

polymyxin B TDM in critically ill patients.

�e therapeutic index for polymyxin B is excep-

tionally narrow—if performed, AUC-based TDM 

(50–100 mg h/L) with at least one sample collected (con-

centrations at 12–24  h post-initiation of therapy) com-

bined with Bayesian dose adaptation has been suggested 

to optimise polymyxin B dosing in critically ill patients 

[101, 102].

Bioanalytical assay

LC–MS/MS assays have been published for polymyxin B 

TDM.

Antifungals
Echinocandins

Pharmacokinetics

�e echinocandin antifungals include anidulafungin, 

caspofungin and micafungin, which are only available 

for parenteral use. �e echinocandins have high plasma 

protein binding (≥ 97–99%). Exposure in critically ill 

patients is generally lower and more variable compared 

to healthy volunteers, but the clinical implication of this 

is unclear due to the heterogeneous case mix and small 

sample sizes in these studies.

Pharmacodynamics

Echinocandin exposures relating to optimal clinical out-

comes and toxicity occurrence have not been identified 

thus far. However, optimal mycological response for 

micafungin against Candida spp. has been observed in 

patients with AUC 0–24/MIC ratios of > 3000 [105].

Dosing in critically ill patients

Although echinocandins are presumed to be clinically 

comparable with each other, subtle dosing differences 

exist, e.g. the need for a loading dose, metabolic route 

and drug–drug interactions. Higher body weight may 

require higher dosing [106–108]. Echinocandin exposure 

can be influenced in patients with severe hepatic impair-

ment, particularly for caspofungin. Lower exposure, 

as well as higher exposure, has been observed in these 

patients [109–111].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

echinocandin TDM in critically ill patients.

Bioanalytical assay

LC–MS/MS assays have been published but are sparsely 

implemented for routine TDM.

Fluconazole

Pharmacokinetics

Fluconazole is available for parenteral and oral adminis-

tration, is well absorbed from the gastrointestinal tract 

and displays linear PK. It is moderately lipophilic, dem-

onstrates a Vd of around 1 L/kg and is predominantly 

cleared via renal elimination. Significant inter-individual 

PK variability has been observed in critically ill patients.

Pharmacodynamics

Maximal clinical efficacy in patients with candidemia has 

been described with AUC 0–24/MIC ratios of ≥ 55.2–100 

[112, 113]. As the dose can be used as a surrogate for 

fluconazole AUC [114], the ratio of dose to MIC (dose/

MIC) has also been used to describe clinical outcomes 

[112, 113, 115]. Higher dosing may likely lead to hepato-

toxicity and seizures [116].

Dosing in critically ill patients

LD of 12 mg/kg IV followed by a maintenance dose (MD) 

of 6 or 12 mg/kg/day IV is advocated to achieve either the 

low (AUC 0–24/MIC ratio of 25) or high (AUC 0–24/MIC 

ratio of 100) PK/PD target, respectively, in critically ill 

patients with normal renal function [117].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

fluconazole TDM in critically ill patients.

Bioanalytical assay

Several chromatographic assays have been published for 

fluconazole TDM.
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Flucytosine

Pharmacokinetics

Flucytosine’s Vd ranges from 0.6 to 0.9 L/kg and is pre-

dominantly cleared via renal elimination. Significant 

inter-patient PK variability has been observed, leading to 

variable flucytosine concentrations.

Pharmacodynamics

A Cmax of > 100  mg/L has been associated with hepato-

toxicity and myelosuppression in several clinical studies 

[118–121]. Concentrations of < 25  mg/L may selectively 

amplify resistant C. albicans mutants [122].

Dosing in critically ill patients

�ere are insufficient clinical data to support altering 

flucytosine dosing for maximal outcomes in critically ill 

patients. Standard, weight-based dosing, adapted to renal 

function, is appropriate.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

flucytosine TDM in critically ill patients.

TDM-guided dosing to optimise flucytosine efficacy 

remains poorly described as opposed to prevention of 

toxicity. If TDM is performed, a Cmax of < 100 mg/L and 

Cmin of ≥ 25 mg/L can be used to prevent flucytosine tox-

icity and resistance, respectively.

Bioanalytical assay

Several chromatographic assays have been published for 

flucytosine TDM.

Isavuconazole

Pharmacokinetics

Isavuconazole is available in oral (capsule) and IV for-

mulations, and switching between these formulations is 

acceptable. It has a large Vd, and its CL is highly depend-

ent on hepatic metabolism. Plasma protein binding is 

high (> 99%). It displays linear and favourable PK com-

pared to the other triazoles. Exposures in real-world clin-

ical settings are very similar to those described in clinical 

trials with > 90% of patients receiving standard isavucon-

azole dosing expected to achieve a proposed therapeutic 

concentration of 1 mg/L [123, 124].

Pharmacodynamics

Current data do not identify any significant relationship 

between isavuconazole exposure with clinical efficacy 

and safety end points.

Dosing in critically ill patients

LD of 200  mg IV 8 hourly for six doses (or 48  h) fol-

lowed by MD of 200 mg IV once daily is recommended to 

achieve an effective Css by day 3 of treatment.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

isavuconazole TDM in critically ill patients.

Bioanalytical assay

HPLC–UV and LC/MS–MS assays have been published 

for isavuconazole monitoring.

Itraconazole

Pharmacokinetics

Itraconazole is available in oral (capsule/tablet and oral 

solution) and IV formulations. It has 30% higher bioavail-

ability as an oral solution and is more preferred to cap-

sule/tablet formulations. It is lipophilic, demonstrates a 

large Vd and is predominantly cleared via hepatic metab-

olism. Plasma protein binding is high (> 99%). Itracona-

zole displays variable and nonlinear PK. �ere are few 

data available concerning the use of itraconazole in criti-

cally ill patients, although continuous haemodiafiltration 

results in increased itraconazole elimination [125].

Pharmacodynamics

Higher itraconazole Cmin has been associated with clini-

cal outcome benefits in Aspergillus spp. [126], Cryptococ-

cus neoformans [127, 128] and Histoplasma capsulatum 

infections [129]. During itraconazole prophylaxis, break-

through infections and mortality are more likely in 

neutropenic patients with a Cmin of < 0.25–0.5  mg/L 

[130–132]. Oropharyngeal and oesophageal candidiasis 

patients demonstrated better clinical responses when 

itraconazole concentrations are > 0.6–1 mg/L [133, 134]. 

An average concentration of ≥ 17.1 mg/L has been linked 

with itraconazole toxicity [135, 136].

Dosing in critically ill patients

LD of 200  mg IV 8 hourly for nine doses (or 72  h) fol-

lowed by MD of 200 mg IV once or twice daily is recom-

mended to achieve target concentrations within the first 

few days of therapy.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

itraconazole TDM in critically ill patients.

Apart from demonstrating nonlinear PK [137], its high 

variability in bioavailability and hepatic metabolism 

together with a less favourable safety profile when com-

pared to other azoles traditionally support itraconazole 

TDM. A Cmin target between 0.5 and 1 mg/L is used to 
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guide both prophylaxis and treatment of invasive fungal 

infections.

Bioanalytical assay

Several LC–MS/MS assays have been published for itra-

conazole TDM.

Posaconazole

Pharmacokinetics

Posaconazole is available as an oral suspension, tablet 

and IV formulations. It is lipophilic, demonstrates a large 

Vd and is predominantly cleared via hepatic glucuroni-

dation. Plasma protein binding is high (> 98%). Extreme 

inter- and intra-individual PK variability and, conse-

quently, sub-optimal exposures are typically seen with 

the oral suspension [138–142].

Pharmacodynamics

Higher Cmin (> 0.5–0.7  mg/L) has been associated with 

reduced breakthrough infections in patients receiv-

ing posaconazole prophylaxis [143–150]. Patients with 

invasive aspergillosis demonstrated improved clinical 

response with an average posaconazole concentration 

of > 1 mg/L [151, 152]. Exposure-related toxicity has not 

been described for posaconazole although the European 

Medicines Agency (EMA), and most clinical studies have 

suggested a putative Cmin threshold of > 3.75–4  mg/L 

[153], which has yet to be validated clinically.

Dosing in critically ill patients

LD of 300  mg IV every 12 hourly on day 1 followed by 

MD of 300 mg IV once daily is recommended for invasive 

fungal infections.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

posaconazole TDM in critically ill patients.

Although extensive PK variability has been previously 

described, the newer delayed-release oral tablets and IV 

formulations increase the likelihood therapeutic targets 

will be achieved [138, 154–156]. However, recent data 

still report highly variable PK in critically ill patients, 

even with IV posaconazole [157], and therefore TDM 

may still be useful in this population. Because of the long 

half-life of the drug (16–35  h) [158], a concentration 

obtained at a random time with respect to the previous 

dose, including a Cmin, is approximately representative of 

the average daily concentration (Cave) and is accepted as a 

surrogate for AUC. If TDM is performed, a steady-state 

Cave target of > 0.5–0.7 mg/L and > 1 mg/L can be used to 

guide posaconazole prophylaxis and treatment of inva-

sive fungal infections, respectively, particularly when oral 

suspension is used.

Bioanalytical assay

Several chromatographic assays have been published for 

posaconazole TDM.

Voriconazole

Pharmacokinetics

Voriconazole is lipophilic, demonstrates a large Vd and is 

predominantly cleared via hepatic metabolism. Plasma 

protein binding is 58%. Voriconazole displays nonlinear 

PK in adults and exhibits extensive inter-individual PK 

variability in all patient populations.

Pharmacodynamics

A Cmin of ≥ 1 [159–165] or ≥ 2 mg/L [166–168], as well as 

a Cmin to MIC (Cmin/MIC) ratio of 2–5 [169], has been 

associated with improved clinical outcomes in the treat-

ment of invasive fungal infections. Although no clear 

exposure–response relationship has been established for 

voriconazole prophylaxis, breakthrough fungal infections 

are reported to be more likely with a Cmin of ≤ 1.5–2 mg/L 

[170, 171]. Cmin of ≥ 4.5–6  mg/L has been linked with 

voriconazole-associated hepatotoxicity and neurotoxicity 

[161, 165, 167, 172–175].

Dosing in critically ill patients

LD of 6 mg/kg IV every 12 hourly for two doses followed 

by 3–4 mg/kg IV 12-hourly is recommended for invasive 

fungal infections.

TDM in critically ill patients

�e Panel recommends that TDM be routinely per-

formed when voriconazole is used in critically ill patients.

TDM-guided voriconazole dosing in the treatment of 

invasive fungal infections has been shown to improve 

clinical response and reduce voriconazole discontinua-

tion due to adverse events [163]. Limited data are avail-

able in critically ill patients, but sub-optimal exposures 

and negative clinical outcomes have been observed in 

these patients with standard voriconazole dosing [160]. 

Also, recent publications reported the significant role of 

the inflammatory response in the unpredictable PK of 

voriconazole with a 0.015 mg/L rise in the Cmin for every 

1 mg/L increase in C-reactive protein (CRP) [176–178]. 

As inflammation is common in critically ill patients, this 

could have a significant impact on the incidence of vori-

conazole toxicities. A Cmin target between 2 and 6 mg/L 

is recommended to guide voriconazole dosing.

Bioanalytical assay

Several chromatographic assays have been published for 

voriconazole TDM.
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Antivirals
Aciclovir/valaciclovir

Pharmacokinetics

Valaciclovir is the orally administered prodrug of aciclo-

vir, which is moderately lipophilic, demonstrates a large 

Vd and is predominantly cleared via renal elimination.

Pharmacodynamics

Limited data exist linking aciclovir exposures with clini-

cal efficacy and toxicity. Although the efficacy of aciclo-

vir/valaciclovir in the treatment of herpes simplex virus 

(HSV) infection has been associated with AUC and the 

time that the drug remains above the 50% inhibitory 

concentration  (EC50; T > EC50) [179–183], these indices 

require further investigations. Higher concentrations, 

particularly in patients with renal impairment, have been 

linked with the likelihood of gastrointestinal and neuro-

logical adverse events [184–187].

Dosing in critically ill patients

A standard dose of 10–15  mg/kg IV 8 hourly is recom-

mended for severe viral infections in immunocompetent 

patients.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

aciclovir TDM in critically ill patients.

Few reports are available on aciclovir TDM, and most 

of them included patients with encephalitis [188, 189]. 

A Cmin of 2–4  mg/L can be recommended if TDM is 

performed.

Bioanalytical assay

Several HPLC–UV and LCMS-MS assays have been pub-

lished for aciclovir TDM.

Foscarnet

Pharmacokinetics

Significant inter- and intra-individual PK variability has 

been reported, and it may be challenging to estimate fos-

carnet concentrations over time in an individual patient 

accurately.

Pharmacodynamics

No clear relationship has been established so far between 

its concentration and clinical efficacy. Most investiga-

tors have suggested maintaining plasma concentra-

tions between an arbitrary range of 300–500  µmol/L to 

ensure that effective antiviral activity is achieved and 

sustained. Although several small-scale clinical studies 

have reported that clinical response (e.g. progression of 

CMV retinitis in HIV patients) and nephrotoxicity can be 

predicted by the AUC [190–194], the therapeutic expo-

sure range of foscarnet remains undefined.

Dosing in critically ill patients

�ere are insufficient clinical data to support altering 

foscarnet dosing for maximal outcomes in critically ill 

patients. Standard, weight-based dosing, adapted to renal 

function, depending on the indication is appropriate.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

foscarnet TDM in critically ill patients.

Bioanalytical assay

Several HPLC–UV methods have been published to 

determine foscarnet concentration in biological fluids.

Ganciclovir/valganciclovir

Pharmacokinetics

Valganciclovir is the prodrug of ganciclovir, which is 

hydrophilic, demonstrates a low Vd (0.7 L/kg) and is 

predominantly cleared via renal elimination. �e PK 

of ganciclovir/valganciclovir appears to be predictable 

with minimal unexplained inter-patient variability in 

solid organ transplant recipients. �ere is concern that 

plasma PK exposures may not be an accurate surrogate 

marker for intracellular concentrations to predict clinical 

response and toxicity [195, 196].

Pharmacodynamics

No clear relationship has been established between gan-

ciclovir exposures with clinical efficacy and toxicity. AUC 

0–24 has been associated with ganciclovir antiviral activ-

ity with values of ≥ 40–60  mg  h/L advocated for CMV 

prophylaxis [197–201]. Cmin has also been used to pre-

dict ganciclovir activity, but the optimal cut-off value 

remains poorly defined [202–207]. No clearly defined 

toxicity thresholds have been described for ganciclovir, 

but higher Cmin and AUC 0–24 values are likely to increase 

the risk of haematological and neurological toxicity [199, 

208].

Dosing in critically ill patients

In the treatment of CMV infections in immunocompro-

mised patients, the usual dose of ganciclovir for induc-

tion therapy is 5 mg/kg IV every 12 hourly which is then 

followed by 5 mg/kg as a single daily infusion for mainte-

nance therapy.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

ganciclovir/valganciclovir TDM in critically ill patients.
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Several centres have reported their experience with 

ganciclovir/valganciclovir TDM [208, 209], even though 

changes in immunological markers have been reported 

to predict clinical outcomes reliably [210, 211]. A Cmin 

of > 2  mg/L or AUC 0–24 of > 40  mg  h/L can be applied 

if TDM is performed. A clinically applicable LSS to 

estimate ganciclovir/valganciclovir AUC 0–24 has been 

described [24] and combined with Bayesian dose adap-

tation; this approach demonstrated superior PK/PD 

outcomes and trends towards patient benefits when com-

pared to standard dosing recommendations [208].

Bioanalytical assay

Several HPLC–UV and LC/MS–MS assays have been 

published for ganciclovir/valganciclovir TDM.

Oseltamivir

Pharmacokinetics

Oseltamivir is hydrophilic, demonstrates a large Vd and 

is predominantly cleared via renal elimination. Its active 

metabolite, oseltamivir carboxylate (OC), displays mini-

mal inter- and intra-individual PK.

Pharmacodynamics

No clear relationship has been established between 

oseltamivir and OC exposures with either clinical efficacy 

or toxicity. Although the efficacy of oseltamivir in animal 

models of influenza appears to be dose dependent, no 

formal exposure–response relationships have been estab-

lished [212–214]. It has been suggested that the AUC 0–24 

or AUC 0–24/EC50 might be suitable indices to guide ther-

apy, but further studies are warranted to validate the clin-

ical relevance of these findings [215, 216]. Higher AUC 

0–12 OC exposures have been associated with mild-to-

moderate adverse events [217]. �e PK of OC appears to 

be predictable, although this has been mostly determined 

in healthy volunteers where PK variability is known to be 

low [217, 218].

Dosing in critically ill patients

A dose of 75 mg PO once or twice daily is currently rec-

ommended for prophylaxis and treatment of influenza in 

critically ill patients.

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

oseltamivir TDM in critically ill patients.

Although there are limited clinical data to support 

oseltamivir TDM, French investigators have recently 

described the utility of paracetamol absorption test to 

predict OC absorption and likely plasma concentrations 

in critically ill patients [219].

Bioanalytical assay

Several HPLC–UV and LC/MS–MS assays have been 

published for oseltamivir TDM.

Ribavirin

Pharmacokinetics

Ribavirin demonstrates a large Vd (≥ 18 L/kg) and is pre-

dominantly cleared via renal elimination. Wide inter-

individual PK variability, including bioavailability, has 

been reported with this drug.

Pharmacodynamics

Inconsistent data have been reported on the relation-

ship between ribavirin exposure and efficacy, as well as 

toxicity occurrence. Although higher Cmin [220–226] 

and AUC [225, 227, 228] values have been associated 

with eradication of hepatitis C virus (HCV) or sustained 

virological response in some studies, it is important to 

note that numerous studies have also shown no asso-

ciation between these parameters and sustained viro-

logical response. It has been suggested that the AUC 0–4 

(1.76 mg h/L) and AUC 0–12 (3.01 mg h/L) after the first 

dose may be a better sustained virological response pre-

dictor when compared to Cmin or any single time point 

[228]. Although haemolytic anaemia has been linked 

with a Cmin of > 2.3–3.5 [224, 229, 230], some studies have 

found no significant correlation. Additionally, other stud-

ies indicated that other factors (e.g. pegIFN-alpha-2a 

levels) may have a greater impact on the outcome than 

ribavirin concentrations [231].

TDM in critically ill patients

�e Panel neither recommends, nor discourages routine 

ribavirin TDM in critically ill patients.

Ribavirin TDM has been controversially discussed for 

at least a decade since hepatitis C is no longer treated as a 

pathogenic entity but rather according to different geno-

types, and old combination partners are no longer state 

of the art. Furthermore, there is currently conflicting data 

regarding the relationship between ribavirin exposures 

with therapeutic or toxic effects. However, it is important 

to note that as opposed to weight-based dosing, TDM-

guided ribavirin dosing has been shown to significantly 

improve sustained virological response in patients with 

chronic hepatitis C genotype 1 [227]. Although anaemia 

was more severe in the TDM group, it was well managed 

with erythropoietin beta. More recently, TDM has been 

suggested as a useful tool to guide ribavirin treatment in 

lung transplant recipients with paramyxovirus infection 

[232].
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Bioanalytical assay

Several HPLC–UV and LC/MS–MS assays have been 

published for ribavirin TDM.

Main areas for future investigations
Optimal antimicrobial exposures and PK/PD targets in the 

treatment of sepsis and septic shock in ICU

Optimal intravenous antimicrobial therapy needs to be 

administered as soon as possible, preferably within the 

first hour of sepsis and septic shock recognition [233]. 

Empirical antimicrobial therapy should attempt to pro-

vide coverage against all likely pathogens (bacterial, fun-

gal and/or viral) and effective exposures are needed in 

the interstitial fluid of tissues presumed to be the source 

of infection. As extreme pathophysiological changes are 

likely to affect antimicrobial exposures, factors associ-

ated with PK/PD alterations need to be determined and 

considered in critically ill patients with sepsis and sep-

tic shock. Optimal antimicrobial exposures and PK/PD 

targets for patient benefits need to be further elucidated 

before appropriate dosing regimens and strategies can 

be improved in this population. �e role of biomarkers 

as a surrogate for an antimicrobial response should be 

investigated as an earlier therapeutic intervention can be 

made rather than relying on clinical signs and symptoms 

[234, 235]. More data on plasma and target-site tissue PK 

of antimicrobials, particularly in the first 24 h of therapy, 

are needed to evaluate the appropriateness of the current 

dosing regimen in this patient population.

Optimal antimicrobial exposures for reducing resistance 

development in ICU

Most of the Panel’s treatment goals have been focused on 

maximising clinical and microbiological outcomes and 

not including resistance suppression. However, for most 

antimicrobials, clinical data are urgently needed to define 

thresholds that can minimise resistance emergence and 

whether they are safe for patients.

Impact of TDM in personalised antimicrobial dosing 

in critically ill patients

Only a few studies have attempted to compare the clini-

cal outcomes of TDM-guided antimicrobial dosing ver-

sus outcomes without this intervention [39, 163, 227]. 

Currently, most data were obtained from small-scale 

and uncontrolled studies, which are not of itself, suffi-

cient to support a global practice shift towards routine 

antimicrobial TDM in ICU. �erefore, well-designed 

and controlled studies focusing on patient-centred out-

comes should be performed in this population to evalu-

ate the real benefits of incorporating TDM into daily ICU 

practice.

The tools and essentials for TDM

Routine antimicrobial TDM in critically ill patients is 

currently hampered by slow turnaround times, and even 

in expert centres, antimicrobial concentrations may only 

be available after 6–8  h of blood collection, potentially 

leading to delayed dosing improvements. Furthermore, in 

most ICUs, TDM is probably not available for all impor-

tant antimicrobials and certainly, not for 24 h and 7 days 

a week [5, 6]. An easy-to-use chromatography-based 

method that enables rapid and reliable simultaneous 

determination of antimicrobial concentrations in plasma 

and tissues can be developed, and some are now being 

used routinely in clinical settings. Although concentra-

tion measurements are usually performed in blood matri-

ces (e.g. plasma or serum), several alternative sampling 

strategies (e.g. dried blood spots and volumetric absorp-

tive microsamples), which are minimally or non-invasive 

approaches, need to be further investigated and validated 

for routine TDM in critically ill patients. Importantly, 

these “patient-friendly” strategies may play an important 

role in the establishment of TDM centres in remote and 

resource-limited settings.

Conclusion
Although alternative dosing strategies can improve anti-

microbial exposure in critically ill patients, the extreme 

PK variability in this patient population means that some 

may still receive sub-optimal antibiotic exposure lead-

ing to unpredictable clinical outcomes. TDM-guided 

dosing is the only safe and effective way to ensure that 

all critically ill patients achieve therapeutic antimicro-

bial exposures. TDM-guided dosing has been shown to 

be clinically beneficial for aminoglycosides, voriconazole 

and ribavirin. For most common antibiotics and antifun-

gals in the ICU, a clear therapeutic range has been estab-

lished and for these agents, routine TDM in critically ill 

patients may be useful. Specifically, we recommend rou-

tine TDM when one of these antibiotics or antifungals is 

used in critically ill patients: aminoglycosides, beta-lac-

tam antibiotics, linezolid, teicoplanin, vancomycin and 

voriconazole. For the antivirals, urgent research is needed 

to identify therapeutic targets for patient benefits and to 

also ascertain whether antiviral TDM is indeed meritori-

ous in this patient population. Although we believe that 

TDM should be the standard of care for most antimicro-

bials in every ICU, important barriers, such as the avail-

ability of bioanalytical experts and TDM equipments in 

an institution, need to be addressed before routine TDM 

can be widely employed worldwide.
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