Antimonide NMOSFET with Source Side Injection Velocity of 2.7x10⁷ cm/s for Low Power High Performance Logic Applications

A. Ali¹, H. Madan¹, M. J. Barth¹, M. J. Hollander¹, J. B. Boos², B. R. Bennett², and S.Datta¹

The Pennsylvania State University, University Park, PA 16802, USA; ²Naval Research Lab, Washington, DC, USA

Email: aua176@psu.edu

Abstract: Antimonide (Sb) quantum well (QW) MOSFETs demonstrated with integrated high-κ dielectric (1nmAl₂O₃-10nm HfO₂). The long channel Sb NMOS exhibits effective electron mobility of 6,000 cm²/Vs at high field (2 x 10¹²/cm² of charge density (N_s)), which is the highest reported value for any III-V MOSFET. The short channel Sb NMOSFET ($L_G = 150$ nm) exhibits a cut-off frequency (f_T) of 120GHz, f_T - L_G product of 18GHz.µm and source side injection velocity (v_{eff}) of 2.7x10' cm/s, at drain bias (V_{DS}) of 0.75V and gate overdrive of 0.6V. The measured f_T and $f_T \times L_G$ are 2 x higher, and v_{eff} is 4x higher than Si NMOS (1.0-1.2V V_{DD}) at similar L_G , and are the highest for any III-V MOSFET. **Introduction:**InAs_xSb_{1-x} quantum-well (QW) heterostructure with high electron mobility integrated with high hole mobility strained In_xGa_{1-x}Sb QW, can potentially enable III-V CMOS and share the same metamorphic buffer on Silicon (Fig. 1a) [1]. In this paper, we report InAs_{0.8}Sb_{0.2} NMOSFETs with integrated high-k dielectric, which exhibit record high long channel electron mobility, short channel electron velocity and high-frequency small-signal performance, for the first time. The effects of interface trap density (Dit) which degrades the DC drive current and transconductance (g_m) is studied in detail using pulsed I-V and radio frequency (RF) measurements.

Device Fabrication and Characterization: Fig. 1(b) shows the schematic of $InAs_{0.8}Sb_{0.2}$ nMOSFET with $1nmAl_2O_3/10nm$ HfO₂ high-κ gate dielectric. We obtain Hall mobility of 13,500 cm²/Vs at a carrier density of $2.2x10^{12}$ /cm² for the as-grown device layers without dielectric. Fig. 1(c) shows the tilted view SEM of a device, fabricated using a process detailed in [2], with 150nm L_G and source-to-drain separation of 500nm.

<u>Development</u> of a Scaled Gate Stack for Antimonide MOSFETs: A high quality gate stack is needed for integration with InAs_xSb_{1-x} QW, with low EOT and J_{OX}, excellent interface properties and high carrier mobility in the channel. We use an ultra-thin (1nm) GaSb cap layer on top of the upper barrier for dielectric integration, to prevent oxidation of the In_{0.2}Al_{0.8}Sb barrier layer. Using ALD Al₂O₃/HfO₂ bilayer dielectric on n and p type GaSb, we demonstrate MOSCAPs with unpinned Fermi level across gap and scaled EOT (Fig. 2). The extracted D_{it} (Fig. 2b) is low towards valence band of GaSb which results in good nMOS turn off, while the high D_{it} from midgap to conduction band can affect drive current.

<u>DC Characterization:</u> Fig. 3(a-f) shows the transfer and output characteristics of Sb nMOSFETs with 5μm, 450nm and 150nm gate lengths. The long channel devices exhibit good I_{ON} - I_{OFF} ratio and excellent saturation in the output characteristics. Contact resistance limits the drive current in the 150nm L_G device which has an I_{DSAT} of $525\mu A/\mu m$ at V_{DS} of 1.0V. The sub-threshold characteristics and short channel effects degrade as L_G is scaled, due to the non-optimized barrier and oxide thickness and the thick quantum well structure (EOT=4.5nm). Long Channel Device Characterization: Fig. 4(a) shows the measured and simulated split C-V characteristics of L_G =20μm device. The stretch-out in the measured C-V compared to the simulated C-V is due to D_{it} . Fig. 4(b) shows the electron drift

mobility extracted from the output conductance and measured C-V characteristics. We report a record high effective electron mobility of 6,000 cm²/Vs at 2x10¹² /cm² of N_s, which is 15x higher than Si NMOS inversion layer mobility and 3x higher than that of InGaAs NMOS[3]. The Sb NMOSFET electron mobility is 2.2x lower than the Hall mobility. This is further investigated in detail using pulsed IV (2µs pulsed width) and RF measurements. Figs. 4 (c-d) show the output and transfer characteristics of the 450nm L_G device using DC and pulsed measurements. The pulsed I_D - V_D data shows significant improvement (by 35% at 0.75V gate overdrive) in I_{ON} and I_{ON} - I_{OFF} ratio compared to the DC. Fig 4(e) shows extrinsic g_m comparing DC, pulsed IV and RF measurements. Peak extrinsic RF g_m improves by 30% compared to DC G_m for a gate overdrive of 0.6V. This improvement is due to reduced charge trapping in the dielectric at very high frequencies. This confirms that the reduction in FET mobility compared to Hall mobility is due to overestimation of charge from split C-V, and the actual electron mobility in Sb MOSFET should be at least 30-40% higher than the measured DC value of 6000 cm²/Vs. Short Channel Device Characterization: Fig. 5(a) shows the measured and modeled scattering parameters of the 150nm L_G device from 100MHz to 50GHz and Fig. 5(b) shows the extracted circuit elements. Excellent agreement between the measured and simulated S-parameters confirms the extracted circuit element values. Fig. 5(c) shows the measured and modeled small signal current gain, |h21|, vs frequency for L_G=150nm, 300nm and 450nm. The devices have cut-off frequencies of 120GHz, 55GHz and 27GHz, respectively. From the extracted parameters from small signal modeling, we evaluate the source side injection velocity (veff) of these devices as $g_m/slope(C_{gs}\ vs\ L_G)$. Figs. 5(d-e) benchmark the v_{eff} and f_T of the Sb NMOS devices with state-of-the-art Si and III-V NMOS. The 150nm L_G Sb NMOS exhibits a v_{eff} of 2.7×10^7 cm/s and $f_{T-}L_G$ product of 18GHz.µm, which are the highest reported for III-V MOSFETs till date.

<u>Enhancement Mode Operation:</u> While above mentioned devices operate in depletion mode (normally ON) due to thick EOT, enhancement mode (normally OFF) operation is required for logic applications. We have recently demonstrated e-mode Sb nMOS devices with scaled barrier and quantum well [2], as shown in Fig. 6.

Conclusions: Long channel Sb NMOS devices are demonstrated with high field effective electron mobility of 6,000 cm²/Vs. Short channel Sb NMOS exhibit cut-off frequency (f_T) of 120GHz, f_T - L_G product of 18 GHz.µm and source side injection velocity (v_{eff}) of 2.7x10⁷ cm/s, at V_{DS} = 0.75V and V_{GS} – V_T =0.6V. The measured f_T , f_T x L_G are 2x higher, while v_{eff} is 4x higher than Si NMOS (1.0-1.2V V_{DD}), and are the highest among III-V MOSFETs. The 150nm L_G device exhibits a drive current of 525 µA/µm at V_{DS} of 1.0V. **Acknowledgment:** Some of the authors acknowledge financial support from DARPA/SRC sponsored MARCO-MSD Center.

References

[1]M. Hudait, S. Datta, R. Chau et al.; US Patent No. 7429747 [2]A. Ali et al.; EDL 2011 [3]S.Kim et al.; IEDM 2011 [4]M. Radosavljevic et al.; IEDM 2009

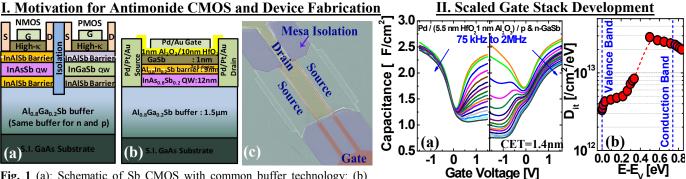


Fig. 1 (a): Schematic of Sb CMOS with common buffer technology; (b) Schematic of the Sb NMOS with 1nmAl₂O₃/10nm HfO₂ dielectric; (c) SEM image of the fabricated device with 150nm L_G and 500nm source-to-drain

Fig. 2 (a): C-V of n and p type GaSb MOS capacitors with 1nmAl₂O₃-5.5nm HfO₂ dielectric; (b) Extracted D_{it} vs energy

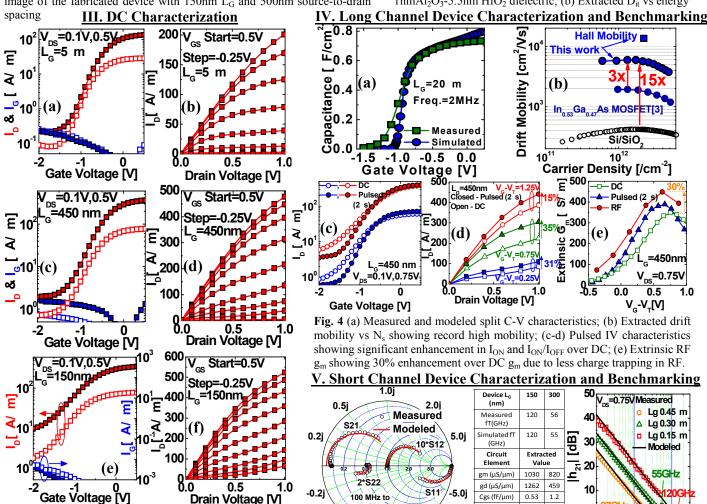


Fig. 3 (a-f): Transfer and output characteristics of Sb nMOSFETs with 150nm, 450nm and 5µm L_G.

Drain Voltage [V]

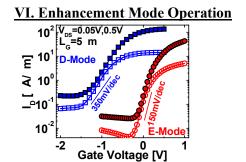


Fig. 6 Transfer characteristics of depletion and enhancement mode device. Scaling the QW and barrier, results in enhancement mode operation.

S11 -0.2j 100 MHz to Cgs (fF/µm) 0.53 1.2 50 GHz Cgd (fF/µm) 0.11 0.22 Rs (Ω . μ m) 594 1E10 1E11 -0.5j -2.0j Rd (Ω . μ m) 660 594 Frequency [Hz] -1.0j v_{eff} [x 10⁷cm/s] 至00 (e) (d) Strained Si [2] SI NMOS ITRS (1.0-1.2V) Sb NMOS at V InGaAs NMOS Measured^s ns=0.5V [4] Si NMOS [2] 0.01Projected for Rext/2 10 0.01 0.1 0.1 0.5 Gate Length [m] Gate Length [m]

Fig. 5 (a) Measured and modeled S-parameters of the 150nm L_G Sb NMOS at V_G - V_T = 0.6V and $V_{DS}=0.75V$; (b) Extracted circuit elements from the small signal model; (c) Measured and modeled $|h_{21}|$ (d) Extracted source injection velocity; (e) f_T vs L_G . The measured f_T , $f_T x L_G$ and v_{eff} are the highest among III-V MOSFETs.