
E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review
C Leyssens et al. Role of 1,25(OH)2D3 and analogs

in cancer
20 :2 R31–R47
Antineoplastic effects of 1,25(OH)2D3

and its analogs in breast, prostate
and colorectal cancer
Carlien Leyssens, Lieve Verlinden and Annemieke Verstuyf

Clinical and Experimental Endocrinology, KU Leuven, Herestraat 49, bus 902, 3000 Leuven, Belgium
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0381 Printed in Great Britain

Published by Bioscientifica Ltd.

Downloa
Correspondence

should be addressed

to A Verstuyf

Email

mieke.verstuyf@med.

kuleuven.be
Abstract
The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), is mostly known for

its importance in the maintenance of calcium and phosphate homeostasis. However, next to

its classical effects on bone, kidney and intestine, 1,25(OH)2D3 also exerts antineoplastic

effects on various types of cancer. The use of 1,25(OH)2D3 itself as treatment against

neoplasia is hampered by its calcemic side effects. Therefore, 1,25(OH)2D3-derived analogs

were developed that are characterized by lower calcemic side effects and stronger

antineoplastic effects. This review mainly focuses on the role of 1,25(OH)2D3 in breast,

prostate and colorectal cancer (CRC) and the underlying signaling pathways. 1,25(OH)2D3

and its analogs inhibit proliferation, angiogenesis, migration/invasion and induce

differentiation and apoptosis in malignant cell lines. Moreover, prostaglandin synthesis and

Wnt/b-catenin signaling are also influenced by 1,25(OH)2D3 and its analogs. Human studies

indicate an inverse association between serum 25(OH)D3 values and the incidence of certain

cancer types. Given the literature, it appears that the epidemiological link between vitamin

D3 and cancer is the strongest for CRC, however more intervention studies and randomized

placebo-controlled trials are needed to unravel the beneficial dose of 1,25(OH)2D3 and its

analogs to induce antineoplastic effects.
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Introduction
Vitamin D3 is mostly known for its important functions to

maintain calcium and phosphate homeostasis. Vitamin D3

can be obtained from dietary sources, but most vitamin D3

is generated in the human skin under the influence

of sunlight (u.v.-B radiation). During this process

7-dehydrocholesterol is converted to previtamin D3, an

unstable molecule that is rapidly converted to vitamin D3.

However, vitamin D3 must undergo two subsequent

hydroxylations in the liver and kidneys respectively before

becoming the active hormone 1,25-dihydroxyvitamin D3

(1,25(OH)2D3). The 25-hydroxylation is executed by
different cytochrome P450 enzymes, including CYP2R1

and CYP27A1, forming the main circulating form

25-hydroxyvitamin D3 (25(OH)D3), which in turn under-

goes a 1a-hydroxylation by CYP27B1 in the kidneys

to produce 1,25(OH)2D3 (Fig. 1). Only one major enzyme

degrades 1,25(OH)2D3, namely CYP24, which expression

is upregulated by 1,25(OH)2D3 itself.

CYP27B1 and CYP24A1 expressions in the kidneys

are tightly regulated in order to maintain optimal

1,25(OH)2D3 levels. However, these metabolizing enzymes

are also expressed in almost all nucleated cell types leading
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Figure 1

Synthesis of 1,25(OH)2D3. Vitamin D3 is obtained from the diet or generated in the skin from 7-dehydrocholesterol. Two hydroxylation steps are required

in the liver and kidneys respectively in order to obtain the hormonally active 1,25(OH)2D3.

E
n
d
o
cr
in
e
-R
e
la
te
d
C
a
n
ce
r

Review C Leyssens et al. Role of 1,25(OH)2D3 and analogs
in cancer

20 :2 R32
to local 1,25(OH)2D3 synthesis (Flanagan et al. 2006,

Kemmis et al. 2006). Locally expressed CYP27B1 and

CYP24A1 are not regulated by calcium or the parathyroid

hormone but are regulated by tissue-specific signals

(Young et al. 2004, Kallay et al. 2005, van Etten et al. 2008).

1,25(OH)2D3 binds to the vitamin D receptor (VDR)

which is expressed in almost all cell types. After binding

the ligand, VDR will heterodimerize with retinoid X

receptor and translocate to the nucleus to bind vitamin

D3 responsive elements (VDREs) in the promoter regions

of target genes in order to positively or negatively regulate

their transcription. In the absence of 1,25(OH)2D3, several

corepressors block the VDRE of target genes and

deacetylate histones in order to keep the chromatin in a

dense configuration (Tagami et al. 1998). Upon binding of

1,25(OH)2D3 to its receptor a conformational change in

the 1,25(OH)2D3/VDR complex occurs, leading to loss of

corepressors and attraction of coactivators which will

open the chromatin structure, resulting in transcription of

target genes. Increased expression of corepressors could be

one of the mechanisms by which aggressive cancer cells

lose responsiveness to 1,25(OH)2D3 treatment and escape

the antiproliferative effects of 1,25(OH)2D3 (Khanim et al.

2004, Ting et al. 2007).

Next to the classical effects of 1,25(OH)2D3 on bone,

kidney and intestine, more research has focused on the

nonclassical effects of 1,25(OH)2D3, like cardiovascular,

immunomodulatory and antineoplastic effects. However,
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using 1,25(OH)2D3 itself as treatment against neoplasia is

hampered due to its calcemic side effects. In order to

induce antineoplastic effects, 1,25(OH)2D3 doses of the

nanomolar range are required while normal serum

1,25(OH)2D3 levels are of the picomolar range. This led

to the development of 1,25(OH)2D3-derived analogs that

are characterized by lower calcemic side effects and

stronger antineoplastic effects.

Several microarray studies on cancer cells treated with

1,25(OH)2D3 or one of its analogs show that 1,25(OH)2D3

influences the transcription of a wide variety of genes

suggesting a pleiotropic regulatory role for 1,25(OH)2D3

(Swami et al. 2003, Pike 2011). The majority of these genes

are involved in cell growth, apoptosis, cell signaling, cell

adhesion, cell metabolism, immune regulation, redox

status, angiogenesis and metastasis. However, significant

discrepancies in these microarrays are found when

different types of cancer cells are used. This is explained

by different molecular mechanisms that 1,25(OH)2D3

causes in different cell types, so therefore 1,25(OH)2D3 is

thought to induce cell-specific gene regulations (Krishnan

et al. 2004). Clearly, early-stage cancer cells respond better

to 1,25(OH)2D3 or an analog and gene regulation in these

cells differs from more malignant cancer cells (Lee et al.

2006). The antineoplastic effects of 1,25(OH)2D3 and its

analogs will be reviewed in this paper focusing on breast

cancer (BC), prostate cancer (PC) and colorectal cancer

(CRC), since most research has been carried out in these
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cancer types. The Pubmed database (2000–2012) was

searched with the following keywords: vitamin D or

ergocalciferol and BC, PC, CRC or colon cancer.
In vitro antineoplastic effects of 1,25(OH)2D3

Mechanisms involved in antineoplastic effects

Effects on proliferation and differentiation The

best and earliest described antineoplastic effects of

1,25(OH)2D3 include the antiproliferative and pro-

differentiating effects on cancer cells in vitro and in vivo.

Cell lines expressing the VDR demonstrate higher cell

numbers in the G0/G1 phase of the cell cycle after

1,25(OH)2D3 stimulation (Jensen et al. 2001). This

antiproliferative effect of 1,25(OH)2D3 was first described

in malignant melanoma cells (Colston et al. 1981), and is

now widely demonstrated in many other cell types. The

exact mechanism of action behind the 1,25(OH)2D3-

mediated growth inhibition can differ depending on cell

type. The most suggested mechanism influences the

complex formation of pocket proteins of the retinoblas-

toma (Rb) family with E2F transcription factors. This

complex dissociates after phosphorylation of Rb proteins

by cyclin-dependent kinases (CDK). E2F transcription

factors are then able to activate target genes, essential for

cell cycle progression (Jensen et al. 2001, Verlinden et al.

2005). 1,25(OH)2D3 inhibits different cyclins and CDKs

resulting in an intact Rb–E2F complex and inhibition of

cell proliferation (Wang et al. 1997, Park et al. 2000b).

However, when Rb is knocked out in 1,25(OH)2D3-

stimulated PC cells other growth inhibitory pathways

compensate the loss of Rb (Washington et al. 2010).

Pocket proteins P107 and P130 are also essential for the

growth inhibitory effects of 1,25(OH)2D3 since cells losing

these pocket proteins will continue cell cycle progression

after 1,25(OH)2D3 stimulation (Verlinden et al. 2007).

1,25(OH)2D3 also upregulates CDK inhibitors such as P21

and P27 (Wade et al. 2002, Tavera-Mendoza et al. 2006).

The upregulation of P27 (CDKN1B) by 1,25(OH)2D3 is due

to an enhanced P27 gene transcription and the transcrip-

tional repression of P45 (SKP2), which is implicated in P27

degradation (Huang & Hung 2006).

1,25(OH)2D3 is also able to modulate cellular growth

by influencing other important signaling pathways. The

transforming growth factor-b (TGF-b) signalization

pathway is activated by 1,25(OH)2D3 and contributes to

the antiproliferative effects of 1,25(OH)2D3 (Chen et al.

2002) possibly by mediating coassociations between

CDK2, P27 and cyclin E (Scaglione-Sewell et al. 2000).
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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Inhibition of epidermal growth factor receptor (EGFR)

expression by 1,25(OH)2D3 is also thought to aid cell

growth inhibition (McGaffin & Chrysogelos 2005,

Belochitski et al. 2007) as well as the downregulation of

survivin, an inhibitor of apoptosis (Li et al. 2005, Koike

et al. 2011) and platelet-derived growth factor down-

regulation by 1,25(OH)2D3 (Nazarova et al. 2005). A study

with CRC cells suggests that 1,25(OH)2D3-mediated

antiproliferative effects are dependent on the dual role

of the VDR: first, as a transcriptional factor and secondly,

as a nongenomic activator of the Rho-ROCK-p38MAPK-

MSK signaling pathway (Ordonez-Moran et al. 2008).

Effects on apoptosis 1,25(OH)2D3 is able to induce

apoptosis in different tumor models, but the exact

mechanism behind this effect is not clear (Simboli-

Campbell et al. 1996, Park et al. 2000a). Changes in the

expression or cellular distribution of B-cell lymphoma 2

antiapoptotic proteins are a possible mechanism of

1,25(OH)2D3-mediated apoptosis (James et al. 1996,

Zhang & Yao 2000, Wagner et al. 2003). Apoptosis after

1,25(OH)2D3 stimulation is also associated with the

upregulation of the proapoptotic protein Bcl-2 homolo-

gous antagonist/killer (Diaz et al. 2000) or could be a result

of the interaction between 1,25(OH)2D3 and other

signaling pathways such as tumor necrosis factor-a

(McGuire et al. 2001, Weitsman et al. 2004, Golovko

et al. 2005). A study on PC cells suggests that 1,25(OH)2D3

activates the intrinsic apoptotic pathway, since

1,25(OH)2D3 activates caspase-3 and -9 and stimulates

cytochrome c release from mitochondria (Guzey et al.

2002). Caspase-3 is even thought to cleave and inactivate

the VDR during apoptotic induction, however it is not

known if this occurs under nonapoptotic circumstances

(Malloy & Feldman 2009). Pretreating CRC cells with

1,25(OH)2D3 sensitizes these cells to acute and chronic

reactive oxidation species-induced cell death, which may

be one of the ways in which 1,25(OH)2D3 exerts its

chemopreventive/therapeutic effects (Koren et al. 2006).

On the other hand, VDR ablation in BC cells abolishes the

inhibitory effect on cell growth, while the effects on

apoptosis remain the same, suggesting that the VDR does

not play a major role in the apoptotic effects of

1,25(OH)2D3 (Zinser et al. 2003). Indeed, another study

on BC cells shows an increase in intracellular calcium

concentrations after 1,25(OH)2D3 stimulation, being a

rapid, nongenomic effect that does not involve the VDR.

In cancer cells, in contrast to normal mammary cells, this

calcium increase induces calpain-mediated apoptosis

(Sergeev 2004).
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Effects on angiogenesis The formation of new blood

vessels is necessary for malignant tumor growth.

1,25(OH)2D3 inhibits angiogenesis, since treatment of

several human cancer cell lines with 1,25(OH)2D3 results

in a decrease in hypoxia-inducible factor-1 a (HIF1A)

expression, which is the most important transcription

factor in angiogenesis. Also its target genes, such as

vascular endothelial growth factor (VEGF), are inhibited

by 1,25(OH)2D3 and this inhibition is mediated by an

HIF1A-dependent pathway since 1,25(OH)2D3 is not able

to inhibit VEGF expression in HIF1A knockout (KO) cells

(Ben-Shoshan et al. 2007). In PC cells 1,25(OH)2D3 is able

to repress interleukin 8 (IL8), one of the most important

angiogenic factors secreted by PC cells (Bao et al. 2006a).

Moreover, 1,25(OH)2D3 also inhibits an upstream regu-

lator of IL8, namely nuclear factor kappa B (NF-kB), which

is thought to be partly responsible for the 1,25(OH)2D3-

mediated IL8 inhibition. The parathyroid hormone-

related protein augments intratumoral vessel density and

VEGF expression in PC cells, but these effects are reversed

when cells are treated with the EB1089 vitamin D3 analog

(Bhatia et al. 2009). Moreover, when tumor-derived

endothelial cells are injected into VDR KO mice, the

resulting tumors are characterized by larger blood vessels,

more vascular leaking and a higher expression of HIF1A

and VEGF (Chung et al. 2009). The loss of VDR eventually

leads to abnormal tumor angiogenesis and aberrant

angiogenic signaling. However, when different rodent

strains with PC are treated with 1,25(OH)2D3, angiogenesis

is not influenced (Oades et al. 2002) and adding

1,25(OH)2D3 to the SW480-ADH CRC cell line increases

VEGF levels, in contrast to the earlier mentioned studies.

These data suggest the possibility that the effects of

1,25(OH)2D3 on angiogenesis of tumor cells may be tumor

and cell type dependent (Fernandez-Garcia et al. 2005).

Effects on invasion and migration Invasion of a

tumor in the surrounding tissues is an important hallmark

of cancer and research on different cell types shows that

1,25(OH)2D3 and its analogs inhibit the invasiveness of

human cancer cells (Chen et al. 2007). In LNCaP cells, the

activation of the c-Jun N-terminal kinases/stress-activated

protein kinases, mitogen-activated protein kinase

(JNK/SAPK MAPK) signaling pathway by 1,25(OH)2D3 is

essential for its antiinvasive effects (Larsson et al. 2008).

Other studies find decreased matrix metalloproteinase-2

and -9 (enzymes involved in the breakdown of the

extracellular matrix) and cathepsin (a proteinase) activity

(Tokar & Webber 2005, Bao et al. 2006b, Iglesias-Gato

et al. 2011); and a decreased expression of a6-integrins,
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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b4-integrins (Sung & Feldman 2000) and intracellular

adhesion molecule 1 (Stio et al. 2011) after treating cancer

cells with 1,25(OH)2D3/analog. 1,25(OH)2D3 regulates

different components of the plasminogen activator

system, which controls fibrin degradation in malignant

cells (Koli & Keski-Oja 2000). Tissue-type plasminogen

activator is stimulated by 1,25(OH)2D3 in osteosarcoma

cells via VDREs in the human tissue-type plasminogen

activator enhancer (Merchiers et al. 1999). Plasminogen

activator inhibitor-1 on the other hand is downregulated

by 1,25(OH)2D3 through blockage of NF-kB (Chen et al.

2010). 1,25(OH)2D3 also mediates the inhibition of

vimentin, an intermediate filament protein that is

associated with loss of differentiation and acquisition

of motility (Tokar & Webber 2005). E-cadherin, on the

other hand, is upregulated by 1,25(OH)2D3 in SW480-ADH

cells. Phosphatidylinositol 5-phosphate 4-kinase type IIB

is required for this induction and this kinase is known to

play a role in 1,25(OH)2D3-mediated inhibition of cellular

motility (Kouchi et al. 2011). Loss of E-cadherin induces

epithelial–mesenchymal cell transition via disruption

of cell adhesion. Similar findings are reported

in a study where increased levels of E-cadherin expression

are accompanied with repressed cell rolling and

reduced adhesion of the cancer cells to the endothelium

(Hsu et al. 2011).

Moreover, vitamin D3 deficiency promotes the

growth of BC cells in an in vivo model for bone metastasis

(Ooi et al. 2010). A high vitamin D3 diet does not change

the incidence of metastasis in a CRC rat model, however

supplementing the diet with an analog (Ro 25-9022 or

Ro 25-5317) significantly decreases metastasis (Evans et al.

2000). When immune compromised mice are transplanted

with human BC cells, the formation of metastasis is

completely inhibited when mice are treated i.p. with the

‘Deuterated Gemini’ analog, while 1,25(OH)2D3 is able to

reduce metastasis formation with 50% (Spina et al. 2007).

All these results suggest that 1,25(OH)2D3 and its analogs

reduce the invasive and migration capacities of cancer cells

by mediating changes in the tumor cell–extracellular

matrix interaction as well as by promoting cell–cell contact.

Effects on inflammation and inflammatory

pathways Patients suffering from chronic inflam-

matory conditions are at higher risk of developing cancer,

such as inflammatory bowel disease patients who have an

increased risk of developing CRC (Dyson & Rutter 2012) or

lesions in the prostate called proliferative inflammatory

atrophy, which are associated with acute or chronic

inflammation and are thought to precede prostate
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intraepithelial neoplasia (PIN) and PC (De Marzo et al.

2007). It is already well known that 1,25(OH)2D3 exerts

immunomodulatory effects, such as stimulation of the

native immune system and inhibition of the adaptive

immune system. When immortalized PC cells are treated

with 1,25(OH)2D3, transcript levels of IL1, IL6 and IL17

pathway members are suppressed (Kovalenko et al. 2010).

1,25(OH)2D3 also inhibits the expression of IL6 in

adenocarcinoma PC cells (Nonn et al. 2006) and the

vitamin D analog BXL-628 inhibits the production of

proinflammatory cytokines and chemokines in human

benign prostatic hyperplasia cells (Adorini et al. 2007).

Moreover, when mice are given a modified diet with more

fat and less vitamin D, calcium and fibers, augmented

serum levels of IL1B and its targets are measured. Supple-

menting these mice with vitamin D and calcium prevents

or mitigates this effect (Bastie et al. 2012). As mentioned

before, 1,25(OH)2D3 inhibits NF-kB signalization by

acting on different members of this pathway (Bao et al.

2006a). 1,25(OH)2D3 strongly represses the P65 (RELA)

subunit transactivation in BC, PC and CRC cells while

it also induces the expression of the NF-kB pathway

inhibitor, IkBa (Sun et al. 2008, Tse et al. 2010).
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Schematic overview of several antineoplastic effects of 1,25(OH)2D3. 1,25(OH)2D
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Wnt/b-catenin signaling.

http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0381 Printed in Great Britain
Interference with other signaling pathways

Effects on prostaglandin synthesis Next to the

effects on proliferation, apoptosis, angiogenesis, cell inva-

sion and inflammation, 1,25(OH)2D3 can also influence

prostaglandin synthesis (Fig. 2). Prostaglandin promotes

carcinogenesis and facilitates cancer progression. In BC cells

higher levels of cyclooxygenase 2 (COX2), the enzyme

responsible for the synthesis of prostaglandins, and lower

expression of 15-prostaglandin dehydrogenase, the enzyme

responsible for degrading prostaglandin, are found (Thill

et al. 2009). Moreover, in these cells lower VDR expression

seems to be associated with higher COX2 expression. In

human BC sampleshigher levelsofCOX2and lower levelsof

VDR are found inmalignant tumors (Thill et al. 2010). When

1,25(OH)2D3 is added to cancer cell lines, most studies agree

that lower concentrations of prostaglandin are found com-

pared with vehicle-stimulated cells. Indeed, 1,25(OH)2D3

decreases the levels of COX2 and induces 15-prostaglandin

dehydrogenase, which results in a reduction of local

prostaglandin concentrations. Moreover, 1,25(OH)2D3

treatment leads to a reduced expression of prostaglandin

receptors (Moreno et al. 2005, Krishnan et al. 2007).
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Wnt/b-catenin signaling The molecular mechanisms

behind the antineoplastic effects of 1,25(OH)2D3 have been

extensively studied in CRC. 1,25(OH)2D3 blocks the main

deregulated pathway in CRC, namely the Wnt/b-catenin

pathway. The tumor suppressor gene adenomatous poly-

posis coli (APC), which is considered as the gatekeeper gene

during CRC development (Wasan et al. 1998), is bound to a

b-catenin complex in the absence of a Wnt ligand and is

degraded by the proteasome. After Wnt binds to its receptor

or in case of an activating mutation of APC, b-catenin

accumulates in the cell cytoplasm and translocates to the

nucleus where it binds T-cell factor/lymphoid enhancer

factor (TCF/LEF) transcription factors and influences the

expression of genes such as c-MYC (MYC). Additional

mutations in the v-Ki-ras2 Kirsten rat sarcoma viral

oncogene homolog (KRAS), P53 gene and TGFB pathway

eventually result in the progression of early aberrant crypt

foci to colon adenocarcinoma. 1,25(OH)2D3 suppresses

b-catenin/TCF transcriptional activity and their target

genes via several mechanisms. 1,25(OH)2D3 induces

E-cadherin expression which can bind b-catenin and thus

suppresses the translocation of b-catenin to the nucleus.

Secondly, the 1,25(OH)2D3/VDR complex also competes

with TCF4 transcription factors to bind b-catenin (Palmer

et al. 2001), resulting in lower expression of c-MYC.

DICKKOPF 1, an extracellular Wnt antagonist, is stimulated

by 1,25(OH)2D3 (Aguilera et al. 2007), while SPROUTY 2,

a protein that is upregulated in high-grade tumors

and inhibits E-cadherin expression, is inhibited by

1,25(OH)2D3 (Barbachano et al. 2010). 1,25(OH)2D3

also induces cytostatin D expression which inhibits

cell proliferation, migration, Wnt/b-catenin signaling

and induces E-cadherin and other adhesion molecules

(Alvarez-Diaz et al. 2009). Apcmin/C mice spontaneously

develop tumors in the small and large intestine and are

a commonly used model for intestinal cancer. Treating

these mice with 1,25(OH)2D3/analogs decreases the nuclear

translocation of b-catenin and the expression of TCF1

transcription factors, while the tumor suppressor activity of

E-cadherin is enhanced (Xu et al. 2010).
In vivo studies

Many studies have used vitamin D3 deficient or VDR KO

mice for a better understanding of the link between

vitamin D3 and the development and progression of

cancer. A vitamin D3-deficient diet leading to 25(OH)D3

serum levels !6 ng/ml promotes the growth of human

BC cells in the bones of nude mice (Ooi et al. 2010).

Similar results are obtained in Balb/C mice, which were
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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given a vitamin D3-deficient diet and afterward injected

with cancer cells (Tangpricha et al. 2005). Also, a vitamin

D3-deficient diet induces more proliferation and less

apoptosis (Kovalenko et al. 2011) as well as a higher

tumor growth in prostatic tissue (Ray et al. 2012). Since

the Western diet is believed to play a role in the

development of cancer and especially in that of CRC, a

rodent diet with high fat and low calcium and vitamin D3

levels was created to mimic human Western dietary

habits. Feeding rodents with this Western diet promotes

colonic tumor formation, however supplementing these

animals with sufficient levels of calcium and vitamin D3

reverses these effects (Yang et al. 2008a,b, Newmark et al.

2009). Moreover, the Western diet supplemented with

calcium and vitamin D3 leads to less hyperproliferation

and hyperplasia in breast glands of mice (Kurihara

et al. 2008). Also, supplementing the diet with 5000 IU

vitamin D/kg diet inhibits tumor growth in xenograft

models of PC and BC (Swami et al. 2012).

VDR KO mice show higher levels of proliferation and

oxidative stress in the distal part of the colon (Kallay et al.

2001) and are more sensitive to carcinogenic products

(Zinser et al. 2003). The progression of long probasin

promoter-large T-antigen prostate tumors was compared

in VDR KO and WT mice, revealing that VDR KO mice

develop PC more quickly than their VDR WT/LPB-Tag

littermates and that these VDR KO tumors display more

proliferation (Mordan-McCombs et al. 2010). Crossing

VDR KO mice with Apcmin/C mice does not lead to the

formation of more intestinal malignancies, however the

tumor size is bigger compared with VDR WT/Apcmin/C

mice (Larriba et al. 2011, Zheng et al. 2011). Many studies

investigated the effect of 1,25(OH)2D3 and its analogs on

tumor development in rodents with BC, PC or CRC.

Most studies agree that 1,25(OH)2D3 and its analogs are

able to inhibit tumor cell growth (Verlinden et al. 2000,

Oades et al. 2002, Milliken et al. 2005, Lee et al. 2008, 2010,

Okamoto et al. 2011) without effects on tumor formation.

However, some studies suggest that 1,25(OH)2D3 is also

able to inhibit the formation of premalignant lesions

in vivo like aberrant crypt foci in CRC (Xu et al. 2010,

Hummel et al. 2012) and PIN (Banach-Petrosky et al. 2006).

In vitro data demonstrate that 1,25(OH)2D3 and its

analogs clearly affect proliferation, differentiation, apop-

tosis, angiogenesis, invasion and inflammation of

malignant cells. In vivo data mostly indicate that

1,25(OH)2D3 and its analogs are able to inhibit tumor

growth due to its antiproliferative and prodifferentiating

effects as well as by influencing other important processes

such as angiogenesis, invasion and inflammation, while
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actual tumor formation seems less influenced. Also, a

locally low vitamin D3 status may influence tissues in a

way that these tissues are more sensitive to early

procarcinogenic events. Using 1,25(OH)2D3 or its analogs

alone as cancer treatment on the other hand is

not sufficient, since 1,25(OH)2D3 is not able to eradicate

tumor cells. Therefore, 1,25(OH)2D3 and its analogs could

be combined with cytotoxic products when used for

cancer treatment.
Human studies

VDR, CYP27B1 and CYP24A1 expressions in cancer

Locally produced 1,25(OH)2D3 does not contribute to

calcium homeostasis, but is believed to exert autocrine/

paracrine effects. Elevated as well as decreased CYP24A1 or

CYP27B1 expressions are reported in different cancer cell

lines (Whitlatch et al. 2002, Fischer et al. 2009, Matilainen

et al. 2010). On the contrary, most studies on human

cancer biopsies agree with the following hypothesis. The

expression of VDR and CYP27B1 increases initially when a

tumor develops, but while the tumor becomes more

malignant and starts to dedifferentiate, the expression of

VDR and CYP27B1 decreases while the expression of

CYP24A1 strongly increases in human tissues of BC and

CRC (Bareis et al. 2001, Bises et al. 2004, Matusiak & Benya

2007, Lopes et al. 2010). This suggests that during early

tumorigenesis the synthesis and signaling of 1,25(OH)2D3

are upregulated as a physiological defense system against

epithelial tumor progression. When tumors dedifferenti-

ate, VDR and CYP27B1 levels drop while CYP24A1 exp-

ression increases, implicating that local 1,25(OH)2D3

concentrations decrease since less 1,25(OH)2D3 is syn-

thesized while more is metabolized. The sequential

acquisition of mutations that occur during tumor pro-

gression and metastasis could possibly negatively influ-

ence the expression of 1,25(OH)2D3-metabolizing

enzymes (Cross et al. 2001). Changes have also been

reported in the adjacent, normal tissue of cancer patients.

Studies using CRC or BC samples report a decrease in

CYP27B1 expression in normal tissue adjacent to the

tumor (Ogunkolade et al. 2002, McCarthy et al. 2009). It is

possible that tumors secrete endocrine/paracrine factors,

which influence CYP27B1 expression, but other studies

suggest that this downregulation of CYP27B1 is caused

by hypermethylation of its promoter (Shi et al. 2002).

Decreased VDR expression ratios are found in the nucleus,

compared with the cytoplasm of neoplastic lesions, which

suggests that less VDR translocates to the nucleus during
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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tumor progression (Matusiak et al. 2005). Moreover, when

oncogenes are introduced into mammary epithelial cells,

CYP27B1 and VDR expressions decrease (Kemmis & Welsh

2008). Most of these studies are based on mRNA, western

blot and immunohistochemistry techniques, while not

many studies investigate the enzymatic activity of

CYP27B1 and CYP24A1. Also, these observational

studies cannot distinguish if changes in VDR, CYP27B1

and CYP24A1 are a cause or rather a consequence of

carcinogenesis (Whitlatch et al. 2002).
Observational epidemiological studies

Garland & Garland (1980) were the first to report that CRC

mortality in the United States is higher in areas where

people are less exposed to natural sunlight. Since this

observation, several studies in different regions of the

world have confirmed that the risk of BC (Mohr et al. 2008,

Anderson et al. 2011), PC (John et al. 2007, Gilbert et al.

2009) and CRC (Grant 2002, Boscoe & Schymura 2006)

augments when people are less exposed to sunlight and

u.v.-B radiation or when the area of residence lies at higher

latitudes where less solar exposure may lead to vitamin D

deficiency (Grant 2011). Besides u.v.-B exposure, also skin

pigmentation influences vitamin D status. Higher pig-

mentation protects against u.v.-B radiation and is corre-

lated with latitude, leading to a decreased 1,25(OH)2D3

production. Recent studies in the United States have

shown that 25(OH)D3 serum levels are lower in subjects

with African ancestry compared with subjects with a

Caucasian ancestry (Murphy et al. 2012, Yao et al. 2012).

African Americans are also at higher risk of developing BC,

CRC and PC as well as more aggressive and advanced

tumors (Reddy et al. 2003, Fiscella et al. 2010, Yao &

Ambrosone 2012). Other studies also suggest an inverse

association between vitamin D3 intake and the risk of

developing cancer (John et al. 1999, Lin et al. 2007, Oh

et al. 2007). However, measuring 25(OH)D3 serum levels

is currently the golden standard for evaluation of the

vitamin D status since concentrations of 1,25(OH)2D3

are tightly regulated by the renal metabolizing enzymes

in order to maintain calcium homeostasis (Millen et al.

2010). Synthesis of 25(OH)D3 on the other hand is not

strictly regulated and combines the exposure to sunlight

as well as the dietary/supplemental intake of vitamin D3.

Moreover, while the half-life of 1,25(OH)2D3 is only 4–6 h,

25(OH)D3 has a half-life of 3 weeks. Several studies

investigated the relationship between serum 25(OH)D3

levels and the risk of developing cancer. For most cancer

types, the results are conflicting. However, the majority of
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observational, postdiagnostic studies on CRC report a

significant inverse association between 25(OH)D3 serum

levels and the risk for CRC or colorectal adenoma (Fedirko

et al. 2010a, Jenab et al. 2010, Lee et al. 2011). Some of

these studies find that this association is even stronger for

more advanced cancers or for distal and rectal tumors (Wei

et al. 2008, Lee et al. 2011). However, postdiagnostic

measurements may not represent the 25(OH)D3 values

during cancer initiation and early progression. This can be

overcome by measuring 25(OH)D3 concentrations before

cancer diagnosis. A prediagnostic study reports that CRC

patients with higher 25(OH)D3 values tend to have a better

outcome prognosis than CRC patients with lower

25(OH)D3 levels (Ng et al. 2008). Most prediagnostic

studies in the United States and Europe find an inverse

association between 25(OH)D3 levels and CRC risk (Wu

et al. 2007, Freedman et al. 2010, Woolcott et al. 2010). In a

European study a 40% reduced chance of developing CRC

is found when 25(OH)D3 levels are above 33.4 ng/ml

compared with levels under 16.1 ng/ml (Jenab et al. 2010).

In contrast, a Finnish study reports an increased colon

cancer risk when serum 25(OH)D3 levels are elevated

(O30 ng/ml), however this study only included male

smokers and mean 25(OH)D3 levels were relatively low

compared with the other prediagnostic studies (Weinstein

et al. 2011). Others only describe an augmented risk for

rectal cancer (Otani et al. 2007) or cancer in the distal part

of the colon (Feskanich et al. 2004) for subjects with lower

25(OH)D3 values. For BC and PC the association with

lower 25(OH)D3 levels is not so clear. One postdiagnostic

BC study reports a stronger association in women with

estrogen receptor (ER)-negative tumors (Yao et al. 2011).

Other studies find an inverse association between serum

25(OH)D3 levels and the recurrence of BC or BC mortality

(Goodwin et al. 2009, Vrieling et al. 2011) or the size of the

tumor (Hatse et al. 2012). Another study did not find

associations between lower serum 25(OH)D3 levels and

increased risk of recurrence in BC survivors (Jacobs et al.

2010). A limited number of studies compared prediagnostic

25(OH)D3 serum levels with BC risk but results remain

conflicting. The Nurses Health Study finds an inverse

association between 25(OH)D3 levels and BC risk which is

more pronounced in women of 60 years or older

(Bertone-Johnson et al. 2005). Two other prospective

studies with postmenopausal women in the United States

did not find evidence that higher 25(OH)D3 levels lead to a

decreased BC risk (Freedman et al. 2008, McCullough et al.

2009). However, one of these studies found a nonsignifi-

cant decreased BC risk for women with 25(OH)D3 values

above 23.5 ng/ml compared with 25(OH)D3 levels lower
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
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than 18.3 ng/ml. A Danish study showed that women with

25(OH)D3 levels of 33.5 ng/ml or more have a 48%

reduced risk of BC compared with women with levels

lower than 24 ng/ml (Rejnmark et al. 2009). This reduced

BC risk was even more pronounced in premenopausal

women. Another European study also found an inverse

association between BC risk and 25(OH)D3 serum levels

after a follow-up of w10 years, which was also more

pronounced in younger women (Engel et al. 2010). On the

other hand, a Swedish study found a weak association after

a follow-up of 10–15 years (Almquist et al. 2010). The

mean 25(OH)D3 values in this study were very high

(35.5 ng/ml) and the cutoff between low and high

25(OH)D3 serum levels was relatively high (30 ng/ml).

For PC, the link between low 25(OH)D3 levels and

augmented cancer risk is also not clear. In most

prediagnostic Nordic studies, an inverse association is

found between 25(OH)D3 levels and PC (Ahonen et al.

2000). In contrast, several prediagnostic studies in the

United States do not find this association (Travis et al.

2009, Barnett et al. 2010). Then again, in the Nordic

studies almost half of the subjects were vitamin D3

deficient compared with 20% in the US studies (Ahn

et al. 2008). It appears that only subjects with very

low 25(OH)D3 serum levels are at higher risk for PC. In

contrast, some studies suggest that also higher 25(OH)D3

levels increase the risk of developing PC (Tuohimaa et al.

2004, Shui et al. 2012). Other prediagnostic studies find

that lower 25(OH)D3 values are associated with a higher

risk for aggressive PC (Li et al. 2007) or with lethal PC

(Fang et al. 2011). Yet, it is still rather difficult to

compare different observational studies due to substantial

differences in 25(OH)D3 serum values since diverse assays

to measure 25(OH)D3 are currently available on the

market and because control subjects are selected in

different ways. Moreover, disparities between cutoff points

exist and could be due to differences in sun exposure and

latitude of the study but also to differences in food

fortification. In addition, most studies base their results

on a single 25(OH)D3 measurement, while this may not be

reflective for long-term levels of circulating 25(OH)D3. The

exact time frame in which 25(OH)D3 plays an important

role for cancer development and progression is not

known. Prediagnostic measurements can be taken too

early, but on the other hand, postdiagnostic measure-

ments can be taken too late and can be prone to inverse

causality since it is not clear if low 25(OH)D3 levels are a

causative effect or a result of cancer. When diagnosed,

chemotherapy and behavioral changes of the patients (less

sun exposure and physical activity, less food intake,
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nausea, etc.) can result in lower 25(OH)D3 values. It is also

not clear to what extent 25(OH)D3 serum values are

representative for the local tissue vitamin D status. Taken

together, these studies indicate that the inverse associ-

ation between serum 25(OH)D3 levels and cancer risk is

probably the strongest for CRC, while for other cancers

results are inconsistent. Moreover, only randomized

clinical trials are able to investigate if there is a causal

relationship between vitamin D3 levels and the incidence

of cancer. Future prediagnostic observational studies

should include several 25(OH)D3 serum measurements

and longer follow-up periods in order to determine the

exact time frame in which vitamin D3 levels are crucial for

cancer initiation or progression. Furthermore, it is of

interest to establish the local tissue 25(OH)D3/1,25(OH)2-

D3 levels to investigate if 25(OH)D3 serum measurements

are representative for the local vitamin D status in tissues.
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Clinical trials

If a low vitamin D3 status increases the risk of developing

cancer, then clinical randomized trials should reveal a

decrease in cancer risk when subjects are supplemented

with vitamin D3 (Tables 1 and 2). The Women’s Health

Initiative designed a randomized placebo-controlled

clinical trial where 36 282 women were either supple-

mented daily with 1 g calcium and 400 IU (10 mg) vitamin

D3 or a placebo. After a mean follow-up of 7 years, the

calcium and vitamin D3 supplementations have no effect

on CRC risk, BC risk or overall mortality (Wactawski-

Wende et al. 2006, Chlebowski et al. 2008, LaCroix et al.

2009). However, personal supplementation of calcium and

vitamin D3 was not forbidden during the trial and 57% of

the subjects in the placebo arm took personal supplements.

When analysis is restricted to the women who did not take

any personal supplements, the regimen of 1 g calcium plus

400 IU vitamin D3 decreases the risk for CRC, BC and total

cancer with 14–20% (Bolland et al. 2011). A recent trial with

a daily supplementation of 800 IU vitamin D3 alone or in

combination with 1 g calcium did not affect cancer

mortality or cancer incidence (Avenell et al. 2011). In

another randomized placebo-controlled clinical trial

patients with colorectal adenoma were supplemented

during 6 months with 2 g calcium and/or 800 IU vitamin

D3 per day or a placebo. Here, different markers were

evaluated in the normal rectal mucosa of these patients.

Daily supplementation with vitamin D3 induces beneficial

changes in the normal rectal tissue of these patients

indicating that vitamin D3 could promote antineoplastic

pathways such as higher activity of DNA mismatch repair
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0381 Printed in Great Britain

Published by Bioscientifica Ltd.

Downloaded from Bioscientifica.com at 08/22/2022 06:31:07PM
via free access

http://erc.endocrinology-journals.org
http://dx.doi.org/10.1530/ERC-12-0381


Table 2 Overview of clinical trials with vitamin D supplementation.

Sample

size Subjects Dosage vitamin D

Duration of

intervention Outcome

Marshall et al. (2012) 48 PC patients with adeno-
carcinoma

4000 IU/day 12 Months No change in PSA;
decrease in Gleason
score; no adverse
effects

Morris et al. (2004) 31 PC patients with
increasing PSA levels
who completed local
treatment and/or
patients with
metastasis

Calcitriol escalating
dose: 4–30 mg 3
times/week

Median: 12 months Regimen well toler-
ated; minimal
antitumor effects

Beer et al. (2003) 22 PC patients with rising
serum PSA after
prostatectomy and/or
radiotherapy

0.5 mg/kg 1 time/week Median: 10 months Regimen well toler-
ated; declines in PSA
levels and increased
PSA doubling time

Schwartz et al. (2005) 18 Patients with androgen-
independent PC

Paricalcitol i.v. esca-
lating dose: 5–25 mg
3 times/week

12 Weeks Declines in PSA
levels; regimen
well tolerated

Woo et al. (2005) 15 PC patients with increas-
ing PSA levels who
completed local
treatment

2000 IU/day Mean: 8 months Decrease in the rate
of PSA rise; no
toxicities
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mechanisms (Sidelnikov et al. 2010), a decrease in oxidative

DNA damage (Fedirko et al. 2010b) and enhanced colorectal

epithelial cell differentiation (Fedirko et al. 2009b) and

apoptosis (Fedirko et al. 2009a).

Vitamin D3 as a single high dose or as a repeated

lower dose is often used in combination with standard

cancer therapies during clinical trials. Administering

0.5 mg/kg vitamin D3 once a week to PC patients whose

prostate-specific antigen (PSA) increased after surgery

and/or irradiation is well tolerated, however none of the

patients reach a 50% reduction of the PSA levels, but some

patients demonstrate decreased PSA levels and increased

PSA doubling times (Beer et al. 2003). Similar results were

obtained in PC studies where patients were treated with

the vitamin D3 analog paricalcitol (Schwartz et al. 2005),

a 19-nor analog of 1,25(OH)2D2 (Woo et al. 2005) or

4000 IU/day vitamin D (Marshall et al. 2012).

Most trials have focused on androgen-independent

PC patients where vitamin D3 is often combined with

other standard cancer therapies. Most of these regimens

are well tolerated and the use of vitamin D3 gives no

additional toxicity compared with the standard therapies

alone. However, most of these studies find no beneficial

effect of vitamin D3 (Morris et al. 2004). It is possible that

the used concentrations of vitamin D3 (up to 90 mg/week

or a daily dose of 0.5 mg) are still too low to induce

antineoplastic effects or that the treatment length in

these trials is too short. The ASCENT study combined
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0381 Printed in Great Britain
docetaxel and 45 mg DN-101, a high-dose formulation of

1,25(OH)2D3 that is specifically designed for cancer

treatment, or placebo per week in PC patients and results

were very promising. Addition of DN-101 to the regimen

augments survival of the patients and decreases PSA

(Beer et al. 2007). These data suggest that DN-101 might

enhance the antitumor effects of docetaxel. However,

the following phase III study was ceased due to higher

mortality in the docetaxel C DN-101 arm compared

with the docetaxel C placebo group. On the other hand,

most deaths in the DN-101 arm of the study are due to

PC progression. Moreover, subjects in the control arm

only received docetaxel once in every 3 weeks, while the

DN-101 arm subjects received docetaxel once in a week

(Scher et al. 2011).

Since randomized clinical trials do not confirm the

inverse association found in the observational studies,

it has already been hypothesized that vitamin D3 status

would reflect the propensity of an individual to develop

cancer instead of being one of the causes of cancer

(Gandini et al. 2010).
Optimal vitamin D3 intake

A great percentage of the population and especially cancer

patients have a low vitamin D3 status (Napoli et al. 2010,

Choo et al. 2011). The minimum uptake of vitamin D3 in

order to obtain sufficient serum 25(OH)D3 levels remains a
Published by Bioscientifica Ltd.
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controversial topic. The US Institute of Medicine considers

serum 25(OH)D3 levels of 20 ng/ml (or 50 nmol/l) as

normal, while the US Endocrine Society defines serum

25(OH)D3 levels under 20 ng/ml as vitamin D3 deficient,

levels between 20 and 30 ng/ml as vitamin D3 insufficient

and levels above 30 ng/ml (or 75 nmol/l) as vitamin D3

sufficient. Concentrations of 20 ng/ml are believed to be

sufficient for normal skeletal health (Bouillon 2011),

however for the antineoplastic effects of vitamin D3

concentrations above 30 ng/ml may be required because

many intervention studies could not find beneficial effects

of vitamin D3 supplements on cancer risk when people

were supplemented with !1000 IU/day (Rohan et al.

2009). To obtain serum 25(OH)D3 levels above 30 ng/ml

a daily intake of 1000 IU vitamin D3 is necessary

(Pramyothin & Holick 2012). Supplementations of

1000 IU/day or more result in an average serum

25(OH)D3 level of 33 ng/ml and these patients have a

50% lower incidence for developing CRC compared with

reference values (Gorham et al. 2005). A meta-analysis

concluded that a daily intake of 1000–2000 IU of vitamin

D3 reduces the incidence of CRC with minimal risks

(Gorham et al. 2007). Therefore, many scientists argue for

serum 25(OH)D3 levels of 30 ng/ml or more (von Domarus

et al. 2011) and daily intakes of 2000 IU or more in order to

guarantee at least bone health and possibly protection

against cancer (Bischoff-Ferrari 2008, Hollis 2009, Leidig-

Bruckner et al. 2010). The US Endocrine Society’s Clinical

Practical Guideline also suggests a daily vitamin D3 intake

between 1500 and 2000 IU for adults (Pramyothin &

Holick 2012). However, the long-term safety effect of daily

intake of such doses of vitamin D3 in randomized placebo-

controlled clinical trials is not yet proven. The Institute of

Medicine recommends daily doses of 600 IU, since there is

still no conclusive evidence that serum 25(OH)D3 levels

above 20 ng/ml are beneficial for human health.
General conclusions

The active hormone 1,25(OH)2D3 exerts next to its

classical effects on bone and calcium homeostasis also

antineoplastic effects. 1,25(OH)2D3 influences the prolifer-

ation, apoptosis, angiogenesis, invasion and migration of

a tumor, while it also modulates several intracellular

signaling pathways. The epidemiological link between

vitamin D and cancer is the strongest for CRC, however

more prediagnostic studies and randomized placebo-

controlled clinical trials are needed. Guidelines on

vitamin D supplementation exist to maintain bone

homeostasis, however it is unclear if these doses are
http://erc.endocrinology-journals.org q 2013 Society for Endocrinology
DOI: 10.1530/ERC-12-0381 Printed in Great Britain
sufficient to induce antineoplastic effects. Future random-

ized placebo-controlled clinical trials with vitamin D doses

above 800 IU are required in order to investigate anti-

neoplastic effects. Also, the time point at which vitamin D

status is important for tumor inhibition should be

investigated in more detail. Serum 25(OH)D3 levels

measurements should be taken several times during

clinical studies and should be standardized by using liquid

chromatography–tandem mass spectrometry. Finally,

special attention should be given to the effect of

vitamin D supplementation in relation to cancer in

severely vitamin D-deficient people.
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