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Abstract 
 

Antioxidant activity, of several species within the Genus Pleurotus was studied.  

Sequencing of the internal transcribed spacer (ITS) region of the ribosomal genes 

ITS1-5.8S-ITS2 confirmed species identification.  Free radical scavenging ability 

of several Pleurotus species was demonstrated by the DPPH assay. Two lipid 

model systems were used to test for oxidation of stripped corn oil; the first was an 

oil-in-water emulsion method which measured a primary product formed from 

lipid peroxidation, hydroperoxides.  The second method was thiobarbituric acid 

(TBARS) which measured one of the secondary breakdown products of lipid 

peroxidation, malonaldehyde (MDA).  Phenol, protein, and carbohydrate content 

were measured to elucidate relationships these compounds might have with 

antioxidant activity.  In general all species sampled showed ability to scavenge 

free radicals.  In particular P. drynius, had high scavenging ability (71-75%).  

Pearson correlation coefficients were calculated to test if there was any significant 

relationship between levels of protein, phenol, or polysaccharide with respect to 

antioxidant activity.  The ability of Pleurotus species to inhibit lipid oxidation 

using the thiobarbaturic acid assay was significant (P<0.04).  Phenol, protein and 

carbohydrate levels varied between and within species of Pleurotus.  Protein and 

polysaccharide were significantly correlated with antioxidant activity measured 

by the TBAR assay (P<0.04) .  There was no significant correlation between free 

radical scavenging activity and protein, polysaccharide, and phenol levels.  
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Protein and polysaccharide levels were significantly correlated with each other 

across Pleurotus species (P<0.04).    
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Chapter I 

Introduction 

Overview 

Since ancient times throughout the world, higher Basidiomycete 

mushrooms have been used in folk medicine.  Medicinal mushrooms useful 

against cancer are known in China, Russia, Japan, Korea, as well as the United 

States and Canada (Wasser, 1999).  Some species of edible higher Basidiomycetes 

have been found to noticeably inhibit the growth of different kinds of tumors.  

There are about 200 species of higher Basidiomycetes that have been found to 

possess this activity (Lucas et al., 1957).  A large number of mushroom-derived 

compounds, both cellular components and secondary metabolites, have been 

shown to effect the immune system and could be used to treat a variety of 

diseases (Chihara et al., 1982; Jong et al., 1991).  However, problems evaluating 

data published by different investigators working with even the same “species” of 

mushroom exist because identification of species is often not accurate.  The 

overall objective of this study was to evaluate the antioxidant activity of 

representative  species within the  genus Pleurotus using three assays, a DPPH 

assay and two assays which measured lipid oxidation.  Secondary goals were:  1) 

to accurately identify Pleurotus species used in this study using the ribosomal  

internal transcribe spacer genes as an identification tool;  2)  to compare protein, 

polysaccharide, and phenolic content between species; and 3) to determine if there 
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was a correlation between the phylogenetic distribution of Pleurotus species in 

relation to their antioxidant activity. 

Recently, the study of oxidative stress (free-radical peroxide oxidation of 

lipids [POL]), particularly in human body, has become a subject of great interest 

and practical significance (Badalyan, 2003).  In the presence of different oxidants, 

the balance between lipid oxidation and antioxidant activity is disrupted, which 

promotes the propagation of many diseases such as cancer, cardiovascular 

pathology, and atherosclerosis.  Agents that suppress oxidation reactions are 

antioxidants.  Natural antioxidants are found in plants and different groups of 

microorganisms (bacteria, yeast, filamentous fungi), particularly in producers of 

melanin and other phenolics substances (Badalyan, 2003). 

Many fungi have antioxidant properties (Badalyan, 2003; Fu et al., 2002).  

Previous researchers have investigated antioxidant properties of fungi in lipid 

systems but did not accurately identify the fungal species used in their 

investigations.  Further, comparisons between fruit bodies and mycelium with 

respect to ability to inhibit lipid oxidation and scavenge free radicals were not 

investigated.  Finally, no studies have examined antioxidant activity across an 

entire genus and examined results within phylogenetic context.  In this study, 

antioxidant activity of several Pleurotus species was evaluated.  Accurate 

identification of species was confirmed by sequencing of the ribosomal DNA 

internal spacer region and a comprehensive analysis was done to correlate the 

phylogenetic distribution of Pleurotus species with their antioxidant activities.  

Techniques used to evaluate antioxidant activity were, 1) an oil-in water emulsion 
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system, 2) the thiobarbituric acid (TBA) assay, and 3) reduction of 1,1-diphenyl-

1-picrylhydrazyl (DPPH) assay.  Carbohydrate, protein and phenol levels for 

fungal extracts were obtained to determine if levels of these compounds in fungal 

tissue correlated with antioxidant activity.  Vegetative states, specifically fruit 

body and mycelium were compared between selected species to give a general 

idea about the difference between these two stages.  

 

The Genus Pleurotus. 

Species of Pleurotus, commonly called oyster mushrooms, consist of 

gilled mushrooms that have an eccentric or lateral stem or are laterally or dorsally 

attached and sessile (Thorn et al. 2000).  Pleurotus species are wide-spread, 

saprophytic mushrooms that grow on wood, usually on dead standing trees or on 

fallen logs.  Pleurotus species are distributed throughout the temperate and 

tropical hardwood forests of the world (Gunde-Cimerman, 1999).  Fungal 

populations are established and developed in nature through both sexual and 

asexual reproduction (Cohen et al., 2002).   

The genus Pleurotus is one of the most diverse groups of cultivated 

mushrooms that have important economic and medicinal value (Cohen et al., 

2002).  One of the reasons for their success is that oyster mushrooms are by far 

the easiest and least expensive to grow of all industrially cultivated edible 

mushrooms (Gunde-Cimerman 1999) and they grow on a number of different 

plant substrates.  As food, the oyster mushrooms are a good source of nonstarchy 

carbohydrates, have high content of dietary fiber, contain moderate quantities of 
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good quality proteins and most of the essential amino aids, minerals, and vitamins 

(Gunde-Cimerman 1999). 

 

Medicinal Uses of Pleurotus. 

A number of medicinal properties have been attributed to Pleurotus 

species.  Pleurotus spp. have been shown to modulate the immune system, have 

hypoglycemic activity and antithrombotic effects, lower blood pressure and blood 

lipid concentrations, and inhibit tumor growth, inflammation, and microbial 

activity (Chang, 1993, 1996; Eisenhut and Fritz, 1991).  Lectin and lovastatin are 

therapeutic compounds isolated from Pleurotus species.  Lectins are carbohydrate 

containing-proteins of non-immune origin that agglutinate cells, or precipitate 

polysaccharides or glyconjugates (Liener et al., 1986).  Kaneko et al., (1993) 

examined hemaggutinating activity in crude extracts prepared from four fungal 

developmental stages; vegetative mycelium, primordium, immature fruit body, 

and mature fruit.  Lectin activity was not seen in vegetative mycelium but 

increased through the other three fungal developmental stages.  Kues & Liu 2000 

reported that lectin produced by P. corncucopiae has a potential application for 

haemagglutination.  

Lovastatin is a potent hypocholesteraemic agent.   This low-molecular-

weight substance is a competitive inhibitor of 3-hydroxy-3-methyl-glutaryl-

coenzyme A reductase (HMG CoA reductase), the key enzyme in cholesterol 

metabolism that catalyses the reduction of HMG CoA into mevalonate (Wasser & 

Weis, 1999).  The best known organism for the potential production of lovastatin 
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from edible higher basidiomycete mushrooms are species of the genus Pleurotus 

(P. ostreatus, P. cornucopiae, P. erygnii, and P. sapidus: Cimerman and 

Cimerman, 1995; Gunde-Cimerman et al. 1993 a, b).  The highest content of 

lovastatin was found in fruiting bodies of P. ostreatus (Wasser and Weis 1999). 

 

Oxidative Damage and Antioxidants. 

Oxidation is vital to living organisms for the production of energy to fuel 

biological process.  However, oxygen-centered free radicals and other reactive 

oxygen species that are continuously produced in vivo, result in cell death and 

tissue damage (Halliwell & Gutteridge, 1984).  Oxidative damage caused by free 

radicals may be related to aging and disease.  A free radical is any species that 

contains one or more unpaired electrons and is capable of independent existence 

(Halliwell et al., 1995).  The term reactive oxygen species (ROS) and oxygen 

derived species are used to include both oxygen radicals (O.
2

-,•OH, LOO•, and 

LO•) and nonradical oxygen-containing reactive agents ( H2O2, 1O2) ( Halliwell et 

al, 1995).  Tissues contain several compounds called antioxidants that inhibit free 

radicals (Thomas, 1995).  The reason antioxidants are important to an organism’s 

physical well being comes from the fact that oxygen is a potentially toxic element 

since it can be transformed by metabolic activity into more reactive forms such as 

the superoxide anion, hydrogen peroxide, singlet oxygen and the hydroxyl radical 

(Hampson & Svoboda, 1999).   Almost all organisms are well protected from free 

radical damage by enzymes such as superoxide dismutase and catalase, or 
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compounds such as ascorbic acid, tocopherols, glutathione and flavenoids (Niki et 

al., 1994).   

 

Formation of Oxygen-Derived Species. 

Xanthine oxidase is one of the main enzymatic sources of reactive oxygen 

species (ROS) in vivo (Sanchez-Moreno, 2002).  Xanthine oxidase in normal 

tissue is a dehydrogenase enzyme that transfers electrons to nicotinamide adenine 

dinucleotide (NAD+) as it oxides xanthine or hypoxanthine to uric acid.  Under 

certain stress conditions, such as oxidative stress, the dehydrogenase is converted 

to an oxidase enzyme by oxidation of essential thiol groups or by limited 

proteolysis (Sanchez-Moreno, 2002).  Upon this conversion the enzyme reacts 

with the same electron donor, by reducing oxygen instead of NAD+, thus 

producing superoxide and hydrogen peroxide and contributing to the initiation 

and progression of a number of pathological processes (Halliwell et al., 1995).  

Hydroxyl radicals are generated in vivo by the homolytic fission of O-H bonds in 

water, driven by continuous exposure to background ionizing radiation (Halliwell 

et al., 1995).  Singlet molecular oxygen (1O2) is an electronically excited oxygen 

which is formed in biological systems via photosensitization reactions.  This 

pathway is thought to be important in light-exposed tissue.  O2 can interact with 

target molecules either by transferring its excitation energy to another molecule or 

by chemical combination (Stahl & Sies, 2002).  
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Antioxidant Defenses.   

Living organisms have evolved a number of mechanisms that are 

protective against lipid peroxidation or oxidant stress.  Some are enzymatic, 

blocking the formation of reactive compounds, others may scavenge for reactive 

compounds or act in reducing oxidant stress by unknown mechanisms.  

Superoxide dimutases (SODs) remove O2
.-  by greatly accelerating its 

conversion to H2O2 and H20 (Britigan et al., 1986).  Catalases in the peroxisomes 

convert H2O2 into water and O2 and help to dispose of H2O2 generated by the 

action of oxidase enzymes located in these organelles (Halliwell et al., 1995).  

However, the most important H2O2 – removing enzymes in human cells are 

glutathione peroxidases (GSHPX).  GSHPX enzymes remove H2O2 by using 

reduced glutathione (GSH) as an electron donor, generating oxidize glutathione 

(GCCG) (Chance et al., 1979).  Tocopherols delay lipid peroxidation by reacting 

with chain propagating peroxyl radicals faster than these radicals can react with 

proteins or fatty acid side-chains (Burton & Ingold, 1986).  Ascorbic acid 

prevents aqueous oxidants from attacking and oxidizing LDL’s which protects 

isolated human low-density lipoproteins against lipid peroxidation (Retsky et al., 

1993).   

 

Antioxidant Properties of Mushrooms. 

A number of studies have focused on the search and development of 

antioxidants of natural origin, including fungi (Fu et al., 2002).  Among various 

naturally occurring substances, mushrooms may prove to be one of the useful 
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candidates in the search for an effective antioxidant with free radical scavenging 

activity (Liu et al., 1997).  Free radical scavenging is a generally accepted 

mechanism for phenolic antioxidants to inhibit lipid oxidation (Bors & Saran, 

1987). Mushrooms contain biologically active polysaccharides in fruit bodies, 

cultured mycelium, and secrete substances into culture broth.  Mushroom 

polysaccharides prevent oncogenesis, show direct antitumor activity against 

various allogeneic and syngeneic tumors, prevent metastasis (Wasser et al., 2002), 

and have antioxidant properties (Liu, et al., 1997). 

 

Phenolics in Mushrooms. 

The antioxidative effect of phenolics is determined by their chemical 

structures.  Free radical scavenging activity increases with the number of 

hydroxyl groups and their location in the molecules involved (Dziedric & Hudson 

1984) and is due to the ability of these molecules to donate an electron.  Studies 

with the mushroom Agarcius bisporus indicated that this species, at least, 

contained significant amounts of phenolic amino acids (tyrosine, L-glutaminyl-4-

hydrobenzene, 3,4,dihydroxyphenylalinine and L-glutaminyl-3,4,dihydroxy 

benzene; Choi & Sapers 1994).  Free radical scavenging activities were correlated 

with total phenolics in a variety of mushrooms including Agaricus bisporus, 

Flammulina sp. and Pleurotus (Fu et al., 2002). 
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Polysaccharides in Mushrooms. 

Mushrooms in general contain dietary fibers, including β-glucans, chitin 

and pectinous substances (Cohn et al., 2002).  Oyster mushrooms contain 

approximately 55% insoluble and 10-15% soluble β-glucans (Bobek et al., 1997).  

These compounds, homo- and heteroglucans with beta 1 3, beta 1 4 and beta 

1 6 glucosidic linkages, are supposed to play a key role in health promoting 

properties of mushrooms such as activation of a nonspecific immune stimulation 

(Yoshioka et al. 1973; Ikekawa, Ikeda et al., 1982; Ikekawa, 1995), reduction of 

blood cholesterol and blood glucose levels, and free radical scavenging activity 

(Huang, 2000; Liu et al., 1997).  Mushroom polysaccharides prevent oncogenesis, 

show direct antitumor activity against various allogeneic and syngeneic tumors, 

and prevent tumor metastasis (Wasser, et al., 2002).   Polysaccharides from 

mushrooms do not attack cancer cells directly, but produce their antitumor effects 

by activating different immune responses in the host.  Free radical scavenging 

activity of polysaccharide extracts was shown by Liu et al 1997, where various 

mushroom species quenched superoxide and hydroxyl radicals.  Assays used for 

polysaccharides required an alcohol extraction, which denatures and inactivates 

enzymes.  Therefore, any antioxidant activity observed in these studies was due to 

non-enzymatic factors.   

Mau et al (2002) did not find appreciable levels of the antioxidants 

ascorbic acid or β-carotene in several widely divergent fungi including the basket 

stinkhorn Dictophors indusiata (a stinkhorn), Grifola frondosa, Hericium 

erinaceus (lion mane fungus, a basidiomycete) and Tricholoma giganteum 
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(matsutaki) but P. ostreatus and P. eryngii have been shown to have high levels of 

ascorbic acid.  In this study these compounds were not examined, nor was there 

an attempt to assay for tocopherols which are found in some fungi.   

 

Methods for Testing Lipid Peroxidation. 

The extent of lipid peroxidation can be determined by a number of 

methods which can be divided between those that measure primary products of 

lipid peroxidation such as hydroperoxides and those that measure the secondary 

breakdown products of lipid hydroperoxides such as malondiadehyde, 4-

hydroxynonenal and volatile hydrocarbons (Punchard and Kelly, 1996). 

Huang et al, (1994) measured the primary products of lipid peroxidation 

using an oil-in-water system.  Lipids such as stripped corn oil (without 

tocopherols) oxidize more rapidly in an emulsion than in bulk oil (Huang et al., 

1994).  Oxidation was assayed by following the formation of hydroperoxides, 

which were determined with a colorimetric assay by absorbance at 500 nm.  In 

Huang’s study, the control (no extract added) obtained a peroxide absorbance 

value of 0.4 A500 after 3 days of storage at 60° C but with ethanol extracts of 

mushrooms, the peroxide values were less than 0.4 indicating that the fungal 

extracts inhibited lipid peroxidation.  Using similar protocols, Fu et al (2002), 

found that mushroom extract antioxidant activity was highest in Agarius bisporus 

and lowest in Lentinula edodes.  Pleurotus eryngii was intermediate between 

these two.  Lin (1999) identified Flamulina velutipes, Lentinula edodes, Pleurotus 

cystidiosus and Pleurotus ostreatus as having moderate to high activity against 
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lipid peroxidation using the 1,3-diethyl-2-thiobarbituric acid (DETBA) method 

which measured the secondary breakdown products of lipid hydroperoxides such 

as malondiadehyde. 

Butylated hydrotoluene (BHT) a synthetic antioxidant was compared to 

aqueous and ethanolic extracts of oyster mushrooms.  Filipek (1992) reported that 

BHT and the oyster mushroom extracts inhibited lipid peroxidation and 

malondialdehyde formation in phosphatidylcholine liposome systems.  Lin (1999) 

showed that P. cystidiosus and P. ostreatus, had a moderate to high antioxidant 

activity (24.71- 62.30 % inhibition of lipid peroxidation) using the 1,3-diethyl-2-

thiobarbituric acid (DETBA) method.  Lu and Chang (1985) showed that P. 

eryngii, and P. ostreatus to had moderate to high levels of ascorbic acid (36-58 

mg/100g) a finding that could explain the antioxidant effect of Pleurotus species. 

 

Confirmation of Species Designation by Sequencing of the Ribosomal ITS 

Region. 

Genes within the ribosomal repeat have been widely used in fungal 

systematics.  Each repeat consists of an 18S gene (Small Subunit or SSU), an 

internally transcribed spacer (ITS1), the 5.8S gene, a second internally transcribed 

spacer (ITS2) and the large subunit gene (LSU).  These genes participate, together 

with proteins, in the formation of the ribosomes.  In some basidiomycetes, a 5S 

gene is found after the LSU gene flanked by two spacers (intergene spacers ISG1 

and ISG2).  While the 18S and LSU genes are evolutionarily conserved, the ITS1-

5.8S-ITS2 region is sufficiently variable that it can be used for species 
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identifications in population and species level studies in fungi (see for example 

Bruns and Gardes, 1993).  The ITS region contains two variable non-coding 

regions that are stationed within the rDNA repeat between the highly conserved 

small subunit and large subunit rRNA genes (Bruns and Gardes, 1993).  The ITS 

primers make use of the conserved regions of the 18S, 5.8S, and 28S rRNA genes 

to amplify the non-coding regions between them (White et al., 1990).  Several 

features make it a convenient target region for molecular identification of fungi: 

1) In fungi, the entire ITS region is often between 600 to 800bp and can be readily 

amplified with universal primers that are complementary to sequences within the 

rRNA genes (White et al., 1990),  2) the tandem repeats of the rDNA makes the 

ITS region easy to amplify from small, dilute, or highly degraded DNA samples, 

and 3) several studies have demonstrated that the ITS region is often highly 

variable among morphologically distinct fungal species (Gardes et al., 1991).   

Pleurotus spp. are difficult to identify based on morphology alone.  ITS 

sequences from the collections used in this study were matched with the existing 

database to determine correct species designations.  Correct species identifications 

are important to avoid attributing medicinal attributes and results to the wrong 

species.  Valid publication will require identifications based on more than 

morphology (i.e. ITS sequence).  Sequences for all known Pleurotus species that 

are based on accurate morphological identifications (Ronald Peterson, Pers. 

Comm) and on mating studies were used in this study to confirm identifications.    
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Chapter II 

Methods and Materials 

Establishment and Maintenance of Cultures.  

Collections of Pleurotus spp. used in this study represent the major species within 

the genus and are listed in Table 1. 

 

Growth and Sacrifice of Cultures  

Cultures were grown in Petri dishes containing malt extract agar (MEA = 

Difco malt extract, 15g; Difco Bacto Agar, 20g; distilled water, 1L).  Cultures 

were incubated at room temperature until they covered most of the medium in the 

Petri dish.  For antioxidant activity, lipid oxidation, protein, phenolic, and 

carbohydrate determinations, a plug of mycelium from MEA plates was grown in 

potato dextrose broth (PDA; 24 g/L Difco potato dextrose) until the mycelium 

covered the surface of the medium.  Mycelia were filtered through mesh to 

remove the medium, blotted dry, dried at 41°C overnight (Fu et al., 2002) and 

stored in a desiccator until used for analysis.  Mycelia were ground in liquid 

nitrogen to a fine powder the same day that experiments were performed. 

 

Fruitbody and Cultures of Lentinula edodes 

Fruitbodies were grown from a mushroom patch obtained from Fungi 

Perfecti.  The patch was made up of sterilized, enriched sawdust fully colonized 

with a select Chinese strain of Shiitake (Lentinula edodes).  The mushroom patch 

was watered and covered, and placed in a incubator at 50°C for 2 weeks.   
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Table 1.  Fungal Collections. 
ACCESSION 
NO.1 

SPECIES NAME COUNTRY REGION 

6551 P. abieticola Russia Primorsk 
EA772 P. albidus Argentina  
9065 P. calyptratus Austria Vienna 
8966 P. cornucopiae Russia Caucasia 
7167 P. djamor New Zealand North Island 

6695 P. dryinus Austria Bravaria 
5826 P. dryinus USA WA, Whatcomb 

Co. 
9983 P. dryinus Russia St. Petersburg 
6690 P. eryngii Austria  
6689 P. ostreatus Austria Vienna 
8077 P. ostreatus USA CA, Humboldt 
10994 P. ostreatus USA  TN, Knoxville 
9936 P. populinus USA Utah 
5405 P. pulmonarius USA TN, Blount 
9059 P. pulmonarius USA CA, Humboldt 
9891 P. pulmonarius Russia Ural Mts. 
2669 P. purpureo-

olivascens 
New Zealand  

DSH-92-155 
David Hibbett 

P. tuber-regium New Guinea  

Fruit Body2 Agaricus 
bisporus 

Commercial  

Fruit Body3 Lentinula edodes USA Asia 
Culture from 
fruit body 

Lentinula edodes USA Asia 

1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington 
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Mushrooms were sprayed with a water bottle three to four times daily to 

maintain humidity.  Lentinula fruitbodies were harvested and dried at 41°C 

overnight and stored in a desiccator until used for analysis.  Cultures of Lentinula 

were grown and sacrificed the same way as mention above for Pleurotus cultures. 

 

Fruitbody and Cultures of Agaricus bisporus 

Fruit bodies of A. bisporus were obtained from the local supermarket in 

Knoxville, Tennessee (Commerical).  Mushrooms were dried at 41°C overnight 

and stored in a desiccator until used for analysis.  Cultures for Agaricus did not 

grow well enough to use in this study. 

 

DNA Extractions. 

Fungal cultures in PDA (see above) were filtered through 1mm nylon 

mesh to remove the medium and blotted with paper towels.  Approximately 300 

mg of fungal tissue was placed in the mortar together with 750µL Carlson lysis 

buffer (Carlson et al., 1991) and a small amount (pinch) of grinding sand.  Fungal 

tissues were ground thoroughly, transferred to a 1.5 mL microfuge tube and 

incubated for 30 minutes at 74°C with inversion every 10 minutes.  After 

incubation, each sample was centrifuged at 10,000 RPM for 10 minutes at room 

temperature to sediment cell debris.  The supernatant was poured into a new tube 

and all samples were cooled to room temperature. 
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Chloroform: isoamyl alcohol (24:1;750 µl/tube) was added to each tube 

and mixed gently by inverting the tube several times for a few minutes.  Samples 

were centrifuged for 10 minutes at 10,000 RPM.  The upper phase of each sample 

was transferred to a clean microfuge tube and an equal volume of isopropanol was 

added to each tube.  Tubes were inverted several times to mix the solution and 

precipitate DNA, then centrifuged for 10 minutes at 10,000 RPM to sediment 

DNA.  The DNA pellet that formed at the bottom of each tube was rinsed with 

250 µl of ice cold 70% ethanol (ETOH), to wash DNA from the sides of the tube 

and to replace isopropanol with ethanol.  Tubes were re-centrifuged at 10,000 rpm 

for 10 mins to collect the DNA.  Ethanol was poured out of each tube and tubes 

were turned upside down to dry.  After a few minutes, any remaining liquid was 

blotted off with a kimiwipe from the sides of the microfuge tube.  The nucleic 

acid pellet was re-suspended by adding 100µl of TE buffer (Sambrook et al., 

1989;see Appendix). 

 

PCR of the Ribosomal ITS Region. 

The internally transcribe spacer region of the ribosomal genes (ITS1-5.8S-

ITS2) was amplified by adding 1 µl of fungal DNA to 24µl of PCR reaction mix 

(see Appendix).  The primers used were ITS1F and ITS4 (Bruns and Gardes, 

1993; White et al., 1990).   

The PCR program was as follows: 

Cycle 1     4 mins at 94 C     1 repetition 
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Cycle 2     1 min   at 94 C      35 repetitions 

                 1 min   at 52 C 

                 1 min   at 72 C 

Cycle 3     3 mins at 72 C 

Cycle 4      24 hrs at 4 C (or however long was needed) 

To evaluate if ITS regions amplified, 5 µl of the product was examined by gel 

electrophoresis in a 1.5 % agarose gel (LE agarose, FMC corp). The buffer was 

1X TBE (Sambrook et al., 1989;see Appendix). 

 

DNA Sequencing. 

To remove unused dNTPs and primers, 5 µl of the PCR product was 

incubated with   1 µl “Exosap” (U S Biochemicals, Cleveland, OH) in a 0.2 ml 

reaction tube.  All transfers were carried out by using a plugged pipette tip. Tubes 

were incubated at 37 °C for 15 mins, then 80 °C for 15 mins.  When the Exosap 

reaction was completed, 3 µl of Big Dye terminator mix (Applied Biosystem, 

Foster City CA) and 1 µl of diluted (3.3 µM) primer was added using a plugged 

pipette tip.  The sequencing reaction was 25 cycles of 96°C for 10 seconds, 50°C 

for 5 seconds, and 60°C for 4 minutes.  Centri-Sep columns (Princeton 

Separations, Adelphia, NJ) containing Sephadex G50 were used to remove 

primers and unincorporated nucleotides from the sequence reaction.  Columns 

were centrifuged at 3000 RPM for 2 minutes, paying attention to the position of 

the column using the orientation mark molded into the tube.  The columns were 
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then placed in 1.5mL microfuge tubes and 10µL of sequencing reaction was 

added to middle of the column.  Columns were centrifuged at 3000 RPM for 2 

minutes, to collect the purified sequencing reaction in the bottom of the tubes.  

DNA was dried in a spinvac at 45 °C for 20 minutes.  The sequencing reaction 

was electrophoresed at the Molecular Biology Resource Facility and the sequence 

file was returned.   

 

Sequence Alignment Procedures. 

Sequences were aligned using the GCG program (Accelrys, 2001) on a 

Unix work station.  Data were imported into the sequence alignment file and 

aligned by comparing imported sequences to a database of ITS sequences 

representing the collections.  To see if the sequences were correctly aligned, files 

were viewed using the Seqlab program in GCG and alignment manually adjusted. 

 

Phylogenetic Analyses. 

A bootstrap 50% majority-rule consensus tree was obtained using the 

program Paup* 4b version 10 (Swofford, 2001).  Gaps were few, were 

informative, and were treated as a fifth base.   Names assigned to collections were 

deemed correct if collections used in this study fell within clades of similarly 

named collections which had been identified morphologically, by Dr. Ronald H. 

Peterson. 
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Determination of Protein Content. 

Bradford Protein Assay 

Total proteins were determined by the Bradford assay (Bradford, 1976).  

The Bradford assay depends on a change in absorbance of the dye Coomassie 

Brilliant Blue G-250 when proteins are present (Bradford, 1976).  This dye 

specifically binds to amino acid residues in proteins including arginine, 

tryptophan, tyrosine, histidine and phenylalanine (Bradford, 1976). When 

phenolic compounds are present, the most reliable method of protein 

determination is the Bradford method (Robinson, 1979).   

 

Bradford Stock Solution 

Comassie Brilliant Blue G-250 (100mg) was dissolved in 50 ml of 95% 

methanol and mixed well.  To this solution was added 100ml of 85% phosphoric 

acid.  The solution was diluted to 1 liter. 

 

Bovine Serum Albumin Protein Standards 

Bovine Serum Albumin (SIGMA) was used as a protein standard to 

prepare a chart representing the relationship between protein concentration and 

absorbance at 595nm.  Stock solutions were prepared in microfuge tubes with 1ml 

of ddH2O as follows in Table 2. 
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Table 2. Protein Stock Solution 
Initial concentration      Final concentration 
25mg/ml .125mg/ml 
30mg/ml .150mg/ml 
35mg/ml .175 mg/ml 
40mg/ml .200 mg/ml 
45mg/ml .225mgml 
55mg/ml .275mg/ml 
60mg/ml .300mg/ml 
65mg/ml .325mg/ml 
70mg/ml .350mg/ml 
75mg/ml .375mg/ml 
80mg/ml .400mg/ml 
85mg/ml .425mg/ml 
95mg/ml .475mg/ml 
100mg/ml .500mg/ml 
150mg/ml .750mg/ml 
 

 

Each stock solution was diluted twice: 1)10µl of BSA stock plus 990µl of ddH2O 

[1/100]; 2) 500µl of BSA stock plus 500µl of ddH2O for a total dilution of 1/200.   

Twenty microliters of each diluted BSA sample were added to 1 ml of Bradford 

solution.  The solution was mixed well and incubated at room temperature for 5-

20 minutes.  Absorbance was measured at 595 nm against a control without 

protein (Bradford reagent plus 20 µl distilled H2O) using a Hitachi 2000 duel 

beam spectrophotometer.  A standard linear curve (absorbance against 

concentration of BSA) was plotted [See Figure 1 for example] and the regression 

line slope (bxy) and intercept (a) was calculated.   
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Figure 1.  Protein Standard Curve. 
 

Fungal Protein Determination 

For fungal protein determinations, 0.02g of dried mycelia was extracted 

with 1ml of double distilled water (ddH2O) and centrifuged for 10 minutes at 

10,000 RPM.  The supernatants were used for the assay the same day.  Fungal 

protein was determined by adding 20µl of each aqueous fungal extract to 1 ml of 

Bradford solution, mixing well and incubating for 5-20 minutes as described 

above.  Absorbance was measured at 595 nm against a control without protein 

[Bradford solution and ddH2O only] as described above.  Standard curve was 

repeated for each experiment.  Protein in the fungal extracts was estimated from 

the linear portion of the standard curve using the formula y = a + bxy X.  This was 

adjusted for dilutions to give protein per gram dry weight of fungal tissue by 

multiplying the amount of protein in 20 µl extract by 50 to give total protein in 

one gram dry weight of fungal tissue. 
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Tests for Polysaccharides. 

Polysaccharides levels were determined by the anthrone procedure.  

Dreywood (1946) initially demonstrated the use of anthrone as a specific 

qualitative test for carbohydrates and suggested its possible quantitative use.  The 

test is made by rapidly adding a solution of anthrone (0.05 to 0.20%) in 

concentrated sulfuric acid to an aqueous solution or suspension of the 

carbohydrate and mixing immediately (Viles and Silverman, 1949).  Under 

controlled conditions the amount of green color produced is proportional to the 

carbohydrate content (Viles and Silverman, 1949). 

 

Anthrone Reagent 

Anthrone (0.2%) was dissolved in 100 ml of concentrated sulfuric acid.  

The solution was mixed and stored in the refrigerator.  The solution was made 

fresh weekly. 

 

Glucose Standard Curve 

Dextrose (Matheson Coleman & Bell) was used as a carbohydrate 

standard to prepare a curve representing the relationship between carbohydrate 

concentration and absorbance at 625 nm.  Stock solutions were prepared in 

microfuge tubes with 1ml of ddH2O as follows in Table 3: 
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Table 3. Glucose Stock Solution 
Initial concentration       Final concentration 

10 mg/ml 0.1 mg/ml 
20 mg/ml 0.2 mg/ml 
30 mg/ml 0.3 mg/ml 
40 mg/ml 0.4 mg/ml 
50 mg/ml 0.5 mg/ml 
60 mg/ml 0.6 mg/ml 
70 mg/ml 0.7 mg/ml 
80 mg/ml 0.8 mg/ml 
90 mg/ml 0.9 mg/ml 
200 mg/ml 2 mg/ml 

 

Each stock solution was diluted once; 10 µl of dextrose stock plus 990 µl ddH2O 

[1/100].  Stock solutions 333 µl were added to 667 µl of anthrone reagent.  Each 

solution was mixed well and boiled in a hot water bath for 20 minutes.  Samples 

were allowed to cool and absorbance was read at 625 nm.   A standard curve 

(absorbance against concentration of dextrose) was plotted [See Figure 2 for 

example] and the slope of the line (bxy) and intercept (a) was calculated. 

 

Fungal Polysaccharide Determination 

To release soluble polysaccharides, 0.15g of dried fungal tissue was added to 1.5 

mL of 80 % ethanol, vortexed and incubated at 95 ° C for 1 hour.  Samples were 

cooled then centrifuged at 10,000 rpm for 10 minutes to precipitate cell debris.  

The supernatant was transferred to new tubes and stored in the refrigerator 

overnight to precipitate polysaccharides.  Samples were centrifuged to collect the 

polysaccharides.  The supernatants were poured off and polysaccharides were 

redissolved in 1 ml of ddH2O. 
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Glucose Standard Curve
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Figure 2. Glucose Standard Curve.  

 

To test for total carbohydrate, 333 µl of polysaccharide solution from fungal 

samples was mixed with 667 µl anthrone reagent.  Samples were boiled in a water 

bath for 20 minutes and cooled.  Absorbance was read at 625 nm against a control 

without dextrose (Anthrone reagent and ddH2O).  Standard curve was run for each 

experiment.  Polysaccharides in the fungal extracts were estimated from the linear 

portion of the standard curve using the formula y = a + bxy X.  This was adjusted 

for dilutions to give polysaccharide per gram dry weight of fungal tissue by 

multiplying the amount of polysaccharide in 333 µl extract by 3 to give total 

polysaccharide in 1 ml ethanolic fungal extract, and by 6.67 to give total 

polysaccharide in one gram dry weight of fungal tissue (total X 20). 
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Test for Fungal Phenolics. 

Fungal phenolics were determined by the Folin-Denis procedure.  The test 

is based on the reduction of phosphomolybdic acid by phenols (Folin and Denis, 

1912).  Phosphomolybdic in the phenol reagent is reduced by phenol derivates in 

acid solution and the reduced compound gives blue salts on adding alkali.  The 

blue color obtained is not very stable in an excess of alkali; it gradually fades and 

the stronger the alkali the more quickly it fades (Folin and Denis, 1912).  

Choosing the right alkali is very important, especially in quantitative work where 

the maximum as well as the most stable color is needed.  The best alkali is sodium 

carbonate (Folin and Denis, 1912).   

 

Phenol Standard Curve 

 2-Phenylethanol (Sigma) was used as the phenol standard to represent the 

relationship between the concentration of phenolics and absorbance read at 725 

nm.  A stock solution was prepared in flasks.  Nine amounts of phenylethanol (50 

µl, 100 µl, 200 µl, 300 µl, 400 µl, 500 µl, 600 µl, 700 µl, & 800 µl) were added to 

25 mL of glass distilled water and 1.6 mL of Folin-Denis reagent (Fluka) and 

mixed thoroughly on a shaker for 3 minutes.  To each flask, 3.3 mL of sodium 

carbonate (Lab Chem Inc.) was added and brought to a final volume of 33 mL 

with glass distilled water.  Flasks were shaken continuously for 30 minutes and 

absorbance read at 725 nm.  A standard curve (absorbance against concentration 

of phenolic) was plotted [See Figure 3 for example] and the regression line slope 

(bxy) and intercept (a) was calculated.  



 26

Phenylethanol Standard Curve

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600 700 800

mg Phenylethanol

A
bs

or
pt

io
n 

re
ad

 a
t 7

25
 n

m

 
Figure 3. Phenolic Standard Curve 
 
 

Determination of Phenolics  

To release phenolics from fungal tissue, 0.30 g of dried fungal mycelia 

was added to 6 mL of 80 % ethanol and incubated for 1 hour at 60 °C.  After the 

incubation period, fungal extracts were filtered and used the same day.  Five-

hundred micoliters of fungal extract was added to 25 mL of double distilled water 

and 1.6 mL of Folin-Denis reagent to a 125 mL flask.  Flasks were mixed 

thoroughly for 3 minutes, then 3.3 mL of sodium carbonate was added and each 

flask was brought to a final volume of 33 mL with glass distilled water.  The 

standard curve was prepared at the same time the fungal samples were measured.  

Samples were shaken for 30 minutes at room temperature.  Absorbance was read 

against a control without phenolics at 725 nm.  Standard control, 2-phenylethanol, 

was prepared at the same time the fungal samples were measured.  Phenolics 

present in the fungal extracts were estimated from the linear portion of the 
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standard curve using the formula y = a +bxyX.  This was adjusted for dilutions to 

give phenolics per gram weight of fungal tissue by multiplying the amount of 

phenolics in 500 µl extract by 12 to give total phenolics in 6 ml ethanolic fungal 

extract, and by 3.3 to give total phenolics in one gram dry weight of fungal tissue 

(total X 19.8). 

 

DPPH Assay for Free-Radical Scavenging Activity. 

Scavenging Effect on the DPPH Radicals 

The 2,2-diphenyl-1-picryhydrazl radical (DPPH) has been used to evaluate 

antioxidant activity of plant extracts (Espin et al. 2000;Yamaguchi et al., 1998; 

Yen and Chen 1995).  Because of its odd electron, 2,2-diphenyl-1-picryl-hydrazl 

shows a strong absorption band, 517 nm (in ethanol), its solution appearing a deep 

violet color (Blois, 1958).  The violet color of DPPH is modified to yellow in the 

presence of scavengers by appearance of reduced 2,2-diphenyl-1-picrylhydrazine.  

When a solution of DPPH is mixed with that of a substance that can donate a 

hydrogen electron, this gives rise to the reduced form with the loss of the violet 

color (Molyneux, 2004).  Fungi with stronger scavenging ability will quickly 

show a reduction in absorbance at 517 nm 

 

DPPH Stock Solution 

Free radical scavenging activity of fungal extracts followed procedures 

outlined in Fu et al (2002) using DPPH (see Appendix also).  DPPH (Sigma: 

0.012g) was dissolved in 100ml of 95% ethanol for a concentration of 3 X 10-4M.  
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The solution was mixed and stored in the dark for 30 minutes before use.  The 

solution was made fresh prior to each use.   

 

Determination of Free-Radical Scavenging Activity 

Dried mycelia were extracted with 95% ethanol so that the proportion of 

mycelia tissue to alcohol was 0.1g tissue: 20ml ETOH, and stored at 5 + 1° C 

overnight.  The extract was then centrifuged for 10 minutes at 10,000 RPM to 

pellet cell debris.  Supernatants were stored at –80°C until used for further 

experiments. Different amounts (0µl, 33µl, 66µl, 99µl, 132µl, 165µl, & 198µl) of 

each ethanolic fungal extract were added to 333µl of a 3X solution DPPH in 

ethanol and made up with ethanol to a final volume of 1mL (final concentration of 

DPPH 1.0 X 10-4) listed in Table 4. 

The reaction was shaken vigorously and incubated in the dark for 60 

minutes.  Absorbance was measured at 517nm against a control without DPPH 

[ETOH only] using a HITACHI 2000 spectrophotometer.  DPPH assays were 

carried out in triplicate.  The scavenging activity (% SA) of fungal extract was 

calculated by an equation used from Cheung (2003): 

   Table 4. Preparation of Samples 
Tube 1 2 3 4 5 6 7 8 
DPPH 0 333  333  333 333 333 333 333 
Extra
ct 

0 0 33  66 99 132 165 198 

ETO
H 

1.0 ml 667 634  601 568 535 502 469 
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SA = (1 – Abs in the presence of fungal extract/Abs in the absence of fungal 

extract) X 100 

From this equation, the percent scavenging ability of ethanolic fungal 

extract was calculated from the seven concentrations.  Three concentrations 66µl, 

132µl, and 198µl were selected to note the percentage increase in scavenging 

activity in relation to the increase in concentration of fungal extract.  For example 

a sample that has 198µl of fungal extract would have a higher scavenging ability 

than the same sample using only 66µl of fungal extract.  So, with an increase in 

fungal extract concentration there should be an increase in scavenging ability.  

 

Oil-in-Water Emulsion for Determination of Lipid Peroxidation. 

Extraction and Incubation of Fungal Extracts 

Dried mycelium (0.33g) was extracted with 6.6 mL of 95% ethanol stored 

overnight and centrifuged the next day for 10 mins at 10,000 RPM.  The 

supernatants were stored –80°C until the day of the experiment.  For each 

reaction, 33µl of fungal extract was added to 1 mL of oil-in-water emulsion [30µl 

of stripped corn oil (USB Corporation), 3µl of Triton X-100 (Sigma), and 967µl 

of ddH2O, vortexed together for 1 min].  For the control, 33µl butylated 

hydroxyanisole (BHA) a synthetic antioxidant for comparison with fungal 

extracts and 33µl ddH2O were used.  Each tube was incubated at 60°C and shaken 

at 250 rpm for 12 days (Duh and Yen, 1995; Fu et al., 2002). 
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Lipid oxidation in stripped corn oil emulsion was monitored by the ferric 

thiocyante method for 12 days (Fu et al., 2002).  In the oil-in-water emulsion 

systems hydrogen peroxides are a primary product of lipid oxidation.  The ferric 

thiocyanate method consists of ammonium thiocyanate and ferrous iron in an acid 

solution.  Hydrogen peroxide oxidizes ferrous iron to the ferric state, resulting in 

the formation of a red thiocyanate.  For each sample, 783 µl of ethanol (75%), 

16.7 µl of ammonium thiocyanate (30%), 16.7 µl of sample, and 16.7 µl ferrous 

chloride (20 mM in 3.5 % hydrochloric acid) were added to a 1.5 mL microfuge 

tube, vortexed and incubated for 3 minutes.  Absorbance of each sample was 

measured at 500 nm over the course of twelve days.  Daily absorbance for fungal 

emulsion samples was measured in triplicate against a water control.  Percent 

inhibition of hydroperoxide formation in stripped corn oil was calculated by an 

equation used from Frankel et al. (1996):  

%Inhibition = [(control (ddH2O) – fungal extract)/ control (ddH2O)] x 100  

 Percent inhibition of lipid oxidation for days 1, 3, 6, 9, and 12 were selected to 

note change in hydroperoxide formation over time.  Also, a graph of lipid 

oxidation for the twelve days sampled was plotted as absorbance against time 

(days) to give a visual representation and comparison of species sampled time. 

 

TBARS Method for Measuring Lipid Peroxidation 

The thiobarbituric acid (TBA) test is one of the most widely used assay for 

the measurement of lipid peroxidation.  The sample under test is treated with TBA 

at low pH, and a pink chromogen is measured (Punchard and Kelly, 1996).  In the  
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Malondialdehyde (MDA) forms a 1:2 adduct with thiobarbituric acid 

  Thiobarbituric acid      Thiobarbituric acid 

 

malonaldehyde 

Figure 4.  Structure of Malondialdehyde 

 

TBA reaction, one molecule of malondialdehyde (MDA), a secondary breakdown 

product of lipid hydroperoxides, reacts with two molecules of TBA with the 

production of a pink pigment with an absorption maximum at 532-535 nm (See 

figure 4). 

 

Fungal Extraction 

Dried mycelium 0.33g was extracted with 6.67mL of 95% ethanol stored 

overnight and centrifuged the next day for 10 mins at 10,000 RPM.  The 

supernatants were stored –80°C until the day of the experiment. 
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Oxidation of Stripped Corn Oil 

Stripped Corn Oil was used as the lipid standard to test antioxidant 

abilities of Pleurotus species.  To each 1.5mL microfuge tube, 100µl of fungal 

extract or ddH2O (as a control) was added to 100µl stripped corn oil in the 

presence of 100µl of ferrous chloride used as a catalyst to induce lipid 

peroxidation.  Samples were shaken for 30 minutes at 37°C.   

 

Antioxidant Screening 

In 1 X 7.5 cm glass test tubes, 100µl of each oxidized sample (see above) 

was added.  To this mixture 100µl of 8.1% SDS was added and mixed together 

thoroughly.  To each tube 2.5 mL TBA/Buffer reagent (ZeptoMetrix; see 

Appendix) was added making sure to pipette down the side of the test tube.  Test 

tubes were covered with marbles and placed in a water bath at 95°C for 60 

minutes.  After incubation, test tubes were cooled to room temperature for 15 

minutes in a ice bath and then samples were transfer to 15 mL centrifuge tubes 

and centrifuged for 15 minutes at 3000 rpm.  The supernatant was transferred to a 

smaller test tube and the absorbance of each sample was read at 532 nm.  From 

the absorbance values obtained, the percent antioxidant index (AI%) formula was 

used to calculate fungal extracts antioxidant stability: 

AI% = (1 – T/C) * 100 
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Where C is the absorbance value of the fully oxidized control (sample with no 

extract) and T is the absorbance of the test sample (Ruberto and Baratta, 2000).  

The antioxidant index formula value was used as a measure for retardation of 

lipid oxidation.   

 

Statistical Methods. 

Using SPSS version 13.0, (University of Tennessee, OIT),  bivariate (Pearson) 

correlation coefficients were calculated to test is there was any significant 

relationship between levels of protein, polysaccharide, or phenolics with respect 

to free radical scavenging and TBARS antioxidant assays.  The values were 

considered to be significantly different when the P value was less then 0.05.   

Repeated Measures ANOVA was performed on results from the oil-in-water 

emulsion.   Since repeated samples (three samples) were taken daily from the 

same flask, ANOVA was performed comparing day 1 vs. day 3; day 3 vs. day 6; 

day 6 vs. day 9; and day 9 vs. day 12.  Mauchly’s Test of Sphericity (P<0.05) was 

used to accept or reject null hypothesis which was that the days were not 

significantly different.      
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Chapter III 

Results 

Phylogeny of Pleurotus. 

A phylogenetic reconstruction based on the ribosomal RNA ITS1-5.8S-

ITS2 region is given in Figure 5.  All collections except one were correctly named 

and appear with other exemplars in clades representative of that species.  A 

culture of one collection, putative P. levis, was apparently contaminated and was 

excluded from further analysis.  Several attempts to sequence this collection 

produced two overlapping sequences. A blast search for a portion of the sequence 

that could be read gave the closest match as an unknown leaf-litter ascomycete. 

 

Protein Levels in Pleurotus Species. 

Protein levels in fungal tissues grown in liquid medium are given in Table 

5.   Protein levels varied from a low of 1.6 mg of protein per gram tissue dry 

weight to a high of 17.25 mg/g.  There were large differences in the quantity of 

cultured mycelial protein within some species.  Protein in P. dryinus cultures, for 

example, varied from 1.6 mg/g to 11.85 mg/g.  Within P. pulmonarius, protein 

varied from 3.6 mg/g to 12.95 mg/g and within P. ostreatus from 6.45 mg/g to 

10.43 mg/g.  There were differences between protein levels in the fruit body and 

mycelium of P. ostreatus.  Pleurotus ostreatus fruit body protein was 14.2 mg/gm 

and mycelial protein varied within species (6.45, 9.9, 10.45 mg/g).   
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Figure 5.  Phylogenetic Tree 

A phylogenetic reconstruction of selected Pleurotus ribosomal RNA ITS1-5.8S-ITS2 sequences.  
Of 790 total characters, all characters were considered unordered and equally weighted. Three-
hundred one characters were constant, 96 were parsimony uninformative and 393 were parsimony-
informative.  Gaps were treated as a fifth base. Tree length = 1327; Consistency index (CI) = 
0.6745; Homoplasy index (HI) = 0.3255.
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Table 5.  Protein levels in Pleurotus       
  Protein Determination   

Species   No.1 Protein 
sample 1

Protein 
sample  

2 

Protein 
sample 3 

Mean mg 
Protein 
sampled 

mg protein 
per 1g 
tissue dry 
weight 

P. abieticola 6551 0.08 0.119 0.111  0.103 + 0.021 5.15 

P. albidus   EA772 0.024 0.033 0.053 0.036 + 0.015 1.8 

P. eryngii     6690 0.293 0.266 0.264  0.274 + 0.016 13.7 

P. populinus 9936 0.048 0.033 0.039  0.04 + 0.007 2.0 

P. pulmonarius 5405 0.246 0.283 0.246 0.259 + 0.023 12.95 

P. pulmonarius 9059 0.109 0.043 0.064  0.072 + 0.034 3.6 

P. pulmonarius 9891 0.246 0.239 0.22  0.235 + 0.014 11.75 

P. ostreatus 6689 0.184 0.175 0.237 0.198 + 0.034 9.9 

P. ostreatus 8077 0.109 0.155 0.125  0.129 + 0.023 6.45 

P.ostreatus 10994 0.203 0.226 0.235 0.221 + 0.016 11.05 

P. ostreatus  
Fruit body1 

10994 0.289 0.278 0.285 0.284 + 0.005 14.2 

P. calyptratus 9065 0.043 0.009 0.014  0.073+ 0.018 3.65 

P. cornucopiae 8966 0.152 0.055 0.05 0.085 + 0.057 4.25 

P. djamor 7167 0.03 0.077 0.082  0.063 + 0.029 3.15 

P. dryinus 6695 0.19 0.184 0.178  0.184 + 0.006 9.2 

P. drynius 5826 0.018 0.048 0.03 0.032 + 0.015 1.6 

P. dryinus 9983 0.225 0.24 0.246 0.237+ 0.011 11.83 

P. purpureo-olivascens 2669 0.332 0.364 0.339 0.345 + 0.017 17.25 

P. tuberregium 92-155 0.043 0.062 0.03  0.045 + 0.016 2.25 

A. bisporus Fruit body2  0.344 0.395 0.329 0.356 + 0.035 17.8 

L. edodes Fruit body3  0.303 0.285 0.225 0.271 + 0.041 13.55 
1  Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington 
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Polysacchride Levels in Pleurotus Species. 

Carbohydrate levels in fungal tissue grown in liquid medium are given in 

Table 6.  Pleurotus species were approximately equal with respect to 

carbohydrate level, ranging from 16.8 mg to 25.6 mg among species.  There was a 

considerable difference between carbohydrate levels in the P. ostreatus fruit body 

versus mycelium.  The carbohydrate level of the fruit body was 1.6 mg; mycelial 

carbohydrate varied between the three within-species collections (23.8, 24.8, and 

24.8 mg).  Clearly carbohydrate levels are higher in the mycelia than in fruit 

body.   

 

Phenolic Levels in Pleurotus Species. 

Phenolic levels in fungal tissue grown in liquid culture are given in Table 7.  

Phenolic compounds ranged from a low of 0.229 phenolics per gram tissue dry 

weight to a high of 12.2 g.  Phenolics differed within species for P. ostreatus and 

P. dryinus.  Within P. ostreatus, cultures varied from 1.75 g to 2.78 g.  Within P. 

dryinus there was a considerable difference in phenolic compounds, with cultures 

varying from 0.229 g to 12.2 g.  There were differences in the level of phenolics 

of the fruit body compared to mycelium for P. ostreatus.  The fruit body phenolic 

content was much lower, 0.542 g, compared to within-species mycelium which 

was 1.75, 2.78, and 2.87 grams. 
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Table 6.  Polysaccharide level in Pleurotus  
Species No1 Poly 1 Poly 2 Poly 3 Mean mg mg poly  

per 1 g 
tissue dry 
weight  

P. abieticola 6551 1.17 1.25 1.13 1.17 + 0.04 23.4 
P. albidus EA772 0.98 1.05 1.11 1.05 + 0.07 21 
P. eryngii  6690 1.29 1.26 1.25 1.27 + 0.02 25.4 
P. populinus 9936 1.20 1.22 1.22 1.21 + 0.01 24.2 
P. pulmonarius 5405 1.19 1.26 1.20 1.22 + 0.04 24.4 
P. pulmonarius 9059 0.83 0.82 0.85 0.84 + 0.01 16.8 
P. pulmonarius 9891 1.20 1.18 1.25 1.21 + 0.04 24.2 
P. ostreatus 6689 1.23 1.25 1.25 1.24  + 0.01 24.8 
P. ostreatus 8077 1.19 1.22 1.16 1.19 + 0.03 23.8 
P. ostreatus 10994 1.26 1.23 1.21 1.24 + 0.02 24.8 

P. ostreatus  
Fruit body1 

10994 0.097 0.086 0.06 0.08 + 0.02 1.6 

P. calyptratus 9065 1.27 1.26 1.22 1.25 + 0.03 25 
P. cornucopiae 8966 1.23  1.24 .125 1.24 + 0.01 24.8 
P. djamor 7167 1.15 1.21 1.22  1.19 + 0.04 23.8 
P. dryinus 6695 1.26 1.28 1.30 1.28 + 0.02 25.6 
P. drynius  5826 1.26 1.28 1.30 1.28 + 0.02 25.6 
P. dryinus  9983 1.26 1.28 1.30 1.28 + 0.02 25.6 
P. purpureo-
olivascens 

2669 1.26 1.26 1.26 1.26 + 0.001 25.2 

P. tuberregium 92-155 1.27 1.28 1.26 1.27 + 0.01 25.4 
L. edodes mycelium 1.20 1.21 1.20 1.20 + 0.004 24 
1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Fungi Perfecti, Olympia, Washington 
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Table 7.  Phenolics levels in Pleurotus  
Species No1 Phenolic 

1 
Phenolic 

2 
Phenolic 

3 
Mean mg phenolics  

per 1 g 
P. abieticola 6551 21.2 22 24 22 + 1.5 0.4356 
P. albidus EA772 136.4 137.4 139.3 137.7 + 1.5 2.726 
P. eryngii  6690 133.4 137.4 137.4 136.1 + 2.2 2.694 
P. populinus 9936 70.4 75.3 74.3 73.4 + 2.6 1.453 
P. pulmonarius 5405 210.3 210.3 210.3 210.3 4.163 
P. pulmonarius 9059 51.7 54.6 54.6 53.6 + 1.7 1.061 
P. pulmonarius 9891 20.2 22.1 21.2 21.2 + 0.9 0.419 
P. ostreatus 6689 147.3 144.3 144.3 145.3 + 1.7 2.876 
P. ostreatus 8077 86.2 86.2 94.1 88.8 + 4.5 1.758 
P. ostreatus 10994 141.3 139.4 141.3 140.7 + 1.1 2.785 
P. ostreatus  
Fruit body1  

10994 27.1 27.1 28.0 27.4 + 0.5 0.542 

P. calyptratus 9065 223.1 214.3 218.2 218.5 + 4.4 4.326 
P. cornucopiae 8966 162.0 163.0 167.9 164.3 + 3.1 3.253 
P. djamor 7167 62.5 62.5 63.5 62.8 + 0.5 1.243 
P. dryinus 6695 609.33 614.3 619.2 614.3 + 4.9 12.16 
P. drynius  5826 140.4 139.3 142.3 140.7 + 1.5 2.785 
P. dryinus  9983 11.3 12.3 11.3 11.6 + 0.5 0.229 
P. purpureo-
olivascens 

2669 176.8 178.7 177.8 17+7.8 + 0.9 0.336 

P. tuberregium 92-155 77.3 78.3 76.3 77.3 + 0.9 1.530 
A. bisporus Fruitbody2 69.4 71.4 70.4 70.4 + 0.9 1.393 
L. edodes Fruitbody3 5.4 4.4 3.4 4.4 + 0.9 0.087 
1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington 
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Free-Radical Scavenging Activity of Pleurotus Extracts. 

Results of tests for free-radical scavenging activity using DPPH are given 

in Table 8.  Free-radical scavenging activity was highest in A. bisporus fruit body 

(85.67%) followed by Pleurotus dryinus (71-75%).  Moderate activity occurred in 

the fruitbodies of P. ostreatus and L. edodes and in cultures of P. populinus, P. 

cornucopiae, P. pulmonarius, P. calyptratus, P. tuberregium, P. erygnii, P. 

djamor, P. purpureo-olivascens, P. albidus, P. abieticola, P. ostreatus. 

 
 
Antioxidant Activity of Pleurotus extracts in Oil-in-Water Emulsion.  

The ability of Pleurotus extracts to retard corn oil-in-water oxidation is given 

in Figure 6 and Table 9.  Retardation of emulsion oxidation of Pleurotus extracts 

was highest in P. dryinus, P. ostreatus, P. calyptratus, and P. tuberregium.  The 

additional Pleurotus species were approximately equal with respect to retardation 

of oxidation in the corn oil-in-water system but clearly did retard oxidation. 

 

TBARS Assay 

 Results from the TBARS assay are given in Table 10.  Antioxidant activity 

was highest in P. albidus followed by P. dryinus, P. ostreatus, P. purpureo-

olivascens, P. erygnii, and P. populinus, P. tuberregium, P. cornucopiae, P. 

calyptratus, and P. pulmonarius.  The antioxidant activity of P. ostreatus 

fruitbody was 34.7% which differed from the mycelium ranging in averages of 

within species 59.7% and 56.0% respectively. 
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Table 8. Free-radical Scavenging Activity 
            Sample Concentration (µl/mL) 
Species      No.1   66 µl   132 µl   198 µl 
P. abieticola 6551 4.6 + 0.91 6.9 + 4.1 14.4 + 4.0 
P. albidus EA772 7.6 + 3.9 14.8 + 8.4 20.6 + 8.2 
P. erygnii 6690 6.6 + 4.0 11.5 + 5.2 16.7 + 5.7 
P. populinus 9936 4.5 + 1.9 18.3 + 2.6 36.8 + 7.4 
P. pulmonarius 5405 7.4 + 3.4 9.9 + 0.8 13.5 + 2.9 
P. pulmonarius 9059 11.5 + 4.7 17.6 + 2.6 27.5 + 3.6 
P. pulmonarius 9891 7.4 + 0.28 15 + 3.6 18.5 + 2.5 
P. ostreatus 6689 10.2 + 3.8 14.3 + 5.8 25.2 + 3.1 
P. ostreatus 8077 8.1 + 4.1 14.6 + 4.5 19.1 + 6.1 
P. ostreatus 10994 5.3 + 8.4 14.8 + 3.5 20.8 + 1.3 
P. ostreatus  
Fruit body1 

10994 19.1 + 5.0 33.7 + 3.8 47.5 + 2.3 

P. calyptratus 9065 12.5 + 0.8 18.1 + 1.4 23.8 +1.3 
P. cornucopiae 8966 12.1 + 3.4 20.6 + 2.3 29.2 + 5.1 
P. djamor 7167 8.7 + 2.8 15.4 + 3.9 22.5 + 4.1 
P. dryinus 6695 23.8 + 3.5 52.2 + 1.9 71.1 + 7.5 
P. dryinus 5826 26.8 + 3.1 50.3 + 3.4 74.2 + 5.5 
P. dryinus 9983 30.5 + 3.7 53.1 + 9.0 75.5 + 2.8 
P. purpureo-olivascens 2669 10.9 + 3.0 21.4 + 3.4 29.6 + 1.9 
P.turberregium DSH92-155 8.9 + 6.2 19.5 + 4.6 27.8 + 4.4 
A. bisporus Fruit body2  51.4 + 1.6 85.4 + 0.5 85.6 + 0.5 
L. edodes Fruit body3  10.8 + 2.6 20.5 + 4.2 29.2 + 2.7 
1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington   
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Figure 6. Antioxidant Activity in Oil-in-water Emulsion 
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Table 9. Antioxidant Activity in Oil-in-water Emulsion 
Percent Inhibition of Fungal extracts in Oil-in-water Emulsion 
%Inhibition = [(control – sample)/control] x 100 

 
Species 

 
No.1 

Day 1           Day 3            Day 6           Day 9            Day 12 

P. abieticola 6551 13.1 + 6 15.4 + 2 14.5 + 6 12.3 + 3 20.2 + 2 
P. albidus EA772 13.9 + 7 17.0 + 5 20.9 + 8 19.8 + 11 24.5 + 5 
P. erygnii 6690 10.9 + 3 20.2 + 2 22.4 + 10 21.0 + 5 25.9 + 3 
P. populinus 9936 7.3 + 8 14.8 + 6 16.1 + 12 15.6 + 2 24.3 + 4 
P.pulmonarius 5405 11.3 + 3 22.1 + 7 19.8 + 10 20.1 + 1 25.2 + 2 
P.pulmonarius 9059 17.8 + 5 19.6 + 8 20.2 + 11 19.2 + 4 27.7 + 2 
P.pulmonarius 9891 13.1 + 4 20.6 + 3 21.1 + 11 19.6 + 2 23.5 + 2 
P. ostreatus 6689 7.7 +  4 22.0 + 8 20.5 + 12 21.6 + 6 26.5 + 1 
P. ostreatus  8077 26.8 + 16 22.7 + 1 23.1 + 4 16.4 + 3 30.7 + 6 
P. ostreatus 10994 13.3 + 7 26.1 + 2 23.1 + 5 23.1 + 10 26.9 + 5 
P. ostreatus  
Fruit body1 

10994 17.1 + 10 25.8 + 10 26.8 + 5 21.2 + 10 28.5 + 3 

P. calyptratus 9065 31.9 + 10 26.8 + 9 20.5 + 4 16.8 + 4 29.5 + 4  
P. 
cornucopiae 

8966 17.2 + 17 20.9 + 5 25.0 + 10 20.3 + 5 23.1 + 1 

P. djamor 7167 13.1 + 4 12.7 + 5 18.6 + 6 14.1 + 3 28.4 + 2 
P. dryinus 6695 11.5 + 1 21.9 + 6 21.1 + 5 19.9 + 5 29.4 + 1 
P. dryinus 5826 19.4 + 7 22.8 + 7 22.2 + 11 21.4 + 3 25.5 + 5 
P. dryinus 9983 37.8 + 0.5 24.9 + 7 28.6 + 1 28.5 + 5 30.1 + 2 
P. purpureo-
olivascens 

2669 8.65 + 4 9.02 + 5 13.9 + 8 13.5 + 4 20.4 + 3 

P. 
tuberregium 

DSH92-155 25.3 + 3 29.5 + 5 24.0 + 13 18.7 + 8 24.2 + 3 

BHA Commerical 12.1 + .2 23 + 4 27 + 8 17 + 9 28.4 + 7 
A. bisporus Fruit body2 21.7 + 7 17.4 + 3 23.1 + 8 22.1 + 3 27.5 + 3 
L. edodes Fruit body3 18.7 + 3 27.5 + 3 29.0 + 5 23.9 + 4 26.1 + 5 
1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington 
4 Butylated hydroxyanisole, Sigma 
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Table 10. Thiobarbituric Acid Assay 

Percent Inhibition of lipid 
peroxidation 

 
Species 

 
No.1 

Trial 1 Trial 2 Trial 3 

 
Mean avg. 

P. abieticola 6551 47.1 45.8 46.9 46.6 + 0.7 
P. albidus EA772 64.9 63.3 64.5 64.3 + 0.8 
P. erygnii 6690 61.4 48.7 60.5 56.8 + 7.1 
P. populinus 9936 59.3 53.8 54.3 55.9 + 2.9 
P.pulmonarius 5405 28.2 37.9 13.6 26.6 + 

12.2 
P.pulmonarius 9059 49.8 49.1 48.9 49.3 + 0.4 
P.pulmonarius 9891 57.1 58.2 56.5 57.3 + 0.8 
P. ostreatus 6689 61.2 63.7 54.4 59.7 + 4.8 
P. ostreatus 10994 59.7 62.8 45.5 56.0 + 9.2 
P. ostreatus 
Fruit body1 

10994 45.0 38.3 20.8 34.7 + 
12.4 

P. calyptratus 9065 58.8 57.6 56.8 57.8 + 0.9 
P. 
cornucopiae 

8966 67.2 50.3 49.6 55.7 + 
11.7 

P. djamor 7167 47.1 47.5 50.6 48.4 + 1.9 
P. dryinus 6695 57.5 54.1 54.9 55.5 + 1.7 
P. dryinus 5826 54.5 62.7 62.7 60.0 + 4.7 
P. dryinus 9983 56.7 56.1 55.9 56.3 + 0.4 
P. purpureo-
olivascens 

2669 67.2 57.5 46.0 56.9 + 
10.6 

P. tuberregium DSH92-155 61.4 60.6 40.7 54.3 + 
11.7 

A. bisporus Fruit body2 21.0 25.6 14.2 20.3 + 5.7 
L. edodes Fruit body3 53.8 50.3 40.6 48.3 + 6.8 
1 Tennessee Culture Collection Accession Number 
2 Fruit bodies from Monterey Mushroom Farms, Tennessee  
3 Fruit bodies from Fungi Perfecti, Olympia, Washington 
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Statistical Analyses. 

  Using Pearson correlation coefficients, there was a significant correlation 

(P<0.04) between protein and polysaccharide but not phenol and protein or phenol 

and polysaccharide in Pleurotus species sampled.  There was a significant 

correlations (P<0.04) between protein and polysaccharide content in relation to 

TBARS assay.  There was not a significant relationship between free radical 

scavenging in conjunction with protein, polysaccharide or phenol content 

respectively.  Correlation data is listed in Table 11. 

 

Table 11. Correlations 
 
  Protein Poly Phenol Radical TBARS 
Protein Pearson Correlation 1 -.453(*) -.011 .198 -.480(*)
  Sig. (2-tailed)  .039 .961 .391 .032
  N 21 21 21 21 20
Poly Pearson Correlation -.453(*) 1 .335 -.282 .595(**)
  Sig. (2-tailed) .039  .138 .216 .006
  N 21 21 21 21 20
Phenol Pearson Correlation -.011 .335 1 .210 .158
  Sig. (2-tailed) .961 .138  .361 .505
  N 21 21 21 21 20
Radical Pearson Correlation .198 -.282 .210 1 -.217
  Sig. (2-tailed) .391 .216 .361   .358
  N 21 21 21 21 20
TBARS Pearson Correlation -.480(*) .595(**) .158 -.217 1
  Sig. (2-tailed) .032 .006 .505 .358  
  N 20 20 20 20 20

*  Correlation is significant at the 0.05 level (2-tailed). 
**  Correlation is significant at the 0.01 level (2-tailed). 
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Using Mauchly’s test of Sphericity there was a significant (P<0.01) difference 

between days sampled for the oil-in-water assay.  Tests of within subjects 

contrasts were made for  day 1 vs. day 3, day 6 vs. day 9 and day 9 vs. day 11 and 

demonstrated significant differences between days (P<0.008).  For day 3 vs. day 

6, there was no significant difference (P>0.2) between days which is listed in 

Table 12. 

 
  
Table 12. Mauchly’s test of Sphericity 
Measure: MEASURE_1 Mauchly's Test of Sphericity(b) 
 

Within 
Subjects 
Effect 

Mauchly's 
W 

Approx. 
Chi-Square df Sig. Epsilon(a) 

          
Greenhouse-

Geisser 
Huynh-
Feldt 

Lower-
bound 

factor1 .214 29.929 9 .000 .551 .619 .250
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent 
variables is proportional to an identity matrix. 
a  May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are 
displayed in the Tests of Within-Subjects Effects table. 
b  Design: Intercept  
  Within Subjects Design: factor1 
 
 
 Tests of Within-Subjects Contrasts 
 
Measure: MEASURE_1  

Source factor1 

Type III 
Sum of 
Squares df 

Mean 
Square F Sig. 

factor1 Level 1 vs. Level 2 540.836 1 540.836 17.593 .001 
  Level 2 vs. Level 3 9.850 1 9.850 .781 .388 
  Level 3 vs. Level 4 97.316 1 97.316 13.593 .002 
  Level 4 vs. Level 5 957.743 1 957.743 82.053 .000 
Error(facto
r1) 

Level 1 vs. Level 2 553.361 18 30.742    

  Level 2 vs. Level 3 226.965 18 12.609    
  Level 3 vs. Level 4 128.864 18 7.159    
  Level 4 vs. Level 5 210.100 18 11.672    
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Chapter IV 
 
Discussion and Conclusions 

Accurate species identification is important for research to ensure that 

medicinal attributes are assigned appropriately.  Sequencing fungal genes, 

specifically the internal transcribe spacer (ITS) region, has helped identify and 

group related species (White et al., 1990).  This study employed the use of the 

internal transcribe spacer (ITS) region to identify Pleurotus species that could not 

be clearly identified morphologically.  In this study twelve species of Pleurotus 

were used.  In a few cases, collections representing geographical variants within 

species were also assayed.  All of the species were correctly identified based on 

an already established collection of ITS sequences (Peterson, R. H. pers. comm.), 

however one culture of P. levis was shown to be contaminated with an unknown 

ascomycete and was excluded from further analyses. 

Following molecular confirmation of Pleurotus cultures, antioxidant 

activity was evaluated.  Three methods were used to evaluate antioxidant activity; 

1) free-radical scavenging; 2) oil-in-water emulsion; and 3) TBARS assay.  These 

assays were used by pervious researchers (Fu et al., 2002; Mau et al., 2002, 

Ruberto and Baratta, 2000).  Total protein, carbohydrate, and phenolics in fungal 

extracts were also determined.  Correlation coefficients were used to determine if 

there was a significant correlation between these compounds and antioxidant 

activity. 
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Free radical scavenging is a well-known mechanism by which 

antioxidants inhibit lipid oxidation (Cheung et al., 2003).  In general, Pleurotus 

species showed some ability to reduce 1,1-diphenyl-2-picrylhydrazyl (DPPH), 

which increased as the concentration of fungal extract increased.  The order of 

scavenging activity from highest to lowest was as follows: P. dryinus, P. 

populinus, P. cornucopiae, P. pulmonarius, P. calyptratus, P. tuberregium, P. 

erygnii, P. djamor, P. purpureo-olivascens, P. albidus, P. abieticola, P. ostreatus.  

Fu et al., (2002), Yang et al., (2002) also found that scavenging of the free radical 

DPPH was concentration dependent.  Of the various mushrooms sampled by Fu et 

al (2002), P. ostreatus and P. eryngii had low scavenging ability, ranging from 

14.9% to 29.1%, which is in agreement with results of this research.  Yang et al., 

(2002), in contrast, observed that P. ostreatus scavenging ability was high, about 

80%, and P. cystidiosus had a moderate to high scavenging ability of 65% (P. 

cystidiosus was not included in this study).  The two outgroups used, A. bisporus 

and L. edodes varied in scavenging ability, with the former having a high 

scavenging ability 85%, and the latter low scavenging ability 29%.  These 

findings also agree with findings by Fu et al., (2002).   

Determination of metabolic/developmental differences between mycelial 

and fruit body stages were compared.  Pleurotus ostreatus fruit body scavenging 

ability was 47.5% which was considerably better then mycelia (19.4%, 22%, and 

25%).  Unfortunately the culture of Agaricus bisporus grew poorly under our 

standard growing conditions so it was not possible to compare the mycelial and 

fruit body stages.  Comparing only one sample does not give an accurate 
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comparison between mycelia and fruit body stage since all species were not 

compared but does suggest that fruitbodies and undifferentiated mycelia differ in 

their ability to quench free radicals. 

Two lipid systems were used to compare antioxidant activity in Pleurotus 

species.  The oil-in-water emulsion protocol used stripped corn oil because 

regular corn oil contains tocopherols which would interfere with antioxidant 

activity assays.  The ability of Pleurotus species to inhibit lipid oxidation in the 

oil-in-water system fluctuated over the 12 days sampled.  For example, for P. 

ostreatus at day 1, the percent inhibition was 9.6% compared to day 3 with a 

percent inhibition 22 %.  The repeated measures ANOVA table, using Mauchly’s 

Test of Sphericity was run to evaluate if there was significant (P<0.05) difference 

between days sampled.  Two-percent butylated hydroxyanisole (BHA), a known 

antioxidant, was compared with Pleurotus extracts for ability to inhibit lipid 

oxidation in the oil-in-water.  Inhibition for BHA was similar to Pleurtous 

extracts sampled.  Fu et al., (2002) stated that P. ostreatus and P. eryngii had low 

antioxidant activity in retarding lipid oxidation with a peroxide value (absorbance 

500 nm) more than 0.8 after eight days.  However, this study showed that all of 

the Pleurotous species sampled on the eighth day had peroxide values below 0.5 

A500 indicating that the fungal extracts from Pleurotus were retarding lipid 

oxidation, a process which continued to up until the tenth day for most samples. 

Differences in the results of the two studies may reflect differences in the 

substrate used or other experimental factors.   
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In the oil-in-water assay (Fu et al., 2002) the amount of hydrogen peroxide 

generated through this system was a direct indication of lipid degradation.  In this 

research, the oil-in-water assay did not show a clear indication of hydrogen 

peroxide production because of fluctuation over the 12 days sampled.  This may 

indicate that there were other components in this system initiating lipid oxidation 

which interfered with the assay.   After critically examining the oil-in-water 

system, there could be several explanations for the fluxes in hydrogen peroxide 

results. One possibly involves oxygen.  Oxygen exists in air as a molecule (O2) 

known as dioxygen or molecular oxygen.  When molecules are oxidized with 

oxygen, the oxygen molecule itself becomes reduced and forms intermediates, 

two of which are free radicals (HO2
•, •OH) and are formed together with H2O2 

(Gutteridge, 1995).  Iron ions are themselves free radicals, and ferrous ions can 

take part in electron transfer reactions with molecule oxygen: 

Fe2+ + O2  Fe2+O2   Fe3+O2
-  Fe3+ + O2

-  

Generation of superoxide, in the presence of iron can lead to the formation of 

hydroxyl radicals by Fenton chemistry.   

Another thing to consider is the purity of the lipid preparation.  All 

commercial and biological samples of unsaturated fatty acids contain trace to 

large amounts of peroxidized material (Guteridge and Kerry, 1982).  The addition 

of a iron complex to such a preparation will stimulate peroxidation by peroxide 

decomposition, generating LO• and LOO• radicals.   Lastly iron is a well known 

catalyst of lipid oxidation, and it is most effective in initiating biological 

oxidations when Fe3+ can be recycled to Fe2+ by various reducing agents (i.e 
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glutathione) (Schaich and Borg, 1988), and from this iron can be used to 

catalytically produce damaging fluxes of OH•.   

The thiobarbituric acid (TBA) assay, concerns the spectrophotometric 

detection of thiobarbituric acid reactive substances (TBARS), primarily 

malonaldehyde (MDA), one of the secondary lipid peroxidation products, whose 

quantification gives a measure of the extent of lipid degradation (Ruberto and 

Baratta, 1999).  Pleurotus species showed moderate to high ability to inhibit lipid 

degradation as follows: P. albidus P. dryinus, P. ostreatus,  P. calyptratus, P. 

pulmonarius, P. purpureo-olivascens, P. erygnii, P. cornucopiae, P. populinus, P. 

tuberregium, and P. abieticola.  Yang et al (2002) used a similar method (1,3-

diethyl-2-thiobarbituric acid; DETBA), and concluded that P. cystidiosus and P. 

ostreatus had moderate to high activity in inhibiting lipid degradation. 

The thiobarbituric acid assay has been shown to overestimate results 

concerning protection against lipid peroxidation (Frankel, 1985; Janero, 1990) 

and results should be interpreted with caution.  Besides aldehydes, specifically 

MDA, other substances such as ketones, ketosteroids, acids, ester, sugars, and 

oxidized proteins, can react with TBA (Guillen-Sans and Guzman-Chozas, 1998).  

Using the TBA assay for this study, the majority of Pleurotus species sampled 

prevented lipid oxidation at a level of 50% or greater.  There maybe other 

substances reacting with TBA to give elevated results.  However, other 

researcher’s studies have shown that the formation of thiobarbituric acid reactive 

substances is correlated with and similar to the actual malondialdehyde (MDA) 



 52

formation regardless of overestimated results (Kikugawa et al., 1992; Wong et al., 

1995).   

It had been reported that the antioxidant activity of plant material is 

correlated with presence of plant phenolic compounds (Velioglu et al., 1998).  

Thus it was important to consider the effect of phenolic content regarding 

antioxidant activity of mushroom extracts and also address other compounds such 

as proteins and carbohydrates in association with phenolic content.  Pleurotus 

species varied in their phenolic content which was not significantly (P>0.2) 

correlated with scavenging ability, and prevention of lipid degradation.  Some 

species, in particular P. purpureo-olivascens, P. calyptratus, P. cornucopiae and 

P. .pulmonarius had relatively high phenolic content but scavenging ability was 

low 29%, 23.8%, 29.2%, and 13.4% respectively.   

There was a problem with the phenol levels calculation regarding Pleurotus 

species sampled.  Using 2-phenylethanol as a standard control produced results 

that over estimated the total amount of phenol level in fungal samples.  To 

evaluate whether the standard used for the assay, 2-phenlyethanol, was causing 

the overestimate of phenolics, a standard curve was calculated using catechin 

hydrate as the phenol standard.  The standard curve for catechin, was 

approximately three times higher than that for phenol ethanol.  Catechin, 

however, differs in the number of phenolics groups present in the compound.  

Phenylethanol has a single phenolic group; catechin has three phenolic groups.  

Solubility of the phenol standards in the assay mixture could also be a problem.  If 

phenol standards were not completely dissolved, phenol levels would be 
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overestimated; however, no evidence of solubility problems was observed in the 

assay system.  From these results, it appears unlikely that the standard used to 

estimate the amount of phenolics is the problem.  Folin and Dennis (1912) 

reported 26 substances that reacted with their reagent, several of which (salicylic 

acid, tannic acid, vanillin) are common plant secondary compounds.  Possibly, 

there are reactive substances in Pleurotus extracts which produce a blue color and 

increase estimates of phenolics.    

Nakamura et al., 1992, covalently linked polysaccharides (dextran) to 

ovalbumin and evaluated the antioxidative effect of ovalbumin-polysaccharide 

conjugates in food system using commercial salad oil as the oxidizable substrate.  

They found that the ovalbumin-polysaccharide conjugates inhibited salad oil 

oxidation with a peroxide value of 40 meg/kg compared to a control (no extract) 

with a peroxide value of 80 meg/kg with heating time of 4 hours.  Xue et al., 

1998, and Rupérez et al., 2002 stated that antioxidative activities of several 

marine polysaccharides and their derivatives might be related to sulfate content in 

the molecules and molecular weight.  Liu et al., 1997, stated that polysaccharides 

are usually associated with protein as complexes.  He concluded that scavenging 

activity of polysaccharides extracts appeared to depend on the amount of protein 

present as polysaccharide-proteins complexes.  In this study, polysaccharide 

extracts were not used to test directly for scavenging ability.  Antioxidant activity 

in fungal extracts, were used in conjunction with phenol, and protein content to 

deduce if there was a significance relationship.  Polysaccharide content in 

Pleurotus species ranged from 16.8 mg to 25.6 mg.  When comparing scavenging 
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ability of fungal extracts to polysaccharide content, there was not a significant 

correlation (P>0.2), but P. drynius had the highest polysaccharide level (25.6mg) 

and was the best scavenger.  However, there were other Pleurotus species that had 

polysaccharide contents of 20 mg or greater, but had a low scavenging ability.  

When comparing protein content with scavenging ability, there was not an 

apparent correlation (P>0.3).  There was a significant correlation between 

polysaccharide (P< 0.007) and protein (P>0.04) levels and TBAR assay.  

In conclusion, this research posed the question “is there a correlation 

between the phylogenetic distributions of Pleurotus species in relation to their 

antioxidant activity?”  The moderate to high antioxidant activities together with 

varying levels of phenolics, proteins, and polysaccharides, were distributed 

throughout the Genus Pleurotus.  Therefore, the antioxidant activity of the species 

sampled from the Genus Pleurotus was not related to any phylogenetic 

distribution.  Overall, this research expanded on previous studies (Breene 1989; 

Gunden-Cimerman, 1999;Ikekawa 2001)concerning the abilities of Pleurotus 

species to scavenge for radicals and inhibit lipid oxidation.  Pleurotus along with 

many other types of mushrooms have been investigated as a source of natural 

antioxidants for nutritional, therapeutic, and medicinal purposes.  Findings from 

this research showed that fungal mycelia have moderate to high antioxidant 

activity which is significantly correlated with protein and polysaccharide content 

using the TBARS assay.  One species sampled in particular, P. dryinus, constantly 

proved to be a better scavenger, inhibitor of lipid oxidation, and was found to 

have moderate to high levels of levels of protein, polysaccharide and phenol 
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levels.  The use of P. dryinus as a source for a natural antioxidant needs to be 

further investigated.  Pleurotus dryinus is found in the Pacific Northwestern 

regions of Canada and the USA and is not commercially cultivated as an edible or 

medicinal fungus. 

Different vegetative states (fruitbody vs. mycelia) were also compared 

with respect to their antioxidant activity.  There were significant differences in 

protein, polysaccharide, and phenol, scavenging activity and inhibition of lipid 

degradation. This research did not compare both vegetative states for all species 

sampled and further research to see is this difference is significant in the search 

for natural antioxidants for medicinal purposes.   
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PCR REACTION MIXTURE 

Reaction Mix:  
dd water        30.75 
10X PCR Buffer (Promega)    5µL 
MgCl, 25mM        6 µL 
dNTP stock 10mM       4 µL 
Primer ITS 1F (10mM)   1 µL 
Primer ITS 4 (10mM)       1 µL 
BSA 400 mg/ml        1 µL 
Taq polymerase (Promega)    0.25 µL 

 

SOLUTIONS USED IN DNA EXTRACTIONS OF FUNGAL MYCELIA 

Tris/EDTA (TE)  
Reference: Sambrook, Fritsch, and Maniatis (1989). “Molecular Cloning: A 
Laboratory Manual” 

10mM Tris Cl (pH 7.4)  
1 mM EDTA (pH 8.0) 

 
ELECTROPHORESIS BUFFER 
 
Tris-borate/EDTA (TBE)  
Reference: Sambrook, Fritsch, and Maniatis (1989). “Molecular Cloning: A 
Laboratory Manual” 
 
Concentrated 5X stock solution (per liter):  

54g Tris base 
27.5g boric acid 
20 mL 0.5 EDTA (pH 8.0) 

 
Working solution: 1X  
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3X DPPH STOCK SOLUTION (3 X 10-4M) AND PROTOCOL 
Reference: Fu et al., 2002 

Prepare fresh solution before each use (at least weekly).  A total of 2.5 mls 
will be needed for 1 assay.  The final concentration in the assay is 1 X 10-4 M 
DPPH FW = 394.3 (Sigma Chemicals) 
 
0.012 g/L DPPH (3 X 10-4M)  
100 mls 95% ethanol 

 
Mix solution and store in the dark for 30 mins before use.   
 
For each assay, add 333µL DPPH 3X  stock to 666 µL fungal extract +95%  
ETOH in a 1 ml cuvette (Add DPPH last).  Cover cuvette with parafilm and shake 
vigorously.  Store in the dark for 20 min then read absorbance at 517 nm. 
 
OIL-IN-WATER EMULSION PROTOCOL 
Reference: Fu et al., 2002 
Solutions needed 

C.A. 75% ETOH for extraction 
 
23% Ammonium thiocyanate: Dissolve 30 g  ammonium thiocyanate in 100 
ml of ddH2O, and store in the refrigerator until used in the experiment.  The 
percentage of ammonium thiocyanate should have been 30 % w/v. 
 
Ferrous chloride:  
Add 10ml of concentrated hydrochloric acid (37%) to 105.7 ml of ddH2O to 
make a 3.2% sulfuric acid solution. 
Add 3.97 g of ferrous chloride to the  3.2% (should be 3.5 %) hydrochloric 
acid solution and dissolve. 
Add acid to 100 ml of ddH2O. Store in a glass container in the refrigerator 
until used for assays. 

 
Oil-in-Water Emulsion 
For each reaction; Add 30 µl of stripped (tocopherol-free) corn oil (USB 
Corporation)  to 3 µl of Triton X-100 and bring to a final volume of 1 mL with 
ddH2O.  Vortex for 1 min.   
 
Mushroom Extract 
Extract 0.33 g of dried mycelium in 6.67 mL of 95% ethanol.  Centrifuge for 10 
mins at 10,000 RPM.  Remove and keep supernatant. 
 
Protocol for Antioxidant Activity in Oil-in-Water Emulsion  (Fu et al., 2002) 
Add 33 µl of mushroom extract to 1mL of the oil-in-water emulsion (above).  For 
controls, use 33 µl BHA and 33 µl ddH2O in place of the mushroom extract. 
Place the mixed emulsion in a 15 mL centrifuge tube.  
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Incubate tubes at 60 °C w 250 rpm for 24 hours.  
 
Measurement of oxidation by Ferric thiocyanate (Duh and Yen, 1995) 
In a microfuge tube add  

783 µl of 75 % ethanol  
16.7 µl of ammonium thiocyanate 
16.7 µl of the fungal mixture (oil-water-emulsion). 

Wait 3 minutes, than add 16.7 µl ferrous chloride.  Read absorbance at 500 nm. 
. 
TBA/BUFFER REAGENT  
Reference: ZeptoMetrix Thiobarbituric Acid Assay kit 
 
In a glass tube bottle add the contents of one thiobarbituric acid (TBA) vial to 45 
mL of TBA Diluent 1.  Rinse the vial with the remaining 5 ml of TBA diluent 1 
and add to the bottle.  Mix on a stir plate until fully dissolved (adding low heat 
will speed dissolution).  When TBA is completely dissolved add 50 mL of TBA 
diluent 2.  Continue mixing  
for additional 10 minutes. 
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