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Abstract: Epilepsy is known as one of the most frequent neurological diseases, characterized by an enduring 
predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in pathways 
leading to neurodegeneration, which serves as the most important propagating factor, leading to the epileptic 
condition and cognitive decline. Moreover, there is also a growing body of evidence showing the disturbance 
of antioxidant system balance and consequently increased production of reactive species in patients with 
epilepsy. A meta-analysis, conducted in the present review confirms an association between epilepsy and 
increased lipid peroxidation. Furthermore, it was also shown that some of the antiepileptic drugs could potentially be 
responsible for additionally increased lipid peroxidation. Therefore, it is reasonable to propose that during the epileptic 
process neuroprotective treatment with antioxidants could lead to less sever structural damages, reduced epileptogenesis 
and milder cognitive deterioration. To evaluate this hypothesis studies investigating the neuroprotective therapeutic 
potential of various antioxidants in cells, animal seizure models and patients with epilepsy have been reviewed. Numerous 
beneficial effects of antioxidants on oxidative stress markers and in some cases also neuroprotective effects were observed 
in animal seizure models. However, despite these encouraging results, till now only a few antioxidants have been further 
applied to patients with epilepsy as an add-on therapy. Based on the several positive findings in animal models, a strong 
need for more carefully planned, randomized, double-blind, cross-over, placebo-controlled clinical trials for the evaluation 
of antioxidants efficacy in patients with epilepsy is warranted. 
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1. INTRODUCTION 

 Epilepsy is a neurological disease, characterized by an 
enduring predisposition to generate epileptic seizures and by 
enormous neurobiological, psychological, cognitive, and 
social consequences. Repeating seizures originate from 
hyperexcitation of certain group of neurons and lead to 
different transient clinical signs and laboratory findings. The 
crucial role in the disease development has the formation  
of the epileptogenic focus which has an uncontrolled 
hyperexcitability due to partial prolonged depolarization of 
cellular membranes [1]. Prolonged depolarization is the 
result of imbalance in neuronal system polarization in favour 
of hyperpolarizing influences as a consequence of enhanced 
excitation, decreased inhibition and/or diverse nervous 
system changes. This represents the underlying mechanism 
of the initiation and propagation of a seizure in a normal 
individual [2]. There is evidence that the formation of 
reactive species or the decreased activity of antioxidant 
systems may result in different forms of epilepsy as well as 
increased chances of repeating epileptic seizures [1]. 

 Regardless, the abundance of antiepileptic drugs (AEDs) 
introduced after phenobarbitone (PB) in the beginning of  
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the previous century, nowadays 20-30% of patients with 
epilepsy still continue having seizures [3]. These patients 
require a more aggressive approach, since monotherapy fails 
to control seizures. However, even polytherapy is not always 
effective. Furthermore, the incidence of adverse reactions, 
namely neurological disruptions, psychiatric and behavioural 
changes, as well as metabolic alterations is also increasingly 
important. Therefore, there is an urgent need for better 
tolerated and more efficient AEDs, especially in this group 
of patients [4]. 

 Furthermore, during metabolic processes, numerous 
AEDs, especially from the older AEDs generation, including 
PB, phenytoin (PHT), carbamazepine (CBZ) and valproic 
acid (VPA), produce reactive metabolites which can 
covalently bind to different endogenous macromolecules or 
increase the formation of reactive oxygen species (ROS) that 
can induce oxidative damage and cause toxicity. To support 
this theory, numerous studies evaluating the influence of 
epilepsy and AEDs on the formation of free radicals, show 
that either of them could be connected to oxidative stress 
generation [1, 5-9]. 

 Therefore, this review summarizes the rationale for use 
of antioxidants as add-on therapy for modulating free radical 
mediated oxidative stress in epilepsy and evaluates the 
existing studies investigating the efficacy of different 
antioxidant therapies. 
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2. OXIDATIVE STRESS AND ITS ROLE IN 
EPILEPTOGENESIS 

 Oxidative stress is a consequence of the increased 
oxidant burden which overwhelms the endogenous 
antioxidants and repair capacity or a consequence of 
diminished endogenous antioxidants and repair capacity 
which cannot encompass the normal oxidant burden [10]. 
Glutamate, which act as excitatory central nervous system 
(CNS) neurotransmitter and could potentially act excito-
toxic, especially at higher concentrations, is believed to be 
one of the key factors involved in oxidative stress generation 
[11]. 

 Increased formation of ROS results in elevated 
intracellular Ca2+concentration, which is seen in neuroplasticity 
changes, as well as seizure-induced neuronal death either 
through necrosis or apoptosis [12]. Increased intracellular 
Ca2+, which persist even through the chronic phase of epilepsy 
and is therefore crucial for the continuation of recurrent 
seizures, can influence on GABA A receptor recycling and 
thus alter neuronal excitability [13]. Moreover, increased 
intracellular Ca2+can change gene transcription, protein 
expression and turnover, neurogenesis, neuronal sprouting, 
and others cell physiological functions [14]. 

 Epileptogenesis is defined as the process in which an 
initial CNS insult leads to the onset of the epileptic condition 
as well as to the propagation of events that occur after 
established epilepsy and can take years or even decades [15]. 
This supports the theory that sequence of changes after an 
initial insult is essential for the development of the epileptic 
condition [16, 17]. Although, the process of epileptogenesis 
is so far not clearly understood [18], the above mentioned 
neuronal cell death is believed to be one of the most 
important factor that could lead to the development of the 
epileptic condition [16]. 

 Oxidative stress is known as a fundamental cytotoxic 
mechanism involved in pathogenesis of various neuro- 
degenerative diseases [19]. Its role in neurodegenerative 
diseases is especially important, because cells in the CNS, 
namely neurons, are particularly vulnerable to the destructive 
effects of reactive species [2]. ROS can cause deleterious 
effects on cells through acting on signalling pathways or 
through causing nonspecific oxidative damage to bio- 
macromolecules [10]. Generally, biological effects of ROS 
are successfully controlled by endogenous defence system of 
antioxidant enzymes (glutathione reductase -GR, glutathione 
peroxidase -GPx, superoxide dismutase -SOD, and catalase -
CAT) and non-enzymatic antioxidants (namely glutathione - 
GSH, vitamin E, vitamin A, vitamin C and β-carotene) [20]. 
Antioxidant enzymes block the initiation of reactive species 
chain reactions, while the non-enzymatic antioxidants react 
directly with reactive species and thereby prevent the 
propagation of chain reactions [20]. A major source of ROS 
is the respiratory chain reaction, which takes place in cell 
mitochondria [21, 22]. 

 Therefore, any changes in oxidative burden in favour of 
prooxidants can lead to initiation or propagation of already 
established epileptic seizures by proposed mechanisms that 
provoke neuronal cell death.  

3. INFLUENCE OF OXIDATIVE STRESS ON 
BIOLOGICAL MACROMOLECULES 

 Free radicals, resulting from endogenous redox 
imbalance, are believed to play an important role in causing 
oxidative stress, cell death and consequently tissue damage. 
They are able of injuring different cell macromolecules, 
namely lipids, nucleic acids, proteins, and carbohydrates, 
finally leading to cell death and cognitive decline, as 
described in our previous work [2].	
  
 Since oxygen is lipophilic and therefore accumulates  
in higher amounts in biological membranes and since  
polyunsaturated fatty acids (PUFAs) in lipoproteins and 
phospholipids are especially vulnerable to oxidative injuries, 
the major consequence of increased oxidative stress reflects 
in lipid peroxidation. Lipid peroxidation disturbs biological 
membranes and is therefore particularly destructive to their 
structure and function. Moreover, several by-products are 
produced through lipid peroxidation, including unsaturated 
hydroperoxides, which can further break down to generate 
diverse reactive aldehydes. Through covalent binding to 
cellular proteins, reactive aldehydes can further alter their 
function and subsequently provoke cellular damage. One of 
the widely studied reactive aldehydes is malondyaldehyde 
(MDA). Moreover, peroxidation products, known as peroxyl 
radicals, are less reactive compared to ROS and have 
therefore longer time of action. Consequently, they are able 
to diffuse more distant, even through cells, where they can 
react with other cellular constituents and cause diffuse cellular 
damage. Due to greater stability, peroxidation end products 
are valuable laboratory markers. General laboratory markers 
of lipid peroxidation are MDA and F2-isoprostanes [23, 24]. 

 Free radicals may further trigger disruption of nucleic 
acids. They can break deoxyribonucleic acid (DNA) strands 
or directly modify bases, which leads to deletions and other 
mutations. These modifications could result in aberrant gene 
expression and even cell death [25]. DNA damage activates 
the DNA repair enzyme poly-ADP-ribose polymerase-1, 
which over activation depletes its substrate, nicotinamide 
adenine dinucleotide, slowing the rate of glycolysis, electron 
transport, and ATP formation, eventually leading to functional 
impairment or cell death [26]. General laboratory marker  
of oxidative DNA damage is 8-hydroxy-2-deoxyguanosine 
(8-OHdG) [27]. 	
  
 The mitochondrial DNA (mtDNA), is even more 
vulnerable target for free radical damage because of 
diminished repair mechanisms and lack of histones and 
because it is situated much closer to the site of ROS 
generation. MtDNA disruption may lead to mitochondrial 
dysfunction that might result in disturbed cell function. 
Consequently disturbed electron transport chain and 
additional ROS production can result in a potentiation of 
oxidative stress [17]. After all, the most susceptible to 
oxidative damage is ribonucleic acid (RNA), since it is 
single stranded, not protected by hydrogen bonding, and less 
protected by proteins. RNA damages may result in errors in 
proteins or dysregulation of gene expression [28]. 

 Moreover, free radicals can oxidize both the backbone 
and side chains of proteins [23]. These oxidative modifications 
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may disturb the function of enzymes, receptors, neuro- 
transmitters, and structural proteins [29]. One of the most 
commonly used methods to quantify protein oxidation is by 
measuring the protein carbonyl level [23]. 

 Finally, oxidation of monosaccharide sugars results in the 
formation of oxaldehydes, which can contribute to protein 
aggregation. The term advanced glycation end-product 
(AGE) describes either protein damage that results from 
adduction of reducing sugars and subsequent oxidative 
evolution, or adduction of more reactive sugar oxidation 
products, termed glycoxidation. Oxidation of carbohydrate 
polymers may cause depolymerization and disturbed 
function of the involved polymers. AGEs are known as 
useful markers of oxidative damage [30]. 

4. OXIDATIVE STRESS IN DRUG-NAIVE PATIENTS 
WITH EPILEPSY 

 Changes in antioxidant defence mechanisms, as a result 
of epileptic condition itself or the effects of antiepileptic 
therapy have been studied in humans, but the observed 
research findings are discordant [5-7, 31-47]. 

 The majority of studies confirmed impaired oxidative 
status in untreated patients with epilepsy in terms of elevated 
lipid peroxidation reflected in elevated MDA levels [1, 33, 
37, 42, 44, 46, 47], and significantly decreased serum total 
antioxidant capacity [7, 32, 44]. Studies further reported 
elevated [32, 35], decreased [43, 46] or unchanged [31, 37] 
SOD activity, elevated [31], unchanged [32, 37, 44] or 
decreased [36] GPx activity, unchanged [31] or decreased 
[37] GR activity and unchanged CAT activity [43]. Arhan et al. 
observed also significantly elevated nitric oxide (NO) levels 
in patients with epilepsy in contrast to healthy controls [45].  

 Although, MDA levels are elevated in most cases, 
unchanged [31, 43, 45] or even decreased [32] levels were 
also reported. In a study designed by Yis et al., it was shown 
that scavenger systems are activated in order to decrease 
lipid peroxidation, resulting in lower erythrocyte MDA 

levels and slightly, insignificantly higher SOD activities 
[32]. 

 To evaluate the influence of epilepsy on oxidative status, 
we performed a meta-analysis on studies of lipid per-
oxidation reflected in MDA levels. A selection criterion for 
inclusion of the study was the comparison of untreated 
patients with confirmed epilepsy with a control group, 
presented by healthy control matches. Eleven studies were 
found which met the inclusion criteria [1, 31-33, 37, 42-47]. 

 Weighted mean difference (WMD) with 95% confidence 
interval (95% CI) was calculated from the extracted data, 
using Review Manager 5.2 (The Cochrane Collaboration, 
Oxford, UK). Due to heterogeneity of the results of various 
studies, random effect model was applied. WMD of the 
MDA levels was 0.90 µg/mL (95% CI 0.35 to 1.46) suggesting 
increased lipid peroxidation in epilepsy (Fig. 1).  

5. OXIDATIVE STRESS IN PATIENTS WITH 
EPILEPSY TREATED WITH THE OLDER GENERA- 
TION OF AEDS 

 Oxidative stress is known to be present in epilepsy as a 
cause or/and a consequence of epileptogenesis process. 
Furthermore, it was also shown that long-term treatment 
with AEDs can cause elevated free radical production in 
neuronal cells and consequently increased oxidative damage, 
leading to neurodegeneration. Several conventional AEDs 
are known to be extensively metabolized in the body. 
Through their metabolic transformation, numerous reactive 
metabolites, which are capable of covalent binding to 
biological macromolecules, are formed. Thus, the AEDs 
may, besides their main inhibitory activity on the epileptic 
focuses, also provoke systemic toxicity, either through increased 
oxidative damage or covalent binding of their reactive 
metabolites to biological macromolecules [8, 9, 48, 49]. Hence, 
it is of particular importance to find out the impact of AEDs 
on oxidative stress.  

 

Fig. (1). Meta-analysis of the studies comparing the lipid peroxidation in untreated patients with epilepsy and healthy controls. The 
difference in plasma MDA concentration  (µg/mL) in a group of untreated patients with epilepsy and a healthy control group. 
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5.1. Valproic Acid 

 Most studies have shown increased lipid peroxidation in 
children and adolescents [1, 31-33, 43, 45, 49] or adults [44] 
treated with VPA compared to untreated patients with 
epilepsy [1, 32, 33, 43-45] or healthy controls [1, 31, 33, 49]. 
Schulpis reported also decreased total antioxidant capacity 
levels [49]. Studies further showed decreased [50] or 
unchanged [5, 31, 51] SOD activity, elevated [44], unchanged 
[5, 31] or decreased [50, 52] GPx activity, elevated [52] or 
decreased [31] GR activity, unchanged [51] CAT activity 
and elevated [44] or decreased [52] serum Se levels. 
Furthermore, Schulpis in children and Varoglau, in adults 
found elevated 8-OHdG levels indicating increased DNA 
damage [49, 53]. On the other side, Peker et al. reported 
slightly higher NO concentrations in VPA group, however 
no significant differences in serum MDA levels were 
detected [51]. 

5.2. Carbamazepine 

 In the case of CBZ influence on lipid peroxidation 
inconsistent results were found. Some studies have shown 
increased oxidative stress expressed as lipid peroxidation [7, 
33, 44, 53], some have shown ambiguous changes [1, 6] and 
the others decreased [31, 42] lipid peroxidation compared to 
untreated patients with epilepsy [1, 6, 31, 33, 42, 44] or 
healthy controls [7, 53]. Hammed et al. confirmed also 
decreased total antioxidant capacity [44]. Studies further 
reported elevated [6, 33], decreased [50] or unchanged [1, 5] 
SOD activity, elevated, unchanged [1, 5] or decreased [44, 
50] GPx activity, unchanged or decreased GR activity, 
decreased CAT activity [50] and serum Se levels [44]. 
Moreover, Varoglau et al. found elevated 8-OHdG levels in 
adult patients with epilepsy, indicating increased DNA 
damage [53]. Niketić et al. further reported elevated levels of 
Hb ASSG, representing a glutathione adduct of haemoglobin 
(Hb). Occurrence of Hb ASSG serves as a marker of 
oxidative stress in erythrocytes [50]. A study, conducted by 
Yuksel et al., determined the modifications in the antioxidant 
system in children with epilepsy receiving long-term AEDs 
[1]. The results showed no significant differences in lipid per-
oxidation, SOD and GPx activities in children with epilepsy 

on CBZ monotherapy in contrast to the healthy controls and 
untreated patients with epilepsy [1]. The levels were re-
tested two years after the beginning of the treatment when 
increased lipid peroxidation and decreased SOD and GPx 
activities were noticed compared to healthy controls. SOD 
activity was lower even compared to untreated patients with 
epilepsy [33]. 

5.3. Phenobarbitone 

 Aycicek et al. investigated the effect of PB on different 
serum markers of oxidative stress. They examined the 
oxidative stress index, total antioxidant capacity, lipid hydro- 
peroxide, total peroxide, and concentrations of individual 
serum antioxidants such as albumin, bilirubin and uric acid. 
Apart from increased oxidative stress index and lipid hydro- 
peroxide in the group treated with PB in contrast to control 
group, no other significant changes were observed [7]. 
Furthermore, Niketić et al. observed decreased levels of 
SOD and GPx in adults treated with PB [50]. 

5.4. Polytherapy with Carbamazepine and Valproic Acid 

 In a large group of children and adolescents with 
epilepsy, receiving CBZ and VPA polytherapy, increased 
MDA concentrations and therefore lipid peroxidation were 
seen compared to healthy controls. Decreased SOD activities 
and significantly increased GPx activities were found in 
comparison to relevant levels in the healthy controls. 
Moreover, it was found that GR activity was slightly lower 
in polytherapy as well as in VPA monotherapy compared to 
healthy control. On the other hand, GR activity was higher in 
CBZ monotherapy group [31]. 

5.5. Meta-analysis 

 To explore the influence of AED therapy on oxidative 
status, a meta-analysis evaluating the influence of VPA and 
CBZ on MDA levels was designed. A selection criterion for 
inclusion of the study was the presence of a group of patients 
with epilepsy on therapy with VPA or CBZ and a control 
group of untreated patients with epilepsy. Seven [1, 31-33, 
43-45] and six [1, 6, 31, 33, 42, 44] studies were found which 
met the inclusion criteria for VPA and CBZ, respectively. 

 

Fig. (2). Meta-analysis of the studies comparing the lipid peroxidation in patients with epilepsy, treated with VPA, and a control group of 
untreated patients with epilepsy. The difference in plasma MDA concentration (µg/mL). 
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WMD with 95% confidence interval (95% CI) were calculated 
from the extracted data. Due to heterogeneity of the results 
of various studies, random effect model was applied. WMD 
of the MDA levels were 1.07 µg/mL (95% CI 0.51 to 1.63) 
in the case of VPA (Fig. 2) and 0.13 µg/mL (95% CI - 0.35 
to 0.61) in the case of CBZ (Fig. 3). 

 Significantly increased MDA levels in VPA treated 
group were found, while in CBZ group the effect of 
treatment on MDA level was inconclusive. Increased MDA 
levels seen in VPA may be a consequence of afore mentioned 
conventional AEDs metabolism and subsequent elevated free 
radicals formation, causing numerous side effects [1, 48, 54]. 
Similarly, numerous studies have confirmed increased lipid 
peroxidation in older generation AEDs like PB [7], PHT [6] 
and already mentioned CBZ [44]. These drugs represent 
classical aromatic AEDs which have also been proven to 
provoke oxidative stress either alone or through their 
metabolites [55]. This free radical generation could be the 
reason for numerous side effects and even for the failure of 
seizure control. Unfortunately, there are sparse studies 
evaluating the effect of newer AEDs on oxidative status  
to perform reliable meta-analysis. However, there are  
few studies performed on newer AEDs generation which 
have shown better oxidative profile. Studies evaluating 
oxcarbazepine [34, 45], topiramate [56] and lamotrigine [57] 
have shown decreased lipid peroxidation compared to 
untreated patients with epilepsy or healthy controls. 

 These results confirm that in patients with epilepsy the 
oxidants-antioxidants balance is largely modified by 
epileptic condition as well as by antiepileptic therapy. 
Therefore, further research is needed, especially with the 
newer AEDs.  

6. ANTIEPILEPTIC THERAPY AND OXIDATIVE 
STRESS 

6.1. Medication Therapy 

 Despite better understanding of the pathophysiological 
processes related to seizure initiation and propagation in the 
brain, and despite the introduction of several newer, second 
and third generation AEDs, there are still 20-30% of patients 
with epilepsy that are inadequately treated with the recent 
frontline AEDs [58, 59]. Most of these patients have  

focal epilepsies, which may be caused by brain trauma,  
brain tumors, complicated febrile convulsions, status 
epilepticus (SE) or ischemic lesions. As a consequence of 
such pathological processes a neural cell loss can be found in 
areas of epileptogenesis. Progressive neuronal cell loss is 
believed to have a major role in development of the resistant 
forms of epilepsy, such as temporal lobe seizures and further 
more even in development of the resistance to AED therapy 
at later stages of the disease [60]. 

 Combination of two or more first- or second-generation 
AEDs or the application of novel third-generation AEDs are 
the most appropriate, but still often not sufficiently effective 
therapeutic options when surgical treatment cannot be 
offered [58, 61-63]. While oxidative stress is believed to 
have an important function in epilepsy, approaches covering 
neuroprotective as well as anticonvulsive actions are 
desirable. Use of AED zonisamide with independent neuro- 
protective and antiepileptic activity in drug resistant patients 
with epilepsy, has confirmed this theory [64, 65]. 

6.2. Add-on Therapy with Antioxidants 

 Currently, ROS generation is believed to represent one of 
the crucial processes, which underlies the mechanism of 
causing damaging effects on brain by epileptic activity. The 
resulting neuronal alterations in the brain circuitry represent 
the fundamental changes which could eventually lead to a 
condition of recurrent spontaneous seizures. Therefore, 
neuroprotective actions could slow or even prevent 
epileptogenesis, hence, decrease seizure severity and 
frequency, improve established AED therapy efficacy and 
reduce well known AED pharmacoresistance [66-69]. 

 Since the neutralisation of the increased ROS formation 
during seizures depends on the ability of the antioxidant 
defence systems, the antiepileptogenic therapeutic potential 
of various substances possessing antioxidant activities, have 
been extensively studied [67-69]. This includes endogenously 
present antioxidants, such as α -lipoic acid [70-73], GSH 
[74], melatonin [75-85], ubiquinone (coenzyme Q10) [86, 87] 
and vitamin A [88], exogenous anticonvulsive and neuro- 
protective substances, such as α-tocopherol [53, 70-72], 
ascorbic acid [66, 89, 90], curcumin [91-100], N-acetylcisteine 
[101], omega-3 fatty acids [102-112] and resveratrol [113, 

 

Fig. (3). Meta-analysis of the studies comparing the lipid peroxidation in epilepsy patients treated with CBZ and a control group of untreated 
patients with epilepsy. The difference in plasma MDA concentration (µg/mL). 



532    Current Neuropharmacology, 2014, Vol. 12, No. 6 Martinc et al. 

114], and novel synthetic, potent radical scavengers, like 
aspalatone [115], EPC-K1 [116], EUK-134 [117], MnTBAP 
[118-120], and tempol [121]. These compounds, generally 
defined as molecules with the ability to quench or reduce 
highly ROS, exerts neuroprotective effects and can therefore 
protect the brain against oxidative stress as seen in some 
experimental models of seizures [66, 70-74, 90-92, 96, 99, 
122-125].  

 It is known that conventional AEDs fail to sufficiently 
control seizures. Furthermore, long-term use of these AEDs 
significantly increase oxidative stress and predispose to 
cognitive impairment [86]. The reason for seizures and 
cognitive deficit could lie in the inability of the current 
AEDs to establish the balance between oxidants and 
antioxidant defence mechanisms in the body [91]. Apart 
from epilepsy itself causing oxidative stress, increased 
oxidative stress triggered by AEDs is also suggested to 
contribute to the induction of seizures and cognitive 
impairment in patients with epilepsy [25, 37, 44, 91]. 
Therefore, the capability of antioxidants to inhibit seizure 
generation and decreased oxidative stress markers, further 
support their significant role as having supposed antiepileptic 
potential [126]. 

 There is relatively sparse data regarding clinical activity 
of AEDs on cognitive impairment. Some AEDs, namely PB, 
VPA and CBZ have been shown to significantly disrupt the 
vital balance between oxidants and antioxidants [7, 43, 44]. 
CBZ and lamotrigine have also been shown to trigger an 
important decline in learning and memory tests [127]. To 
confirm these findings, significant cognitive decline after 
CBZ treatment has been reported in newly diagnosed patients 
with epilepsy [128]. Furthermore, Reeta et al. reported that 
PB and CBZ caused significant oxidative stress and therefore 
deterioration of learning and memory in rats after 21 days of 
treatment. PB caused more cognitive impairment compared 
to CBZ [91]. Comparable trends have been already reported 
in humans [129, 130]. Finally, it has been reported that PB, 
PHT and VPA can trigger deleterious effects on the 
immature brain, which can in some cases lead to severe 
deterioration of cognitive functions development [91]. 

 According to mentioned above, the use of antioxidants  
as add-on therapy offers a potentially beneficial way of 
treatment in order to provide neuroprotective environment  
in the injured or stressed brain. Potential benefits of 
antioxidants, used as add-on therapy, were extensively 
studied in different in vitro or in vivo animal models of 
seizures and epilepsy and in patients with epilepsy. The results 
and observed potential mechanisms of their anticonvulsive 
action are further described in details and summarized in 
Tables 1-3.  

6.2.1. Endogenous Antioxidants 

α-Lipoic Acid 

 α-Lipoic acid (LA) is an important cofactor for 
mitochondrial enzymes and an essential natural antioxidant 
[70]. 

 Pre-treatment with LA demonstrated decreased nitrite 
content and lipid peroxidation level, while increased SOD, 

CAT, and GPx activities in striatum were observed during 
the acute phase of seizures induced by pilocarpine in adult 
rats [70, 131, 132]. A reduction in free radical formation and 
an increase in the activity of antioxidant enzymes produced 
an important enhancement in the resistance to seizures. 
Animals exposed to LA treatment presented no differences 
in physical growth and brain development, suggesting that 
LA ameliorates metabolic parameters only in a pilocarpine 
model [133]. 

 It was further demonstrated that pre-treatment with LA is 
able to reduce brain oxidative metabolism and consequently 
prevent pilocarpine-triggered seizures, SE and mortality of 
adult rats. These findings support an important function of 
free radicals in managing seizures development, maintenance 
and propagation [70]. 

 After all, as seen above, LA could serve as neuro- 
protective treatment against seizures induced by pilocarpine.  

Melatonin 

 Melatonin is a pineal hormone with its main function of 
regulating circadian rhythm [134]. It exhibits potent 
antioxidant activities by direct scavenging of hydroxyl and 
other free radicals, by stimulating GPx activity, and by 
inhibiting NO synthase [135]. 

 Melatonin was reported to suppress generalized seizures 
in amygdala kindled rats [75]. It is also known that pineal- 
ectomy reduces the number of stimulations required to 
trigger amygdala kindling [136]. Similarly, in the model of 
pilocarpine induced seizures in rats, pinealectomy was also 
found to be associated with reduced time needed to first 
spontaneous seizures and further even increased number of 
spontaneous recurrent seizures during the chronic phase [79]. 
These findings together confirm the neuroprotective role of 
melatonin, both endogenous and exogenous [136]. 

 Simultaneous admission of melatonin and kainic acid 
(KA) was further shown to completely inhibits KA-induced 
seizures and reduces mitochondrial DNA damage in the 
mouse brain cortex. These observed neuroprotective and 
anticonvulsant activity of melatonin could be mediated by 
scavenging of hydroxyl radicals [76, 77]. Besides, melatonin 
has been also reported to reduce iron-induced seizures in rats 
through inhibition of peroxidation [135]. 

 Experiments conducted in mice showed that melatonin 
significantly raised the electroconvulsive threshold, and 
increased the CBZ and PB protective activity against 
electroshock. Since, melatonin was shown to increase the 
number of [3H] GABA binding sites in animal hippocampus, 
it is reasonable to assume that these observed melatonin 
actions can be related to increased activity of GABA-ergic 
system [78]. 

 Furthermore, supplementation with melatonin during the 
SE period in the pilocarpine model has been shown to 
decrease apoptosis in different limbic areas [79]. Anti- 
convulsive effects of melatonin were also observed in 
penicillin-induced epileptiform activity in rats. Melatonin 
administered intra-cerebroventricularly delayed the on-set  
of epileptic seizures confirmed by electrocorticogram. 
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Table 1. Observed anticonvulsive and neuroprotective actions of endogenous antioxidants. 

Substance Cells/Animals/Humans Seizure Model References 

Potential antioxidant actions 

α-Lipoic acid 

Anti-convulsive effects Animal model (rats) PIL [79, 142] 

Inhibits seizure activity and oxidative damage 
• decreases lipid peroxidation and inhibits nitrite formation 

• enhances the activity of antioxidant enzymes  
• abolishes changes of Na+, K+-ATPase activity induced by pilocarpine 

Animal model (rats) PIL/Iron [70, 72, 143] 

Influence on neuronal excitability and further on development and propagation of 
certain seizure types, namely through its antioxidant activity 

In vitro & in vivo models 
 

- [144] 

Strong antioxidant effects in vivo and in vitro 
• decreases ROS 
• temporary metal chelating  

• increases α-tocopherol and ascorbate recycling 

In vitro & in vivo models 
  

- [144] 

Dihydrolipoic acid 

Strong antioxidant effects in vivo and in vitro 
• decreases ROS 
• temporary metal chelating  

• increases α-tocopherol and ascorbate recycling 

In vitro & in vivo models 
  
  

  

- [144] 

Melatonin 

Attenuates seizure activity and neurodegeneration 
• increases latency to the appearance of the first seizure 

Animal model (rats) KA/PTZ/PIL [76, 78, 139, 
145] 

Exerts antioxidant properties Patients with epilepsy Children [146] 

Animal model (rats)  KA/Amig. kindl [142, 75] 

Animal model (mice/rats) KA/Iron [145, 147] 

Animal model (mice) KA [76] 

Exerts anticonvulsive and neuroprotective properties 
• decreases ROS and RNS production 
• blocks lipid peroxidation and nucleic acids oxidation 

• maintains GSH homeostasis and the GSH-related antioxidant enzyme system 
Animal model (rats) KA [148, 149] 

Protects against seizures and decreased LPO Animal model (rats) Iron [147, 150] 

Protects against oxidative stress 

• free radicals scavenging 
• stimulation of GPx activity 
• inhibition of NOS activity 

Animal model (rats) Iron [135] 

Suppress epileptic activity by inhibiting peroxidation Animal model (rats/mice) Iron/KA [147, 151] 

Selen 

Provides protection against reactive oxygen species induced damage 

• levels are lower in patients with epilepsy 

Patients with epilepsy Children [36] 

Ubiquinone 

Prevents cells from free radicals induced oxidative damage 

• decreases the extent of oxidative stress and consequently the severity of seizures 

Animal model (rats) PIL [86, 87] 

Potentiate the antiepileptic effects of PHT treatment 
• ameliorates oxidative stress and cognitive impairment caused by PHT 

Animal model (rats) PIL [86] 

BBB – blood brain barrier, CAT – catalase, GPx – glutathione synthetase, GSH – glutathione, KA – kainic acid, LPO- lipid peroxidation, NOS - nitric oxide synthase, PIL – pilocarpin,  
PHT – phenytoin, PTZ – pentylenetetrazol, ROS – reactive oxygen species, RNS – reactive nitrogen species, SOD - superoxide dismutase 
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This anticonvulsant activity can again be explained by 
increased activity of GABA-ergic system, induced by 
melatonin [80]. 

 It was further seen that acutely administered melatonin 
considerably elevated the threshold for clonic convulsions 
triggered by pentylenetetrazol (PTZ) in mice [137]. In fact, 
melatonin prevented PTZ-induced glutamine and aspartate 
increases, while at higher doses, melatonin further decreases 
nitrite content in different brain areas, including the 
hippocampus [138]. Moreover, melatonin pre-treatment 
before PTZ administration in guinea pigs was reported to 
increase seizure latency, attenuate seizure severity, and lower 
the mortality rate [139]. 

 Collectively, melatonin has shown numerous protective 
functions in various animal seizure models, therefore it 
seems a promising neuroprotective agent. 

Ubiquinone 

 Ubiquinone is a potent antioxidant which reacts with 
ROS and therefore prevents cells free radicals induced 
oxidative damage, including mitochondrial membrane lipid 
peroxidation. Besides, ubiquinol, representing a reduced 
form of ubiquinone, is further capable of additional reduction 
in lipid peroxidation, since it has the ability of performing  
as a chain-breaking antioxidant and recycling of other 
antioxidants, namely α-tocopherol and lipoic acid [140, 141]. 

 Recently, studies evaluating the neuroprotective effects 
of ubiquinone in rats’ pilocarpin-induced epileptic model 
were performed [86, 87]. In pilocarpine group, an important 
increase in hydroperoxide concentration and GPx activity 
was reported, while there were no changes observed in SOD 
and CAT activities. On the other hand, in rat hippocampus  
of ubiquinone group, markedly decreased hydroperoxide 
content and elevated SOD, CAT and GPx activities were 
observed [87]. Overall, ubiquinone has been reported to 
decrease the extent of oxidative stress and consequently the 
severity of pilocarpine-induced seizures [86]. 

 Furthermore, ubiquinone was reported to potentiate the 
antiepileptic effects of PHT treatment by amelioration  
of oxidative stress and cognitive impairment caused by 
chronic PHT therapy in pilocarpine-induced seizures in rats. 
Therefore, ubiquinone can be used as a safe and effective 
add-on therapy to conventional epilepsy treatment, both to 
reduce seizure severity as well as to protect against seizure-
induced oxidative damage [86]. 

 These results suggest that ubiquinone may exert 
significant neuroprotective actions which might be helpful in 
the treatment of neurodegenerative disorders [86, 87]. 

6.2.2. Exogenous Antioxidants 
Ascorbic Acid (Vitamin C) 

 Ascorbic acid represents a classical, potent water-soluble 
antioxidant, which reduces harmful oxidants and therefore 
protects biological macromolecules from oxidation [152]. Its 
main function is direct scavenging of superoxide and 
hydroxyl radical [66]. Furthermore, ascorbic acid is crucial 
for other antioxidants recycling, especially for vitamin E and 

lipoic acid. Moreover, it also enhances SOD and CAT 
enzymes activities [66, 90]. 

 The use of ascorbic acid in animal studies demonstrated 
the reduction of neuronal damage, triggered by free radicals, 
which are particularly elevated in inflammation processes 
and neurodegenerative disorders [66].  

 Histopathological studies on animals, which were pre-
treated with ascorbic acid, prior to pilocarpine induced 
seizure, have revealed a significant 60% reduction in the 
frequency of hippocampal brain damage induced by seizures 
and 5-fold decrease in the area of hippocampal damage [66]. 
The ascorbic acid pre-treatment has been further shown to 
increase hippocampal SOD and CAT activities, increase in 
the latency to first seizures, suppression of behavioural 
seizure episodes, and decrease in lipid peroxidation, nitrite 
content, brain damage, SE, severity of hippocampal lesions, 
and mortality of rats in pilocarpine induced seizures [66, 90, 
153]. These findings are a consequence of ascorbic acid  
free radicals scavenging abilities, which support its neuro- 
protective activity. Moreover, ascorbic acid could compensate 
for the reduction of GSH synthesis caused by nitrite and 
nitrate inhibition, and also for the loss of other endogenous 
antioxidants and antioxidant enzymes, including SOD and 
CAT [66]. 

 Additionally, ascorbic acid was further reported to 
decrease or prevent epileptic seizures evoked by FeCl3 [116] 
or penicillin administration [154, 155]. 

Curcumin 

 Curcumin possess antioxidative and anti-apoptotic 
properties [92, 156]. It acts as an effective scavenger of ROS 
and RNS, which leads to decreased lipid peroxidation, 
oxidative DNA damage, mitochondrial dysfunction, and 
apoptotic cell death [93, 94]. Therefore, in experimental 
animal models, curcumin has been shown to exhibit 
protective effects against seizures, oxidative stress and 
cognitive deterioration in a dose-dependent manner [93, 96].  

 Curcumin pre-treatment was shown to prevent 
hippocampal neuronal cell death [92]. Precisely, curcumin, 
manganese complex of curcumin, and diacetylcurcumin 
treatment have been shown to attenuate hippocampal cell 
death induced by KA both, by inhibiting cell apoptosis as 
well as increasing neuroprotection accomplished through 
maintenance of intact blood brain barrier function [95, 96].  

 In PTZ animal models, curcumin expressed dose-
dependent protection against seizures. It considerably 
extended latency phases presented before myoclonic, clonic 
and generalized tonic-clonic seizures occurred, and further 
decreased duration of generalized tonic-clonic seizures [96]. 
Furthermore, curcumin administration in rats inhibited brain 
MDA levels to increase, indicating a decreased lipid per- 
oxidation [157]. Additionally, a recent study of curcumin 
supplementation in PTZ kindled rats confirms antioxidant 
effect of curcumin through a decrease in MDA, and an 
increase in CAT and glutathione S-transferase levels 
observed in rat brain [100]. 
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 Curcumin pre-treatment in rats was further shown to 
poses protective effects against oxidative stress and 
cognitive deterioration induced by PHT [99] as well as 
against seizures in animal experimental models of epileptic 
seizures induced by iron administration [97] or electroshock 
[98]. 

 Co-administration of curcumin with PHT, PB and CBZ 
showed a significant improvement in elevated plus maze test 
as well as in passive avoidance paradigm [91, 99, 158]. 
These two tests are often used as complementary to each 
other. The anxiety and memory in rodents can be estimated 
by elevated plus maze test [159]. In passive avoidance test, 
the animal teaches to stay away from a place or situation in 
which shock was experienced in the past. Consequently, both 
tests can measure animals’ capability to remember crucial 
environmental information [160]. In rats treated with 
curcumin, the improvement in both tests shows towards 
superior acquisition and retention of memory, and further 
increased capacity to learn [91]. Therefore, in rats treated 
with curcumin and the above mentioned AEDs, curcumin 
inhibited the progression of cognitive deterioration [91, 99]. 
Since curcumin administration in healthy rats was not 
associated with any changes in cognitive functions, it shows 
that curcumin alone does not improve memory in normal rats 
[91, 157]. 

 Co-administration with curcumin in rat models of 
cognitive deterioration induced by PB and CBZ compared to 
controls shows a significant elevation and reduction in the 
brain reduced GSH and MDA levels, respectively. These 
could be at least partially responsible for the decrease of PB- 
and CBZ-induced cognitive deterioration [91]. 

 The influence of curcumin on cognitive functions was 
further studied in rat PTZ-kindling induced seizure model 
[161, 162]. Curcumin group compared to controls showed a 
significant increase in retention latencies in the passive 
avoidance paradigm and a significant decrease in retention 
transfer latencies in the elevated plus maze test [161, 162]. 
Moreover, curcumin pre-treatment improved cognitive 
functions in PTZ-kindled rats that is at least partially a 
consequence of observed curcumin anti-seizure activity 
[157]. 

 Curcumin antiepileptic actions have already been 
observed in former studies in which curcumin reduced 
aluminium chloride-induced, PHT-induced, and lead-induced 
memory deficit in rats [96]. Moreover, it was shown that 
curcumin raise the cellular GSH levels through promotion of 
glutamate cysteine ligase genes transcription [195]. 

 Since the administration of curcumin in rats has been 
shown to be effective in preventing chemical induced 
seizures, oxidative damage and cognitive deterioration, it 
may have some potential as a possible neuroprotective  
agent. Therefore, curcumin could be used as an add-on 
therapy resulting in improved seizure control and cognitive 
functions. 

Epigallocatechin (EGCG) 

 Pre-treatment with EGCG in PTZ-kindled rats has been 
shown to decrease the time of mean seizure phase and 

increase the duration of the latent period before myoclonic 
jerks and generalized tonic-clonic seizures occurred in a dose 
dependent manner compared to PTZ group. Furthermore, 
EGCG pre-treated group showed marked decrease in MDA 
and increased in GSH levels in brain tissue, caused by PTZ-
induced seizures, compared to controls [196]. In addition, 
EGCG pre-treatment in lead-induced seizure models has 
been connected to significant decrease in MDA levels as 
well as an increase in GSH levels and SOD activity [197]. 
This is supported by the study where EGCG prevented iron-
induced seizures [198]. 

 On the other hand, pre-treatment with EGCG was further 
shown to significantly improve the declined learning and 
memory loss. These findings were confirmed by significantly 
improved results of passive avoidance paradigm and 
elevated plus maze tests in comparison to the PTZ group. 
While EGCG alone showed no effects on cognitive 
functions, this could confirm that EGCG attenuates the 
impaired cognition induced by PTZ. These observed neuro- 
protective effects of EGCG on cognitive decline induced by 
seizures can be at least partially a consequence of its 
anticonvulsant activity [196]. 

 Therefore, it is suggested that pre-treatment with EGCG 
might decrease oxidative stress and improve cognitive 
decline after PTZ-induced seizures [196, 197, 199]. 

N-acetylcysteine - thiol Containing Compounds 

 The compounds in the thiol-containing group are similar 
to the major endogenous antioxidant glutathione. Their 
antioxidant activity comes from the reducing activity of the 
thiol group. This sulfhydryl provides an electron to ROS, 
causing ROS reduction and therefore decreased reactivity. 
N-acetylcysteine (NAC) is a simplified mimetic of GSH with 
a similar antioxidant mechanism utilizing the thiol group to 
reduce ROS [69]. 

 NAC has demonstrated an ability to suppress epilepto- 
genesis in PTZ model, probably due to the direct antioxidant 
effect and increase in cellular GSH levels [69, 200]. 

Resveratrol 

 Resveratrol is a conjugated aromatic compound with  
a conjugated bridge between two aromatic rings. The 
antioxidant activity is due to the ability to delocalize an 
unpaired electron over an extended conjugated framework, 
thus stabilizing the radical [113]. Resveratrol was associated 
with reductions in severity of KA-induced seizures [114]. 

α-Tocopherol (Vitamin E) 

 α-Tocopherol is considered to be the main antioxidant 
substance in the human body, interfering with oxygen and 
the production of hydroxyl radical in cell membranes, 
thereby reducing lipid peroxidation [90]. Vitamin E type 
molecules are highly lipophilic. α -Tocopherol has been 
reported to prevent neurotoxicity and neurological symptoms 
in rat models of chemically-induced epilepsy [124]. Convulsive 
behaviour was attenuated in pentylenetetrazol-, methyl- 
malonate- and pilocarpine-induced seizures, where brain 
lipid peroxidation and nitrite content were lowered, while 
CAT and SOD activities were increased, with resulting 
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Table 2. Observed anticonvulsive and neuroprotective actions of exogenous antioxidants. 

Substance Cells/Animals/Humans Seizure Model References 

Potential Antioxidant Actions 

Ascorbic acid (vitamin C) 

Ameliorates convulsive behaviour and neuronal death 
Inhibits initial oxidative stress & maintains GSH homeostasis 
Directly scavenges free radicals & restores the endogenous antioxidant system 
Enhances CAT activity and decreased LPO 

Animal model (rats) 
Animal model (rats) 
Animal model (rats) 
Animal model (rats) 

PIL/KA/PTZ 
Trimethylin 

Stress 
PIL 

[89, 153, 163, 164] 
[165] 
[166] 

[89, 153] 

β-catechin 

Oral administration inhibits TBARS formation and increases the activity of SOD  
Pre-treatment results in a reduction in free radical formation 

Animal model (rats) 
Animal model (rats) 

Iron  
Iron  

[167] 
[168] 

Curcumin 

Neuroprotective effects produced by: 

• maintenance of GSH levels 

• inhibition of lipid peroxidation 

• increase of heme oxygenase-1 expression 

Animal model mice/Astrocytes 

  

Animal model (rats) 

KA/- 

  

KA 

[92, 169] 

  

[168] 

Curcumin manganese complex 

Possesses more powerful anticonvulsive and neuroprotective properties Animal model (rats) KA [95, 170] 

Animal models show it: 

• mimic SOD activity 

• exerts the activity of NO scavenging  

• suppress markers indicating neuronal injuries 

Animal model (rats) KA [95, 170] 

Ginkgo biloba 

Suppresses seizure generation and seizure induced ROS formation  

• EGb 761 treated mice display attenuated response to PTZ 

• pre-treatment protects against PTZ-induced convulsive behaviours 

• neuroprotection correlates with antioxidant effects 

Animal model (mice) PTZ [171] 

*Neurotoxin (4’-O-methoxypridoxine) exerts pro-epileptic effects Patients with epilepsy/Healthy 
subjects 

/ [172] 

Ginsenosides 

Attenuate seizure activity 

• block KA induced mitochondrial dysfunction and impaired mitochondrial 
antioxidant capacity 

• attenuate ultrastructural mitochondrial damage & mitochondrial oxidative 
stress 

• inhibit synaptosomal oxidative stress & presynaptic ultrastructural damage 
via adenosine A 2A receptor activation 

• inhibit NMDA-mediated epileptic discharge 

  

Animal model (rats) 
 

Animal model (rats) 
 

Animal model (rats) 
 

Animal model (rats) 

  

KA 
 

PIL 
 

PTZ 
 

PTZ 

 

[173] 
 

[173] 
 

[174] 
 

[174] 

Honeybee propolis 

Pre-treatment significantly attenuates oxidative stress, seizure activity and 
neuronal degenerations  

• maintains GSH homeostasis 

• maintains adenosine A1 receptor activation 

Animal model (rats) KA [175] 
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Table 2. contd…. 

Substance Cells/Animals/Humans Seizure Model References 

Potential Antioxidant Actions 

N-acetyl cysteine 

Anticonvulsive actions 

• markedly improves myoclonus 

• decreases occurrence of generalized seizure 

• gradually increases serum GSH levels 

Animal model (rats) 

  

Trimethylin/ 

KA 

[165, 176] 

  

Protects against seizures Animal models (mice) PTZ [101] 

Omega-3 fatty acids (PUFAs) 

Exert channel modulation, and anti-inflammatory action 

• DHA suppress epileptic seizures and synaptic transmission by blocking 
hippocampal frequency-dependent Na+ channels 

• through inhibition of voltage-gated Ca2+ and Na+ channels, DHA enhance 
neuronal membrane stability 

 

Animal model (rats) 
 

Animal model (rats/mice) 

 

PIL 
 

KA 

 

[103, 104, 177] 
 

[171, 174] 

Observed anti-convulsive actions in animal studies 

• suppress seizures and delay the latency to seizure onset 

• delay the latency to seizure onset 

• no changes in the latency to seizure onset 

• suppress electrographic seizures 

• reduce the frequency of severe seizures 

 

Mice/rats 

Mice/rats 

Animal model (rats) 

Animal model (mice) 

Animal model (rats) 

 

PTZ 

PTZ 

PTZ 

KA 

KA/GI 

 

[105, 178] 

[106, 107, 179] 

[180, 181] 

[108] 

[182] 

Anticonvulsant effects of n-3 PUFAs (EPA & DHA) in clinical studies [109] 

• reduce seizure frequency by >50%  

• transiently reduce seizure frequency 

  

Patients with epilepsy 

Patients with epilepsy 

  

CE 

Int./Ref. 

  

[110] 

[111, 183] 

Plasma concentrations are elevated in children treated with KD Children with epilepsy KD [184] 

Resveratrol 

Exerts anticonvulsive and neuroprotective properties, decreases LPO 
Delays the onset of seizures and decreases LPO 

Animal model (mice/rats) 
Animal model (rats) 

KA/AOMS 
Iron 

[171, 185] 
[186] 

α-Tocopherol(vitamin E) 

Pre-treatment with α-tocopherol: 

• decreases the percentage of animals with seizures, increases time needed 
to trigger the first seizure, increases survival, decreases LPO and nitrite 
content, increases SOD and CAT activity  

 

Animal model (rats) 

 

PIL 

 

[122, 125] 

Prevents the development of epileptic seizures induced by iron administration 

Significantly delays the appearance of seizures triggered by intracerebral  
FeCl3 administration	
  

Decreases seizure activity and LPO 

Improvement in patients with complex partial seizures 

Exerts anticonvulsive and neuroprotective effects - reduced BBB disruption 

Fails to attenuate seizure activity 

Animal model (rats) 

Animal model (rats) 
 

Animal model (rats) 

Patients with epilepsy 

Animal model (rats) 

Animal model (rats) 

Iron  

Iron  
 

Iron  

- 

PTZ 

KA/Amig. 
kindl./BIC 

[135, 187, 188] 

[135, 187, 188] 
 

[189, 190] 

[191] 

[192-194] 

[115, 191] 
[191, 189] 

AOMS - artery occlusion model of stroke, CE – chronic epilepsy, DHA - docosahexaenoic acid, EPA - eicosapentaenoic acid, GI – global ischemia, GSH – glutathione, Int. – 
Intractable, KA – kainic acid, KD – ketogenic diet, LPO- lipid peroxidation, NMDA - N-methyl-D-aspartate, PIL – pilocarpin, PTZ – pentylenetetrazol, PUFA - polyunsaturated fatty 
acid, Ref. – refractory, SOD - superoxide dismutase, * Ginkgo biloba extracts can contain neurotoxin (4’-O-methoxypridoxine) which can exert pro-epileptic effects. 
 



538    Current Neuropharmacology, 2014, Vol. 12, No. 6 Martinc et al. 

 
lower hippocampal damage and increased survival [90, 125, 
201]. In animals treated with α -tocopherol plus pilocarpine, 
the intensity of histopathological changes and mortality rate 
were lower in comparison to pilocarpine alone [90]. 

 Diverse experimental models show that preliminary 
injections of α -tocopherol reduce seizure induced oxygen 
and nitrogen free radicals generation on a time scale of 
minutes-to-hours [124]. Short-term dietary α -tocopherol 
supplementation reduces brain lipid peroxidation even  
four days after KA-induced seizures. Together with a high 
consumption rate of brain α -tocopherol observed in 
supplemented rats after seizures, this finding indicates that 
conditions of oxidative stress initiated by SE persist long 
after the earliest post-ictal phases and that α-tocopherol can 

play a prolonged antioxidant effect after the triggering event. 
α-Tocopherol markedly reduces neuronal cell death after SE 
[124]. 

 There is also considerable evidence of the prophylactic 
and inhibitory effects of α-tocopherol on the development of 
iron-induced epileptic seizures. α -Tocopherol has been 
shown to importantly delay the onset of epileptic seizures 
triggered by intra cerebral FeCl3 administration [135]. 

6.2.3. Novel Synthetic, Potent Antioxidants 
α-Tocopheryl-L-ascorbate-2-O-phosphatediester 
 α-Tocopheryl-L-ascorbate-2-O-phosphatediester (EPC-K1) 
represents a potent synthetic scavenger of hydroxyl radicals. 
EPC-K1 has been demonstrated to inhibit the formation of 

Table 3. Observed anticonvulsive and neuroprotective actions of novel, potent antioxidants. 

Substance Cells/Animals/Humans Model References 

Potential antioxidant actions 

Aspalatone 

GPx mimetic [202] 

• inhibits seizures, oxidative stress, and hippocampal neuronal death 

• enhances antiperoxidative enzyme activity, like GPx and CAT in blood 

• directly scavenges hydroxyl radicals, but not SOD 

Animal model 

  

In vitro ESR study 

KA 

  

- 

[115] 

  

[115] 

EUK-134 (new, potent SOD mimetic) 

Prevents oxidative stress and reduces neuronal damage [117] 

• blocks neuronal death, LPO, nitrite formation and NA oxidation 

• mediates suppression of: 

o AP-1 and NF-jB DNA-binding activity 

o transcription factors susceptible for oxidative stress 

  

In vitro model 

Animal model 

 

  

- 

KA 

 

  

[203] 

[127] 

 

• does not affect seizure latency and duration Animal model KA [117, 118] 

MnTBAP 

Inhibits mitochondrial oxidative stress and neuronal loss 

• inhibits rat hippocampal superoxide production, 8-OHdG formation and neuronal 
loss  

• inhibits neuronal loss in hippocampus CA3 region by 60% 

• prevents KA-induced mitochondrial aconitase inactivation by 75% 

• inhibits KA-induced raise in 8-OHdG/2-dG ratio by 50% 

• inhibits mitochondrial O2- formation and DNA oxidative damage with no effects 
exerted on behavioural seizures 

Animal model (rats) KA [118-120] 

Tempol 

Protects neuronal cells and exerts anticonvulsant effects via: 

• suppression of apoptosis 

• suppression of SOD formation 

• inhibition of nitrite formation 

Animal models KA [121] 

There were no effects exerted on seizure-like activity in hippocampus Animal models KA [121] 

8-OHdG – 8-hydroxy-2-deoxyguanosine, AP-1 – activator protein, CAT – catalase, DNA – deoxyribonucleic acid, ESR - electron spin resonance, GPx – glutathione peroxidase, 
GSH – glutathione, MnTBAP – Mn(III)tetrakis (4-benzoic acid) porphyrin, KA – kainic acid, LPO- lipid peroxidation, NF – nuclear factor, SOD - superoxide dismutase 
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thiobarbituric acid reactive substances (TBARS) and protein 
carbonyl (P-Carb), induced by ferric ions in vitro in a dose 
dependant manner. Furthermore, pre-treatment or simultaneous 
treatment with EPC-K1 suppresses or delays the appearance 
of epileptic seizures induced by ferric ions [116]. 

 As seen above, ROS have been implicated in seizure-
induced neurodegeneration. These findings support the 
appropriateness of introducing the addition of antioxidants as 
an add-on to classical AEDs treatment. Most of the studies 
performed so far have confirmed that antioxidants as an  
add-on therapy could potentially, at least to some extent, 
provide neuroprotective effects against seizure-induced 
neurotoxicity (Tables 1, 2, and 3).  

7. STUDIES OF ANTIOXIDANTS USAGE IN 
VARIOUS ANIMAL MODELS OF EPILEPSY 

 Numerous studies in animal models of seizures and 
epilepsy have been conducted in order to evolve the 
influence of an add-on antioxidant treatment on enzymatic 
antioxidant activity (SOD, CAT, GPx and GR), non-
enzymatic endogenous antioxidant status (GSH), ROS markers 
(hydroperoxide), various markers of macromolecular 
oxidative stress damage (MDA, TBARS, 8-OHdG, mtDNA 
damage and P-carb), and nitrate/nitrite levels. Practically all 
antioxidants, including endogenously present α -lipoic acid 
[70, 73, 143, 204], coenzyme Q10 [87] and melatonin [135, 
142, 145, 147, 148], exogenous anticonvulsive and neuro- 
protective substances, such as ascorbic acid [66, 89, 135, 
153, 164, 165], curcumin [96, 99, 100, 205, 206], ginsenoside-
Rd [207-209], propolis [175], α -tocopherol [122, 125, 135, 
193, 201, 210], and naringin [211], and novel synthetic, 
potent radical scavengers, like aspalatone [115], EPC-K1 
[135], and tempol [121], have shown neuroprotective effects 
against oxidative stress induced by different proconvulsive 
substances that are usually used in models of seizures and 
epilepsy, as summarized in the Table 4.  

 The majority of studies have confirmed neuroprotective 
effects of antioxidants, showing increased levels of 
endogenous antioxidant enzyme activities, increased 
endogenous non-enzymatic antioxidant levels, namely GSH 
and decreased markers of macromolecular oxidative stress 
damage in comparison to untreated animal models of 
seizures and epilepsy. However, there were few exceptions. 
Curcumin in seizure induced rats showed a decrease in CAT 
[100, 212] and GSH [100] levels and exerted no effect on 
MDA levels [205]. Ginsenoside-Rd in aging senescence-
accelerated mouse (SAM) showed no effects on SOD and 
CAT activities [207]. Furthermore, tempol in KA-induced 
rats exerted decreased SOD activities [121]. A summary of 
findings from these studies is given in Table 4. 

 Oxidative stress occurring in the brain throughout 
substance-provoked seizures has been shown to play an 
important role in pathogenic consequences of seizures. As 
seen in Table 4 investigated potent antioxidants in animal 
models exert strong antioxidant effects. These findings 
therefore greatly support the idea of important neuro- 
protective and hence possible anticonvulsive role of using 
appropriate potent antioxidants as an add-on therapy in 
epilepsy. 

8. STUDIES OF ANTIOXIDANTS USAGE IN 
PATIENTS WITH EPILEPSY 

 Based on the abundance of observed beneficial effects  
of antioxidants on markers of oxidative stress in vitro and  
in vivo in animal models of epileptic seizure, various 
antioxidants, namely vitamin E, melatonin and NAC,  
have also been used in patients with epilepsy as an add-on 
therapy [81, 83, 102, 104, 213-216]. On the other hand, 
unfortunately there is a lack of quality data obtained from 
straight clinical studies of antioxidants use in patients with 
epilepsy, and furthermore even the existing results are 
confusing.  

 For instance, Ogunmekan et al. reported that α-
tocopherol as an add-on significantly reduced seizures in 
children [214], while Raju et al. observed no significant 
difference between α-tocopherol and placebo in adults [213]. 
Ogunmekan et al. published a randomized, double-blind, 
placebo-controlled clinical study in 24 children with 
medically refractory epilepsy. He investigated the effect of 
α-tocopherol supplementation on seizure control. It was 
noticed that the addition of D-α-tocopheryl acetate in a 
dosage of 400 mg/day produced a significant decrease in 
seizure occurrence in ten of twelve patients with epilepsy. 
Controls showed no changes in seizure incidence. 
Furthermore, since there were no changes in the plasma 
anticonvulsants concentrations, clinical benefits were 
attributed to increased serum E vitamin levels [214]. On the 
other hand, another randomized, double-blind, placebo-
controlled clinical trial, evaluating the effect of the addition 
of D-α-tocopherol to the conventional AEDs treatment, 
carried out in 43 adults with refractory epilepsy, did not 
support the possible therapeutic effect of vitamin E [213]. 

 Besides these two newer studies, there are also two older 
studies published which have evaluated the efficacy of α -
tocopherol treatment in epilepsy. Kovalenko et al. have 
observed beneficial effects already one month after the α -
tocopherol administration (600 mg once daily) in patients 
with confirmed pharmacoresistant epilepsy. Decreased lipid 
peroxidation, positive EEG alteration and reduced frequency 
of epileptic seizures were reported in the majority of patients 
[217]. Similarly, Tupeev et al. investigated the effect of  
600 mg of α -tocopherol applied daily as an add-on to 
conventional AEDs therapy. Only after one month of 
additional therapy, they reported greatly improved patients' 
general state, achieved namely through decreased epileptic 
seizure frequency, which was further supported by an 
observed increase in SOD activity and consequently 
significant improvement in EEG results. They concluded that 
using of α -tocopherol in the multiple-therapy approach to 
epilepsy treatment improved neuroprotective and antiepileptic 
effects [218]. 

 Currently, only a few studies of using melatonin as add-
on therapy in patients with epilepsy have shown potential 
beneficial effects on decreased epileptic seizures incidence. 
Assessing the effects of melatonin on the blood levels  
of antioxidant enzyme GPx and GR in children with epilepsy 
receiving CBZ monotherapy compared to the placebo  
group, showed significantly and non-significantly increased 
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Table 4. Effects of potential antioxidants on oxidative stress markers in different animal models of seizures and epilepsy. 

Antioxidant Animal Seizure Model Observed Marker Results Investigated Material References 

SOD, CAT, GPx and GR ↑ Rats 
  

Aging 
  MDA ↓ 

Cortex, cerebellum, hippocampus, 
striatum and hypothalamus	
  

[204] 

SOD and CAT ↑ Striatum [70] 

GPx ↑ Striatum/Hippocampus [70, 143] 

MDA and NO ↓ Striatum [70] 

GSH ↑ Hippocampus [143] 

Rats 
  
  
  
  

PIL 
  
  
  
  

Na+ and K+ ATP-ase ↑ Hippocampus [143] 

SOD, CAT and GPx ↑ Striatum/Hippocampus [70, 73] 

α-Lipoic acid 
  
  
  
  
  
  
  
  

Rats 
  

PIL 
  MDA and NO ↓ Striatum/Hippocampus [70, 73] 

SOD ↑ Hippocampus/Striatum [125, 210] 

CAT ↑ Hippocampus/Striatum [125, 210] 

Rats 
  
  

PIL 
  
  

LPO and nitrite ↓ Hippocampus/Striatum [125, 210] 

TBARS and P-Carb ↓ Striatum [201] Rats 
  

PTZ-kindled 
  LPO ↓ Whole brain [193] 

Rats PIL CAT ↑ Hippocampus [122] 

α-Tocopherol 
  
  
  
  

Rats Iron injection H2O2 ↓ Whole Brain [135] 

SOD ↑ Hippocampus [66] 

CAT ↑ Hippocampus [66, 89, 153] 

MDA ↓ Hippocampus [66, 89, 153] 

Rats 
  
  
  

PIL 
  
  
  

NO ↓ Hippocampus [66] 

P-carb ↓ Striatum [164] Rats 
  

PTZ-kindled 
  Na+ and K+ ATP-ase ↑ Striatum [164] 

MDA ↓ Hippocampus [165] 

P-carb and GSSG ↓ Hippocampus [165] 

Ascorbic acid 
  
  
  
  
  
  
  
  

Rats 
  
  

TMT 
  
  

GSH ↑ Hippocampus [165] 

P-carb ↓ Whole brain [115] Aspalatone 
  

Rats 
  

KA 
  MDA ↓ Whole brain [115] 

GSH ↑ Whole brain  [96] Rats 
  

PTZ-kindled 
  MDA ↓ Whole brain [96] 

GSH ↑ Whole brain [206] Mice 
  

PTZ-kindled 
  MDA ↓ Whole brain [206] 

CAT ↓ Cerebrum, Cerebellum [100] Rats 
  

PTZ-kindled 
  GSH and MDA ↓ Cerebrum, Cerebellum [100] 

NOS and LDH ↓ Hippocampus [205] 

SOD and GSH ↑ Hippocampus [205] 

Rats 
  
  

PIL 
  
  

MDA  - Hippocampus [205] 

CAT, MDA and NO ↓ Hippocampus [212] Rats 
  

PIL 
  GSH and Na+ and K+ ATP-ase ↑ Hippocampus [212] 

GSH ↑ Whole brain [99] 

Curcumin 
  
  
  
  
  
  
  
  
  
  
  
  

Rats 
  

Phenytoin 
  MDA ↓ Whole brain [99] 
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Table 4. contd…. 

Antioxidant Animal Seizure Model Observed Marker Results Investigated Material References 

MDA ↓ Whole brain [135] EPC-K1 

  

Rats 
  

Iron injection 
  P-carb ↓ Whole brain [135] 

SOD and CAT  - Liver, serum [207] 

GPx and GR ↑ Liver, serum [207] 

MDA ↓ Liver, serum [207] 

GSH and GSH/GSSG ↑ Liver, serum [207] 

Mice-SAM 
  
  
  
  

Aging 
  
  
  
  

GSSG ↓ Liver, serum [207] 

SOD, CAT and GR ↑ Cerebral artery [208] 

GSH/GSSG ↑ Cerebral artery [208] 

Rats Focal cerebral 
ischemia injury 

8-OHdG, P-Carb, AGE, MDA ↓ Cerebral artery [208] 

SOD and GPx ↑ Serum [209] 

Ginsenoside-
Rd 
  
  
  
  
  
  

Mice Aging 

MDA ↓ Serum [209] 

mtDNA damage ↓ Whole brain [145] Mice 
  

KA induced 
  MDA ↓ Whole brain [145] 

MDA ↓ Brain synaptosomes [142] Rats 
  

KA induced 
  ROS generation ↓ Brain synaptosomes [142] 

GPx and GR ↑ Forebrain [148] Rats 
  

KA induced 
  GSH ↑ Hippocampus, amygdala [148] 

Rats KA induced GSH, GSH/GSSG ↑ Striatum and cortex [149] 

GPx ↑ Whole brain [135] Rats 
  

Iron injection 
Iron injection NO formation ↓ Whole brain [135] 

Melatonin 
  
  
  
  
  
  
  
  
  

Rats Iron induced TBARS ↓ Cortex [147] 

GSH ↑ Whole brain [211] Naringin Rats KA induced 

MDA ↓ Whole brain [211] 

MDA and P-carb ↓ Hippocampus [175] Propolis 
  

Rats 
  

KA induced 
  GSH/GSSG ↑ Hippocampus [175] 

Tempol Rats KA induced SOD and DNA fragm. ↓ Hippocampus [121] 

SOD, CAT and GPx ↑ Hippocampus [87] Ubiquinone 
  

Rats 
  

PIL 
  H2O2 ↓ Hippocampus [87] 

↓ - decreased, ↑  - increased, - no significant changes observed, 8-OHdG - 8-hydroxydeoxyguanosine, AGE - advanced glycation end-product, CAT – catalase, DNA – 
deoxyribonucleic acid, GPx - glutathione peroxidase, GR – glutathione reductase, GSH – glutathione, GSSG - glutathione disulfide, H2O2 – hydrogen peroxide, KA – kainic acid, 
LDH - lactate dehydrogenase, mtDNA – mitochondrial DNA, MDA – malondialdehyde, NO – nitric oxide, NOS - nitric oxide synthase, PIL – pilocarpin, PTZ – pentylenetetrazol, 
ROS – reactive oxygen species, SAM - senescence-accelerated mouse, SOD – superoxide dismutase, TBARS - thiobarbituric acid reactive substances, TMT –trimethylin 

 

GR and GPx activities, respectively [83]. Similar findings 
were found in a study in children with epilepsy on VPA 
monotherapy [81]. Both of these studies demonstrate  
that melatonin exerts neuroprotective effects due to its 
antioxidant and antiexcitotoxic properties within the central 
nervous system [81, 83]. 

 In a small clinical study of six children with intractable 
seizures, the addition of melatonin to the conventional AED 
treatment, demonstrated an improvement in seizure control 
in five cases. Moreover, after discontinuation of melatonin, 

all six patients have claimed their seizure activity returned to 
pre-treatment levels [84]. 

 Another clinical study, performed in children with 
epilepsy investigated the effect of melatonin administration 
to the conventional AEDs on patient’s life quality. Since 
there were noticed an improvement in physical, cognitive 
and social functions, emotional well-being, and behaviour, it 
is suggested that melatonin may have beneficial neuro- 
protective effects when used as an add-on therapy in patients 
with epilepsy [82]. 
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 There is also a published study of using melatonin in 
children with sleep disturbances and therapy-resistant 
epilepsy. Six of ten participated children with epilepsy 
showed a significant decrease in epileptic seizure frequency, 
which could be a consequence of anticonvulsant effects as 
well as reduced sleep deprivation, caused by melatonin [85]. 

 Moreover, in a patient with Unverricht-Lundborg 
disease, the influence of NAC treatment on serum GSH 
concentrations was studied. GSH concentrations increased 
during treatment, which corresponded to improved seizure 
control with exception in myoclonus and ataxia. There were 
also patients who showed a variable response [216]. Ben-
Menachem et al. reported significantly reduced myoclonus 
and further decreased incidence of generalized seizures in 
numerous case reports of using NAC [215]. 

 It is important to keep in mind that in patients with non-
refractory epilepsy, even better responses to antioxidant as 
add-on therapy, could be expected. After all, for more reliable 
conclusions of potential beneficial effects of antioxidants, 
more carefully planned, randomized, double-blind, cross-
over, placebo-controlled clinical trials including appropriate 
number of patients and a longer duration of oxidative stress 
biomarkers monitoring, are needed. Furthermore, to the best 
of our knowledge, till now no clinical studies have been 
performed, which would investigate the potential benefits of 
many other known antioxidants, such as ascorbate, flavonoids, 
melatonin, lipoic acid, exogenous novel potent mimetics of 
catalase or SOD, and coenzyme Q10, in the case of epilepsy 
in humans. Moreover, at this time even the assessment of 
beneficial effects of antioxidants as add-on treatment in the 
field of common genetic and acquired epilepsies can be 
considered as incomplete. Therefore, on the basis of the 
published studies and reports, it is very difficult to provide 
any relevant final conclusions of the potential benefits of 
using antioxidants as add-on neuroprotective therapy. To 
prevent potentially misleading conclusions, novel carefully 
designed and more comprehensive studies are needed. 

9. POTENTIAL LIMITATIONS OF USING ANTI- 
OXIDANTS AS ADD-ON THERAPY IN EPILEPSY 

 The use of dietary supplements is very popular among 
the people around the world and patients with epilepsy  
are no exception. Despite the lack of evidence of their 
beneficial effects in epilepsy, studies confirmed that dietary 
supplements are consumed by 10 to 56% of patients with 
epilepsy [219-223]. Among reported dietary supplements 
many antioxidants can be found [219, 221]. In generally 
patients consider dietary supplements as safe medications 
with no adverse side effects. Although this is confirmed in 
some reports from clinical trials or case reports investigating 
dietary supplements use in patients with epilepsy, some 
studies also report that dietary supplements can affect central 
nervous system and potentially increase the risk of seizures 
[172, 219, 224, 225]. Moreover, the concomitant treatment 
of AEDs and dietary supplement can change effects of 
AEDs, since AEDs are highly prone to drug-drug and drug-
dietary supplement interactions. The potential interactions 
between antioxidants and AEDs can be explained by 
pharmacokinetic (changes in absorption, distribution, 
metabolism or elimination) or pharmacodynamic (changes  

in drug effects or efficacy) mechanisms. The two most 
probable pharmacokinetic mechanisms by which antioxidants 
can interact with AEDs are via cytochrome P450 enzymes 
and transporter proteins. Ginkgo biloba induces CYP2C19 
and can reduce the levels of phenytoin and valproate which 
are both substrates for this enzyme [172, 226]. Data about 
the effect of vitamin E on CYP are less evident. According 
to some reports Vitamin E may induce CYP3A4 [227, 228] 
and thus can reduce levels of carbamazepine, ethosuximide, 
felbamate, phenytoin phenobarbital, tiagabine, and 
zonisamide, which are all substrate for this enzyme [229]. 
Moreover, it was shown that resveratrol can inhibit CYP3A4 
and increase levels of carbamazepine in rats [230]. We can 
also speculate that this interaction would probably occur 
with above mentioned AEDs which are substrates for 
CYP3A4. Resveratrol is also inhibitor of multidrug 
resistance-associated protein 2. This mechanism can also 
contribute to increased levels of CBZ in combination with 
resveratrol [230]. Additionally, AEDs are also substrates of 
P-glycoproteins and concomitant treatment with curcumin, 
catechins, and ginkgo biloba can probably affect their  
levels [172]. Therefore, concurrent use of antioxidants with 
AEDs, can lead to an increase or decrease in AED plasma 
concentrations. This can potentially results in an increase or 
decrease of drug efficacy, an increase of drug toxicity or in 
an increase in its adverse side effects. However, the potential 
clinical implication of interactions between concurrent use of 
antioxidants and AEDs is difficult to predict and assess. For 
this reason it is important to stress out that antioxidants 
should not be used concurrently with other drugs without 
proper medical supervision. 

10. CONCLUSION 

 Oxidative stress has been revealed as one of the most 
important processes leading to neuronal cell death. 
Therefore, it is rational to anticipate that oxidative stress  
has a considerable role in epileptogenesis. There is an 
accumulation of free radicals and oxidative changes 
expressed during the acute phase after the initial insult or SE 
induced by various triggers and the latent phase in 
experimental models of epilepsy. This finding suggests that 
seizures, SE and cell death induced by different triggers, 
might possess a large participation in brain oxidative stress, 
which is closely related to the mechanism of propagation 
and/or maintenance of the epileptic focus. Furthermore, there 
is an accumulation of evidence that in patients with epilepsy 
the balance of antioxidant system is disturbed, and the 
production of free reactive radicals is increased.  

 Neuronal cells death resulting in neuronal loss appears  
to represent one of the most important neurobiological 
alterations in the epileptogenic and epileptic brain. 
Therefore, the use of antioxidants as add-on therapy should 
lead to less sever structural damages, reduced epileptogenesis 
and milder cognitive deterioration. Most of the conventional 
AEDs do not prevent neuronal damage resulting from 
prolonged or multiple seizures. Therefore, there is a strong 
need to develop newer antiepileptic treatments, including 
novel AEDs with broad spectrum of actions or conventional 
AEDs in combination with potent antioxidants, which would 
pose simultaneously neuroprotective and antiepileptogenic 
effects. The former effects seem to be very important, 
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especially in the latent period, where targeted therapies could 
potentially prevent the progression of epileptic seizures, 
namely through epileptogenesis inhibition. 

 Only recently, the perception of epilepsy has extended 
from a condition almost entirely related to neurons to a 
condition further associated with the dysfunctions of glial 
cells. Astrocytes, representing the largest subgroup of glial 
cells, are known to play a crucial role in regulating and 
maintaining the extracellular chemical milieu of the central 
nervous system. Additionally, they interact with neurons, 
modulate neurons synaptic transmission, and participate in 
inflammation processes. It is therefore reasonable to propose 
a potentially important role of glial cells in epileptogenesis, 
as was indicated in few studies [231]. Moreover, we 
speculate that oxidative stress can also modulate the function 
of glial cells which can contributes to progression of 
epileptogenesis. However, new studies are needed to confirm 
this hypothesis.  

 In order to evaluate potentially positive effects of 
therapeutic interventions with antioxidant components, 
numerous studies of their use in animal models of epileptic 
seizures, were revised. However, even though numerous 
positive effects of antioxidants were observed in animal 
models of epileptic seizure, till now only few antioxidants 
have been further evaluated in patients with epilepsy as an 
add-on therapy and even these with only partial success. 
Based on the several positive findings in animal models, a 
strong need for more carefully planned, randomized, double-
blind, cross-over, placebo-controlled clinical trials for the 
evaluation of antioxidants efficacy in patients with epilepsy 
is warranted. 

 Currently, upon enhanced investigation of possible causes 
and consequently improved understanding of underlying 
mechanisms of epileptogenesis, many new possibilities for 
epilepsy therapy have revealed. Future is currently reflected 
in designing newer AEDs, which will include anticonvulsant 
and neuroprotective activity. Therefore, it is of great 
importance to closely monitor various potent antioxidant 
systems and to study the possibilities of their inclusion to 
conventional AEDs treatment, which according to some 
studies can lead to improved life quality in patients with 
epilepsy. 
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LIST OF ABBREVIATIONS 

8-OHdG = 8-hydroxy-2-deoxyguanosine 

ADP = Adenosine diphosphate 

AEDs = Antiepileptic drugs 

AGE = Advanced glycation end-product 

AOMS = Artery occlusion model of stroke 

AP-1 = Activator protein 

BBB = Blood brain barrier 

CAT = Catalase 

CBZ = Carbamazepine 

CE = Chronic epilepsy 

CI = Confidence interval 

CNS = Central nervous system 

DHA = Docosahexaenoic acid 

DNA = Deoxyribonucleic acid 

EEG = Electroencephalogram 

EGCG = Epigallocatechin 

EPA = Eicosapentaenoic acid 

EPC-K1 = α-Tocopheryl-L-ascorbate-2-O-
phosphate diester 

ESR = Electron spin resonance 

GABA = γ-aminobutyricacid 

GI = Global ishemia 

GPx = Glutathione peroxidase 

GR = Glutathione reductase 

GSH = Glutathione 

GSSG = Glutathione disuphide 

H2O2 = Hydrogen peroxide 

Hb = Haemoglobin 

Hb ASSG = Glutathione adduct of haemoglobin 

KA = Kainic acid 

KD = Ketogenic diet 

LA = Lipoic acid 

LDH = Lactate dehydrogenase 

LPO = Lipid peroxidation 

MDA = Malondyaldehyde 

MnTBAP = Mn(III)tetrakis (4-benzoic acid) 
porphyrin 

mtDNA = Mitochondrial DNA 

NAC = N-acetlcysteine 

NF = Nuclear factor 

NMDA = N-methyl-D-aspartate 

NO = Nitric oxide 

NOS = Nitric oxide synthase 

PB = Phenobarbitone 

P-Carb = Protein carbonyl 
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PHT = Phenitoin 

PIL = Pilocarpin 

PTZ = Pentylenetetrazol 

PUFA = Polyunsaturated fatty acid 

RNA = Ribonucleic acid 

RNS = Reactive nitrogen species  

ROS = Reactive oxygen species 

RR = Relative risk 

SAM = Senescence-accelerated mouse 

SE = Status epilepticus 

SOD = Superoxide dismutase 

TBARS = Thiobarbituric acid reactive substances 

TMT = Trimethylin 

VPA = Valproic acid 

WMD = Weighted mean difference 
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