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Antireliability of noise-driven neurons
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We demonstrate, within the framework of the FitzHugh-Nagumo model, that a firing neuron can respond to
a noisy driving in a nonreliable manner: the same Gaussian white noise acting on identical neurons evokes
different patterns of spikes. The effect is characterized via calculations of the Lyapunov exponent and the event
synchronization correlations. We construct a theory that explains the antireliability as a combined effect of a
high sensitivity to noise of some stages of the dynamics and nonisochronicity of oscillations. Geometrically,
the antireliability is described by a random noninvertible one-dimensional map.
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Recently, the reliability property of spiking neurons
has attracted great attention [1]. The effect appears as a co-
incidence of responses of a single neuron subject to repeat-
edly applied weak input fluctuations. A similar property
has been referred to in recent experiments with a noise-
driven neodymium-doped yttrium aluminum garnet
(Nd:YAG) laser [2] as consistency. From the theoretical
viewpoint, reliability and consistency are manifestations of
the synchronization of nonlinear systems by common noisy
driving [3-8]. Indeed, the usual protocol in a reliability ex-
periment, when a particular fluctuating wave form is repeat-
edly used to force a neuron, is equivalent to the driving of an
ensemble of identical neurons by a common fluctuating
force. The intrinsic noise is a source of nonidentity, and may
lead to nonperfect reliability.

Reliability means that the response of a nonlinear system
to the fluctuating forcing is stable. Quantitatively, this
stability is measured by the largest Lyapunov exponent (LE)
in the presence of noise. For a limit cycle in a smooth dy-
namical system one can show that a small noise results in a
negative LE, thus leading to synchronization and reliability
[3,5,6]. A larger noise can, however, result in a positive LE
[3,9,8,7] (a positive exponent was also reported for a
nonsmooth system in [5]).

In this paper we demonstrate an antireliability, i.e., a tran-
sition to a positive LE, for a realistic model of a neuron in an
excitable state. We show that a FitzHugh-Nagumo (FHN)
neuron responds to a fluctuating forcing of a certain intensity
in a nonreliable manner, while reliability is observed for very
small and very large intensities of the driving noise. Further-
more, we develop an analytical approach, allowing us to cal-
culate the LE for moderate noise amplitudes. We explain the
transition to antireliability geometrically as a chaotic transi-
tion due to random stretchings and foldings of the phase
mapping.

The basic model we use to describe a spiking neuron is
the FHN system [10]:

v=e"[B-vHv-wl+ &1, w=v-uv,, (1)
where € is a small parameter (below in the numerical simu-
lations we fix £=0.05), and &(¢) is a white Gaussian noise:
(&(t)&(t+1")y=2028(t"). For vy<-1 the only attractor in the
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noiseless system is a stable fixed point, i.e., the system is in
the excitable regime, and the LE is negative. For v,>—1 this
fixed point becomes unstable, and a stable limit cycle ap-
pears. In this state of periodic spiking the LE vanishes. Due
to the smallness of the parameter & the oscillation transition
is very sharp, and already for v,>-1+0(¢!?) the cycle
takes a form characteristic for relaxation oscillations, not de-
pending on v,,.

In the vicinity of the transition value vy=<-1 the system is
mostly sensitive to external noise which evokes a
spike train. The latter can be more or less regular, but here
we focus on the stability properties of the dynamics, and
characterize them in Fig. 1 with the largest LE. One can see
that the region of moderate noise intensities, where the LE is
positive, exists both when the dynamics is excitable
(vp<-1 and the LE is negative for vanishing noise)
and when the system is oscillating (vy=-1 and the LE
vanishes for vanishing noise). Only outside the vicinity of
the transition (for |vy+1|=0.005) does the LE remain
negative for all o.

We denote the regime with positive LE as an antireliable
one, and illustrate it in Fig. 2. Here the same realization
of noise drives ten uncoupled identical neurons. While for
A <0 a perfect synchrony of spikes is observed, for A >0
one can see an alternation between the epochs of asynchro-
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FIG. 1. The Lyapunov exponent vs the noise amplitude for the
FHN system (1) for different values of v.
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FIG. 2. Samples of firing patterns for the ensemble of ten neu-
rons (1) driven by common noise. Each spike is depicted as a short
vertical stripe, so a long vertical stripe corresponds to a synchro-
nous, reliable firing. Left column, the neurons are perfectly identi-
cal; right column, there is small intrinsic noise with amplitude
=5 X107, For 0=0.01 and 0.08, the LE is negative (reliability);
for 0=0.013 the LE is positive (antireliability).

nous and relatively synchronous behavior. The latter epochs,
which look in the middle row of Fig. 2 like vertical stripes,
are in fact not perfectly synchronous, but slightly different in
the spike timings (Az;~0.01-0.1). We will give an explana-
tion for this intermittency below.

In real situations, the perfect synchrony (for N <0) is dis-
torted by small nonidentities in the oscillators or in the noisy
driving (e.g., by an additional noise specific for each oscil-
lator; in the context of neuron reliability one speaks of in-
trinsic noise). We illustrate this imperfect synchrony in Fig.
2, right column.

Figure 2 provides a qualitative frame for observations of
antireliability in experiments, because there typically the
same protocol as above and the same representation of data
is used. To characterize the reliability and antireliability
quantitatively, we adopt the event synchronization approach
[11]. For the observed sequence of spikes, one can introduce
the “reduction” function xT(t):cEinl[®(t—zj)—(t—tj—r)],
where ® is the Heaviside function, t is the time of the
jth firing event, and ¢ is a normalization constant defined
by (x"=1. The synchrony of firing events for two systems
with the reduction functions x"(r) and y“(¢) can be quantified
by the event synchronization correlation function
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C;y(t’)=<x7(t)y7(t+t’)). In the case of a perfect event
synchrony,

1=, |f <,

0, lt| = 7.

Cr() = (2)

We present the calculations of the event synchronization in
Fig. 3. In Fig. 3(a) identical neurons are considered. One can
see that the regions of perfect event synchrony [C7(0)=1]
coincide with the ones of negative LE in Fig. 1. For regions
of antireliability (A >0), the event correlation function C7(0)
is small, but does not vanish: this is due to the intermittent
synchronous epochs seen in Fig. 2. The persistence of syn-
chrony against the intrinsic noise nonidentity may be esti-
mated from Fig. 3(b).

We now turn to an analytical description of the effect and
to revealing its mechanism. First, we give a general argu-
ment that a positive LE cannot be explained within the one-
dimensional phase approximation [12] to the oscillation dy-
namics (a statistical evidence of this fact has been presented
in [5,6]). Indeed, a time-continuous evolution of the phase
(and of any one-dimensional variable) under arbitrary forc-
ing on a finite time interval can be reduced to a monotonic
transformation of the phase. Because an attracting set of a
monotonic transformation has a negative LE, a positive LE is
excluded. Therefore, we have to go beyond the usual one-
dimensional phase approximation for the dynamics of per-
turbed oscillatory systems. This makes the problem non-
trivial, because in higher dimensions one cannot obtain the
LE by a plain averaging. For simplicity, we assume that the

noise-free system is periodic, and model the two-
dimensional perturbed dynamics with the system
¢=w+al@)r, i=-ye)r+fle)él). 3)

Here ¢ is the oscillation phase and r is a transversal devia-
tion from the limit cycle (hereafter referred as an amplitude),
and w=27/T is the oscillation frequency. We have intro-
duced three functions: a(¢) describes the nonisochronicity of
the system, y(¢) is the relaxation rate of the amplitude per-
turbations, and f(¢) is the sensitivity to noise; all these func-
tions of ¢ are 27 periodic. We have omitted noise in the
equation for the phase because of its (already mentioned)
purely stabilizing effect.

For a relatively small noise the dynamics is close
to the limit cycle, on which, at the noiseless limit,
o(1)=o(1)=¢(0)+ wt and r(r)=0. The infinitesimally small
perturbations obey linearized equations which, to the main
order with respect to noise, take the form

FIG. 3. The correlation function Cy, (1)
for two FHN systems driven by (a) identical, and
(b) nonidentical noise signals, with the intrinsic
noise of amplitude o, =5X 107>, Parameters
vo=-1.001, 7=0.1.
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& == Y@p)or + f' (@) é(1) Sp.  (4)

We now make two assumptions that are typically valid for
the spiky systems under consideration. First, let us suppose
that the system is especially sensitive to noise on some short
part of the limit circle near ¢=®, and neglect the effect of
noise for the rest of the cycle. This means that f'(¢,) is
nonzero only in some interval [¢~, ¢*] = ®. For the FHN
system with vy=~—1 this is exactly the region near the tip of
the slow branch v=-1, w=-2. Here the trajectory slowly
passes close to the unstable steady state and is highly sensi-
tive to perturbations. The next assumption is that the relax-
ation rate 7 is large at least on some pieces of the limit cycle.
For the FHN system this is ensured due to the separation of
slow and fast motions.

As a result of these two assumptions, we can separate the
dynamics of perturbations into two stages: (i) a noise-
induced excitation in the vicinity of @, and (ii) a relaxation.
Prior to stage (i) we take a phase perturbation, i.e., 6r=0,
8= 0¢,. During the excitation we can neglect all terms in
(4) except the noisy one, which yields a perturbation in the
amplitude

8¢ = a(gg) or,

otw
Oorg=So¢@,, S= f S (wt)E(t)dr.
¢ /o

As &(r) is a Gaussian white noise, S is a Gaussian random
variable with zero average and variance

o (¢
=22 [ orae.

The next, relaxation stage, where the effect of noise can be
neglected, starts with the perturbation or, d¢, at the time #,.
According to Egs. (4)

t
Sr(t) = 6r exp(— f y(wt')dt') ~ Sroe P10
1

0

t
S¢(t) = Sy + Ory f a(wt’)e P ~10) gy

)

a(d)
~ 8@y + Org———(1 — e P10y
®o 0 D)

Thus, the amplitude relaxes to zero, and for the phase per-
turbation we obtain the mapping

5‘Pn+l = 5‘Pn(1 +R)a (5)

where we have introduced the index n indicating repetitive
passages through the noise-sensitive region. The quantity
R=Sa(®)/y(P) is a zero-mean Gaussian variable with the
variance

20’2(12((1))
V(D)

2 _

f [f' (@) de. (6)

The LE for the random mapping (5) is
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FIG. 4. The theoretical dependence \y(V).
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In Fig. 4 we depict the dependence \y(V). The LE changes
sign at V=1.5560, which corresponds to the onset of desyn-
chronization and antireliability. According to formula (6), V
is proportional to the amplitude of noise o, to the sensitivity
of the dynamics to the noise, which is proportional to
[f'(¢)]%, and to the nonisochronicity of the oscillations a,
and inversely proportional to the relaxation rate y.

Above we have assumed that the neuron is in the oscillat-
ing regime, and that there is no noise acting directly on the
phase in (4). A violation of both these conditions leads to an
additional contraction of the phase (which is, of course,
much stronger for a neuron in an excitable state with small
noise, because there the trajectory spends a lot of time in the
vicinity of the stable fixed point). Thus, the resulting curve in
Fig. 4 should be shifted down. It becomes then similar to the
numerically observed dependencies of Fig. 1. The negative
LE for very large noise intensities, observed in Fig. 1, cannot
be explained by the theory above, as the underlying assump-
tions are not valid for strong noise.

We now compare the theoretical predictions with the nu-
merics. To check the mapping for the phase perturbations (5),
we fix a region on the branch of slow motions of the system
near v« =~—\3, w.=~0. Here, due to the strong contraction of
the fast variable v, only perturbations along the slow branch
are present. We characterize these perturbations with their
projection on coordinate v. In Fig. 5 we present the histo-
grams of the derivatives dv,,,;/dv,, for pieces of trajectories
starting at (v«,wx) and returning to its vicinity. These quan-
tities, which are the multipliers for infinitesimal perturba-
tions, according to the theory above correspond to the quan-
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FIG. 5. Samples of the distribution of the derivatives dv,/dv,
for the FHN system at vy=-0.998. The squares present results of
numerical simulation, the solid line fits them with a Gaussian
distribution.
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FIG. 6. Sample mappings v,—v,,; for finite segments of the
slow branch for vy=-0.998, =0.01 (positive LE). The offset on
the vertical axis is arbitrary.

tities 1+R in Eq. (5). One can see that the distribution of
these multipliers is nearly symmetric around dv, . /dv,~1.
For small noise the Gaussian distribution fits very well,
while for larger noise one observes “heavy tails”
[(dv,,1/dv,—1)72], which are presumably due to violations
of the assumptions used in the derivation of (5).

In order to clarify the geometric nature of the transition to
a positive LE, we have followed the evolution of finite but
small segments of the slow branch, starting in the vicinity of
(v«,ws). All the points evolve under the same realization of
noise for a fixed time interval =T. The resulting mappings of
the segment are shown in Fig. 6. Of course, the mapping is
random, therefore we have different realizations that depend
on the noise wave form. The crucial point is that many of
these mappings are not one to one. This reveals the geometri-
cal mechanism of the production of chaos: during the evolu-
tion, the segments of the cycle are stretched and folded, so
that the resulting mapping is nonmonotonic.

The distribution of multipliers Fig. 5 allows us also to
explain the intermittent character of the antireliability. Ac-
cording to Eq. (5) and Fig. 5, there is a finite probability to
observe a vanishing multiplier de¢,,,/d¢, (geometrically,
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these events correspond to extrema of the random mapping
Fig. 6). If such an event happens, the states of different iden-
tical neurons become very close to each other; thus they fire
nearly simultaneously. Only after a certain number of cycles
with large multipliers |d¢,,,/d®,| >1 do the close states di-
verge, and the difference in the responses of identical neu-
rons to the common noise becomes visible.

Summarizing, we have shown, within the framework of
the noise-driven FitzHugh-Nagumo model, that identical
neurons can respond antireliably to the noisy driving. Anti-
reliability, which manifests itself as a noncorrelation of
spikes, is observed when the neurons are close to the transi-
tion excitability-oscillations, where the dynamics is mostly
sensitive to perturbations. Quantitatively, the antireliability is
characterized as a state with a positive largest Lyapunov ex-
ponent. The latter is purely noise induced, as the noiseless
FitzHugh-Nagumo system does not possess even a transient
chaos. We explain the transition to antireliability within the
approximate analytical theory for small noise-induced devia-
tions from the deterministic trajectory, which goes beyond
the one-dimensional phase approximation. This is crucial,
because only due to transversal to trajectory perturbation,
can the stretchings and foldings that lead to chaos, occur. The
final formulas (6) and (7) give an explicit dependence of the
LE on the physical properties of the neuron, such as noniso-
chronicity and sensitivity, thus guiding an experimental
search for the effect. The theoretical expression for the ran-
dom multiplier of phase deviations explains also the inter-
mittent character of the antireliable state: during the epochs
where the multiplier is close to zero, a temporarily synchro-
nous firing of neurons is observed.
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