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Antiresonance scattering at defect levels in the quantum conductance of a one-dimensional syste
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For the ballistic quantum transport, the conductance of each channel is quantized to a value of 2e2/h. In the
presence of defects, electrons will be scattered such that the conductance will deviate from the values of the
quantized conductance. We show that anantiresonancescattering can occur when anextra defect level is
introduced into a conduction band. At the antiresonance scattering, exactly one quantum conductance of a
one-dimensional wire disappears, in good agreement withab initio calculations. The conductance takes a
nonzero value when the Fermi energy is away from the antiresonance scattering.
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A large number of studies have been focused on electr
transport in quantum wires in recent years as we move
the era of nanoscience and nanotechnology. This is lar
due to its academic interests and great importance in ap
cations of the nanoscale electronic devices. Interesting p
nomena, such as quantized conductance1,2 and 0.7 anomaly
in conductance,3,4 were discovered. In this area, one of im
portant subjects is the quantum transport properties of a
tem related to the motion of a single or a few electrons i
single or a few conducting channels. The conductance
nanosystem with a few channels is best described by
Landauer formula,G5(2e2/h)Tr(t1t), wheret is the trans-
mission matrix. Thus, the conductance can be obtained f
a microscopic quantum-mechanical calculation of transm
sion coefficients. An individual defect or impurity is ex
pected to modify substantially the properties of such
system.

Among many systems, carbon nanotubes have receiv
particular attention because it is a new form~other than
graphite, diamond, and fullerenes! of carbon,5 and because o
great progress in carbon nanotube fabrications. Carbon n
tubes have very rich atomic and electronic structures. For
atomic structure, the tubes can be both single and mult
walls. The diameter of the tubes can vary within a single tu
or from one tube to another. The nanotube structures can
be manipulated. For the electronic structure, a carbon na
tube can be either an insulator or a metal, depending on
the nanotube is wrapped up from a graphite sheet. Regar
the electronic transport, early experiments observed qu
tized electronic conductance6 in such tubes at room tempera
ture. Recently, there areab initio calculations on the effect
of impurities and local structural defects on the conducta
of metallic carbon nanotubes. It was shown that the cond
tance is reduced by a quantum unit (2e2/h) by a localized
defect when the Fermi energy is at this defect level. Ho
ever, the conductance is only reduced by a fractional of
quantum conductance unit when the Fermi energy is a
from the defect level. Motivated by this discovery, we wou
like to investigate how a single local defect level affec
conductance of a conducting channel.

There are two types of defects in a conduction band. O
is that an atomic orbital deviates from its original form wit
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out changing the total number of orbitals. This may
achieved by substituting one atom by a foreign atom~of
course, an electronic structure does not necessarily chan
the same way as its atomic structure!. The other is to add an
extra orbital into the band by, for example, doping an imp
rity into a sample. We shall show that the two types of d
fects affect electronic transport in a quasi one-dimensio
conduction band differently.

In order to consider the effects ofan extra defect levelon
electronic-transport properties, we model the on
dimensional metallic tube by a conventional one band tig
binding Hamiltonian on a chain. The Fermi energy will b
restricted within the band. An extra defect state of energyu is
placed at sitei 50. The nature of locality of the defect i
modeled through a delta coupling of the defect state w
conduction states ati 50. The Hamiltonian of this system
can be written as

H5t(
i

ci
†ci 111ud0

†d01vc0
†d01c.c., ~1!

whereci
† and ci are the creation and annihilation operato

for an atomlike orbital centered at sitei. d0
† and d0 are the

creation and annihilation operators of the defect state at
origin. v is the coupling coefficient between the localize
defect state and band state at the origin. For simplicity, o
the nearest-neighbor hopping is included in this model.
fact, the dynamical impurity problem described in the Ham
tonian could be generated effectively by a static impurity in
quantum wire. Assume that there is a static impurity pot
tial around the origin of a wire. This impurity potential ma
create an extra impurity stated(x,y) in the wire. The wave
function of a conduction electron can be expressed
f(x,y), which along they direction is dispersionless~here
we consider only one subband!. Therefore, the wave function
f(x,y) can be decomposed intof(x,y)5ac(x,y)
1bd(x,y), wherec(x,y) represent the conduction states
a pure wire, which itself can be decomposed into some lo
atomic orbits generated by creation operatorsci

† , a and b
are two normalization constants withuau21ubu251. Assume
that the static impurity will only mix those nearest loc
atomic orbits ofc(x,y) with the impurity state, in the tight-
©2002 The American Physical Society02-1
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binding representation, one obtains essentially the Ha
tonian~1!. In the case that the static impurity does not cre
an extra impurity state, the same argument will lead to
Hamiltonian~5! studied later.

Without the defect, the eigenstates of the Hamiltonian~1!
are the Bloch wave functions, and the eigenenergies of
Hamiltonian are e52t cos(ka), with k5npa/L, n
50,1,2, . . . ,N, wherea is the lattice constant andL is the
length of the wire. This spectrum leads to an energy ban
width 4t. When this band is partially filled, it forms th
conduction band of the metallic wire. At zero temperatu
there are two conducting channels at the Fermi energy.
propagates from the left to the right side, and the other in
opposite direction. The conductance should be 2e2/h in the
ballistic region where a conduction electron does not exp
ence any scattering. In the presence of a defect, the elec
will be scattered by the defect, and the conductance sh
deviate from the quantized conductance unit according to
Landauer formula.

The central physical quantity is the transmission coe
cient of an electron propagating from the left to the rig
sides of the chain through the defect. We assume that
electron initially has momentumk and energy e
52t cos(ka) in the left hand side of the chain. In the tigh
binding formalism the wave function has the following for

f5
1

AL
(

j 52`

21

~eik j1Re2 ik j !cj
†u0&1Ac0

†u0&1Bd0
†u0&

1
1

AL
(
j 51

`

Teik jcj
†u0&, ~2!

where R and T are the reflection and transmission coef
cients, respectively.A is the wave-function amplitude at th
origin from the conduction state, andB is that of the defect
state. They can be obtained from equationHf5ef. The
transmission coefficient is given by

T~e!5

2t~e2u!A12S e

2t
D 2

2t~e2u!A12S e

2t
D 2

2v2i

. ~3!

Obviously, the transmission coefficient is unity when t
coupling constantv equals to zero.v50 means that conduc
tion band does not couple to the defect state. Thus a con
tion electron will not experience any scattering. In order
have a better understanding of the transmission coeffic
formula, we rewrite Eq.~3! for the weak coupling as

T~e!5 (
n50

` S v2

2t~e2u!A12S e

2t
D 2

i D n

. ~4!

Then, one can interpret Eq.~3! as the result of the sum o
multiple-scattering process: an electron is virtually scatte
19340
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from c0
†u0& state tod†u0& state and back toc0

†u0& staten

times with a strength ofiv2/@2t(e2u)A12(e/2t)2# in each
time. It is useful to notice that62t are the edges of the
conduction band. In fact, the above interpretation is exa
what the usual Green’s-function formalism would give.

There are several nontrivial results in Eq.~3!. First, an
antiresonancescattering occurs when the electron energy
equal tou, the energy of the defect level. At the antires
nance, the transmission coefficient vanishes. In other wo
the conducting channel is completely blocked by the def
when the Fermi energy is right at the defect energy lev
Thus, the conductance of the wire is reduced by a quan
conductance unit, exactly what was observed in theab initio
calculations.7 It can be shown that the eigenfunction
Hamiltonian~1! for e5u is

f5
2i

AL
(

j 52`

21

sin~k j !cj
†u0&2

i

AL
AS 2t

v D 2

2S u

v D 2

d0
†u0&.

This is a standing-wave-like state. The electron propaga
from the left encounters the defect state, and then is c
pletely reflected back to the left. The wave-function amp
tude of the conduction state at the origin becomes zero,
part of incoming electron is trapped in the defect state. A
cording to Eq.~3!, the transmission coefficient also becom
zero at the band edgee562t. However, it can be shown
that coefficients of bothA and B in wave function~2! are
zero in this case. Thus, no electron is trapped in the de
state. This is different from the previous case of the antire
nant scattering. This band-edge scattering effect is also c
sistent with early numerical result8 that an electron at the
band edges is completely reflected back at a boundary
narrow conductor and a wide contact. It reflects the fact t
states at band edges are fragile, and are easily influence
a perturbation. Another interesting result of Eq.~3! is that
transmission coefficient approaches zero as the coup
strengthv between the defect state and conduction lev
goes to infinity. This is, in some sense, due to the equi
lence of infinite v and the hard-wall condition where th
wave-function amplitude should be zero.

The antiresonance scattering is due to thepresence of an
extra defect state. In order to show the importance of th
extra defect level, we can examine another one impu
model. Consider the usual Anderson localization model w
one impurity,

H5t(
i

ci
†ci 111uc0

†c01c.c., ~5!

which can describe a substituting impurity at the origin. T
defect is due to the imperfection of periodicity at the orig
but the total number of orbitals does not change. Since th
is only one level at the origin, it is impossible to have
resonance~antiresonance! scattering. The transmission coe
ficient of an electron with energye in the conduction band is
given by
2-2
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T~e!5

2tA12S e

2t
D 2

2tA12S e

2t
D 2

2ui

. ~6!

Clearly, there is no antiresonance for this model, but
band-edge effects are still present as expected.

Furthermore, we would like to demonstrate that the a
resonance scattering is very robust as long as an extra d
level exists in the conduction band. To do so, we genera
the Hamiltonian~1! to the case that the defect level coupl
also to conduction states at sitei 561 besides the origin
( i 50). The Hamiltonian reads

H5t(
i

ci
†ci 111~ud0

†1vc0
†1v1c1

†1v1c21
† !d01c.c.,

~7!

wherev1 is the coupling constant between the defect st
with the conduction states ati 561. Similarly, we can ob-
tain the transmission coefficientT(e)

T~e!5
1

12 i

S v1
v1

t
e D 2

2t~e2u* !F11S v1

t
D 2GA12S e

2t
D 2

, ~8!

with normalized defect level u* 5@u2(2vv1 /t)#/@1
1(v1 /t)2#. One can see, again, that an antiresonance s
tering exists at the normalized defect levelu* . It recovers
Eq. ~3!, u* 5u, whenv150, while the antiresonance occu
in the band center,u* 50, whenv1→`. It may be interest-
ing to notice that Eq.~8! also contains a conventional res
nance state ate52vt/v1, at whichT is unity.

In reality, a carbon nanotube can have more than
band. The defect level can then couple to many bands
order to show that the antiresonance will not be affected
existence of many bands. We consider the following Ham
tonian for a two-band model,

H5t1(
i

c1,i
† c1,i 111t2(

i
c2,i

† c2,i 111ud0
†d01v1c1,0

† d0

1v2c2,0
† d012S ut1u1ut2u1

D

2 D(
i

c2,i
† c2,i1c.c., ~9!

whereca,i
† and ca,i (a51,2) are the creation and annihila

tion operators for an atomlike orbital centered at sitei for
band a. In the absence of extra defect leveld0

†u0&, this
Hamiltonian supports two energy bands with band widths
4ut1u and 4ut2u, respectively.D is the energy gap between th
two bands. The defect level couples to these two bands a
origin (i 50) with v1 and v2 as the coupling coefficients
respectively. In the following analysis, we shall assumeD
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.0. This two-band model can also be solved exactly. Foe
<2ut1u, the electron transmission coefficient is given by

T~e!5
1

12 i
v1

2

2t1S e2u2
v2

2

2t2sinha
DA12S e

2t
D 2

,

~10!

where a5cosh21(2ut1u12ut2u1D2e/2t2). It is easy to show
that Eq.~10! becomes Eq.~3! when the coupling between th
defect level and the second band is zero, i.e.,v250. Again,
antiresonance occurs when the electron energy is at a
ticular level given by the equatione5u1v2

2/2t2sinha.
The antiresonance is the physics of a quasi-o

dimensional system when an extra defect level is introdu
into the energy band. This phenomenon does not occur
defect is introduced in such a way that the total number
electronic states in the band does not change, such as
Hamiltonian~5!. We showed that this phenomenon is robu
against the details of a microscopic Hamiltonian, whether
extra defect level couples to a single site@Hamiltonian~1!# or
several sites@Hamiltonian~7!#, or the defect couples to mor
than one band@Hamiltonian~9!#. This antiresonance can lea
to localization of electronic states in one-dimensional s
tems. Imagine a pair of identical defect levels are introduc
into a conduction band, an electron at antiresonance sca
ing with the two defect levels will be localized between t
two defects since the electron will be fully scattered back a
forth. When defect levels are randomly introduced into
system, then there is a probability of 1 to find a pair of lev
of any given energy in the thermodynamic limit. Thus, o
will expect all the states to be localized in one-dimensio
system.

We would like to make a comparison between the an
resonance studied here and the famous Fano resona9

Like the Fano resonance, our antiresonance is also due to
interference between electron path through the continuum
states~conduction band! and scattering by the extra impurit
state. It is well known that Fano resonance is a univer
phenomenon that can be observed in various systems. I
ists in strongly correlated systems. In fact, Coulomb inter
tion is very often responsible to the coupling between
continuum of states and localized impurity state. This co
pling, in turn, is responsible to the Fano resonance. Thus
should also expect that our antiresonance effect is unive
and survive from the electron-electron interaction. To o
serve experimentally this antiresonance phenomenon,
needs to have a clean one-dimensional system with pre
doping. One of such systems is probably carbon nanotu
because of great progress in its synthesis. The antireson
could be revealed through a nonlinear current-volume (I -V)
measurement at low temperature. Although our antire
nance may be due to the same physical origin as that of
Fano resonance, the current phenomenon comes from
destructive interference rather than constructive one. A
the energy dependence of the transmission coefficien
2-3



n
m

t
f.
s
ga
nl

hu
f o

hen
nd

ring,
the

lains

be-
nce,

rch
p-
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symmetric around antiresonance point. On the other ha
one important feature of the Fano resonance is the asym
try of physical quantities around the resonance point.

Finally, it would not be complete if we do not point ou
the differences between our interpretation and that in Re
about theab initio results. The explanation of Ref. 7 relie
on the special band structure of graphite, namely, zero
semiconductor in which the Fermi surface consists of o
two points of kF and 2kF . Obviously, our interpretation
does not need to use this special property of graphite. T
this can be used to test experimentally the correctness o
prediction.
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In summary, an antiresonance scattering can occur w
an extra defect level is introduced into the conduction ba
of a one-dimensional system. At the antiresonance scatte
the electron transmission coefficient vanishes, leading to
disappearance of quantum conductance. This result exp
well the ab initio calculations7 on conductance of metallic
carbon nanotubes. Although there are some similarities
tween this antiresonance and that of the Fano resona
their main features are clearly different.
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