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Abstract

Background: Although genotypic resistance testing (GRT) is recommended to guide combination antiretroviral therapy
(cART), funding and/or facilities to perform GRT may not be available in low to middle income countries. Since treatment
history (TH) impacts response to subsequent therapy, we investigated a set of statistical learning models to optimise cART
in the absence of GRT information.

Methods and Findings: The EuResist database was used to extract 8-week and 24-week treatment change episodes (TCE)
with GRT and additional clinical, demographic and TH information. Random Forest (RF) classification was used to predict 8-
and 24-week success, defined as undetectable HIV-1 RNA, comparing nested models including (i) GRT+TH and (ii) TH
without GRT, using multiple cross-validation and area under the receiver operating characteristic curve (AUC). Virological
success was achieved in 68.2% and 68.0% of TCE at 8- and 24-weeks (n = 2,831 and 2,579), respectively. RF (i) and (ii) showed
comparable performances, with an average (st.dev.) AUC 0.77 (0.031) vs. 0.757 (0.035) at 8-weeks, 0.834 (0.027) vs. 0.821
(0.025) at 24-weeks. Sensitivity analyses, carried out on a data subset that included antiretroviral regimens commonly used
in low to middle income countries, confirmed our findings. Training on subtype B and validation on non-B isolates resulted
in a decline of performance for models (i) and (ii).

Conclusions: Treatment history-based RF prediction models are comparable to GRT-based for classification of virological
outcome. These results may be relevant for therapy optimisation in areas where availability of GRT is limited. Further
investigations are required in order to account for different demographics, subtypes and different therapy switching
strategies.
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Introduction

Current HIV-1 guidelines recommend genotypic resistance testing

(GRT) both before starting antiretroviral therapy (ART) and at

treatment failure. However, appropriate funding and/or facilities to

perform GRT may not be available in low to middle income

countries (LMIC), leaving physicians with switching therapy based

solely on the patient’s clinical background. Coupled with virological

and immunological measurements, treatment history (TH) is one of

the most crucial factors to play a role in the response to a new

treatment regimen. In fact, current (2010) recommendations of the

International AIDS Society-USA Panel [1] state that treatment

history should be considered when designing a new regimen.

In LMIC there is still need for cheap viral load tests to identify

early viral failures and limit the emergence of resistance [2]. In the

past five years there has been an increase in HIV/AIDS

surveillance, but there is still a general lack of rational collection

and utilisation of the data as well as of appropriately trained

medical staff [3,4,5]. Specific approaches for ART management

have been designed by the World Health Organization [6]. Public

health programs leading to earlier HIV diagnosis and initiation of

ART are expected to improve patient outcomes in LMIC [7].

It has been shown that drug costs are a major factor impairing

optimal HIV-1 drug sequencing [8]. Access to second-line ART

regimens in LMIC is problematic, mainly because of the expense

of HIV protease inhibitors (PI) [9], and CD4 monitoring is often
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the sole surrogate marker available to guide the management of

the infection [10]. However, immunologic criteria to predict which

patients have not achieved virological suppression results in

significant misclassification of treatment responses [11]. Attempts

to model the virological efficacy of ART in LMIC have been

proposed by Colebunders et al. [12].

Given the need for low-cost viral load assays, evaluations of

alternative technologies have been carried out [13,14]. The costs

for genotype resistance testing (GRT) also remain prohibitively

high for most LMIC, with only a few facilities being able to

support the expenses, execute the tests and exploit the results [15].

New relatively cheap technologies for GRT and non-B subtypes

analysis have also been proposed [16], but these have not yet been

propagated sufficiently. An additional challenge is the genetic

diversity of HIV-1, since most infected patients in developing areas

harbour non-B subtypes that could respond to therapy differently

from subtype B, the clade which has been extensively treated in

Western countries [17,18].

The virological benefit of genotype-guided treatment decisions

has been convincingly demonstrated in the last decade [19,20,21].

Although investigated to a lesser extent, genotype-guided treatment

decisions were shown to be superior to those based on the medical

history [22]. Accordingly, there is a plethora of GRT-based decision

systems either for single drug susceptibility scoring or combined

ART (cART) optimisation, from rule-based [23,24,25] to machine

learning approaches [26,27,28,29,30,31,32]. On the other hand,

attempts to guide treatment decisions using the TH information

alone have been exploited only recently, using artificial neural

networks, with extremely promising results [33].

In this work we aimed at investigating a set of statistical learning

models – called random forests - for optimisation of antiretroviral

therapy in the absence of GRT information, using the treatment

history as a surrogate predictor. Furthermore, we compare the

performance of TH-based to those of GRT-based models.

Methods

Ethics statements
This study uses anonymous retrospective data from European

merged study cohorts and biological material was not employed in

any step of the analysis. All the single data providers had

previously obtained patients’ informed consent for the execution of

retrospective studies and their inclusion in merged cohorts,

accomplishing national and international ethical issues. The study

design was eventually approved by a global scientific committee

and by local scientific committees of each single data provider.

Study design
The EuResist retrospective database (http://www.euresist.org/)

was used to extract patients’ treatment change episodes (TCE),

previously introduced by the HIV Resistance Response Database

Initiative [31] and by the Forum for Collaborative HIV Research

[34], in the so-called form of standard datum (SD).

Each SD was defined as a patient’s new regimen (TCE), either a

first-line or a subsequent line of therapy, coupled with a follow-up

HIV-RNA measured at 8 weeks (ranging from 4 to 12) and at 24

weeks (ranging from 20 to 28) of unmodified therapy.

TCE included antiretroviral compounds approved by the Food

and Drug Administration and by the European Medicine Agency:

the nucleoside/nucleotide reverse transcriptase inhibitors (NRTI)

lamivudine, abacavir, zidovudine, stavudine, zalcitabine, didano-

sine, emtricitabine and tenofovir disoproxil fumarate; the non-

NRTIs (NNRTI) efavirenz, nevirapine and etravirine; the protease

inhibitors (PI) amprenavir/fosamprenavir, atazanavir, indinavir,

lopinavir, nelfnavir, full-dose ritonavir, boosting-dose ritonavir,

saquinavir, tipranavir and darunavir; the fusion inhibitor enfuvir-

tide. Each drug was represented by a binary variable encoding its

presence/absence in a TCE. No restrictions concerning the

number of drugs included in a regimen were applied. Both

suboptimal treatment regimens made of ,3 drugs or salvage

regimes with .4 drugs were included. It was previously shown

that the inclusion of suboptimal TCE can improve data-driven

model performance [31]. The number of drugs in the regimen was

considered as a numerical variable.

Each TCE was provided with a contemporary HIV-1 genotype

(spanning protease and reverse transcriptase genes) or the closest

within 90 days before the TCE start date. The viral genotype was

encoded as binary vector of mutations, insertions and deletions

with respect to the HIV-1 consensus B reference, and the viral

subtype was determined by a BLAST search on the latest subtype

reference set provided by the Los Alamos repository (http://www.

hiv.lanl.gov/).

The closest (e.g. baseline) HIV-RNA and CD4+/CD4% cell

count measurements previous to the TCE start date (obtained at

most 90 days before, provided that no other therapies were started

and stopped during this time window) were collected. Patient’s

demographic information was also retrieved, including age,

gender, mode of HIV transmission (drug user, heterosexual,

homosexual/bisexual, blood products, mother-to-child transmis-

sion), and country of origin.

We associated to each TCE the previous patient’s drug

exposures, codifying a binary variable for each compound if that

drug was experienced for more than 12 months. Three additional

binary variables were defined summarising the exposures to the

NRTI/NNRTI/PI classes, and a numerical variable representing

the regimen line (any drug change in a combination therapy for

any reason).

We defined a virological success at 8-weeks, as the achievement

of an undetectable HIV-RNA or a decrease of at least 2 Log10

from the baseline HIV-RNA. At 24-weeks, the virological success

was defined as the achievement of an undetectable viral load.

Because of the inclusion of many viral load data obtained with

non-ultrasensitive assays, a 500 cp/ml threshold was applied for

the definition of undetectable HIV-RNA.

Additional details for the study design, the SD definition and

data extraction procedures and constraints have been discussed

previously [30,31,34]. For simplicity, we will refer to the two

defined 8-week and 24-week SD sets, containing viral genotypic

information, as SD8G and SD24G, respectively. Of note, these

TCE correspond exactly to those used in [30], in order to

maintain a fair comparison with other tested methods, such as

expert rule bases. Indeed, the EuResist DB is periodically updated

from the local sources (currently Italy, Germany, Sweden, and

Luxembourg) participating to the network.

Two other data sets were extracted using the same notion of

SD, except for relaxing the need of a baseline GRT, and including

additional data from the Virolab study group (http://www.

virolab.org/), comprising the cohorts of Belgium (Katholieke

Universiteit Leuven) and Spain (fundaciò irsiCaixa). These two

sets, containing treatment history but not mandatorily baseline

GRT, were named SD8H and SD24H, respectively.

Statistical methods
Random Forests (RF) were used to predict 8- and 24-week

outcomes and to assess variable importance [35]. RF are a non-

linear statistical learning methodology for classification and

regression. They ensemble several decision trees (usually from

hundreds to thousands) and give predictions by taking either the
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majority vote or the average of the single trees’ outputs.

Specifically, each single tree is fully grown on a bootstrap sample

of the training data, without pruning the leaves, and at each node

split only a subset of the variables is considered. RF present many

advantages with respect to other non-linear machine learning

methods, such as neural networks, since they usually yield high

performance, are robust to over-fitting, can handle a large number

of variables, and provide a measure of variable importance.

In our study, the tree number and number of candidate

variables at each split of RF were optimised preliminarily with a

bootstrap approach. The area under the receiver operating

characteristic curve (AUC) [36] was adopted to evaluate the

model fit. The AUC is equal to the probability that a classifier will

rank a randomly chosen positive instance higher than a randomly

chosen negative one, whereas a receiver operating characteristic

(ROC) plot provides a graphical evaluation of true-positives

(sensitivity) versus false-positives (1-specificity) tradeoffs. Multiple

10-fold Cross Validation (CV) and Bengio’s corrected t-test

[37,38], controlling the false discovery rate with Benjamini-

Hochberg method, were used to compare model performance.

The following nested models were defined: (i) full set of input

covariates (including GRT and TH); (ii) full set of input covariates,

excluding GRT information, but keeping TH; (iii) full set of input

covariates, excluding TH, but keeping GRT; (iv) current cART,

baseline HIV-1 RNA and CD4; (v) current cART.

We also designed a set of sensitivity analyses as follows: in order

to investigate the potential bias derived from the fact that most of

the TCE present in the data base have been decided after a GRT,

we excluded from SD8H/SD24H all TCEs for which a baseline

GRT was available, and we compared models with/without

baseline HIV-RNA load as a covariate. From this reduced data

set, we selected first- and second-line regimens commonly

available in LMIC (TCE containing enfuvirtide, tipranavir,

darunavir, and etravirine were removed) and repeated model

evaluations. Finally, SD8G was split into two sets according to the

viral subtype of each associated GRT, grouping B and non-B

subtypes. RF models were trained on the subtype B dataset and

tested against the non-B.

The analyses were carried out using R, open-source software for

statistical computing [39], and Weka, a data-mining suite [40].

Results

Study population
From the EuResist data base, we collected 2,831 and 2,579

standard datum instances for the 8-week (SD8G) and 24-week

(SD24G) outcome, respectively. Virological success was reported

in 68.2% and 68.0% of cases, respectively. Suboptimal therapies

(dual- and mono-therapies), had a prevalence of 6.2% and 5.5% in

the 8-week and 24-week data set. The majority of cART contained

lamivudine (55.9%), any PI/r (42.7%, where lopinavir/r account-

ed for 36.2%), tenofovir (34.8%), zidovudine (31.7%), didanosine

(28.4%), stavudine (24.0%), efavirenz (17.5%), abacavir (16.0%),

and nevirapine (10.6%). Darunavir, tipranavir, etravirine, enfuvir-

tide, raltegravir, and maraviroc were not present in the data set.

Additional details on cART distribution are available in [30] or

can be provided by posting a request to the EuResist study group.

Relaxing the need for a baseline GRT, the data sets SD8H and

SD24H were extracted (n = 12,932 for both outcome points).

Seventy-one percent of patients reached virological success at 8-

weeks and 67% of patients reached virological success at 24-weeks.

Differences in proportions of SD8H and SD24H with SD8G and

SD24G success rates yielded p,0.0001 and p = 0.13, respectively.

The percentage of suboptimal therapies was 8%. The majority of

cART contained lamivudine (63%), zidovudine (33%), tenofovir

(28%), stavudine (27%), any PI/r (29%, where lopinavir/r

accounted for 23%), didanosine (21%), abacavir (19%), and

efavirenz (11%). There was a low percentage of darunavir (1.3%)

and tipranavir (1.3%) containing cART.

Table 1 summarises patients’ baseline characteristics both for

SD8G and SD8H.

Comparison between GRT-based and TH-based RF
models

Table 2 and Figure 1 show detailed performance results and

ROC plots for SD8G and SD24G, comparing RF models (i)

through (v), under multiple 10-fold CV. Model (i), which includes

the full set of covariates (including both GRT and TH), was the

best performing in terms of AUC for both time points. However,

model (ii) (TH but not GRT) had AUC distributions not

significantly different from model (i) at 8-weeks (p = 0.25) although

inferior at 24-weeks (p = 0.04). The same held for model (iii) (GRT

but not TH), which was comparable to (i) at 8-weeks (p = 0.28) and

inferior at 24-weeks (p,0.0001). On the other hand, models (iv)

and (v) were always significantly outperformed by models (i) to (iii)

at any time point (all p,0.0001). Model (ii) and (iii) did not show

significant differences in AUC at both time outcomes (p = 0.7 and

0.113).

We also compared AUC of models (i), (ii), and (v) by stratifying

for the therapy line (first-, second-, third-, fourth-line or more).

Detailed results are shown in Table 3. Interestingly, both model (i)

and (ii) show significantly better performance as compared to the

base cART model (v) only at late switches. Figure 2 (panel a)

depicts the AUC for each model and therapy strata over a single

10-fold CV run using the SD8G data set, and the proportion of

virological successes for each therapy line (panel b).

When executing CV on SD8H and SD24H, only RF models (ii),

(iv) and (v) were testable (since GRT information was not present).

Average (st.dev.) AUC values for model (ii) were 0.799 (0.011) at 8-

weeks, and 0.832 (0.009) at 24 weeks. Model (iv) had average

(st.dev.) AUC of 0.742 (0.012) at 8-weeks, and 0.752 (0.012) at 24

weeks. Model (v) had an average AUC of 0.684 (0.014) and 0.714

(0.013) at 8- and 24-weeks, respectively. Differences in AUC

between (ii) and (iv) were significant both at 8-weeks and at 24-

weeks (p,0.0001). As expected, the difference was even larger

between model (ii) and (v) (p,0.0001 both at 8- and 24-weeks).

Figure 3 depicts ROC curves both for SD8H and SD24H.

Sensitivity analyses
Since all the extracted data sets may be biased due to the fact

that in Europe the prevalence of genotype-guided TCE is high, we

excluded from SD8H and SD24H all the TCE for which there was

a baseline GRT available (obtaining n = 9,623). This is meant to

be an approximation to the set of non-genotype-guided therapies,

although some baseline GRT may have been available but not

inserted in the data base. In a sub-analysis, then, we deleted the

HIV-RNA variable. The proportion of successes was 71% and

65% at 8- and 24-weeks, respectively. For the 8-weeks outcome,

average (st.dev.) AUC for models (ii), (iv), and (v) were 0.809

(0.015), 0.753 (0.015), and 0.685 (0.017). For the 24-weeks

outcome, average (st.dev.) AUC for model (ii), (iv), and (v) were

0.839 (0.013), 0.765 (0.014), and 0.709 (0.018). Model (ii)

significantly outperformed both models (iv) and (v) at all time

points (p,0.0001). When removing the HIV-RNA variable, for 8-

weeks outcome the average (st.dev.) AUC for models (ii) and (iv)

were 0.758 (0.015) and 0.654 (0.016), p,0.0001; for 24-weeks

outcome, the average (st.dev.) AUC for models (ii) and (iv) were

0.807 (0.015) and 0.670 (0.014), p,0.0001. Notably, model (ii)
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without baseline HIV-RNA outperformed model (iv) with baseline

HIV-RNA at 24-weeks (p,0.0001), but not at 8-weeks

(p = 0.4387).

Models (ii), (iv) and (v) were also tested on SD8H and SD24H

excluding not only GRT-guided TCE, but also restricting to first-

(NRTI/NNRTI) and second-line (NRTI/NNRTI/PI) regimens

(n = 3,640) available in LMIC. Percentage of virological successes

at 8- and 24-weeks were 79% and 75%. For the 8-weeks outcome,

model (ii) had an average (st.dev) AUC of 0.76 (0.03), significantly

higher (p,0.0001) than model (iv) and (v), that yielded AUC of

0.71 (0.03) and 0.70 (0.03), respectively. The same held for the 24-

weeks outcome, where model (ii) had an average (st.dev) AUC of

0.81 (0.02), significantly higher (p,0.0001) than model (iv) and (v),

with AUC of 0.75 (0.03) and 0.74 (0.03), respectively.

As a final evaluation, a special training/test data split was used

for SD8G. The split was based on the subtype of the virus.

Precisely, TCEs were grouped into subtype B or non-B, resulting

in n = 2,353 and 478 instances, respectively. RF model (i) and (ii)

were trained and 10-fold cross-validated on the B subtype set, and

then tested against the non-B set. The proportion of successes at 8-

weeks was 67% for B and 73% for non-B subtypes. In a single 10-

fold CV run, model (i) yielded an average AUC of 0.765, model (ii)

of 0.757, and model (iii) of 0.753. On the test set (i.e. non-B

subtypes), AUC was 0.721 for model (i), 0.721 for model (ii), and

0.653 for model (iii).

AUC plots for the sensitivity analyses, along with variable

importance evaluation on the SD8H data set, are available as

supplementary material (Figure S1, Figure S2 and Material S1).

Discussion

Following the demonstration of a major role for HIV-1 drug

resistance mutations in response to antiretroviral therapy, GRT

has been the standard decision tool to face HIV-1 drug resistance

in clinical practice. The caregiver can use one or multiple systems

developed to translate HIV-1 genotype into clinically relevant

information. Commonly used genotype interpretation systems do

not integrate additional patient information as an input to

complement HIV-1 genotype in the effort to predict response to

cART. A few experimental systems derived from statistical

learning have recently been described which integrate patient

and virus information to build an effective antiretroviral regimen

[30,31,41]. These systems confirmed that TH has an impact on

prediction of response to therapy.

The expanding cART coverage of LMIC poses new challenges for

optimising treatment due to limited availability of second-line and

Table 1. Patients’ baseline characteristics.

Factor SD8G SD24G SD8H/SD24H

Average (SD) patient age years 42 (13) 42 (13) 46 (9) *

Male gender 70% 70% 72% *

Mode of HIV-1 transmission

Intravenous drug users 27% 27% 21% *

Homosexual men 32% 35% * 33% *

Heterosexual 38% 35% * 30% *

Nationality

European or North American 72% 73% 71%

Previous exposure to antiretroviral classes (. = 1 year)

NRTI 74% 71% * 59% *

NNRTI 41% 40% 24% *

PI 58% 55% * 43% *

Median (IQR) number of previous treatment lines 3 (126) 3 (026) * 3 (127) *

Median (IQR) number of drugs included in the cART 3 (324) 3 (324) 3 (324) *

Laboratory markers

Median (IQR) HIV-1 RNA load Log10 cp/ml 4.4 (3.825.0) 4.4 (3.725.0) 4.0 (2.224.9) *

Median (IQR) CD4+ count cells/mm3 255 (1372397) 276 (1522384) 285 (1602449) *

Subtype distribution

B 83% 85% * n/a

C 3% 3% n/a

02_AG 2.5% 2.2% n/a

F1 2.3% 1.7% n/a

Resistance mutations

Median (IQR) no. of IAS NRTI mutations 1 (023) 1 (023) n/a

Median (IQR) no. of IAS NNRTI mutations 0 (021) 0 (021) n/a

Median (IQR) no. of IAS PI mutations 3 (225) 3 (225) n/a

Summary of patients’ baseline characteristics for 8- and 24-weeks data sets with a baseline GRT available (SD8G, n = 2,831; SD24G, n = 2,579) and the data set without a
baseline GRT (SD8H and SD24H, n = 9,623). Values with * highlight significant differences between SD8G and SD24G or between SD8G and SD8H (p,0.05, by t-test,
Wilcoxon rank sum or differences in proportion where appropriate).
doi:10.1371/journal.pone.0013753.t001
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later regimens and frequent lack of facilities or funding to support

GRT. Our analysis suggests that availability of basic patient data

supplemented with simple categorical indicators of past treatment can

provide short- and medium-term response prediction as accurately as

in the presence of HIV-1 genotype information. This finding is not

surprising since the virus genotype is actually shaped by anti-HIV-1

compounds and can thus summarize the patient TH. It is interesting

to note that the performance of the GRT-based model, which did not

include any information on TH, decreased, although not significant-

ly, at 24-weeks, compared to that of TH-containing models. This may

be a consequence of the fact that bulk genotyping does not capture

minority variants that have been selected by previous exposures [42]

or resistant variants that survived in a reservoir and will be quickly

reselected. It should be worth evaluating whether using the

cumulative or historical genotype, made by the sum of all the

available genotypes, improves accuracy at a later time point [43,44].

Figure 1. ROC analysis of models’ performance. ROC plots of a single 10-fold CV run for RF models (i) through (v) for 8- and 24-weeks outcome
(SD8G and SD24G).
doi:10.1371/journal.pone.0013753.g001

Table 2. Model performance.

RF model input variable set 10610-fold CV AUC

8-weeks outcome (SD8G) 24-weeks outcome (SD24G)

average (st.dev.) average (st.dev.)

(i) GRT + TH + HIV RNA + CD4 + DEMOGRAPHIC + cART 0.77 (0.031) 0.834 (0.027)

(ii) TH + HIV RNA + CD4 + DEMOGRAPHIC + cART 0.757 (0.032) 0.821 (0.025)

(iii) GRT + HIV RNA + CD4 + DEMOGRAPHIC + cART 0.762 (0.035) 0.807 (0.025)

(iv) cART + HIV RNA +CD4 0.699 (0.037) 0.72 (0.03)

(v) cART 0.65 (0.041) 0.687 (0.03)

Summary of area under the receiving operating characteristic curve (AUC) values for RF trained with selected input variable sets, calculated over ten multiple runs of
10-fold cross-validation (8-weeks and 24-weeks outcome).
GRT = genotype resistance test.
TH = treatment history.
cART = combination antiretroviral therapy.
doi:10.1371/journal.pone.0013753.t002
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Application of ultra-deep sequencing procedures could also provide

high-sensitivity genotype data [45] possibly resulting in better

prediction of response to therapy. We also found that both the RF

models with GRT+TH and the TH alone increase their performance

in predicting the virological outcomes when considering subsequent

therapy lines. This suggests that the outcomes of the first/second lines

are somehow less dependent on the viral strain or on the early ART

exposures, while the evaluation of TH and the execution of a GRT

boost up the confidence in predicting the correct outcome at later

ART stages. In principle, continuous measures of exposure to

therapy, i.e. corrections based on duration and last time of use, could

improve the power of TH as a covariate. However, such detailed

information is often hard to obtain, particularly in the absence of

centralised (electronic) medical records. The simplicity of the input

information should expedite further training of TH-based systems

with data derived from these areas. In this context, the data required

for querying a TH-based expert system should be kept simple in order

to encourage its use. The input dataset investigated in this work was

made of demographic data typically available at any HIV clinic

(patient age, gender and route of infection), baseline markers (CD4

cell count and HIV-RNA load), just coupled with binary indicators

for past use of individual drugs (and derivatively of drug classes).

We showed that when the HIV-RNA covariate is deleted the

AUC performance decrease, which is an argument in favour of the

use of viral load monitoring for the optimization of cART in

LMIC. This reconciles with another recent study from Revell et al.

[33], that explored either artificial neural networks or RF for the

prediction of virological outcomes in absence of GRT information,

using data from Europe, North America, Japan and Australia

(.3,000 TCE). Revell et al. showed that, besides the GRT, the

Figure 2. Models’ performance evaluation by therapy line. Plot (panel A) of AUC of 10-fold CV for models (i), (ii) and (iv) by stratifying for
therapy line (SD8G). Performance decrease significantly by decreasing the number of drug switches, and the loss in AUC is as pronounced in TH-
based as in the other models. The proportion of virological successes (panel B) decreases significantly by increasing the therapy line (p,0.0001).
doi:10.1371/journal.pone.0013753.g002

Table 3. Model performance by therapy line.

RF model input variable set 10610 fold average AUC (st.dev.)

8-weeks out come (SD8G) 24-weeks out come (SD24G)

first-line
second-
line third-line

fourth-line
or more first-line

second-
line

third-
line

fourth-line
or more

n = 653 n = 337 n = 299 n = 1542 n = 671 n = 314 n = 254 n = 1340

(i) GRT + TH + HIV RNA + CD4
+ DEMOGRAPHIC + cART

0.56 (0.09) 0.60 (0.11) 0.71 (0.11) 0.78 (0.04) 0.61 (0.17) 0.64 (0.12) 0.68 (0.12) 0.80 (0.03)

(ii) TH + HIV RNA + CD4 +
DEMOGRAPHIC + cART

0.62 (0.10) 0.62 (0.11) 0.66 (0.11) 0.75 (0.03) * 0.59 (0.16) 0.63 (0.12) 0.68 (0.11) 0.79 (0.04)

(v) cART 0.58 (0.11) 0.53 (0.10) 0.58 (0.11)* 0.62 (0.05) * 0.55 (0.17) 0.64 (0.09) 0.60 (0.12) 0.61 (0.05) *

Summary of area under the receiving operating characteristic curve (AUC) values for RF trained with selected input variable sets, calculated over ten multiple runs of
10-fold cross-validation (8-weeks and 24-weeks outcome), by stratifying for therapy line.
*p,0.05 with respect to the best model.
GRT = genotype resistance test.
TH = treatment history.
cART = combination antiretroviral therapy.
doi:10.1371/journal.pone.0013753.t003
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viral load is the most important variable, and that TH improves

the accuracy of the prediction of virological outcomes.

In a sub-analysis, we showed that the accuracy of the prediction

models decreased when training on HIV-1 subtype B data and

validating on non-B subtype data. While non-B grouping is an artificial

approach not corresponding to any biological entity, differences in

response to certain cART regimens with specific subtypes may occur

and must be considered in the development of treatment decision tools.

A limitation of our study is that the datasets used do not

correspond to a typical scenario of LMIC, since models were

applied on data composed by patients cared in Europe. However,

we performed sensitivity analyses excluding GRT-guided TCE,

and including only first- and second-line regimens with drugs

available in LMIC. But a more detailed investigation is advisable

since the outcome distributions varied significantly across different

datasets. Although the compounds considered in these analyses

can be accessible in LMIC, drug combinations might differ.

In addition, in LMIC additional factors like co-morbidity with

other diseases, cost of treatment, distance to treatment centres,

interruptions of stocks for drugs during certain periods, and stigma

can play an important role in treatment outcome. This

information needs to be integrated in a system specifically

designed for LMIC, provided that co-operation efforts for data

collection are appropriately set up.

Another critical point is the fact that therapy switches in

EuResist are mainly driven by virological monitoring, and not by

clinical/immunological criteria, that are commonly used in LMIC.

Finally, in this study a 500-copy threshold in the definition of

undetectable viral load was used. This was due to the inclusion of

HIV-1 RNA data derived from old generation laboratory assays:

although this is a strong limitation for a model designed for high-

income countries, where the virological reduction below 50 cp/ml

would be the necessary outcome, in LMIC the end-point might be

revised by considering the HIV-RNA only where testing is

available and CD4/clinical monitoring otherwise.

Despite these limitations, prediction of response to treatment

based on TH rather than on GRT appears to be an appealing

strategy providing a possibility to help clinicians with data-driven

systems in the absence of HIV-1 genotype information. We realize

that the here described model is only applicable when therapy

failures are mainly judged from viral load monitoring, and when

further lines of treatment are available, which is currently not the

case in LMIC. However, the concept of the model warrants

optimism towards the development of more appropriate models for

LMIC. Thus, further development along these line are warranted,

along with a coordinated effort to collect HIV-1 treatment related

data from the areas that could maximally benefit from it.

Supporting Information

Material S1

Found at: doi:10.1371/journal.pone.0013753.s001 (0.03 MB

DOC)

Figure S1 Variable importance evaluation by RF model (ii) on

SD8H: mean decrease in Gini index.

Found at: doi:10.1371/journal.pone.0013753.s002 (0.17 MB TIF)

Figure 3. ROC analysis of GRT-free model performance. ROC plot of a single 10-fold CV run for RF models (ii) vs. (iv) vs. (v) for 8- and 24-weeks
outcome (SD8H and SD24H).
doi:10.1371/journal.pone.0013753.g003
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Figure S2 ROC plots of a single 10-fold CV run for RF models

on SD8H and SD24H excluding instances with an available

baseline GRT (n = 9,623) and with/without baseline HIV-RNA

load as a covariate.

Found at: doi:10.1371/journal.pone.0013753.s003 (0.25 MB TIF)
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