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(RAN) translation resulting in the production of three aggre-

gation-prone proteins. The goal of this study was to exam-

ine whether antisense transcripts resulting from bidirectional 

transcription of the expanded repeat behave in a similar 

manner. We show that ectopic expression of (CCCCGG)66 

in cultured cells results in foci formation. Using novel poly-

clonal antibodies for the detection of possible (CCCCGG)exp 

RAN proteins [poly(PR), poly(GP) and poly(PA)], we vali-

dated that (CCCCGG)66 is also subject to RAN translation 

in transfected cells. Of importance, foci composed of anti-

sense transcripts are observed in the frontal cortex, spinal 

cord and cerebellum of c9FTD/ALS cases, and neuronal 

inclusions of poly(PR), poly(GP) and poly(PA) are present 

in various brain tissues in c9FTD/ALS, but not in other neu-

rodegenerative diseases, including CAG repeat disorders. 

Of note, RNA foci and poly(GP) inclusions infrequently co-

occur in the same cell, suggesting these events represent two 

distinct ways in which the C9ORF72 repeat expansion may 

evoke neurotoxic effects. These findings provide mechanistic 

insight into the pathogenesis of c9FTD/ALS, and have sig-

nificant implications for therapeutic strategies.
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Introduction

An expanded GGGGCC hexanucleotide repeat within a 

non-coding region of the C9ORF72 gene is the most com-

mon genetic cause of frontotemporal dementia (FTD) 

and amyotrophic lateral sclerosis (ALS), two devastating 

multisystem neurodegenerative disorders with significant 
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genetic, neuropathological, and clinical overlap [11, 30]. 

FTD, a common form of early-onset dementia, is character-

ized clinically by abnormalities in behavior and language, 

whereas ALS is characterized by upper and lower motor 

neuron signs, which include weakness and muscle atrophy. 

FTD-like cognitive and behavioral impairments are also 

present in up to 50 % of ALS patients [16, 19, 27], and as 

many as half of FTD patients develop motor neuron dys-

function (MND) reminiscent of ALS [19].

The mechanisms by which the C9ORF72 hexanucleo-

tide repeat expansion causes “c9FTD/ALS” are not defini-

tively known, but at least three pathogenic pathways may 

be at play. Several groups have shown that mRNA levels 

of certain C9ORF72 variants are decreased in c9FTD/ALS 

[11, 15, 25, 30], suggesting loss of C9ORF72 function as 

a potential neurotoxic mechanism. In addition, RNA tran-

scripts containing the expanded repeat may cause neuro-

degeneration by two means: through their accumulation 

into discrete structures in the nucleus, termed RNA foci, 

and by serving as a template for the synthesis of aberrantly 

expressed, aggregation-prone proteins by repeat-associated 

non-ATG (RAN) translation. Indeed, (GGGGCC)exp RNA 

foci are observed in c9FTD/ALS [11], and the accumula-

tion of neuronal inclusions composed of “c9RAN proteins” 

is a pathological hallmark of c9FTD/ALS [3, 25].

RNA foci are thought to cause cellular toxicity by seques-

tering specific RNA-binding proteins in a sequence-depend-

ent manner, consequently disrupting their function [4]. In 

myotonic dystrophy type 1 (DM1), for instance, RNA foci 

formed of CAG·CTG repeat transcripts bind and inactivate 

the splicing factor muscleblind-like 1 protein (MBNL1) [23, 

32, 33]. This sequestration of MBNL1 results in the mis-

splicing of a subset of pre-mRNA targets that account for 

some of the characteristic features of disease [10, 20]. Tran-

scripts of (GGGGCC)exp that accumulate as nuclear foci in 

c9FTD/ALS may similarly sequester RNA-binding proteins 

and cause the misregulation of crucial downstream RNA 

targets leading to cellular dysfunction [24, 29, 38].

In addition to foci formation, transcripts of expanded 

repeats may be susceptible to RAN translation, an uncon-

ventional mode of translation that occurs across expanded 

repeat tracts despite the absence of an initiating codon. 

First described by Ranum and colleagues for expanded tri-

nucleotide CAG·CTG repeats [39], transcripts of expanded 

CGG repeats [34], and the aforementioned GGGGCC 

repeats [3, 25] are now known to be RAN translated. 

Because RAN translation can occur in all possible reading 

frames, various products can be synthesized from a given 

transcript. Recently, we, as well as the Edbauer group and 

colleagues, independently reported that RAN translation of 

(GGGGCC)exp RNA in c9FTD/ALS results in the produc-

tion of poly(GP), poly(GA), and poly(GR) proteins [3, 25]. 

The presence of neuronal inclusions composed of these 

c9RAN proteins throughout the central nervous system is 

now considered pathognomonic of c9FTD/ALS [3, 25].

For many microsatellite expansion disorders, the 

expanded repeat is bidirectionally transcribed [4]. Detect-

able expression of both sense and antisense transcripts 

containing the hexanucleotide repeat in C9ORF72 

patients indicates that bidirectional transcription also 

occurs in c9FTD/ALS [25]. Consequently, not only do 

(GGGGCC)exp transcripts form foci and undergo RAN 

translation, so too may (CCCCGG)exp transcripts resulting 

from bidirectional transcription of the C9ORF72 expanded 

repeat. The goal of this study was thus to examine whether 

(CCCCGG)exp-derived RNA foci and c9RAN translation 

proteins are present in c9FTD/ALS.

Materials and methods

Secondary structure prediction and model building 

of CCCCGG repeats

Folding of the RNA sequence comprising CCCCGG 

repeats of 10 (60 bases), 50 (300 bases), and 200 (1,200 

bases) was carried out as previously described to deter-

mine secondary structure motifs [3]. The secondary struc-

ture prediction and modeling was built by examining the 

output from several RNA prediction packages: MFOLD, 

Sfold, Vienna RNA Package (RNAfold) [12, 17, 18, 21, 

22, 31, 40, 41]. MFOLD utilizes a minimum free energy 

RNA structure prediction algorithm, Sfold utilizes statisti-

cal sampling of all possible structures, while Vienna Pack-

age has several options, including an minimum free energy 

calculation. Equivalent structures were given from each 

package for the ten repeat cases. MFOLD was used as the 

primary secondary structure prediction package for consist-

ency across all models. Free energies were calculated for 

each secondary structure prediction at the level of decom-

position (base pairing) and global energy [36]. MFOLD 

verifies each secondary structure prediction generated for 

valid structure [36]. MFOLD parameters include the fol-

lowing: (1) linear RNA sequence; (2) zero constraints, 

forces, or prohibitions on all bases allowing maximal sam-

pling; (3) folding temperature of 37 °C; (4) physiological 

ionic conditions; (5) structure draw mode: untangle with 

loop fix; and (6) the remainder of MFOLD settings were 

set to default.

Generation of antibodies

For each of the peptide antigens (C-Ahx-(PR)8-amide, 

C-Ahx-(GP)8-amide and C-Ahx-(PA)8-amide), two rabbits 

were immunized. Pre-immune serum from each rabbit was 

tested against peptide antigens and tissue from c9FTD/ALS 
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cases by Western blot and immunohistochemistry, respec-

tively, and confirmed negative. Antiserum was used directly 

or affinity purified before use.

Meso Scale Discovery immunoassays

Peptides diluted in Tris-buffered saline (TBS) were added 

to duplicate wells (35 µl/well) of a 96-well MSD assay 

plate at final concentrations 0.1 µg/well. Following over-

night incubation at 4 °C, wells were washed with TBS 

containing 0.2 % Tween 20 (TBSTw), and blocked with 

TBSTw+3 % non-fat milk. Antibody solution (25 µl/well) 

containing the indicated anti-PR, anti-GP, anti-PA, anti-

GA or anti-GR antibodies (1:1,000) and SULFO-TAG™-

rabbit secondary antibody (0.5 µg/ml, in blocking buffer) 

was added. Following a 2-h incubation and final washes, 

antibody binding to immobilized peptides was evaluated by 

adding MSD Read Buffer and measuring light emission at 

620 nm upon electrochemical stimulation using the MSD 

Sector Imager 2400.

Western blot analysis and immunofluorescence staining 

for antibody characterization

HEK293T cells were transfected with Lipofectamine™ 

2000 with pEGFP-C1 vector only, or pEGFP-C1 (Clon-

tech) plasmids into which oligonucleotides of five repeats 

of PR, GP, PA, GA or GR were inserted. For Western blot-

ting, cell lysates collected 2 days post-transfection were 

resolved by 10 % Tris–Glycine SDS-PAGE (Invitrogen) 

and transferred to nitrocellulose membranes for probing 

with anti-PR, anti-GP, anti-PA, anti-GA or anti-GR, or with 

anti-GFP (Abcam, 1:2,000). For immunostaining, cover-

slips were fixed, permeabilized and blocked, then probed 

with the indicated antibodies followed by anti-rabbit-

AF594 (Alexa Fluor) and Hoechst [3].

Cloning of CCCCGG expression vectors

To generate the antisense (CCCCGG)2 and (CCCCGG)66 

expression vectors, we first generated sense (GGGGCC)2 

and (GGGGCC)66 expression vectors. Toward this end, 

genomic DNA from muscle or spleen from a C9ORF72 

expanded repeat carrier was used as a template in a nested 

PCR strategy using ThermalAce DNA Polymerase (Invit-

rogen) to amplify the (GGGGCC)n repeat region, includ-

ing 113 bp of 5′ and 99 bp of 3′ flanking sequence. The 

upstream primer used was 5′-AAGGAAGCTTAG-

TACTCGCTGAGGGTGAAC-3′; downstream primers 

used were 5′-GCTTGGATCCCCCACTCGCCACCGC-

CTG-3′ and 5′-GTCAGAGAAATGAGAGGGAAAG-3′. 

The PCR products were cloned into the pAG3 expression 

vector (kindly provided by Dr. T. Golde, University of 

Florida) using restriction sites HindIII and BamHI. The 

pAG3 expression vector has a pcDNA3.0 backbone and 

a CMV-enhanced chicken B-actin promoter. The clones 

containing (GGGGCC)2 or (GGGGCC)66 were screened 

by colony PCR, and further verified by hairpin sequence 

analysis. The plasmids of (GGGGCC)2 or (GGGGCC)66 

were digested using HindIII, and then the overhangs 

were filled-in using DNA Polymerase I (Klenow) Frag-

ment. After purification, the fragments were digested with 

BamHI. The inserts with (GGGGCC)2 or (GGGGCC)66, 

including the 5′ and 3′ flanking sequences, were re-cloned 

in the antisense orientation into a pAG3 expression vec-

tor using BamHI and EcoRV to generate the (CCCCGG)2 

and (CCCCGG)66 expression constructs. The sequence of 

antisense vectors was verified by hairpin sequence analy-

sis. Note that the DNA sequence of the CCCCGG repeat is 

provided in Online Resource 1, which also highlights the 

regions included in the generation of pAG3-(CCCCGG)2 

and pAG3-(CCCCGG)66 expression vectors.

RNA fluorescence in situ hybridization of cultured cells 

expressing (CCCCGG)n expression vectors

Evaluation of foci formation in HeLa cells transfected with 

(CCCCGG)2 or (CCCCGG)66 expression vectors was car-

ried out by RNA fluorescence in situ hybridization (FISH). 

In brief, cells grown on glass coverslips were transfected 

with 0.5 µg of the (CCCCGG)2 or (CCCCGG)66 con-

structs. After 36 h, cells were fixed and permeabilized in 

4 % paraformaldehyde + 20 % acetic acid + 2 mM ribonu-

cleoside vanadyl complex (Sigma) for 10 min at room tem-

perature. Cells were then washed with phosphate buffered 

saline treated with diethylpyrocarbonate (DEPC–PBS), and 

hybridized with denatured Cy3-conjugated (GGGGCC)4 

probe (2 ng/µl) in hybridization buffer (50 % formamide, 

10 % dextran sulfate, 0.1 mg/ml yeast tRNA, 2X saline–

sodium citrate buffer (SSC), 50 mM sodium phosphate 

buffer) overnight at 37 °C. After washing once with 40 % 

formamide/1XSSC for 30 min at 37 °C, and twice with 

DEPC–PBS for 5 min at room temperature, nuclei were 

counterstained with Hoechst 33258 (1 µg/ml, Invitrogen) 

prior to mounting coverslips. Images were obtained on a 

Zeiss LSM 510 META confocal microscope.

Western blot analysis of cultured cells expressing 

(CCCCGG)n expression vectors

To determine whether ectopic expression of expanded CCC-

CGG transcripts leads to RAN translation, HEK293T cells 

were transfected with 5 µg of the (CCCCGG)2 or (CCC-

CGG)66 constructs. After 36 h, cells were harvested and 

washed with ice-cold PBS (pH 7.4), then cell pellets were 

lysed in buffer (50 mM Tris–HCl, pH 7.4, 300 mM NaCl, 
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1 % Triton-X-100, 5 mM EDTA, 2 % sodium dodecyl sul-

fate (SDS), plus phenylmethylsulfonyl fluoride (PMSF) and 

both a protease and phosphatase inhibitor mixture). After 

centrifugation at 16,000g for 20 min at 4 °C, the supernatant 

was collected and protein concentration determined by BCA 

assay. For Western blot analysis, samples were prepared 

in Laemmli’s buffer, heated for 5 min at 95 °C, and equal 

amounts of protein (30 µg) were loaded into Novex® 10–

20 % Tricine gels. After transfer, blots were blocked with 

5 % non-fat dry milk in TBST for 1 h, and then incubated 

with the purified anti-PR, anti-GP or anti-PA (1:1,000), or 

mouse monoclonal GAPDH antibody (1:10,000, Biodesign) 

overnight at 4 °C. Membranes were washed then incubated 

with anti-species horseradish peroxidase-linked second-

ary antibodies (1:5,000; Jackson ImmunoResearch) for 1 h. 

Protein expression was visualized by enhanced chemilumi-

nescence treatment and exposure to film.

Human case material

All cases examined in this study were selected from 

a series of autopsied brains submitted to the neuropa-

thology laboratory at Mayo Clinic in Jacksonville. The 

sources of this case material include the Mayo Clinic 

Florida ALS Center (n = 11), referral to the Parkinson 

disease brain bank (n = 7), the State of Florida Alzhei-

mer’s Disease Initiative (n = 2), Florida Alzheimer’s Dis-

ease Research Center (n = 1) and CurePSP/Society of 

Progressive Supranuclear Palsy brain bank (n = 1). The 

presence or absence of C9ORF72 repeat expansion was 

determined using frozen cerebellar tissue from the right 

hemibrain and a previously described repeat-primed pol-

ymerase chain reaction (PCR) method [11]. In addition, 

repeat length was estimated using Southern blotting tech-

niques as previously described [35] (Table 1). In brief, 

7–10 µg of high-quality genomic DNA extracted from 

frozen frontal cortex and cerebellum was digested with 

XbaI, and electrophoresed in a 0.8 % agarose gel. DNA 

was then transferred to a positively charged nylon mem-

brane (Roche), cross-linked, and subsequently hybridized 

with a DIG-labeled probe. Expansions were visualized 

with anti-DIG antibody (Roche) and CDP-star substrate 

(Roche) on X-ray film after multiple exposures. The most 

abundant expansion sizes were estimated using AlphaE-

aseFC (Alpha Innotech) based on their position relative to 

DNA molecular weight markers.

Table 1  C9ORF72 antisense transcript RAN translation cohort

− absent, ± sparse (<5 inclusions), + mild, ++ moderate, +++ severe

Case # C9ORF72  

mutation yes/no

Pathological 

diagnosis

Age at 

death

Sex Repeat size Hippocampal burden Cerebellar burden

Frontal cortex Cerebellum PA PR GP PA PR GP

1 Y FTLD-TDP 66 M 16.0 12.5 ± + +++ ± + +++

2 Y FTLD-TDP 71 M 25.2 11.4 ± ± ++ ± ± ++

3 Y FTLD-TDP 86 M 50.0 17.5 + ± +++ ± ± +++

4 Y FTLD-MND 68 M 25.6 12.8 ± ± ++ ± ± +++

5 Y FTLD-MND 70 M 38.4 10.1 + + +++ + + +++

6 Y FTLD-MND 61 F 35.6 13.7 + + +++ ± ± +++

7 Y ALS 53 M 46.8 14.9 + + +++ + + +++

8 Y ALS 49 F 23.8 10.0 + + +++ ± ± +++

9 Y ALS 41 F 22.3 10.9 + + +++ + + +++

10 N FTLD-TDP 88 F − − − − − − − −

11 N FTLD-TDP 65 M − − − − − − − −

12 N FTLD-TDP 83 F − − − − − − − −

13 N FTLD-MND 64 M − − − − − − − −

14 N FTLD-MND 72 F − − − − − − − −

15 N FTLD-MND 66 F − − − − − − − −

16 N ALS 60 M − − − − − − − −

17 N ALS 61 F − − − − − − − −

18 N ALS 53 F − − − − − − − −

19 N HD 80 F − − − − − − − −

20 N HD 70 F − − − − − − − −

21 N Kennedy’s 80 M − − − − − − − −

22 N SCA3 53 M − − − − − − − −
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Fluorescence in situ hybridization and immunofluorescence 

staining of human tissue

Formalin-fixed, paraffin-embedded frontal cortex, spinal 

cord, and cerebellum sections were cut at a 5-µm thick-

ness and mounted on glass slides, then subjected to RNA 

FISH followed by immunofluorescence staining. For 

FISH, slides were deparaffinized and rehydrated, incu-

bated with pepsin (4 mg/ml in 0.9 % NaCl, pH 1.5) for 

20 min at 37 °C, rinsed in water, then immersed in ice-

cold 20 % acetic acid for 90 s, prior to dehydration. A 

Cy3-tagged (GGGGCC)4 probe (IDT) which hybridizes 

to the expanded CCCCGG repeat was applied to the tis-

sue, which was then sealed under a coverslip. Prior to use, 

the probe was diluted to 5 ng/µl in hybridization buffer 

(10 % dextran sulfate, 50 % formamide, 2XSSC, 50 mM 

sodium phosphate buffer, 10 ng/ml tRNA pH 7.0), then 

heated at 80 °C for 10 min, placed on ice for 5 min, then 

heated at 37 °C for 10 min. Alternatively, to detect foci 

formed of (GGGGCC)exp RNA, a TYE563-labeled LNA 

probe (5′TYE563-CCCGGCCCCGGCCCC-3′TYE563; 

Exiqon, Inc) was applied to the tissue. This probe was 

diluted to 0.4 ng/ml in hybridization buffer (10 % dextran 

sulfate, 50 % formamide, 2XSSC, 50 mM sodium phos-

phate buffer, 10 ng/ml tRNA, pH 7.0), then heated at 80 °C 

for 75 s, according the manufacturer’s instructions. Follow-

ing a 2-day hybridization at 37 or 55 °C for the antisense 

and sense probe, respectively, coverslips were removed and 

slides were washed: once in 2X SSC, three times in 50 % 

formamide/2X SCC at 37 °C, and three times in 1X SSC 

at 37 °C. Slides were subsequently subjected to immuno-

fluorescence staining: slides were blocked with DAKO 

Serum-Free Protein Block and then incubated with anti-GP 

(1:3,000), choline acetyltransferase antibody (ChAT; 1:200; 

Chemicon AB144P), microtubule-associated protein 2 anti-

body (MAP2; 1:750, clone AP-20) or glial fibrillary acidic 

protein antibody (GFAP; 1:500, clone GA-5) overnight 

at 4 °C. The following day, slides were incubated with an 

Alexa Fluor 488-conjugated secondary antibody (1:500, 

Molecular Probes) for 1.5 h at room temperature. Slides 

were then treated with a solution of Sudan Black for 2 min 

to block auto-fluorescence, and coverslipped using Vectash-

ield-DAPI mounting medium (Vector Laboratories).

Imaging was performed using a Zeiss Axio Imager Z1 

microscope to visualize foci and poly(GP) inclusions. 

Although it is difficult to distinguish binding of the probe 

to an individual RNA transcript given that the fluorescence 

resulting thereof is not sufficiently strong to yield a sig-

nal above background, the FISH method employed is well 

suited to examine nuclear foci. The presence of multiple 

labeled transcripts in a compact location, as is the case for 

foci, results in a highly distinct, punctate fluorescent sig-

nal much brighter than background. Note that, to validate 

specificity of the probes targeting GGGGCC and CCC-

CGG RNA, FISH was carried out on frontal cortex and cer-

ebellar tissue from ALS, frontotemporal lobar degeneration 

(FTLD), and FTLD-MND patients with normal C9ORF72 

repeat length. In addition, a (CAGG)6 probe targeting the 

CCTG repeat was tested and shown also to be negative.

To determine what percentage of affected cells (i.e., 

cells having either foci or a poly(GP) inclusion) have both 

nuclear foci and poly(GP) pathology, we analyzed frontal 

cortex and cerebellar sections of four c9FTD/ALS cases 

co-stained for either sense or antisense foci and poly(GP) 

inclusions. For each section, we examined 25 cells with 

inclusions by fluorescence microscopy, and then changed 

the excitation filter to determine whether they also had 

foci; we then examined 25 cells with foci and determined 

whether they had inclusions. In this manner, a total of 50 

cells were examined per section. For each group (Group 

1—frontal cortex probed for antisense foci and poly(GP) 

inclusions; Group 2—cerebellum probed for antisense foci 

and poly(GP) inclusions; Group 3—frontal cortex probed 

for sense foci and poly(GP) inclusions; Group 4—cerebel-

lum probed for sense foci and poly(GP) inclusions), the 

percentage of cells having both foci and inclusions was cal-

culated and compared by two-way ANOVA. In addition, we 

compared the frequency of sense and antisense foci in the 

frontal cortex of the four examined cases. For each section, 

the number of cells with foci and the number of total cells 

were counted in 12 randomly selected, non-overlapping 

fields from layers I–III. The average percentage of cells 

with antisense foci among the four cases was compared to 

the average percentage of cells with sense foci by paired, 

two-tailed t test.

Immunohistochemistry

For immunohistochemical analysis, 9 cases exhibiting an 

expanded C9ORF72 repeat (3 FTLD-TDP, 3 FTLD-MND, 

3 ALS) were matched with 13 negative control cases that 

lacked the expanded repeat, including 3 FTLD-TDP, 3 

FTLD-MND, 3 ALS, and 4 cases with CAG repeat disor-

ders, including 2 cases with Huntington’s disease, 1 case 

with Kennedy’s disease, and 1 case with spinocerebellar 

ataxia type 3 (Table 1). For the 9 c9FTD/ALS cases and 

the 9 FTD/ALS matched controls, immunohistochemistry 

was performed on formalin-fixed paraffin-embedded tissue 

from the motor cortex, hippocampus (including temporal 

cortex), basal forebrain (including amygdala), thalamus (at 

the level of the subthalamic nucleus), medulla, and cerebel-

lum. For the four trinucleotide repeat disorders, sections 

from the basal forebrain (2 Huntington’s disease cases), 

medulla (Kennedy’s disease case) or pons (spinocerebellar 

ataxia type 3 case) were used. Five-micron-thick tissue sec-

tions were cut from paraffin blocks, mounted on charged 
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glass slides, and allowed to dry overnight at 65 °C. The 

following day, slides were deparaffinized and rehydrated 

in serial washes in xylene and alcohol before steaming the 

slides for 30 min in 1X Tris–EDTA (pH 9) buffer solution. 

Immunohistochemistry was performed using the Dako 

Autostainer and the Dako EnVision™ + Rabbit (DAB) 

kits. Immunostaining was performed with the following 

antibodies: anti-PA (Rb8604, 1:2,500), anti-GP (Rb7379, 

1:10,000), and anti-PR (Rb8736, affinity purified, 1:100). 

Following immunohistochemistry, slides were counter-

stained with Lerner’s hematoxylin, dehydrated, and cover-

slipped. All imaging was conducted using the Zeiss Axio 

Imager Z1 microscope.

Results

Characterization of antibodies for the detection of c9RAN 

proteins produced by RAN translation of (CCCCGG)exp 

RNA

The RNA structure of expanded repeats is believed to 

influence their susceptibility to RAN translation [9, 39]. 

We had previously reported that (GGGGCC)exp RNA is 

predicted to form imperfect hairpins and is RAN trans-

lated [3]. Using methodologies for generating second-

ary structure predictions, we thus sought to determine 

whether (CCCCGG)exp RNA is predicted to have a simi-

lar structure and also be prone to RAN translation. It 

should be noted that, while the reverse complement of 

the 5′-GGGGCC-3′ repeat is 5′-GGCCCC-3′, there are 

4 Gs downstream of the last sense GGGGCC repeat, 

thus making the first antisense repeat CCCCGG (Fig. 1, 

Online Resource 1). The major RNA secondary struc-

ture prediction for 10 antisense CCCCGG repeats or 10 

sense GGGGCC repeats is stable imperfect hairpins, 

but the GGGGCC repeat structure has a lower compos-

ite global energy (∆G = −40.8 kcal/mol), and therefore 

greater stability, than the antisense CCCCGG repeats 

(∆G = −35.3 kcal/mol) (Online Resource 2). Nonethe-

less, both GGGGCC and CCCCGG repeats become suc-

cessively more stable as repeat length increases (Online 

Resource 2b). Given these observations, the CCCCGG 

repeat, like its GGGGCC counterpart, may be RAN trans-

lated. To determine whether this is indeed the case, two 

independent rabbit polyclonal antibodies were gener-

ated against each of the products that could be produced 

from RAN translation of (CCCCGG)exp transcripts in the 

three alternate reading frames: poly(PR), poly(PG), and 

poly(PA) (Fig. 1). Given that poly(PG) [aka poly(GP)] 

proteins can be translated from both sense and antisense 

transcripts of the C9ORF72 repeat expansion (Fig. 1), 

“GP” is henceforth used when referring to these proteins.

Specificity of anti-PR, anti-GP and anti-PA antibod-

ies toward their respective antigen was evaluated by 

quantitative electrochemiluminescent immunoassays. 

Measurement of antibody binding to immobilized (PR)8, 

(GP)8 or (PA)8 peptides showed that all antibodies bound 

only their respective antigen (Fig. 2a). Consistent with 

these findings, anti-PR, anti-GP and anti-PA antibodies 

respectively detected exogenously expressed enhanced 

GFP-tagged (PR)5, (GP)5 or (PA)5 in HEK293T cells, 

as assessed by Western blot of cell lysates (Fig. 2b), and 

immunofluorescence staining of cells (Fig. 2c). Anti-

PR, -GP and -PA antibodies were additionally tested 

against poly(GA) and poly(GR) peptides, which rep-

resent c9RAN proteins produced from the sense tran-

script (Fig. 1). All antibodies but one detected only their 

respective antigen, as assessed by immunoassay, Western 

blot and immunofluorescence staining of cultured cells 

(Online Resource 3). Anti-PR (7378), however, did show 

modest cross-reactivity with the GR peptide by immu-

noassay, but such cross-reactivity was not observed by 

Western blot or immunofluorescence staining (Online 

Resource 3).

Exogenous (CCCCGG)exp transcripts are subject  

to RAN translation in cultured cells

Having confirmed specificity of these novel antibod-

ies toward potential (CCCCGG)n c9RAN proteins, they 

were then used to evaluate whether poly(PR), poly(GP) 

or poly(PA) proteins can indeed be RAN translated from 

expanded CCCCGG repeats. To address this question, a 

(CCCCGG)66 expression vector having no initiating ATG 

start codon upstream of the repeats was generated for the 

transfection of cultured cells. As shown in Fig. 3a, expres-

sion of (CCCCGG)66, but not of non-expanded (CCC-

CGG)2, led to the formation of nuclear foci, as assessed 

by RNA FISH using a Cy3-tagged (GGGGCC)4 probe 

targeting the CCCCGG repeat. Ectopic expression of 

(CCCCGG)66 also resulted in the synthesis of poly(GP) 

Fig. 1  Schematic representation of the possible proteins generated 

by RAN translation of expanded GGGGCC and CCCCGG repeats in 

all possible reading frames
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and poly(PR) proteins, but not poly(PA), as assessed by 

Western blot of cell lysates (Fig. 3b). These c9RAN pro-

teins were not observed in cells expressing (CCCCGG)2 

suggesting that their formation is repeat length-dependent 

(Fig. 3b).

Nuclear foci of (CCCCGG)exp transcripts are present 

in brain and spinal cord of c9FTD/ALS patients

It was previously shown that transcripts of the expanded 

GGGGCC repeat accumulate as nuclear RNA foci in the 

frontal cortex and spinal cord of c9FTD/ALS patients 

[11]. To determine whether expression of antisense tran-

scripts of (CCCCGG)exp similarly result in foci forma-

tion in human tissue, FISH was performed on paraffin-

embedded frontal cortex and spinal cord sections from 

c9ALS, c9FTLD or c9FTLD-MND patients using the 

Cy3-(GGGGCC)4 probe, the specificity of which was 

verified using sections from affected patients with normal 

C9ORF72 repeat lengths. Cells harboring (CCCCGG)exp 

nuclear foci were observed throughout all layers of the 

frontal cortex, as well as in the white matter, of c9ALS, 

Fig. 2  Antibody characteriza-

tion for c9RAN proteins. a The 

immunoreactivity of antibodies 

to c9RAN proteins towards 

(PA)8, (PR)8 and (GP)8 peptides 

was measured by adsorbing 

peptides onto carbon electrodes 

in 96-well MSD plates, and co-

incubating wells with anti-PA, 

anti-PR or anti-GP antibodies, 

and a SULFO-tagged anti-rabbit 

secondary antibody. Antibody 

binding to respective peptides 

was quantified by measuring the 

intensity of emitted light upon 

electrochemical stimulation of 

the plate using the MSD Sector 

Imager 2400. For each pair of 

antibodies, binding responses 

were normalized to the signal of 

the antibody showing the high-

est binding to its respective anti-

gen. Error bars indicate stand-

ard deviations from duplicate 

wells. b Western blot analysis 

of lysates from HEK293T cells 

transfected to express enhanced 

GFP-tagged (PA)5, (PR)5 or 

(GP)5. Blots were probed with 

the indicated antibodies. c 

Immunofluorescence staining of 

HEK293T cells transfected to 

express the indicated enhanced 

GFP (green)-tagged peptides 

using anti-PA, anti-PR or anti-

GP (red) antibodies. Nuclei are 

stained with Hoechst (blue). 

Scale bar 10 µm. Note that 

similar studies were conducted 

to test potential cross-reactivity 

of antibodies to poly(GA) and 

poly(GR), as shown in Online 

Resource 3
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c9FTLD and c9FTLD-MND patients, with the number of 

foci in affected cells ranging from few (e.g., 1–2) to many 

(>10), and with the size of foci being variable (Fig. 4a). 

Likewise, (CCCCGG)exp nuclear foci were present in cells 

of the spinal cord, including ChAT-immunopositive motor 

neurons (Fig. 4b).

Compared to FTD and ALS cases lacking the 

C9ORF72 expansion, c9FTD/ALS is marked by abnor-

mal cerebellar pathology, such as inclusions composed 

of (GGGGCC)exp RAN proteins [3, 25], as well as inclu-

sions negative for TDP-43, but immunopositive for p62, 

ubiquitin, and various ubiquitin-binding proteins [1, 28]. 

Therefore, we evaluated whether (CCCCGG)exp RNA 

foci, as well as (GGGGCC)exp RNA foci, are present 

in the cerebellum of C9ORF72 expanded repeat carri-

ers. Multiple cells with RNA foci composed of sense or 

antisense transcripts were detected, and these were most 

often observed in proximity to the Purkinje cell layer 

separating the granular and molecular layers (Fig. 4c). 

Foci were also occasionally present in cells of the molec-

ular layer, deep within the granular layer, in Purkinje 

cells, and in cells within the white matter (Fig. 4c). Post-

FISH immunofluorescent staining with MAP2, a neu-

ron marker, and GFAP, an astrocyte marker, confirmed 

that nuclear foci were present in both cell populations 

(Fig. 5). These findings indicate that, in addition to the 

frontal cortex and spinal cord, RNA foci resulting from 

the hexanucleotide repeat expansion in C9ORF72 accu-

mulate in the cerebellum.

Inclusions of (CCCCGG)exp c9RAN proteins are present 

in c9FTD/ALS

Next, the presence of c9RAN proteins synthesized from 

the antisense repeat was analyzed in human brain tissue. 

Immunohistochemistry with the anti-PA and anti-PR anti-

bodies revealed sparse neuronal cytoplasmic inclusions in 

all sections examined from the nine c9FTD/ALS cases. 

Lesion burden was greatest in the hippocampus (dentate 

fascia and hippocampus proper), lesser in the motor cortex, 

temporal cortex, amygdala, as well as thalamus, and low-

est in the cerebellum and medulla (Fig. 6). Many of the 

lesions were of the characteristic “star-shaped” morphol-

ogy. Immunohistochemistry with the anti-GP antibody 

revealed abundant pathology in all regions that paralleled 

the pathologic burden and distribution previously described 

with C9RANT antibodies [3]. Semi-quantitative analysis 

of anti-GP, anti-PA or anti-PR immunoreactive-inclusion 

burden in the hippocampus and cerebellum is shown in 

Table 1. Neuronal c9RAN protein inclusions were not seen 

in the nine FTD/ALS matched control cases, or in the four 

trinucleotide repeat disorder cases.

RNA foci and poly(GP)-inclusions infrequently coexist 

in the same cell

The findings above, together with previous studies [2, 3, 11, 

25], establish that (GGGGCC)exp and (CCCCGG)exp tran-

scripts form nuclear RNA foci and undergo RAN transla-

tion; nonetheless, the relationship between these two events 

remains unclear. The presence of foci could be indicative 

of high levels of (GGGGCC)exp and (CCCCGG)exp tran-

scripts, thus increasing the possibility of RAN translation. 

Conversely, the formation of nuclear foci may seques-

ter these transcripts away from translational machinery, 

thus decreasing the likelihood of RAN translation. Given 

that both foci formation and RAN translation are poten-

tially pathogenic, we examined the relationship between 

foci and inclusions composed of poly(GP), which is RAN 

translated from both sense and antisense transcripts. To this 

end, sections of cerebellar and frontal cortex from c9ALS, 

c9FTLD and c9FTLD-MND patients were subjected to 

FISH for the detection of (CCCCGG)exp or GGGGCCexp 

RNA foci, followed by immunofluorescence staining for 

poly(GP). Remarkably, while foci and anti-(GP)-immuno-

reactive inclusions were occasionally present in the same 

cell, the majority of affected cells had only RNA foci or 

only poly(GP) inclusions (Fig. 7a, b). To determine what 

percentage of cells have both foci and poly(GP) inclusions 

in the frontal cortex and cerebellum, quantitative analy-

sis was undertaken on four cases co-stained for poly(GP) 

inclusions and either sense or antisense foci. For each sec-

tion, we examined 25 cells with inclusions and determined 

Fig. 3  Expression of expanded CCCCGG repeats in cultured 

cells leads to foci formation and expression of c9RAN proteins. a 

HEK293T cells transfected to express (CCCCGG)2 or (CCCCGG)66 

were subjected to RNA fluorescence in situ hybridization using a 

probe against CCCCGG repeat transcripts. Note the foci (red) in 

Hoechst-stained nuclei (blue) of (CCCCGG)66-expressing cells, 

but not (CCCCGG)2-expressing cells. Scale bar 5 µm. b Western 

blot analysis of lysates from (CCCCGG)n-expressing cells shows 

that poly(PR) and poly(GP) proteins, but not poly(PA) proteins, are 

expressed in cells transfected with (CCCCGG)66. No c9RAN protein 

was detected in control cells expressing non-expanded (CCCCGG)2
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Fig. 4  C9ORF72 hexanu-

cleotide repeat transcripts 

form nuclear RNA foci in 

frontal cortex, spinal cord and 

cerebellum in c9FTD/ALS. 

Fluorescence in situ hybridiza-

tion (FISH) of c9FTD/ALS 

frontal cortex (a) and c9ALS 

spinal cord (b) tissue using a 

probe against the CCCCGG 

repeat transcripts shows RNA 

foci (red) in the nucleus (stained 

with DAPI, blue) of cells. In 

(b), note that foci are observed 

in motor neurons that stain posi-

tively for ChAT. c Cerebellar 

sections of c9FTD/ALS cases 

were subjected to FISH using a 

probe against CCCCGG repeat 

transcripts or GGGGCC repeat 

transcripts. In most instances, 

foci-bearing cells within the 

cerebellum were found in 

proximity to the Purkinje cell 

layer separating the molecular 

and granular layers. However, 

RNA foci were also observed 

in cells of the molecular layer, 

deep within the granular layer, 

in Purkinje cells, and in cells 

within the white matter. Scale 

bars 10 µm
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whether they had foci, and examined an additional 25 cells 

with foci and determined whether they had inclusions. 

Shown in Fig. 7c is the percentage of affected cells that had 

both foci and inclusions. Note that the brain region sam-

pled (frontal cortex vs. cerebellum) and foci type (antisense 

vs. sense) both significantly affect the percentage of cells 

having both foci and inclusions, as assessed by two-way 

ANOVA (Fig. 7c). The apparent increase in the percentage 

of cells having both inclusions and sense foci, compared to 

the percentage of cells having both inclusions and antisense 

foci, is not likely caused by increased frequency of sense 

foci. In the frontal cortex, where the difference between 

sense and antisense foci co-occurring with poly(GP)-inclu-

sions is most pronounced, there was no difference in the 

percentage of cells with sense or antisense foci in the cases 

examined (Fig. 7d).

Discussion

The discovery of new neuropathologic features specific 

to c9FTD/ALS, namely the formation of RNA foci and 

the production of c9RAN proteins resulting from the syn-

thesis of antisense transcripts of the expanded C9ORF72 

repeat, provides additional insight into the pathobiology 

of c9FTD/ALS. Through the production of both sense and 

antisense expanded repeat RNA and five distinct c9RAN 

proteins, the repeat expansion leads to the production of 

seven potentially toxic biomolecules.

To determine whether antisense transcripts of the 

expanded C9ORF72 repeat are RAN translated, we gen-

erated novel rabbit polyclonal antibodies for the detection 

of poly(GP), poly(PR) and poly(PA) proteins. Examina-

tion of RAN translation in cultured cell models showed 

that poly(GP) and poly(PR) proteins were synthesized in 

(CCCCGG)66-expressing cells, but not in cells expressing 

only two CCCCGG repeats. That poly(PA) proteins were 

not detected in (CCCCGG)66-expressing cells may be 

because a crucial upstream sequence necessary for transla-

tion of poly(PA) peptides is missing from the (CCCCGG)66 

expression vector. Alternatively, it may be due to the fact 

that RAN translation is repeat length-dependent, with dif-

ferent reading frames having different length thresholds 

[9, 39]. Nonetheless, our immunohistochemical analysis 

of c9RAN proteins in human tissue indicates either this 

sequence is present, or the repeat length threshold is met, in 

c9FTD/ALS patients.

Because poly(GP) proteins can be synthesized from 

sense and antisense transcripts of the expanded C9ORF72 

repeat, their exact origin is not definitely known. Yet, the 

presence of poly(PA) and poly(PR) neuronal inclusions in 

post-mortem c9FTD/ALS brain tissue is indicative of RAN 

translation of the antisense transcript. These inclusions are 

specific to c9FTD/ALS cases, not being found in matched 

FTD/ALS controls lacking the C9ORF72 expanded repeat, 

or in other repeat disorders. We did note a difference 

between poly(PA) and poly(PR) pathology in comparison 

to poly(GP) pathology, the latter being markedly more fre-

quent. For example, poly(GP) pathology is extensive in 

granule cells and primary neurons of the cerebellum, but 

cerebellar poly(PA) and poly(PR) inclusions are sparse in 

these same populations.

While we cannot rule-out the possibility that poly(GP) 

inclusions appear more abundant because of differences 

Fig. 5  Nuclear RNA foci are present in both neurons and glia. Fluo-

rescence in situ hybridization of c9FTD/ALS cerebellar tissue using 

a probe against the GGGGCC repeat was followed by immunofluo-

rescence staining with the neuronal marker, MAP2, or the astrocytic 

marker, GFAP. Note that nuclear RNA foci are present in MAP2-pos-

itive and MAP2-negative cells, as well as GFAP-positive and GFAP-

negative cells. Scale bar 10 µm

Fig. 6  Antisense c9RAN proteins in human post-mortem tissue. 

Immunohistochemistry reveals poly(PA)- [left column], poly(PR)- 

[middle column], and poly(GP)- [right column] reactive lesions 

throughout the central nervous system, including the hippocampus 

(endplate-CA3 on the top left, dentate fascia on the bottom right), cer-

ebellum, amygdala, thalamus, motor cortex (layers 2–3), and medulla 

(inferior olivary nucleus). Lesions are often neuronal cytoplasmic 

inclusions (NCI) with a star-shaped morphology, but can also appear 

as dense NCI, small neuronal intranuclear inclusions, or diffuse neu-

ronal “pre-inclusions”. Anti-GP, which detects poly(GP) proteins 

that can be made from both sense and antisense transcripts of the 

C9ORF72 expanded repeat, reveal greater pathologic burden com-

pared to the anti-PA and PR antibodies. Case numbers correspond to 

c9FTD/ALS cases in Table 1. Scale bar 10 µm

▸
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in antibody affinities, their increased frequency may be 

due to the fact that poly(GP) proteins are synthesized from 

both sense and antisense transcripts. In addition, the anti-

sense transcript may be less efficiently translated than the 

sense transcript. CCCCGG repeats are predicted to fold 

into an imperfect hairpin akin to what we have previously 

shown for GGGGCC repeats [3]. However, compared 

to the GGGGCC repeat, which has an optimal organiza-

tion to maximize base pairing, the CCCCGG repeat has 

fewer base pairs and more frequent sets of four unpaired 
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C nucleotides within the stem, and thus relies more on 

base stacking effects. While the stability of both CCCCGG 

and GGGGCC repeat transcripts increases with increasing 

repeat length, the CCCCGG repeat is predicted to be less 

stable than its GGGGCC counterpart, which may decrease 

its susceptibility to RAN translation. It should be men-

tioned that two previous studies report that r(GGGGCC) 

repeats form an intramolecular G-quadraplex structure [13, 

29]. As has been suggested for other quadruplexes [8] and 

r(CGG) repeats, the r(GGGGCC) repeat, and perhaps the 

r(CCCCGG) repeat, may adopt two conformations that 

are in equilibrium: an extended hairpin structure and a 

quadruplex.

Another possible explanation for the higher frequency 

of poly(GP) inclusions in c9FTD/ALS may be due to 

ATG-initiated translation. While no sequence has been 

reported for the antisense transcript, resorting to analysis 

of the genomic DNA consensus sequence for C9ORF72 

has revealed no ATG codons for sense transcript-derived 

c9RAN proteins, or for the antisense transcript-derived 

poly(PA) protein. However, one and three potential ATG 

start codons were found in the antisense poly(PR) and 

poly(GP) frames, respectively (Online Resource 1). None-

theless, whether ATG codons are in fact present in RNA 

transcripts is not yet known, and our cell culture data pro-

vide evidence that poly(PR) and poly(GP) proteins can be 

translated from (CCCCGG)exp in the absence of an ATG 

initiation site.

Whether aberrant expression of c9RAN proteins, 

and the inclusions formed thereof, influence disease 

pathogenesis remains to be elucidated. Nevertheless, the 

formation of abnormal proteinaceous inclusions is associ-

ated with neurotoxicity in various neurodegenerative dis-

eases. The inclusions may sequester other proteins causing 

loss of function, impair/overwhelm protein degradation 

systems, displace cytoplasmic organelles, and may them-

selves have neurotoxic properties. It is noteworthy that 

polyA and polyG proteins synthesized by RAN translation 

of expanded CAG·CTG repeats accumulate in disease-rel-

evant tissues of patients with spinocerebellar ataxia type 

8 and DM1, and that their expression in cultured cells is 

sufficient to cause apoptotic cell death [26]. In addition, 

in both DM1 patients and in mice expressing (CUG)exp, 

polyG aggregates co-localize with caspase-8, an early indi-

cator of polyG-induced apoptosis [26]. In c9FTD/ALS, 

neuronal inclusions of c9RAN proteins are similarly pre-

sent in vulnerable areas (e.g., neurons of neocortex and 

hippocampus), but there is a paucity of such inclusions in 

certain affected areas, such as the spinal cord [3, 25]. As 

with other aggregation-prone proteins involved in neuro-

degeneration (e.g., tau [14]), it remains unclear whether 

c9RAN inclusions per se are toxic, or whether RAN trans-

lation of transcripts from the C9ORF72 repeat contributes 

to neurodegeneration through the formation of toxic, solu-

ble oligomers.

As with RAN translation, the consequence of foci for-

mation in c9FTD/ALS is currently under investigation. 

Taking cues from other repeat expansion disorders, it is 

anticipated that foci will sequester select RNA-binding pro-

teins, and cause the misregulation of crucial downstream 

RNA targets. To date, studies have identified several pro-

teins that bind GGGGCC transcripts [24, 29, 38]. The find-

ings herein highlight the necessity to similarly identify pro-

teins bound and sequestered by CCCCGG foci.

Examination of foci formed of sense or antisense tran-

scripts of the expanded C9ORF72 repeat revealed that, in 

addition to the frontal cortex and spinal cord, RNA foci 

accumulate in the cerebellum. Together with other stud-

ies, it is now evident that numerous pathological features 

are present in the cerebellum of c9FTD/ALS patients, 

including nuclear RNA foci, c9RAN protein inclusions, 

as well as p62-positive inclusions [1, 3, 6, 25, 26]. Fur-

thermore, FTD cases caused by the C9ORF72 repeat 

expansion show atrophy of the parietal lobe and cerebel-

lum, in addition to frontal and temporal lobe atrophy 

[37]. In fact, c9FTD is characterized by greater cerebel-

lar atrophy than sporadic FTD, as well as FTD caused 

by mutations in MAPT [37]. Consequently, cerebellar 

atrophy, nuclear RNA foci, and proteinaceous inclusions 

may be considered characteristic features of c9FTD/ALS. 

Future studies of c9FTD/ALS should therefore encom-

pass evaluations of the cerebellum which, to date, has 

been largely neglected.

Fig. 7  Nuclear RNA foci and poly(GP) inclusions are seldom 

observed in the same cell. Fluorescence in situ hybridization of 

frontal cortex and cerebellar tissue of c9FTD/ALS cases using a 

probe against sense and antisense C9ORF72 hexanucleotide repeat 

transcripts was followed by immunofluorescence staining to detect 

poly(GP) inclusions, which may result from RAN translation of both 

sense and antisense transcripts. Though infrequent, both foci and 

poly(GP) inclusions can co-occur in the same cell (cells indicated 

by an asterisk in a and b). Scale bars 10 µm. AS antisense foci, S 

sense foci. c To determine the percentage of cells having both foci 

and poly(GP) inclusions in the frontal cortex and cerebellum, quanti-

tative analysis was undertaken on four cases co-stained for poly(GP) 

inclusions and either sense or antisense foci. For each section, we 

examined 25 cells with inclusions and determined whether they had 

foci, and examined 25 cells with foci and determined whether they 

had inclusions, for a total of 50 cells per section. Data are presented 

as mean ± SEM, n = 4. The brain region sampled (frontal cor-

tex vs. cerebellum, P = 0.0292) and foci type (antisense vs. sense, 

P = 0.0011) both significantly affect the percentage of cells having 

foci and inclusions, as assessed by two-way ANOVA. To determine 

the percentage of cells with antisense and sense foci in the frontal 

cortex, the number of cells with foci and the total number of cells 

were counted in 12 randomly selected, non-overlapping fields for 

each case. Data are presented as mean ± SEM, n = 4. No significant 

difference between the percentage of cells with sense or antisense 

foci was detected, as assessed by paired two-tailed t test (P = 0.1916) 

(d). n.s. not significant

◂
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Of interest, foci and poly(GP) inclusions were seldom 

observed in the same cell in the frontal cortex and cerebel-

lum of c9FTD/ALS patients. Although it is possible that 

foci too small to be easily detected are present in cells with 

poly(GP) inclusions, our findings suggest that only those 

(GGGGCC)exp or (CCCCGG)exp transcripts that escape 

being sequestered as foci, and are instead exported to the 

cytoplasm, become available for RAN translation. That 

RNA foci are found in both neuronal and glial cells (Figs. 

4, 5), while poly(GP) inclusions are neuronal [3], coupled 

with the fact that RNA foci in the cerebellum are found in 

greatest abundance in cells in proximity to the Purkinje cell 

layer, whereas poly(GP) inclusions are widely expressed 

throughout the molecular and granule layers, does provide 

a basis for the lack of co-occurrence of these two features 

in a given cell. While it remains to be determined whether 

other c9RAN proteins are more frequently found in the 

same cells as foci, and whether both sense and antisense 

foci are present within the same cell, these findings support 

the notion that foci and inclusions represent two distinct 

pathogenic mechanisms for C9ORF72 repeat expansions.

Since the 2011 discovery that the expanded hexanu-

cleotide repeat in C9ORF72 causes chromosome 9p-linked 

FTD and ALS [11, 30], several neuropathological features 

unique to c9FTD/ALS have been identified [1, 3, 5, 7, 11, 

24, 25, 28]. The findings from the present study expand 

this list and highlight the need to broaden our view of 

potential disease mechanisms to include toxicity potential 

stemming from the antisense transcript. Going forward, it 

will be critical to distinguish if and how RNA transcripts 

and c9RAN proteins contribute to the pathogenesis of dis-

ease, and whether the frequency or regional localization 

of RNA foci and c9RAN inclusions correlate with distinct 

clinical features. While these questions are being investi-

gated, c9RAN proteins should be explored as a biomarker 

for c9FTD/ALS, as should treatment strategies aimed at 

eradicating the putatively toxic sense and antisense tran-

scripts responsible for both foci formation and RAN 

translation.
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