ANNALES
POLONICI MATHEMATICI
XXXVII (1980)

Antisymmetric operator algebras, 1

by WACEAW SzYMANSKI (Krakow)

Abstract. By an analogy to antisymmetric function algebras, the concept of
antisymmetry of a subspace of a C*-algebra is introduced. The main theorem gives
a sufficient eondition for the antisymmetry of the image (and of the norm closure
of the image) of a representation of a function algebra. As an application, some results
are obtained concerning antisymmetry of spaces defined by the von Neumann cal-
culue and the H™ calculus for a contraction.

1. Introduction. To begin with we introduce basic notations, defini-
tions and we recall some known results needed in the sequel. C denotes
the complex plane, B — the real line. 0D stands for the topological bound-
ary of a set D < (. It is an elementary topological fact that dD < R
implies D = 0D if D < C is compact. Let A be a complex Banach algebra
with unit 1. The set A~ of all invertible elements of A is open. If a € A4,
then sp,(a) denotes the spectrum of a. The spectral radius r(a) of a e A
is defined as sup {|A|: 1 €sp4(a)} and the equality r(a) = lim|a”|'" holds
true. If B = A is a Banach subalgebra of A containing 1, then for every
b € B we have sp ,(b) < spg(b) and 0spg(b) < dsp,(b). If B is a maximal
commutative subalgebra of A containing 1, then sp,(a) = spg(a) for
a € B. If A is commutative, we denote by spec(4) the maximal ideal space
of A and for every a € A we have: sp,(a) = {a(a): a espeec(4)}. A com-
mutative Bamach algebra A is called semi-simple if r(a) = 0 implies
a =0 for ac A. ‘

The following known lemma is one of main tools used in this paper;
we prove it here for the sake of completeness:

LEMMA A. Let A be a Banach algebra with unit 1. Take a € A. Then
for every A espy(a), e >0, z € A such that ar = xza and |z —a| < ¢ there
18 u €8p,(®) satisfying |4 —pu| < &.

Proof. Fix 4, ¢ x as above. Denote by B a maximal commutative
subalgebra of A containing 1, @, #. By the assumptions, 1 esp,(a)
= 8pg(a) = {a(a): a espec(B)}. Hence there is a € spec(B) such that
A = a(a). We have now: |a(x) —a(a)| < ||z —a| < ¢ and, since u & a(x)
belongs to spgy(2) = sp,(«), the proof is finished.
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The above results concerning Banach algebras may be found, for
instance, in [1].

Let A be a complex C*-algebra with unit 1. ¢, denotes the set of all
scalar multiples of 1. If S is a subset of 4, we define §* = {a*: a € 8}.
If H is a complex Hilbert space, L(H) denotes the algebra of all linear
bounded operators in H, I, (or simply I) is the identity operator in H,
Cy stands for Cpy,y. If T e L(H), we write sp(T) for sprg(T). #(T)
denotes the algebra of all polynomials in 7, o/ (T) is its norm closure,
C*(T) is the €*-algebra generated by T and I. A subset & of L(H) is
called irreducible if no non-trivial (closed) subspace of H reduces every
Tes. If X is a compact Hausdorff space, we write C(X) for the algebra
of all complex continuous functions on X with the uniform norm. If X < C*,
P(X) denotes the algebra of restrictions of all polynomials to X and

P(X) denotes its uniform closure.

We denote by X the polynomially convex hull of X < ¢, which is
known to be the union of X and all bounded components of C —X. Moreo-
ver, X may be identified with spec (P (X)) (see [3]).

In this paper we initiate a study of antisymmetric operator algebras.
Main problems have the origin in the function algebras theory. Let us
recall that a function algebra A4 < C(X) is called antisymmeétric [3] if
every real function in A is constant. Let us introduce the basic definition:

DEFINITION. A subspace S of a (*-algebra A with unit 1, such that
1 e 8, is called antisymmetric, if a = a* implies a € C, for a € S.

Let us point out that § is not assumed to be closed in any sense.
As we will see later, problems concerning the antisymmetry of the closure
of an antisymmetric algebra are rather delicate.

We will deal mostly with antisymmetric algebras. A natural question
appearing now is the following: How to characterize operators T' e L(H)

for which algebras ./ (T) and «(T) are antisymmetric? More generally,
given an antisymmetric subspace 8 of a 0*-algebra A and a linear mapping
¢: S— L(H) preserving unit, what must we assume about ¢ to get the

antisymmetry of ¢(8) or qT(-S_)? We will present partial answers for these
questions. In Section 1 we prove some immediate properties of antisym-
metric subspaces. We show in Example 1 that a Banach algebra isomor-
phism need not preserve antisymmetry, while a x-isomorphism of C*-al-
gebras does. In Section 2 we investigate the antisymmetry of o/ (T'), where
T e L(H) is a normal operator. We show also two examples (Examples
2 and 3) of antisymmetric algebras, whose closures are not antisymmetric.
In Section 3 we prove the main theorem, which gives a sufficient condition
for the antisymmetry of the image of a representation of an algebra
A < C(X). Section 4 deals with some consequences of this theorem in
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connection with the von Neumann and H™ functional calculi for a con-
traction 7. The conditions proved there depend on the algebra P(sp(T)).

First we recall some classical examples of antisymmetric algebras.
The most obvious one is the algebra C,, where 4 is a C*-algebra with
unit. If I' = {# €C: |z] = 1} is the unit circle, then the algebra ﬁf)
c C(I') is antisymmetrie. Any linear space consisting of analytic functions
in a domain (i.e. a connected open set) in C" is antisymmetric, by the
Cauchy-Riemann equations. ’

In the following proposition we collect some immediate properties
of antisymmetric subspaces and algebras.

PROPOSITION 1. (i) A subspace S of a C*-algebra with unit 1 containing 1
is antisymmetric if and only if Sn8* = 0.

(ii) An antisymmetric subspace (resp. subalgebra) of a C*-algebra with
unit is contained in a mazimal antisymmetric subspace (resp. subalgebra).

(iii) The strong closure A° of a commutative irreducible subalgebra A
of L(H), which contains I, is antisymmelric.

(iv) A strongly closed algebra A < L(H) with I is anlisymmetric if and
only if A contains no projections except 0 and I,

(v) Let A be a C*-algebra with unit 1 and let 8§ = A be an antisymmetric
subspace of A. If a linear mapping ¢: S—L(H), ¢(1) = I, has a linear
extention ¢,: A—L(H) to A such that ¢, preserves involution and has trivial
kernel, then ¢(8) is antisymmetric.

Proof. (i) follows from the decomposition of any element ac A
into the sum a = a, 4 ia,, where a,, a, € A are self-adjoint. To prove (ii),
it sufficies to apply the Kuratowski-Zorn lemma. Now we prove (iii).
The irreducibility of A implies that only projections in the commutant
A’ of A are 0 and I. Since A is commutative, A < A’ and A° < A’. If
T = T* e A, then all spectral projections of T belong to & (T)* = A° < A';
hence T € Cy. To prove (iv), we argue similarily. If T = T* ¢ A, then
all its spectral projections belong to A, and so, if A contains no projections
except 0 and I, we get 7 € Oy. The converse is trivial. To prove (v), sup-
pose ¢ (a) = ¢(a)* for some a € 8. Then ¢,(a —a*) = 0 and hence a = a*.
The antisymmetry of § yields the desired result. The proposition is proved.

Observe that (v) of Proposition 1 implies, in particular, that a *-iso-
morphism of C* algebras preserves the antisymmetry of their subalgebras.
The following example shows that an isomorphism of Banach algebras
only need not preserve antisymmetry.

ExAMPLE 1. Let A be a Banach algebra with unit 1. If e 4, ¢ # 0,
¢ # 1, is an idempotent, then 1, ¢ are linearly independent. Indeed, if not,
then ¢ = 21 with some 2z €, z # 0. Since ¢ is an idempotent, 22 = z,
we get 2 = 1; thus ¢ =1 — a contradiction. The algebra A, generated by



266 W. Szymanski

1 and e consists of elements of the form 21+ we (2, w € C) and is two-
dimensional, hence Banach. Let fe A4, f # 0, f 5= 1, be another idempo-
tent. The Banach algebras A4,, A, are isomorphic via the mapping 21 +
+ we—21 +wf. Now consider in the Hilbert space H = (2 two operators

(2] (o0

Both T, P are idempotents. By the above remarks, commutative Banach
algebras «/(T), «/(P) are isomorphic. But «/(T) is irreducible, hence
antisymmetric, by Proposition 1, (iii); on the other hand, </ (P) contains
P = P*, which does not belong to Cj.

2. Normal operators. The simplest situation in the characterization
of the antisymmetry of o/(T) occurs, when we assume that T e L(H)
is normal. Denote by X the spectrum sp(Z) of 7. In this case we have
the Gelfand-Naimark x-isomorphism ¢: ¢*(T)—C(X), which preserves
identities, involution and ¢(T) = z — the identity function on X. Hence
¢ maps <« (T) onto P(X) and «/(7T) onto P(X). By Proposition 1, (v), the
antisymmetry of &/(T) («/(T) respectively) is completely characterized
by the antisymmetry of P(X) (P(X) resp.).

The following remark gives a simple necessary condition for the
antisymmetry of P(X):

Remark 1, Suppose that X = C is a compact set containing at least
two different points. If P(X) is antisymmetrie, then X is infinite.

Proof. If X = {z,,...,2,} is finite and z, # 2,, then we can find
a polynomial p such that p(z,) =0, p(%) =1, ¢ =2,...,8. This p is
a real, non-constant element of P(X).

As a corollary we get:

CororLLARY 1. If T e L(H), T ¢ Cy, is.a normal algebraic operator,
then ' (T) is not antisymmelric.

Proof. Suppose the converse. Then P(sp(T)) is antisymmetric. The
spectral theorem yields that sp(Z') contains more than one point. Hence,
by Remark 1, sp(7T) is infinite. But this is impossible, because T' is alge-
braiec.

Looking at the algebra </ (T) of Example 1, we see that this corollary
fails without the assumption that 7' is normal.

PrROPOSITION 2. Suppose that T € L(H) i8 an arbitrary operator with
non one-point spectrum. If P (sp(T)) is antisymmetric, so is o (T).

Proof. Let p(T) = p(T)* with some polynomial p. Then sp (p(T)} < R
and, by the spectral mapping theorem, p is real on sp(T). Therefore p = ¢
on sp(T) with some ¢ € R. Applying Remark 1, we get that sp (') is infinite,
hence p = ¢ everywhere in C and p(T) = el.
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The next proposition shows that &/ (T) can be antisymmetric even
in case when sp(T') contains only one point.

ProPOSITION 3. Suppose that H is finite dimensional. If T € L(H)
and sp(T) = {c}, then o/ (T) is antisymmetric.

Proof. Since the algebras «/(T) and /(T 4+ ¢l) are equal, we may
assume ¢ = 0. Then there is an orthonormal basis in H in which T is
represented by a matrix (a;;) with a; = 0 for ¢ < j. Now the propositioﬁ
follows from standard rules of matrix multiplication.

The algebra o/(T) of Example 1 is an example that this sufficient
condition for the antisymmetry of «/(T) is not necessary. Indeed, sp(T)
= {0,1} in Example 1.

Now we want to prove two sufficient conditions for the antisymmetry
of P(X). Before doing it let us state the following known lemma:

LEMMA 1. Let G be a compact subset of C with non-empty interior. If
f € C(G) is non-constant and analytic in int@, then ¢f(G) < f(3G).

Proof. If z € df(G), then z e f(G), since f(G) is compact. Hence
x = f(2) with some 2 € G. z cannot belong to int@, because f is non-constant
and analytic in int@, hence f is an open mapping. Thus 2z € ¢G and the
proof is complete.

THEOREM 1. Let X = C be compact and let m denote the plane Lebesgue
measure. Each of the following conditions is sufficient for the antisymmetry
of P(X):

(a) C—X 1is not connected,

(b) m(X) > 0.

Proof. Suppose first that (a) is satisfied. Let G be the closure of an
arbitrary bounded component of ¢ —X. Obviously, ¢G = X. Suppose
that p is a polynomial, non-constant on @, satisfying p(X) < R. Hence
p(0G) = R and, by Lemma 1, dp(G) < B. Now, p(@) is a compact subset
of ¢ with Jp (@) < R. By the introductory remarks p(G) = ép(G) — a con-
tradiction, because p is an open mapping. To prove the sufficiency of (b),
take a polynomial p non-constant on X. j(p) denotes its Jacobian, as
a function of two real variables. j(p) # 0 m-almost everywhere. Hence

m(p(X)) = [li(p)ldm > 0.
X

Therefore p cannot be real and theorem is proved.

Now Proposition 2 and Theorem 1 imply that if T € L(H) has the
spectrum X = sp(T) satisfying (a) or (b) of Theorem 1, then 7(T) is
antisymmetric. Proposition 3 shows that the condition sufficient for the
antisymmetry of «/(I') is, however, not necessary.

Now we would like to present two examples of antisymmetric algebras
with non-antisymmetric norm closures.

4 — Annales Polonici Mathematici XXXVIIL3
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ExaMpLE 2, Take two disjoint closed discs X,, X, = ¢ and define
X = X,uX,. X has connected complement and P(X) is antisymmetric
(by Theorem 1, (b), for instance). The characteristic function of X, is real
and non-constant on X and, by Mergelyan’s theorem, this function belongs

to P(X hence P(X ) is not antisymmetric. To get an operator-type
example it is sufficient to take T € L(H) as a normal operator with the
spectrum X.

In this example X was not connected. One can omit this assumption,
as the following example shows:

ExampPLE 3. Let X, = C be the closed unit disc and let X, be the closed
interval [1, 2] < R. Put X = X,UX,. X and C — X are connected. P(X)
is antisymmetric (Theorem 1, (b)). Take x, ¥y € X, such that z < y. By
Urysohn’s lemma we find a continuous, real function g on X,, such that
g=0onil,z],g =1on [y,2]. Putting f =¢gon X,, f =0 on X,, we
get a continuous function f on X analytic in int X. Mergelyan’s theorem (3]
yields f e P(X); hence ﬁf ) is not antisymmetrie.

The author does not know . a complete characterization of those com-
pact X < C for which i'%—X ) 18 antisymmetric A partial negative result
is given in Lavrientieff’s theorem [3]: P(X ) = C(X) if and only if int X

= and ¢ — X is connected. Clearly, if P(X ) = C(X), then P(X) cannot
be antisymmetric, except the trivial case, when X contains only one
point. But the following ‘Decessary condition can be proved

ProprosiTION 4. If P(X i8 antisymmetric, then X is connected and
X = intX.

Proof. It is easy to see that if X is not connected or X # int X , then
there are two disjoint, closed sets Y,, Y, © f, such that int X < Y, VY,.

By Urysohn’s lemma, we find a function f continuous on X with values
in the closed interval [0, 1] such that f| r, =0, flg, =1. If G is a compo-

nent of mtX then f must be constant on @, because intX < Y,u¥,.

This proves that f is analytic in int X. Since ¢ — X is connected, f eP-.(X )
by Mergelyan’s theorem [3]). Obviously, f|x € P(X) and f|x is non-constant,

because f is the image of f|, via the Gelfand isomorphism. Hence P(X)
18 not antisymmetric and the proposition is proved.

It is obvious that we assume in the last proposition intX #@. In
fact, intX =@ if and and only if int X =@ and ¢ — X is connected. Hence,
if intX = @, then P( )= C(X), by Lavrientieff’s theorem. The The necessary

condition proved in Proposition 4 for the antisymmetry of P(X ) i8, how-
ever, not sufficient. Consider an example:

ExaMpLE 4. Define the sequence of equilateral, closed triangles
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D, = C as follows: Assume that exactly one apex r, of D, lies on the real
axis and the side opposite to it is parallel to the real axis. .D,, D,, D,
have lenghts of the sides equal to 1 and r, =0, r, =1, ry, = 2. Dy, D,
have sides equal to } and r, = }, v, = 3. The next triangles D, Dy, D,, D,
have sides equal to } and r; =}, 7, = %, 7; =}, 7, = ;. Continuing this
procedure we get the sequence D, < C of disjoint, closed triangles, whose
apexes form a dense subset of the closed interval [0, 2]. Put X = [0, 2]u
vD,uD,u..., X is connected and X = X = intX. We define the func-
tion f on X to be constant and equal to r, on D, and the identity function
on [0, 2]. f is continuous, real, non-constant on X, analytic in int X and,

by Mergelyan’s theorem, fe P(X). Hence P(X) is not antisymmetrie,

I express my thanks to Professor J. Siciak for showing me this example
and for several valuable suggestions.

3. Representations of algebras. In this section we solve the problem
stated in Section 1 for commutative (*-algebras and their subalgebras.
Consider first an arbitrary O*-algebra A with unit 1 and its norm-closed,
not necessarily symmetric, subalgebra B containing 1.

The following remark is known, but we give here a short proof for the
sake of completeness.

Remark 2. If b € B is self-adjoint, then sp,(b) = spg(d).

Proof. The inclusions.sp,(b) < spy(b) and 0spg(b) < 28p,(b) hold
by remarks at the beginning of this paper. Since b = b*, dspg(d)
< dsp,(b) = sp,(b) = R; therefore spy(b) is a compact subset of C with
the boundary contained in R. Hence spg(b) = d8pg(d) < sp, ().

Throughout the rest of this section X is a fixed compact Hausdorff
space, 4 < C(X) is an arbitrary subalgebra containing constants (not
necessarily closed), ¢: A—L(H) is an algebra homomorphism preserving
units and & is the norm closure of ¢(4) in L(H). The main theorem is
the following:

THEOREM 2. (i) If for all fe A
(%) fIX) < spylp(f)

and A i3 antisymmetric, then p(A) is antisymmetric.

(ii) Suppose that there is a norm closed subalgebra # of L(H) such that
A < B and for all fe A

(%) fIX) = spalp(f).

If the C(X)-closure A of A is antisymmetric, so is <.
Proof. First observe that if f € A satisfies (), then

(1) Ifl < 7)) < le (NI
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Now we will establish some limit relations following from assumptions
(1) and (ii). Suppose first that (i) is satisfied and take 8 e /. There is a sc-
quence f, € A such that ¢(f,)—8. (1) implies that f, converges uniformly
on X to a function fi e A. Fix ¢ € X. Then f,(2) —¢(f,)~>fs(z) —8. If
Js(x) — 8 is invertible in 7, so are f,(vr) —¢(f,) except a finite number
of n’s, because the set of invertible elements in & is open. Thus

(27 Js(X) = spu(8).

The same arguments work, when we replace «/ by a norm closed subalgebra
# of L(H) containing o/ and satisfying f(X) < spg(p(f)) for all fe A.
Hence, for such an algebra we have

(2) Js(X) < spg(S),

where fg is the function constructed above. If (ii) holds, we have for %
as in (ii):

(3) fs(X) = 8pg(8).

For the proof take y €spg(S). By Lemma A in Section 1 we can find
@ sequence y, € 8pg(p(f,)) converging to y. By (*+) we choose «, ¢ X
satisfying f,(x,) = y,. Now we have

and, by the uniform convergence of f, to fg, we get fg(x,)—y. But fs(X)
18 compact; hence y € fg(X) and (3) is proved.

To prove our theorem in case (i) suppose ¢(f) = @(f)* for some f € A.
By (x) and Remark 2, f(X) < sp(p(f)) = sp(p(f)) = R; hence f is real on
X and, by the antisymmetry of A, f must be constant. Thus ¢(f) € Cf. To
finish the proof, take a self-adjoint element S € &¢. Using again Remark 2
we get spg(S) = sp(S) © R and, by (2), fg € 4 is real on X. 4 is antisym-
metrie, hence fg is tonstant and, by (3), 8§ is a self-adjoint operator with
one-point spectrum. By the spectral theorem S e Cyz and our theorem is
completely proved.

Some remarks concerning this theorem are now in order. We preserve
the above notations.

Remark 3. The function fg constructed for S € o7/ does not depend
neither on the sequence f,, nor on the norm closed subalgebra # < L(H)
satisfying & < # and f(X) < spgle(f)) for all fe A. This is a conse-
quence of (1).

Remark 4. Suppose that 4 is closed in C(X) and that (i) holds.
@ is continuous if and only if .o/ is semi-simple.

Indeed, if o/ is semi-simple, then the continuity of ¢ follows from
a known theorem ([1], Theorem 8, p. 83). Conversely, if ¢ is continuous
and 8 e & satisfies 7(8) = 0, then, in particular, sp,(S) = {0}. By (2'),
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fs = 0, and taking f, € A as in the proof of Theorem 2 we get fn'—> 0, whence
o(f,)—~0 = 8.

Remark 5. If A is closed in C(X) and ¢ is continuous, then ¢ is an
isomorphism of Banach algebras 4 and 7, by (1). Example 1 shows that
even in this case our theorem need not be true without any additional
assumption.

Rcemark 6. Theorem 2 remains true in case (i), when we assume ouly
that A4 is a linear subspace of C(X) with 1, ¢ is linear and preserves units
and (=) is satisfied for f € A. In this case «/ will denote the smallest Banach
subalgebra of L(H) containing @(A4).

Now we will show some concrete and immediate applications of
Theorem 2. Observe that conditions () and (*x) have character of spectral
mapping theorems. Taking an operator T ¢ L(H) and putting X = sp(T)
we obtain from (i) of Theorem 2 immediately Proposition 2, in virtue of

the spectral mapping theorem. But applying (ii) of this theorem, we get
CoroLLARY 2. If T has spectrum sp(T) such that P(sp(T)) is anti-

symmetric, then s7(T') is antisymmetric.

Proof. We take ¢: P(sp(T))—L(H)as ¢(p)= p(T). Then tp(P(Sp(T}))
= o/ (T) and (*) of Theorem 2 holds true for every p € P (sp(T)).

Note that the map p—p(T) is not assumed to be continuous.

ExampLE 5. If T e L(H) is a contraction, i.e. ||T|| <1, such that
sp(T) contains the whole unit circle I', then &/ (T') is antisymmetrie.

This follows from the antisymmetry of P(I') and Corollary 2. Let us
remark that the minimal unitary dilation U of a non-unitary contraction
T has spectrum sp(U) covering the whole unit circle (sce [6]). Thus m )
is antisymmetric.

Now we derive from Theorem 2 a corollary concerning n-tuples of
commuting operators.

COROLLARY 3. Let T,, ..., T, be commuting operators in L(H). Con-
sider their arbitrary joint spectrum X = sp(T,, ..., T,) for which the spectral
mapping theorem holds true, i.e., such that for every polynomial p in n vari-
ables p(X) =sp(p(Ty, ..., Tp,)). If P(X)< C(X) is an antisymmetric
algebra, then the norm closure of the algebra of all polynomials in Ty, ..., T,
18 anlisymmelric.

The proof follows immediately by using Theorem 2, putting A = P(X)
and ¢(p) = p(T,, ..., T,) for p e P(X).

Joint spectra of operators for which the spectral mapping theorem
is true are considered in [4].

4. Applications to functional calculi. In this section we will use
Theorem 2 to establish some conditions sufficient for the antisymmetry
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of images of two functional calculi, namely the von Neumann funectional
calculus and the H*-functional calculus due to Sz.-Nagy and Foiag.
We will denote by D the open unit disc in C and by I"its boundary. A stands
in this section for the algebra of all complex functions analytic in D,
continuous in D. H* denotes the algebra of all bounded complex functions
analytic in D. If T € L(H) is a contraction, then one can uniquely decom-
pose it into the orthogonal sum T = T, ®T,, where 7T, is unitary and T,
has no non-zero subspace reducing it to a unitary operator [5]. A contrac-
tion T is called completely non-unitary (c.n.u.) if T, = 0 in the above
decomposition. For every contraction T ¢ L(H) the von Neumann ine-
quality is true: (p(T)|| < lpllz = llpllr for every polynomial p. If ue A,
then « is a uniform limit on D of polynomials p, and «(T) = limp, (T),
by the definition. By the von Neumann inequality «(T) is well-defined
and »(T') does not depend on the sequence p, converging to . The mapping
¢: A—L(H) defined by ¢(u) = u(T) for u € A is an algebra homomorphism
preserving units, ¢(2) = T (where z is the identity function on D). Passing
to the limit in the von Neumann inequality we get |p(w)l < llulp = llull-
for all u € A. Moreover, the following spectral mapping theorem is true:
u(sp(T)} = sp(u(T)) for all w € A [5]. We will call ¢ the von Neumann
functional caleulus. Let now T be a c.n.u. contraction. Then it is possible
to define an operator u(T) € L(H) for all u € H®. We refer to [5] for the
precise construction. The mapping y: H*—L(H) given by the formula
w(u) = u(T') for u € H™ has similar properties as ¢ above and the inequality
lp(w)) < (%]l £ sup {|#(2)|: 2 € D} holds true for all « € H*, Denote by
B the set of all v € H* which are, moreover, continuous in a set G, < I’
such that sp(T)nI = G,. It is easy to see that B is a subalgebra of H™.
It has been proved by Foiag and Mlak in [2] that #(sp(T)) = sp(u(T))
for u € B. We call y the H™ functional calculus.
Preserving the above notations we now prove the following

THEOREM 3, Let T € L(H) be a contraction (a c.n.u. conlraction, re-
spectively), with X = sp(T).

(i} If P(X) # O(X), then ¢(A) (v (B), resp.) is anlisymmetric,

(ii) If P(X) is antisymmetric, then ¢ (A) (p(B), resp.) i8 antisymmetric.

Proof. First consider the von Neumann functional caleulus ¢. The
idea of the proof is contained in the following three steps:

1° Define 4 = {# = u|y, w € A} and prove that the correspondence
w—% is one-to-one; define the homomorphism ¢: A—L(H) putting
p(%) = @(u) (it i, indeed, well-defined).

2° Show that 4 is antisymmetric in case (i) and the C(X)-closure
A of A is antisymmetric in case (ii).
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3° Apply Theorem 2 to the homomorphism ¢. By 1°, 2° and the spectral
mapping theorem, all assumptions of Theorem 2 are satisfied.

We prove 1°. If P(X) is antisymmetric, then ITX) # C(X). Hence
we have to prove 1° only in case, when int X # @ or ¢ — X is not connected.
If X = I"and 4 = 9, then v = v by the Poisson formula. If X - I', then
X has a cluster point @, in D, i.e,, there is a sequence z, converging to
z, and such that {z,: n>0}< DnX. If 4 =4, then, in particular,
u(z,) =v(x,), » =0,1, ..., and since the zeroes of an analytic function
are discrete, we have 4 = » on D and v = v on D by continuity.

Let us now prove 2° in case (i). If int X +# @, let G be an arbitrary
component of int X. Suppose that a function % e A is real. By Cauchy—
Riemann equations, # (hence ) is constant on ¢ < D; thus u is constant
on D. If X =T, then 4 is antisymmetric. Suppose that ¢ —X is not
. connected and X s I'. Let now G be the closure of a bounded component
of ¢ — X. If a function % € 4 is constant on 4@, then as in the proof of 1°,
u is constant on D. Agsume that # is real and non-constant on 4G. Then
we have #(0G) = #(0@) = R and, by Lemma 1, o0u(G@) < R. Arguing as
in the proof of Theorem 1, (a), we have int (@) = @, which is a contradic-
tion with the analyticity of 4 in intG. We have proved that if P(X) # C(X),
then A is antisymmetric. Assume now that P(_X—) is antisymmetric. To
get the antisymmetry of A4, it is enough to prove 4 < P(X) (this implies
4c P(_X )). But every function % € A is uniformly approximated on D

by polynomials. Thus % € P(X) and our theorem is proved for the functional
caleulus g.

The proof for the H*™ functional calculus y is almost the same as the
proof given above, so we omit details. We just give the proof of 2° in case
(ii). We will show that B = {#i = u|x: u € B} is antisymmetric if P(X) is.
It is enough to prove B < P(X). Take @ ¢ B. The function % ¢ B is con-
tinuous in DU@,, where XnI' = G, < I'. Hence « is continuous in X and

analytic in int X ; therefore u (g € P(i ) by Mergelyan’s theorem and thus
# € P(X). Now our theorem is completely proved.

Note, finally, that the assumption I—’(—.f) # C(X) is not sufficient for
the antisymmetry of tp(_A). Indeed, if qﬂ—) is antisymmetric, 8o is &7 (T')
and now it is enough to diminish the sets X of Examples 2 and 3 to obtain
a counterexample.
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