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The onset of thermal convection in a rotating spherical shell of intermediate radius ratio � ¼ 0:4 is

studied numerically for Taylor numbers Ta � 1011 and the Prandtl number of the liquid sodium (� ¼

0:01). For the first time, it is shown that at very high Taylor numbers the first unstable mode can be

antisymmetric with respect to the equator and confined inside a cylinder tangent to the inner sphere at the

equator (polar mode). The exponent of the power law determined from the asymptotic dependence of the

critical Rayleigh number for very high Ta is 0.57, lower than 2=3, given theoretically for the spiraling

columnar modes, and than 0.63, found numerically for the outer equatorially attached modes.
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The thermal convection in fluid spherical shells is a

fundamental problem in geophysics and astrophysics. For

instance, Earth’s magnetic field is generated in its interior

by convection driven by thermal and compositional buoy-

ancy. In this way, many of the dynamo features are pre-

determined by the properties of convection. The large-

scale zonal winds observed in the surface of Jupiter at

mid- and low latitudes and of Saturn seem to be maintained

by deep convection [1]. In the last 20 years, a great quantity

of experimental, theoretical, and numerical studies, de-

voted to improve the understanding of the basic mecha-

nisms which govern the convection in spherical geometry,

have appeared. The introductory sections of [2–6], among

others, provide good reviews of the state of the art on this

subject.

The theoretical paper [7] established that the critical

mode for the onset of thermal convection in self-

gravitating, and internally heated fluid spheres was a co-

lumnar traveling wave, localized around a critical radius

ri < rc < ro, and symmetric by reflections with respect

to the equator. In the inequality ri and ro mean the inner

and outer radii of the shell. This critical mode fulfills

ðvr; v�; v’Þðr; �; ’Þ ¼ ðvr;�v�; v’Þðr; �� �; ’Þ and

�ðr; �; ’Þ ¼ �ðr; �� �; ’Þ, where (vr, v�, v’) is the

velocity field in spherical coordinates (� measuring

the colatitude), and � the temperature perturbation of the

conduction state. The validity of this symmetry has been

confirmed numerically by several authors, by comparing

with the modes obtained for fluid spherical shells of small

� ¼ ri=ro, and also in laboratory experiments [8]. Since

then, symmetric columnar solutions have been assumed in

most of the studies devoted to find or to improve the

asymptotic dependence of the onset of instability in spheri-

cal shells, independently of its � and of the Prandtl number

� of the fluid. However, there are some ranges of parame-

ters where the latest asymptotic theories in fluid spheres [9]

and spherical shells [3] do not apply. For instance, the latter

does not fit properly for a small range of � around 0.48 and

� ¼ 1. As far as we know the reason remains unknown.

Moreover, they do not cover small-� fluids because in fluid

spheres and small-� spherical shells the convection sets in

with a symmetric pattern, but outer equatorially attached

and multicelullar [2,6,10]. So, in a problem with four

parameters it is feasible that other kind of modes become

preferred, mainly at very high Taylor number, Ta.

The numerical linear stability analysis of the conduction

state presented in this Letter shows, for the first time, the

existence of antisymmetric modes of convection pre

ferred at high Ta in fluid shells of small � and moderate

�, independently of the boundary conditions applied.

For these solutions, the velocity field and � fulfill

ðvr; v�; v’Þðr; �; ’Þ ¼ ð�vr; v�;�v’Þðr; �� �; ’Þ and

�ðr; �; ’Þ ¼ ��ðr; �� �; ’Þ. Antisymmetric equatori-

ally trapped inertial waves (solutions of the Poincaré equa-

tion) were calculated before by [11], and recently [6] have

found numerically preferred antisymmetric thermal

Rossby modes filling the shell at moderate Ta.

The Boussinesq approximation of the mass conserva-

tion, linear momentum, and energy equations in the rotat-

ing frame of reference,

r � v ¼ 0;

ð@t þ v � rÞv ¼ �r�þr2v� Ta1=2k� vþ�r;

�ð@t þ v � rÞ� ¼ r2�þ ðRþ �ð1� �Þ�2r�3R0Þr � v;

are solved for a fluid spherical shell rotating about an axis

of symmetry with constant angular velocity � ¼ �k,
subject to internal or differential heating and radial gravity

g ¼ ��r, where � is a constant, and r the position vector.
Stress-free [vr ¼ @rðv�=rÞ ¼ @rðv’=rÞ ¼ 0] or nonslip

(vr ¼ v� ¼ v’ ¼ 0), and perfectly conducting (� ¼ 0)

boundaries are employed. Notice that in the formulation

the centrifugal force is neglected since in the Earth’s outer

core and in the major planets�2=� � 1, and that the same
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units as in [12] are used. The nondimensional Taylor,

internal (R) and external (R0) Rayleigh and Prandtl num-

bers are

Ta 1=2¼
�d2

�
; R¼

q��d6

3cp�
2�

; R0¼
���Td4

��
; �¼

�

�
;

and the conduction state is given by v ¼ 0, and TcðrÞ ¼
T0 � ðR=2�Þr2 þ ðR0�=�ð1� �Þ2Þ=r. In the above defi-

nitions � means the thermal expansion coefficient, � the

kinematic viscosity, � the thermal diffusivity, cp the spe-

cific heat at constant pressure, q the rate of heat due to

internal sources per unit mass, �T the difference of tem-

perature between the inner and outer boundaries due only

to differential heating, and d ¼ ro � ri the gap width.

The solutions up to Ta ¼ 1012 are computed with the

method described in [6], by using 60 radial points, and

spherical harmonics of maximal degree 100, but we have

checked that, at Ta ¼ 5� 1011, an increase of the resolu-

tion to 80 by 160 leads to maximal differences of 1.2% in

the critical Rayleigh number of the preferred modes of

azimuthal wave numberm, Rm
c , and of 0.02% in the critical

precession frequency!m
c . From now on R0 ¼ 0, unless it is

said explicitly.

Figure 1, computed with stress-free boundary condi-

tions, shows the dependence of Rm
c , and !m

c on Ta>
1011, for m ¼ 12; . . . ; 19. Negative precession frequen-

cies mean that the waves travel in the prograde direction

with phase speed cm ¼ �!m
c =m. The changes of slope in

Fig. 1(a) and jumps of Fig. 1(b) correspond to the crossing

of symmetric outer equatorially attached modes [13] and

the antisymmetric modes of Fig. 2 (see figure caption for

the meaning of each plot), which spread from the inner to

the outer boundaries, but confined inside a cylinder tangent

to the inner sphere at the equator (polar modes). The

kinetic energy density is almost z independent, as it hap-

pens with the spiraling columnar and the equatorially

attached modes, although, for the polar solutions, v’ also

depends strongly on z, but its maximum value is less than

half that of the other components of the velocity field. The

contour plots of � are not shown because they resemble

very much those of vr. The main difference is that they are

a few degrees out of phase in the ’ coordinate.

The envelope of the curves of Rm
c versus Ta gives the

critical Rayleigh number Rc, and the preferred pattern of

convection. In the range of Ta of Fig. 1, the dominant

modes are m ¼ 17, 18, 14, 16, successively. At ðTa; RcÞ ¼
ð1:49� 1011; 2:13� 106Þ the m ¼ 18 symmetric equato-

rial mode is superseded by them ¼ 14 antisymmetric polar

mode with a decrease of a 31% in �!c. We have checked

that with nonslip boundaries there is a jump from spiraling

columnar to antisymmetric polar modes in the same range

of Ta. The eigenfunctions look like that of Fig. 2, with very

thin Ekman layers for v� and v’ that stabilize the fluid,

rising Rc by 140% at Ta ¼ 5� 1011, although the critical

precession frequency !c decreases hardly by 1.4%.

Figure 2 is calculated for stress-free boundary conditions.

White means the largest positive velocity and kinetic en-

ergy, and the background grey means v ¼ 0 in any case.
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FIG. 1. (a) The critical Rayleigh number Rm
c , and (b) the

critical precession frequency �!m
c , of each critical mode of

azimuthal wave number m ¼ 12; . . . ; 19, plotted versus Ta, for

� ¼ 0:4, � ¼ 0:01.

(a) (b) (c) (d) (e) (f)

FIG. 2. Preferred antisymmetric polar mode of convection with azimuthal wave number m ¼ 16 at Ta ¼ 4� 1011, for � ¼ 0:4,
� ¼ 0:01. (a), (d) Contour plots of the radial and azimuthal velocities on spheres of radii r ¼ ri þ 0:50d and r ’ ri þ 0:99d,
respectively. (b), (c), (e), (f) Contour plots of the radial, colatitudinal, and azimuthal velocities, and of the kinetic energy density on

meridional sections, respectively.
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To calculate the asymptotic dependence of the critical

values, we have increased the degree of the harmonics

gradually up to 150 with Ta to maintain the errors into

the range determined previously. Figure 3 shows the re-

sults. The solid line corresponds to the potential fitting

Rc ¼ 0:78� Ta0:57, and, although it is not included in

the figure because of the jumps among modes, that for

�!c gives !c ¼ �14:21� Ta0:33. The power 0.57 is

clearly lower than 2

3
, the leading order of the asymptotic

expansions given theoretically by [3,7,14] for the spiraling

columnar modes, and than 0.63, found numerically in [6]

for the outer equatorially attached modes. However, it is

important to notice that this characteristic is not exclusive

of the antisymmetric convection. The same power rules for

the inner modes attached to the external part of the tangent

cylinder. See, for instance, Fig. 4 computed with the pa-

rameters of the outer Earth’s core, i.e., with nonslip bound-

ary conditions and differential heating (R ¼ 0) for

� ¼ 0:35 and � ¼ 0:1. In both cases the flow is restricted

to a small portion of the fluid at high latitudes. In contrast

to what happens with the equatorially attached modes of

the same number of radial cells [6], or with the spiraling

columnar modes, in Fig. 3 by increasing Ta, �!c de-

creases when m increases. In addition, only even modes

become preferred. Probably, this fact is due simply to the

geometry, since in the case of Fig. 4 the preferred modes

are odd for Ta> 1013. Despite these differences, all of

them fulfill the power law !c / Ta1=3.

Figure 5 shows the internal Rayleigh number Rm and!m

versus Ta for the two lowest envelopes of the neutral

stability curves of m ¼ 14 and m ¼ 16, again with � ¼
0:4 and � ¼ 0:01. The solid lines correspond to m ¼ 14,

and the dashed to m ¼ 16. Notice that the thick lines,

which are the lowest envelopes for each mode, give the

Rm
c and !m

c of Fig. 1. The thin lines refer to the second

modes in becoming unstable and contributing to the con-

vection. At Ta ¼ 1011 the second eigenfunction is already

antisymmetric for m ¼ 14 (thin solid line), but symmetric

and bicellular for m ¼ 16 (thin dashed line). The curve of

bicellular modes cross that of antisymmetric modes at

Ta ¼ 1:28� 1011. In both cases (m ¼ 14, 16), by increas-

ing Rm the new interchange of eigenfunctions takes place

in the opposite way than following the thick curves, i.e., the
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FIG. 4. The critical Rayleigh number R0
c, and the critical

precession frequency �!c plotted versus Ta, for � ¼ 0:35, � ¼
0:1, nonslip boundary conditions and differential heating. The

stars and plus symbols correspond to the computed R0
c and �!c

values, respectively, and the solid lines to their potential fitting.

The left OY axis scales R0
c and the right OY axis �!c.
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FIG. 5. (a) The Rayleigh number Rm, and (b) the precession

frequency �!m, of the first and second envelopes of the neutral

stability curves of m ¼ 14, and m ¼ 16, plotted versus Ta, for

� ¼ 0:4, � ¼ 0:01.
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FIG. 3. The critical Rayleigh number Rc, and the critical

precession frequency �!c plotted versus Ta, for � ¼ 0:4, � ¼
0:01. The stars correspond to the computed Rc values, the solid

line to its potential fitting, and the dashed line to �!c. The left

OY axis scales Rc and the right OY axis �!c.
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antisymmetric polar modes are superseded by those equa-

torially trapped [15]. However, the latter are soon replaced

by polar symmetric modes (see Fig. 6), at Ta ’ 1:78�
1011 for m ¼ 14, and at Ta ’ 2:27� 1011 for m ¼ 16. We

have checked that it is so at least up to Ta ¼ 1013. The two

types of polar solutions have the kinetic energy density

confined between � ’ 13� and � ’ 21�, remaining almost

z independent. In addition their phase speeds differ less

than 0.5%, but the Rayleigh number of the symmetric

solutions increases by 12%.

In this Letter we have reported the existence of preferred

polar antisymmetric modes of thermal convection, and

determined numerically the power law dependence of Rc

with Ta. Moreover, from the preceding results we can

conclude that, although we have not found preferred sym-

metric polar modes, it is possible they become critical for

other parameters. Furthermore, the same could happen

with other families of modes, not shown in this Letter,

but found at not very high R. For instance, the third and

fourth preferred eigenfunctions for m ¼ 18 at Ta ¼ 2�
1012 are antisymmetric and symmetric polar bicellular

modes, respectively. We have also detected antisymmetric

equatorially trapped modes similar to the inertial waves of

[11], and tri- and quadricellular modes like those described

in [16].

Assuming the equatorial symmetry in the study of low-�
convection in spherical geometries of moderate � can lead

to wrong solutions, although they can be indistinguishable

from the real flows when they are observed from a pole

(compare Figs. 2 and 6).

The nonpreferred modes of convection may also con-

tribute to nonlinear flows. The superposition of the polar

symmetric and antisymmetric nonlinear waves may give

rise to coherent polygonal structures without equatorial

symmetry, of the type observed in the north pole of Saturn.

Finally, the preceding results motivate the study of the

laminar nonlinear dynamics of the polar flows, and their

implication in the generation of planetary and stellar mag-

netic fields. The polar convection is known to grow in

strongly nonlinear regimes [17,18]. However, our prelimi-

nary nonlinear results indicate the existence of polar anti-

symmetric flows at very low Rayleigh numbers.
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FIG. 6. Symmetric polar mode of convection with azimuthal wave number m ¼ 16 at Ta ¼ 4� 1011, for � ¼ 0:4, � ¼ 0:01. Same

contour plots as in Fig. 2.
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