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The deuteron stripping reaction is reformulated by using completely antisymmetric wave 

functions : The amplitude of the reaction will be represented as a sum of two parts, stripping 

and heavy-particle-stripping amplitudes. 

Quite analogous to the case of the "ordinary" stripping, the amplitude of the heavy

particle-stripping can be represented in terms of three reduced width amplitudes of bound 

nucleons, e.g. in (d, p) reaction, those of captured neutron and proton in the residual nucleus 

and that of the emitted proton in the target nucleus, or alternatively, in terms of two reduced 

_ width amplitudes of the emitted proton and captured deuteron .in bound states. The latter 

formulation is natural generalization of'Owen and Madansky's. 

By making use of present formalism, one can calculate not only angular distribution but 

also the " magnitude" of heavy-particle-stripping cross section. 

For simplicity, the Butler approximation, i.e. the cutoff Born approximation, is employed, 

though its generalization can be performed easily, as will be discussed in the final section. 

Some qualitative discussions are given. Numerical calculations and more detailed com

parison· between the stripping and heavy-particle-stripping cross sections will appear in our 

subsequent paper. 

§ 1. Introduction 

When a deuteron is bombarded to a target nucleus to form the final state 

of a residual nucleus and free' proton, one may immediately imagine the follow

ing two sorts of direct-interaction-mechanism. First the neutron in the deuteron 

is captured by the target nucleus, whereas the proton in the deuteron does not 

interact with the target nucleus, appearing at infinity as free proton. In other 

words, the neutron in the deuteron is " stripped " by the target nucleus to form 

the residual nucleus. This mechanism is called the deuteron stripping, which 

has been dealt with by many authors after the first work of Butler.1l On 

the other hand, the target nucleus may be " stripped " by the incident deu

teron. Namely, if the target nucleus is assumed to be composed of one 

proton, say p2, and the remaining core, the deuteron may capture the core 

to form the residual nucleus, while the proton is emitted in the final state. This 

is the so-called heavy-particle-stripping reaction proposed by Owen and Madansky.2> 

·t This work is included in a thesis submitted by T. Honda to Rikkyo University, in partial 

fulfillmen,t of the requirements for the degree of Doctor of Science. 

tt Now, at Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, 

Tokyo. 
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·614 T. Honda and H. Ui 

In some experiments of (d, p) and (d, n) reactions, there appear peaks of 

.angular distribution in rather backward directions, which have usually been ex

plained in terms of heavy-particle-stripping reaction. 

The theories of heavy-particle-stripping reaction so far employed, however, 

were concerned only with the shape of angular distribution and the magnitude 

·of the cross section has been adjusted so as to fit the experimental data. 

The main contents of the present paper may be expressed as follows. By 

using completely antisymmetric wave function the stripping and the heavy-par

ticle-stripping amplitudes will be treated on an equal footing, which will be given 

in the next section. In sections 3 and 4, the amplitude of heavy-particle-stripping 

will be represented in terms of three reduced width amplitudes of bound nucleons, 

i.e. those of captured neutron and proton in the residual nucleus and that of the 

emitted proton in the target nucleus, or alternatively, in terms of two reduced 

width amplitudes of the emitted proton and of the captured deuteron in bound 

.states. The latter formulation is natural generalization of Owen and Madansky's. 

The nuclear interaction appearing in the matrix element will be eliminated by 

using the Schroedinger equation of target nucleus. On the other hand, the 

amplitude of "ordinary" stripping is expressed, as usual, in terms of a reduced 

width amplitude of the captured neutron in the residual nucleus. Then one can 

calculate not only the angular distribution but also the magnitude of the heavy

particle-stripping reaction without explicit knowledge of the nuclear interaction. 

In section 5, the cross section for (d, p) and (d, n) reactions will be presented, 

which consists of three parts : stripping, heavy-particle-stripping and their inter

ference terms. Finally, in section 6, some discussions will be added concerning 

qualitative nature between stripping and heavy-particle-stripping reactions. It is 

pointed out that the energy-dependence of the. cross section of the heavy-particle

stripping reaction is stronger than that of the stripping reaction, so that the former 

reaction will not play an important role at higher energy of incident deuteron. 

Detailed qualitative and quantitative discussions will be presented in a sub

sequent paper, in which it will be discussed especially in what condition, i.e. 

incident energy, Q-value, etc., the heavy-particle-stripping mechanism might be 

preferential to (d, p) or (d, n) reactions in comparison with the "ordinary" 

stripping one. The result is almost always unfavourable to the heavy-particle

stripping mechanism except the special case of low incident energy and some 

appropriate combination of reaction Q-value and the binding energy of the emit

ted proton in the target nucleus, provided the Butler approximation is adopted. 

Other reactions, for example (a, p)", may be treated in quite a similar way 

with slight modification which will be discussed in the derivation of the formula. 

After completing the present work, it called authors' attention that quite re

cently Nagarajan and Banarjee have performed an antisymmetric treatment of 

(d, p) and (d, n) reactions. Their formulation is almost the same as -our 

"'alternative" formulation mentioned previously. If needed, the differences be-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/4

/6
1
3
/1

8
7
3
4
9
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Antisymmetric Treatment of Deuteron-Stripping Reaction 615 

tween their and our formulations will be noted in the footnotes of the pr~sent 

paper.* Their conclusion obtained through the analysis of experimental data, 

however, seems to. be essentially different from ours ; this may be due to the 

fact that our analysis is more systematic than theirs.** 

§ 2. Antisymmetrization 

As is well known, the amplitude of a nuclear rearrangement collision such 

as A(a, b)B may be -obtained simply as a coefficient of the asymptotic wave 

function in the final channel b of the total wave function which should obey the 

Schroedinger equation with appropriate boundary conditions. 

In the antisymmetric treatment, we must further impose an additional re

quirement on the total wave function, i.e. the total wave function should be anti

symmetric with respect to the exchange of the coordinates of arbitrary two 

nucleons in the system. Then, there appear various emitted particles (if dis

tinguishable) in the channel b. The amplitude in the antisymmetric treatment, 

therefore, can be obtained as a .linear combination of the coefficients of the 

asymptotic wave functions in the channel b. 

In the' present section, an elementary method will be employed, though com

pletely the same result has been obtained by the general method mentioned above. 

1. Simple Example 

First, we shall deal with a simple example; antisymmetrization between the 

proton pl of one of the constituent of the incident deuteron and a proton p2 in 

the target nucleus, which is assumed to be composed of proton p2 and remain

ing core. Further, the spins of incident and emitted particles will be disregarded. 

For the sake of convenience, the interaction between the incident deuteron 

and the target nucleus will be denoted by 

V(p2, C; d), 

where the notation p2, C stands for the target nucleus, i.e. p2 +core, which may 

be represented as the sum of interaction between the target nucleus and the 

proton pl and that between the target nucleus and neutron in the deuteron : 

More explicitly, 

V(p2, C; d)= V(p2, C; n) + V(p2, C; pl). 

V(p2, C; n) = V(p2; n) + V(C; n), 

V(p2, C; pl)= V(p2; pl) + V(C; pl). 

Here, V(C; n) stands for the interaction between the core and the neutron m 

the incident deuteron. 

* M.A. Nagarajan and M. K. Banarjee, Nuclear Physics 17 (1960), 341. Their paper will be 
referred to as N-B in the following .footnotes. 

** Details will be discussed in the subsequent paper. 
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616 T. Honda and H. Ui 

The wave function of the final state, i.e. residual nucleus+one free proton, 

may be expressed as 

(2·1) 

where r1 and r2 are the coordinates of proton pl and p2, respectively, cfR(n, p2, C) 

denotes the wave function of the residual nucleus which is composed of the core, 

proton p2 and the neutron. 

On the other hand, the wave function of the initial state may be written, 

in the antisymmetric treatment, in two forms : 

(1/VZ)if>4(r .. -rl)e'x·< .. ,H,>I2¢T(p2, C), (2 ·2a) 

and 

(2·2b) 

where ¢T(p2, C) denotes the wave function of the 'target nucleus which is com

posed of the proton p2 and the core, if>a the wave function of the internal motion 

of deuteron, r .. the coordinate of the neutron and K being the wave number 

vector of the incident deuteron. The interactions in the initial state should be 

taken to be 

V(p2, C; pl) + V(p2, C; n) (2 ·3a) 

and 

V(pl, C; p2) + V(pl, C; n) (2·3b) 

corresponding to the forms of the wave function of initial state (2·2a) and (2·2b), 

respectively. 

After simple calculations, we obtain the transition matrix element in the 

antisymmetric treatment: 

T= J dr .. drldr2 dC{e-•k•'l'l¢R*(n, p2, C) -e-ik·r•cpR*(n, pl, C)} 

X { V(p2, C; pi)+ V(p2, C; n)} cfT(p2, C)eiK·( .. ,+ .. ,.H2 if>4 (rl-rn), (2 ·4)*•** 

where dC stands for the integration over all coordinates of the core. The range 

of integration with respect to r,., r 1 and r 2 will be discussed later. The expres

sion (2 ·4) has already been obtained by Owen and Madansky.2> 

* Another, but equivalent expression has been obtained by French,sl using the final state 

interaction : 

T=.) dr .. dr1 dr2 dCe-ik·'l'lcpR*(n, p2, C)V(n, p2, C;pl) 

X {cpT(p2, C) e•K·( .. ,+ .. .,J/2 </Ja,(r1 -rn) -cfJT(pl, C) iK•('l'2 + .. ,.li2 .p4(r2-r..)}. 

** Strictly speaking, the expression (2·4) will remain correct, only if the target nucleus is 

infinitely heavy and the coordinate of emitted proton is measured from its center of mass. As a 

result, this expression includes the error of order 1/A (1/(mass number of nucleus)), which leads 

sometimes to rather serious difference in the angular distribution of heavy-particle-stripping. The 

improvement will be performed in the next subsection. 
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Antisymmetric Trea{ment of Deuteron-Stripping Reaction 617 

Next, it may be convenient to divide the T into two parts: 

T=T (direct) +T (exchange), (2·5) 

where 

T (direct)= J dr.,dr1dr2 dC e-tk· .. •¢R*(n, p2, C) 

X { V(p2, C; pl) + V(p2, C; n)} ¢T(p2, C)¢a(r10-r1) etK·<r•+•·,.ll2, (2 ·Sa) 

and 

T (exchange)=- J dr,.dr1dr2 dC·e-tk· .. ·rR*(n, pl, C) 

X {V(p2, C; pl) + V(p2, C; n)} ·¢T(p2, C)¢rJ.(r .. -r1) etK·(r,+>-,;l/2. (2 ·5b) 

The first term, (2 · 5a), represents the direct part, which has been dealt with 

by many authors1> in the " ordinary " stripping reaction. As is well known, the 

initial-state-interaction V(p2, C; pl) + V(p2, C; n) in T(direct) can be replaced 

by the final-state-interaction, i.e. 

V(p2, n, C; pl) = V(p2, C; pl) + V(n; pl), (2·6) 

if the Born approximation be adopted. In the case of the Butler approximation, 

i.e. the cutoff Born approximation, the same relation holds also exactly, provided 

the cutoff radii in the initial and final states be taken properly.* The net inter

action in (2· 6) which produces the stripping reaction is known to be V(n; pl) 

and the corresponding initial state interaction is given by V(p2, C; n); the inter

action between ·the target nucleus and the neutron in the incident deuteron. 

We shall deal only with the following matrix element in T(direct), while 

the interaction V(p2, C; pl) will be disregarded hereafter: 

M (stripping) =J dr,.dr1 J dr2 dC·e-tk·r•¢R*(n, p2, C) 

e;ut 

X V(n; pl)¢T(p2, C)¢d.(r1-rn) etK·< ... + .. ,.lt2, (2 ·7a) 

(by means of final state interaction), 

=Jdr,.dr1Jdr2 dC·e-tk·r1 ¢R*(n, p2! C) 

e:ut 

X V(p2, C; n)¢T(p2, C)¢rJ.(r1-r,.) eiK·<l't+'~',.lf 2 (2·7h) 

(by means of initial state interaction), 

where the symbol {e:utdr,.dr1 denotes the integration over r., and r1 with the follow-

* The relation between the cutoff radii 14 and R1 in the initial and final states can be shown 

to be determined uniquely by requirement of "'recipro~ity ". 
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618 T.. Honda and H. Ui 

ing restriction of radial integrals; rn> Rn and r 1> R1.* This is nothing but the 

Butler approximation, which may be verified from the short mean free path of 

deuteron in nuclear matter. For simplicity, we shall assume R,.=R1=R, R being 

approximately equal to nuclear radius. 

In the second term of (2·5), T(exchange), the interaction V(p2, C; n) + 
V(p2, C; pl) can also be proved to be replaced by the final state interaction, 

I.e. 

V(pl, n, C; p2) -- V(pl; p2) + V(n; p2) + V(C; p2), (2·8) 

in a similar way as in the direct part, though the proof will not be quoted here. 

The interaction which produces the heavy-particle-stripping mechanism of Owen 

and Madansky may be safely ascribed to V(C; p2) in the final state interaction 

and the corresponding interaction in the initial state is easily shown to be 

V(C; pl) + V(C; n); the remaining interactions V(n; pl) + V(p2; pl) will not 

be dealt with in the present paper. It should be added here, however, that the 

contribution of the interaction V(pl; n) has been calculated in some detail by 

French,3l obtaining the result that the angular distribution arising from this inter

action shows the peaks in rather forward directions similarly to that of " ordinary " 

stripping reaction. The authors will not always believe that those interaction 

might produce such a large net contribution in the reaction because their matrix 

element may correspond to the so-called knock-on process, which seems to have 

rather small cross section contrary to the case of a-induced reaction due to very 

small internal energy of deuteron. 

Hereafter, we shall deal with the following matrix element in T(exchange), 

which describes heavy-particle-stripping reaction as was previously discussed: 

M (H. P. Stripping)=- J dr,.dr1 dr2J dC ·e-ik· .. •¢R*(n, pl, C) 

e:vt 

X V(C; p2)¢T(p2, C) ¢a(r1-rn) eiK·<r1 +>-,.ll2, 

(when we use the final state interaction), 

=-J dr,.dr1 dr2 J dC·e-ik·'~"•¢R*(n, pl, C) 

e:ct 

(2·9a) 

X { V(C; pl) + V(C; n)} ¢T(p2, C)¢a(r1 -r,.) eiK·<'~" 1 +>-,.H 2 • (2 ·9b) 

(when we use the initial state interaction). 

Similarly to the stripping reaction, Je:ctdr,.dr1dr2 denotes the integration over r,., 

r1 and r 2 with the restriction of r,.> R, r1>R and r2> R. The first two restric-

* The restriction with respect to one radial coordinate (say, r1) is automatically satisfied from 

that of another (say, r,.), only if the zero-range nuclear force is adopted for V(p! ; n) as is ap· 

parent from Eq. (3·6). Even for the nuclear force with finite range, the error in the differential 

cross section arising from the approximate restriction r ,;s;.Rr. and oo >r1>0 will amount at most to 
10% numerically, which was checked up by Nagasaki and one of the present authors (T. H.)4l, 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 619 

tions, r,.> R and r 1> R may be safely applicable as was discussed in M(Strip

ping). But, for r 2> R, it may not always be verified since the mean free path 

of proton p2 in nuclear matter may be expected to be long in comparison with 

that of deuteron. Nevertheless, we adopt the restriction r 2> R, though we may 

obtain somewhat underestimated value of M(H.P. Stripping), since the integra

tion of r 2 over all space, i.e. oo > r 2>0, leads sometimes to unusually very large 

value of amplitude which can be .easily imderstood by using the bound state wave 

function of p2 in square well potential. It seems to the authors that we should 

use the more reliable approximation, e.g. the distorted Born approximation in 

order to adopt the integration of r 2 without the restriction, i.e. oo > r 2>0. 

2. Improvement arising from the correct choice of coordinate system 

--Effect of recoil--

As was noticed previously, the T-matrix element (2 ·4) is not correct, in

cluding an error of order 1/ A, since the vector displacements of proton rb r 2 and 

neutron r,. have been taken with respect to the centre of mass of the target 

nucleus. On the contrary, the coordinate of the emitted proton in the final state 

should be taken with respect to the centre of mass of the residual nucleus, which 

consists of the neutron and the target nucleus. In the "ordinary" stripping re

action, therefore the wave function of the emitted proton exp( -ik·r1) should be 

correctly taken to be exp[ -ik{r1 - (M/M1)r,.} ], where M1 and M denote the 

reduced mass of residual nucleus and that of nucleon, respectively. Similarly, 

in the matrix element of heavy-particle-stripping, exp( -ik·r2) should be replaced 

by exp[ -ik· {r2- (M4(rl +r,.) /2 +Mara)/ MA ], where Ma and Ma are, respectively, 

the reduced masses of deuteron and the core, r 0 the coordinate of the core. After 

appropriate transformation of integral variables, we can obtain just similar ex

pressions to (2 ·7) of M(Stripping) and (2 ·9) of M(H.P. Stripping), in which 

the difference appears only in the replacement of k~(Mt./M 1 )k in M(Stripping) 

and K~K+(M,tfM 1 )k in M(H.P.Stripping). Therefore, it will be sufficient 
to perform . the following replacement, i.e. 

k~ (Mt/M1)k in M(Stripping) 

K~K+ (M4/M1)k in M(H. P. Stripping) 

in the explicit expressions of matrix elements obtained in later sections.· 

The replacement in M(Stripping) can be proved to produce no serious error 

numerically for both magnitude and angular dependence of the differential cross 

section. On the other hand, that in M(H.P. Stripping) will play an important 

role for angular distribution, which will be discussed later. 

3. Generalization of the simple example 

Hitherto, the antisymmet~ization has been performed between the proton pl 

in the incident deuteron and a proton p2 in the target nucleus. Further, the 

spins are disregarded of the emitted and incident particles. Therefore, the re-
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620 T. Honda and H. Ui 

sults previously obtained are only the antisymmetrization with respect to space 

coordinate variables of two protons. When the spin coordinate is taken into 

account, the expression (2 ·4) of total amplitude remains correct, only if the spin 

state of pl and p2 is symmetric, i.e. in triplet spin state. For antisymmetric 

spin state, i.e. singlet spin state, we must use the wave function which is sym

metric in space coordinate variables. Namely, minus signs appearing in (2 ·1). 

(2 ·2b) and, consequently, the final expression (2 ·4) should be replaced by plus 

signs. Then, T(direct) and T(exchange) should be simply multiplied by factors 

a(direct) and a(exchange), respectively, which are determined by relative spin 

states. When we apply the single particle model without spin-dependent force 

or the L-S coupling shell model to target and residual nuclei, we can easily 

obtain these multiplication factors: 

a( direct) =weight of triplet spin wave function 

+that of singlet one, 

a(exchange) =weight of triplet spin wave function 

-that of singlet one. 

In the case of j-j coupling shell model, the situation may be rather involved, since 

the z-componep.t of proton spin in the target nucleus remains no longer to be a 

good quantum number. Nevertheless, we might calculate the multiple factors, 

obtaining the same result, provided the approximation* previously employed be 

adopted. 

Finally, we should generalize the antisymmetrization to the whole system. 

For this purpose, it may be sufficient to use completely antisymmetric wave 

functions of target and residual nuclei. Adopting the shell model, this procedure 

will be performed simply by means of " coefficient of fractional parentage," or 

shortly "c. f. p.".6> For example, in the case of ideal j-j coupling shell model, it 

may be sufficient to multiply square of "c.f.p.", 

to T(exchange), and to perform summation over all possible states of jp and 

eigen-energy. Here, we assume that the proton p2 is in the definite state with 

the total angular momentum j P' in which the proton exists in the target nucleus. 

The angular momentum J' appearing in c. f. p. is just equal to the spin of the 

core for even-A nuclei of zero spin, since all other shells are filled up so as to 

form the resultant angular momentum zero. For odd-A nuclei, the spin of the 

core should be determined by the vector addition of angular momentum J and 

* Strictly speaking, the rigorous treatment of antisymmetrization is impossible between nucle~ns 
in nuclear bound state and in positive energy state, if the Born or cutoff Born approximation be 

adopted. It is because the same set of quantum numbers derived from the Schroedinger equation 

can not be attributed to these nucleons. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/4

/6
1
3
/1

8
7
3
4
9
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Antisymmetric Treatment of Deuteron-Stripping Reaction 621 

the resultant angular momentum of all protons in the most outer-shell for ground 

states of nuclei. 

Similarly, if there are several neutrons in the state which is occupied by the 

neutron in the incident deuteron, the following " c. f. p. " should be multiplied to 

T(direct), 

The applications to L-S coupling or intermediate coupling shell model, and 

further, more complex cases with configuration interaction will be carried out 

straightforwardly. 

§ 3. Amplitudes of stripping and heavy-particle-stripping reactions. I 

--Elimination of nuclear interaction--

In this section, the nuclear interaction appearing in the matrix elements of 

(2 ·7) and (2 ·9) will be eliminated. As a result, each matrix element will be 

represented as the products of reduced width amplitudes and some sorts of overlap

ping integrals, the calculation of. which will be carried out in the next section. 

Meanwhile we shall deal with the simple example discussed in the first part 

of the preceding section. The matrix elements of stripping and heavy-particle

stripping reaction have been given by (2 ·7a) and (2 ·9a), in terms of final state 

interactions : 

M (Stripping)=) dr,.dr1J dr2 dC·e-tk·r•cpR*(n, p2, C) 

ea:t 

(2·7a) 

and 

M (H. P. Stripping)= -J dr,.dr1 dr2 J dC·e-i1""'•cfR*(n, pl, C) 

e:ct 

(2·9a) 

First, it is necessary to present the explicit expressions of wave functions of 

target and residual nuclei in the external region.* 

1. Notation · 

For this purpose we shall use the following notation of various angular 

momenta, together with each z-component being written in subsequent brackets: 

( i ) Nuclear spins 

target nucleus IT(MT), residual nucleus IR(MR), core I0 (lvf0 ). 

( ii) Angular momenta of nucleons 

* " External region " denotes the region of r;;::: R. 
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622 

captured neutron 

proton p1 

proton p2 

captured deuteron 

(iii) Channel spins 

T. Honda and H. Ui 

orbital 
angular momentum 

l,.(m,.) 

lpl(mpi) 

l~>2(m~'2) 

lt~.(mtl.) 

intrinsic spin 

1/2(v,.) 

1/2(vpl) 

1/2(11p2) 

1 (vtl.) 

J,.=IT+l/2, (M,.=MT+v,.) 

J~>2=la+l/2, (Mp2=Ma.+vp2) 

lt~.=la+l. 

(iv) Spin wave functions 

neutron 

protons 

deuteron 

l112•n(n) 

l112 "Pl (p1)' l112 "1'2 (p2) 

X~.id); vtl.=·v,.+vp1 

total 
angular momentum 

j,.(p.,.) 

jpl (p.pl) 

jp2(P.p2) 

jti.(P.tl.) 

Further, the binding energy of nucleon and deuteron will be denoted by 

B,.= (lt2tc,.2/2M) ; the binding energy of the neutron in the residual nucleus. 

B~> 2 = (lt2tcp2
2/2M); the binding energy of the proton p2 in the target nucleus. 

Bp1= (lt2tcpl/2M); the binding energy of the proton p1 in the residual nucleus. 

BD= (lt2tcl/2Mtl.) ; the binding energy of the deuteron in the residual nucleus. 

Since the state of residual nucleus formed by heavy-particle-stripping re

action should be the same as that formed by " ordinary " stripping reaction, the 

subscripts 1 and 2 in p1 and p2 need not be written explicitly, e.g. Bpi =BP;. B~>• 

tcpl =tcp2-tcp etc. 

2. Nuclear wave functions 

By using the above notation, the wave function of residual nucleus appear

ing in (2·7a) may be decomposed into the product of wave functions of captur

ed neutron and that of target nucleus in the external region: 

t/J:a(n; p2, C)= L.; (l,. 1/2m,.v,.Jj,.p.,.) (j,.!Tp.,.MTJI:aM:a) 
ln"'t~o"ninP.n 

X tPT(p2, C)· (2Mjlt 2 R) 112 · rz,. ·[hi~ (itc,. r,.) /hi; (itc,.R)] 

X Y,,..,.,.(.!l,.,.)·li/2 ... ,.(n), 

where h,<1>(itcr) are spherical Hankel functions or, for (d, n) reaction, their 

Coulomb analogues. rz.. is reduced width amplitude of the bound neutron, defin

ed by 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 623 

r 1,.=(ft2R/2M) 112 tG1,.(R), (3·2a) 

where tG1n(r) is the radial wave function of the neutron normalized through the 

interna1 region. It may sometimes be convenient to express r~.ro in terms of 

dimensionless parameter B~.ro, that is, in the unit of Teichman and Wigner's sum 

rule limit: 

(3· 2b) 

It should be noted, however, that the sum rule limit has not a strict meaning 

especially for the bound state ; even for order-of-magnitude estimation, one may 

preferably use the formula ( 3 · 2a) to ( 3 · 2b). 

Eq. (3 ·1) is expressed in j-j coupling scheme, because it will be convenient 

to the direct application of j-j coupling :shell model to the nucleus. The trans

formation of j-j coupling scheme to other representations can be performed simply 

by means of the so-called transformation brackets, which is, for the transformation 

from j-j to channel-spin representations, given by 

(1/2 Ia(J)ZII1/2l(j)Ia1)=[(2J +1) (2j +1)J12 W(IaJj l; 1/2 1). 

Similarly, ¢T(p2 ·C) in M(H.P. Stripping) may be represented as a product 

of the wave functions of hound proton p2 and the core in the external region. 

X if.!a(C) (2M/ft2 R) 112 ·rzp2 [h~~(i!Cp2 r2) /h~~(i!Cp2R)] 

X Ytp2mp2(.Q,.2)ll/2•p2(p2). (3·3) 

Further, if.!R,(n, p1, C) appearing in the matrix element of heavy-particle-stripping 

reaction may be represented as the product of three wave functions, i.e. those 

of the core, the proton p1 and the neutron. It can be obtained directly by 

inserting (3 ·3) into the expression (3·1), in which all suffix p2 in (3 ·3) should 

be replaced by the suffix pl. Namely, 

¢R(n, p1, C)=- _E (lp11/2 mplilplljplflpl) (jpJaflpiMaiiTMT) 
lpl mpl "; plip1Ppl Tn~n-; n 1 nPn IoMc 

X (ln1/2 mnilniX,ifn) CfniTifnMTIIRMR) ·if.!a(C) 

X (2M/ft2 R) 112 7tp1(2M/ft2 R)112 ·r1 
" 

(3· 4) 

On the other hand, the wave function of residual nucleus may also be de

composed into the product of core .and "interacting"* two-nucleon system: 

* Not necessarily interacting. When the residual nucleus can be described by ideal single 

particle model, this is nothing but coordinate transformation. 
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624 T. Honda and H. Ui 

tfB(n, pl, C)= ~ (l,.s,/ m,.v,.'ij,.p,.) (j,.Iap,.MaiiBMB) 
!dma•.l idt'd IoMo 

X ¢a( C) ·f/J .. p(O>) · (2M4/It2 R') 1' 2 • n., 

X [hf~l {i!C,.p) /hC) (iJCdR')] • Y!.,m,.{.Qp) ·1..,.,, "d' (d)' [3·5]* 

where O>=r1-r .. , p=(r1 +r .. )/2. Here, s,.'(v,.') is the ~pin of the correlating 

two-nucleon system, which is either 0 or 1. f/J .. p(O>) is the wave function of 

correlating two nucleons near the nuclear surface. 

Similar expression may be quite suitable to the case of a-induced reactions,, 

though some (trivial) improvements, of course, are necessary for a-induced re• 

actions. But, for deuteron-induced-reactions, it seems convenient in the present 

time to use the expression (3 ·4) rather than [3 ·5] because of the following 

reason. Firstly, when the shell model is applied to the nucleus, it may be almost 

impossible to show explicitly that the residual nuclear states formed by both 

"ordinary" stripping and heavy-particle-stripping reactions are the same. Second

ly, we have not yet any knowledge of the reduced width amplitude 714• Thirdly, 

we have not yet an adequate method to obtain correlating two-nucleon function 

f/J .. P ( 0>) near the nuclear surface : The theories of nuclear many-body problems 

so far developed especially by Brueckner7> have been concerned mainly with infinite 

nuclear matter.** Moreover, it seems likely to the authors that the nuclear reactions 

induced by· loosely bound system, such as deuteron, should be treated in principle 

along the line of Eq. (3·4).*** Namely, intuitively speaking, capture of deuteron 

by a nucleus may be preferably considered to be a two-step process : First, one 

of the constituent of deuteron enters the nucleus and then another of con

stituent enters to form a residual nucleus. This has already been fully discussed 

and formulated in detail in the previous paper by one of the present authors 

(H.U.).9> 

3. Elimination of nuclear interactions 

Next, we shall eliminate nuclear interactions appearing in the matrix elements 

of stripping and heavy-particle-stripping reactions, (2·7a) and (2·9a). 

For stripping reaction, V(pl; n) appearing in M(Stripping) may be eliminat

ed simply by using the Schroedinger equation obeyed by the internal motion of 

deuteron: 

* We shall use square brackets ] instead of curly ones (. ) to denote the formula 

derived using Eq. [3·5] hereafter. 

** It may be expected from the work of Weisskopf and his coworkerssl that the correlation 

of two nucleons will be more important in nuclear surface than in its interior, because the "healing 

distance" will become longer in nuclear surface due to the weakness of the effect of Pauli principle 

near nuclear surface. Moreover, it seems likely to the authors that in nuclear surface three- or 

four-particle correlation rather than two-particle correlation may be important, which could be in

ferred from the careful analysis of a-induced and t-induced reactions or their reciprocal reactions. 

*** Unfortunately, however, we can not analytically calculate the matrix element of heavy

particle-stripping reaction by making use of (3·4), that will be' discussed in detail in §4 and §5. 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 625 

V(rl-rn)¢a(rl-rn) =- (fi2/ M) (8na) 112 a(r1-r10), (3 ·6) 

where a is defined by 

Ba=fi2 a 2/M=2.23 Mev; binding energy of deuteron. 

Eq. (3 ·6) is valid only for the deuteron wave function of Ytikawa type, i.e. 

¢a(r) =a3' 2/(2n)1'2· (ar)-1·exp( -ar). 

If we use more realistic wave function ¢a(r), e.g. Hulthen type or phenomenolo

gical one derived by the shape independent formula, the result (3 ·6) will not be 

much altered numerically, say, at most within the difference of 10%. 

On the other hand, the interaction V(p2, C) appearing in the matrix element 

M(H.P. Stripping) may be eliminated similarly by means of the Schroedinger 

equation of target nucleus, 

where HT is the total Hamiltonian of target nucleus which may be expressed as 

where Ha is the Hamiltonian of the core, T 2 kinetic energy operator of the proton 

p2. Then, 

where 

and 

e-tk·r•V(p2; C)c/JT(p2, C) =e-tk·,.•·[ET-Ha-T2]¢T(P2> C) 

=-[Bp2+Ep]·e-ik·r··¢p(p2, C) 

Ep=fi2 k2/2M, 

(3·7) 

ET(total energy of target nucleus)-Ea(total energy of the core)=-Bp2· 

Here we use (3 ·3) for ¢T(p2, C) since in M(H. P. Stripping) it may be sufficient 

to use the wave function ¢T(p2, C) only in the external region. 

4. Expressions of M(Stripping) and M(H. P. Stripping) 

Inserting (3 ·1) and (3 · 6) into M(Stripping) and (3 · 3), (3 · 4) and (3 · 7) 

into M(H.P. Stripping), we can express those matrix elements in terms of re

duced width amplitudes of bound nucleons and overlapping integrals : 

X (jnlTP.nMT\IRMR) (-) (fi2/M) · (81ra) 112 · (2M/fi2 R) 112 ·rz;, 

X [. dr · [h <ll (7x r ) /hf!l (iiC R) J · Y * (!2 ) ei<K -k.J·•·,. (3 · 8) J n ln n n n n tnmn rn ' 

e:ct 

and 
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626 T. Honda and H. Ui 

M (H. P. Stripping)= L; (1/2 1/2 jjptjjnl1v<t) (lvr1/2 mvrjjvrljvrflvr) 
lTJl mpl; pl jp!PJJI•l nmn ';n Jn; n 

lp2mp2 jp21'p2 Ic Me 

X (jvrloflvrMoiiTMT) ('tn 1/2 mni:lnifnfin) (fnlTJinMTiiRMR) 

X Clv21/2 mv2~'vrijv2flv2) (jv2laPv2MaiiTMT) (Bv2+Ev) 

X (2Mjf;_2 R) 112 7tp2 i dr2 · [hi~~(itep2 r2) /h~~(itep2 R) l Y1p2mv2(Q,..) e-ik·r. 

ea:t 

X (2M)fi 2 R) · 7tvr7T f drrdrn<f>~t(rr-rn) · [h~> (ite,."r n) /h~> (itenR)] 
n J l n l.n 

eJJt 

X[h<1>(ite r)jh<1l(ite R)]·Y!-(!2 )Y, *(Q.)etK-<r1 + .. ,.ll2 
lpt pl 1 l.p! pi l nmn rn lp1mp1 '1 1 • (3. 9) * 

If the wave function of residual nucleus be expressed as the product of the 

core and the correlating two-nucleon-system as was given in [3 · 5], the matrix 

element M(H.P. Stripping) is represented as** 

M (H. P. Stripping)= 

X Clv21/2 mv2~'vrljvzflvz) (jvzlo,Up2MaiiTMT) · (Bv2+Ev) 

X (2M/fi2 R) 112 ·rtv2 i dr2 · [h~~(itev2 r2) /h~~(itev2 R) l Ytp2mv2(Q ... ) e-•k· ... 

e:ct 

X (2M~t/fi 2 R') 112 rtd J diD ·<f>n~(ID)</>~t(ID) 

X J dp · [h)~l (ite~t,O) /hf!l (ite~tR')] · Y1d m: (.Qp) e'~K·P. [3 ·10] 

ext 

§ 4. Amplitudes of stripping and heavy-particle-stripping reactions. II 

--Evaluation of overlapping integrals--

The overlapping integrals appearing in (3 ·8) and (3 ·9) (or m [3 ·10]) will 

be calculated in this section. 

1. Preparations 

For this purpose, it seems convenient to present the following formula of integral: 

J dr [hP> (iter) /hfl (iteR)] Y 1;!: (!2 .. ) exp(ik .,. ) 

e:J:t 

(4·1) 

* If we use the matrix element (2·7b) and (2·9b), which have been expressed by means of 

initial-state-interactions, we can obtain also the same result by a similar procedure. 
** This expression can be applied -straightforwardly to the case of a:-induced reaction, the re

sult of which will be published later in a separate paper together with connected problems. See 

also the footnote of the previous page. 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 627 

in which the quantization axis of angular momenta is taken to be an arbitary 

direction n, Qk being solid angle of k measured from the axis n, or in a slightly 

simpler case, in which z-direction is taken to be that of k, ( 4 ·1) becomes 

Here 

and 

Cz(!CR) = -i!CR[M~t(i!CR)/M 1 >(i!CR)], 

with the following properties: 

( i ) c1(a) is real and positive for a real variable a. 

( ii ) Asymptotic form, 

lim c1 (a) =a, for all values of l. 

(iii) Recurrence relation, 

with 

Cz+t(a) =a2j[c1(a) + (2l+1)], 

c0 (a) =a. 

(4·2) 

(4·3a) 

(4·3b) 

(4·3c) 

These relations can be derived directly from the property of spherical Hankel 

functions with imaginary arguments. 

2. Calculations 

By the aid of the above formula, we can easily carry out the following 

integrations* appearing in Eqs. (3·8) and (3·9): 

J dr.,[hf:,> (i!C,.r.,) /M~ (i!C,.R)] · Y1,.m: (!2,.,.) exp {i (K- k) ·r,.} 
e.vt 

and 

J dr2 [h~~(i!Cp2 r2) /hf~~ (i!Cp2R)] · Yzp2mp2 (!2r.) exp(- ik ·r2) 
ea;t 

=41ri-1
P2 Yrp2 m,2 (!Jk)[R/ (k2 +/CpD] ·Jz,2(k, /Cp2• R). 

Further, in the expression [3 ·10] of M (H. P. Stripping), 

J dp ·[M!>(i!Cr~,p) /M!>(i!CaR')} Yzdm:(Qp) exp(iK · p) 
ea;t 

(4·4) 

(4·5) 

[4·6] 

* Hereafter, the quantization axis of the angular momenta will be taken to be the direction 

of K. (K+ (Mr~,/M 1 )k in the case including the recoil effect.) Of course, it is more c~nvenient to 

use the axis K-k, (K- (M,/M1)k) if we are concerned only with the stripping reaction. 
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628 T. Honda and H. Ui 

On the other hand, the integration over r 1 and r 71 in the expression (3 ·9) 

of M(H.P. Stripping) seems to be rather complicated, since we can not carry 

out the integration over r 1 and r 71 separately due to the appearance of if>r~.(r 1 -r 71 ). 

In order to perform the integration separately, it might be necessary to expand 

if>r~.(r 1 -r 71 ) in terms of Legendre polynomials PL(cos 0), where 0 stands for the 

angle between r 1 and r". Unfortunately, however, the convergence of this series 

is rather poor in this case, because the ranges of r 1, r 11 and 0 which are effective 

in the integral are r1=R, rn=R and 0=0, as is easily seen from the int~grand 

of (3 ·9). Therefore, we shall adopt the steepest decent method to handle the 

integral. Namely, if>r~.(r 1 -rn) will be taken out of the integral, in which the value 

of if>r~.(r) will be fixed to if>'rt.(O), or more strictly speaking, an average value of 

if>r~.(r 1 -rn) near r1=R, r .. =R and 0=0. Then, the integration over r 1 and r 71 

appearing in (3·9) can be performed separately by using the formula (4·2), 

that is, 

J dr1 dr,. ·if>r~.(rl- rn) · [hf!l (i1C11 r n) /hi!) (iiCnR)] · [h~~ (i1C11t r1) /hf~~ (itc 11tR)] 

ea:t 

X Yz,.m: (!2,.,) · Yr111! 111 (Jl,.,) exp {iK • (r1 +r,.) /2} 

=if>r~.(O) ·v4n-(2l,.+1) ·v4n-(2l11t+1) ·i1"+1111 

x [R/{ (K/2) 2 +tc,.2 } ]-Jt,.(K/2, ICn, R)[R/ { (K/2l+IC11n }Jz11t(K/2, tc111, R). 

(4--7) 

Using the above results, we can analytically calculate the matrix element 

of the stripping and the heavy-particle-stripping reactions : 

M (Stripping)= I:; (1/21/2 IJ 11 tl'nllvr~.) (ln 1/2 mn!Jnlf,.f.tn) 

X (jniTt.tnMTIIRMR) (-) Cli2/M) (8r.a) 112 (2M/f;_2 R) 112 r1,. 

X 4nl" Yt,.m:(f2x-k) ·[R/ {IK-ki 2 +1C,.2}] ·Jz,. (IK-kl, IC10 , R). (4 ·8) 

M (H. P. Stripping)= I:; (1/21/2 ii 11 tvnlbr~.) (l11t1/2 m 11tii11tlj11t/111t) 

X (j 11tlaf.l11tMallTMT) (Zn 1/2 mnii,.lhfi,.) (hlTf1nMTIIRMR) 

X (lp21/2 mp2l'ptljp2/1p2) (jp2laf.l112MallTMT) (B112+E1,) • (2M/Ii2R) 112 rz112 

X 4n-r1112 · [R/ (k2 +tc11n] ·Jz,2(k, 1Cp2> R) · (2M/h2 R)rz,17T" ·if>r~.(O) 

XV 4n-(2lp1 +1) • V 4n-(2Zn+1) ·i1111+T,.·[R/ { (K/2) 2 +1C11
2}] ·Jz,.(K/2, IC11 , R) 

X [R/ { (K/2) 2 +/Cpn J .J!pt (K/2' ICpl> R) Yzp2mp2(!2k) a;;,.oamptO> ( 4 ·9) 

or in the alternative expression of M(H.P. Stripping), Eq. [3 ·10], in which rz" 
is utilized, 
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Antisymmetrir: Treatment of Deuteron-Stripping Reaction 629 

M (H. P. Stripping)= :E (ltt1mttvttjjtt,Utt) (jttlo,UttMallBMB) 

X (lp21/2 mp2~'pl\jp2,Up2) (jp2lo,Up2MallTMT) · (B"'2+E"') 

X (2M/h2 R) 112 ·rz"'2 • 4n['"2 • [R/ (~+JCJ)] · Jz,2 (k, 1C"'2, R) 

x (2Mtt/h2 R') 112rt4 J dO> ·l/J,.~(O>)rfttt(O>) ·v 41Z'(2ltt+1)i'd 

X[R'/(K2+1Ci)}Jz/K, JC," R') Yz,2.,.,2(!2k)ll,.do. 

§ 5. Cross sections*• ** 

[4·10] 

The cross section of (d, p) or (d, n) reaction can be obtained by inserting 

M(Stripping) and M(H.P. Stripping) into the following formula, 

du (d ) MMa 
d.Q ' p = (21Z'h2) 2 

k ·-· 
K 

( 1 · :E IM(Stripping) 
3 2JT+1) spin 

+M (H. P. Stripping) 12, (5·1) 

where the notation :E denotes the summation over all possible states of initial 
spin 

and final spin states. Before performing actual calculations, it m~y be convenient 

to divide the cross section into three parts: stripping, heavy-particle-stripping and 

their interference terms, that is, 

~~ (d, p)=;;; (Stripping)+~~ (H. P. Stripping) 

du .r 
+-- (Inter1erence), 

d!J 
(5·2) 

where 

du (S . . ) MMa k 
d!J tnppmg = (21Z'h2)2 K 

1 :EIM(Stripping)l2, (5·3a) 
3(2JT+1) Spin 

du (H. P. Stripping) = MMa 
d!J (21Z'h2)2 Kk 1 :E IM (H. P. Stripping) 12• 

3(2/T+1) Sptn 

(5·3b) 

du MMa k 1 
-··-(Interference)= h 2 K 
d!J (21Z' 2) 3(2JT+1) 

X :E 2 {Real part of M (Stripping) M* (H. P. Stripping)}. (5 · 3c) 
spin 

* The formula presented in this section are more general than .those of "simple example "• 
though the geometrical factors in §2-3 are not explicitly written. On the other hand, N-B cont
ains no expressions of cross section, but those of matrix elements. 

** The recoil effect discussed in detail in §2-2 will be explicitly included in the formula of 
the present section, whereas it was not written in the formula of N-B. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

5
/4

/6
1
3
/1

8
7
3
4
9
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



630 T. Honda and H. Ui 

The summation over initial and final states combined with that over various 

z-components of .angular momenta appearing in the marix elements can be perform

ed by means of Racah's technique, obtaining the following results : Inserting ( 4 · 8) 

into (5·3a), 

~~ (Stripping) =24· (aR) ·R2 · (2IR+1)1 (2IT+1) ·kiK 

X 'E 11 { (!K- (M,£/M1)ki2+tc,.2)R2}2·J/(!K- (M,:/M1)kj, tc,., R)8, 2, 
t,n n n 

and (4·9) into (5·3b), 

drr (H.P.Stripping)=_i__{(1+x)(2+x)}·(aR) 3 ·R2• 1 k 
d!2 2 2/T+1 K 

X L ilp1-lp11+!,,-T,/-lp2+lp2'. (2/,. + 1)1/2 (2/,.' + 1)1/2 (2lp1 + 1)1/2 (2lp~ + 1)1/2 

X (2lp2+ 1) 112 (2lp~+ 1) 112 (2j p2+ 1)112 (2jp~+ 1)112 Jtp2 (k, tcp2• R) 

x J,P2' (k, /Cp~, R) etp2 etp2' 

(5·4a) 

X 11[ {jK+ (Mal M,)ki/2} 2R 2 +tc,.2 R2]-11[ {jK+ (Mal Mf)ki/2P R2+ tc2n1 R 2] 

X J-r,.(IK+ (Mal M 1)kl/2, tc,., R) ·Jz,.,(IK+ (MaiM1)kil2, tc,.,, R)81,. 8r,,r 

X 1I[{IK+ (MaiM1)kl/2} 2 R2+tcpiR2]-11[ {IK+ (MaiM1)kil2} 2 R 2 +~p~R 2 ] 

X J,p1 (!K+ (Mal M 1)kil2, tcP1' R) .J,p1,(IK+ (Mal M 1)kil2, tcpll, R) 8tp1 e,P1' 

X 'E (lp 2 lp~OOjLO) W(lp2jp2lp2,jp2'; 112 L)PL (cos!2~r) 
L 

X L ( -1) 112;;P1(j p2jp21- iJp1 lJp11LO) (112 112 lJp1 iJ,.j1 lJp1 + iJ,.) 2 

X (lp1 112 0 iJp1jjp1iJp1) (lp~ 112 0 iJp1jjp~iJp1) (jp1laiJp1Ma!ITMT) 

X (jp~la'iJp1Ma!ITMT)'(lr,112 0 iJ,.jJ:,iJ,.) (i,.' 112 0 iJ,.jfn'iJ,.) (]nJTiJnMTjJRMR) 

(5 ·4h) 

and (4·8) and (4·9) into (5·3c), 

drr (Interference)= (- )24n-· { (1 +x) (2+x) }1'2 · (aR)2 ·R2 · ~~ 1 - --- · __!__ 
~ 2h+1 K 

x 'E i'"+1p2-'P1..:r ... (2lp1+1) 112 · (2t~+1/ 12 J,p2(k, /Cp2• R) .elp2 

X 11 {!K- (Mil M 1)kj2 R 2 +tc,.2R2} ·J,,.(jK- (Mil M 1 )kj, tc,., R)8,,. 

X 11[ {IK+ (Mal M 1 )k!RI2} 2+tc,.2 R2]-JT,.(IK+ (Mal Mt)kil2, tc,., R)81,. 

X 11[ {jK+ (Mal M 1 )k!RI2} 2 +tcp~R 2 ] ·J,p1(fK+ (Mal MJ)kl/2, tcp1' R)8,p1 

X 'E (112 112 lJp1lJ,.j11Ja) (l,. 112 m,.lJ,.fj,.iJ,.) (j,.ITiJnMTj!RMR) 

X (112112 Vp1iJ,.fha) (lp1112 0 iJp1jjp1Vp1) (jp1Ia'ilp1MafiTMT) 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 631 

X (l: 112 0 v,.Jf~i.i,.) (j:JTi.inMTjJRMR) (lp2112 mp2vp1Jjp2jjp1) 

X (jp2Iavp1Ma!ITMT) Y!,.m:U2K-<MifMJ)k) Y!p2m;(Q,.,), (5 · 4c) 

which does not depend on the azimuthal angle <p, since two vectors K- (Mtl M 1)k 

and k appearing in spherical harmonics and the vector K + ( M,/ M 1) k, i.e. z-axis, 

lie in the same plane. 

Here we have adopted the Hulthen-type wave function of deuteron : 

therefore, 

with 

</Ja(r) =~- 1 {a(a+ ~) (2a+ ~)I (21r) P12 ·{e-ar -e-(a+.8lr} I r, 

~a(O) =a312 I (21r)1'2 · { (1 +x) (2+ x) P'2 

P=xa. 

On the other hand, using the alternative expression of M(H.P. Stripping), 

[4·10], we obtain the following formula: 

da- (H.P. Stripping) =6 · (R'I R) ·R'2 · (21~+ 1) · _!!__ 
dQ K 

and 

X {) ~n~(Q))~a(Q))d())} 2 • L:; ila-la1-lp2+lp2' ( _ )IR+1f2;...IT-1 

X (2la+ 1)112 (2la' + 1)112 (2ja+ 1?'2 (2ja' + 1)112 (2lP2+ 1)112 (2lp~+ 1)1'2 

X (2jp2+1) 112 (2jp;+1) 112 Jzp2(k, "P2' R)Jzp2,(k, "P~' R)Bzp2f:)tp2' 

X 11 { JK+ (Mal M,)ki 2R'2+"l R'2} ·11 {JK+ (Mal M 1 )kj2 R'2+"a'2 R'2} 

X Jza(IK+ (Mal M 1)kj, "a• R') .Jla' (JK+ (Ma/ M 1)ki, "a', R')f:)zaf:)La' 

X L:; (lp2lp~OOJLO) Uala'OOILO) W(lajala'ja'; 1L) W(jaiaja' Ia'; IRL) 
L 

da-- (Interference)= (- )32 -v61r- (aR) 1' 2 • (R' IR) 112 ·RR' 
dQ 

x-1 --- J!__ { r ~ .. *(0)~a(0)d0} 
2IT+1 K J p 

X ..., .z,.+tp2-ta. (2l + 1) 112 . J (k R) . e 
£....J t a lp2 ' /Cp2> lp2 

X 1/ {IK- (MtiM,)ki 2 R 2 +",.2 R 2} ·Jz,.(IK- (Mtl M,)ki, ""' R)fJz,. 

X 1/ {IK+ (Ma/ M 1)ki 2 R'2 +"lR'2} ·Jza(IK+ (Mal M 1)ki, "a• R')eza 

X L:; (112112 vp1v,.lllla) (l,. 112 m,.v,.lj,.p,.) (j,.!Tf!nMTiiRMR) 

X(la10valjava) (}aiavaMaiiRMR) (lp21/2 mp21Jp11jp2f!p2) 

X (jp2la,Up2MaiiTMT) Yz,.m:UJK-<M,JMJ)k) ~p 2 m;(Qk). 

[5·5b] 

[5 ·5c] 
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632 T. Honda and H. Ui 

As the validity of the " steepest decent method " employed in ( 4 · 9) is not 

necessarily clear, we have performed a number of numerical calculations of cross 

sections (5 · 4b, c) and [5 ·5b, c], obtaining the result that the angular distributions 

derived from both (5 ·4b, c) and [5 ·5b, c] do not coincide with each other in 

the case of a low incident energy of deuteron and a large yalue of Bn and BP. 

Therefore, we should use the formula [5 ·5b, c] rather than (5 ·4b, c) to calculate 

the angular distribution for such a case. The magnitude of the cross sections 

should, however, be estimated by means of (5 ·4b, c), because there are some 

ambiguities in (5 ·5b, c) such as r1 and the overlapping integral over m as was 
d 

discussed in detail in § 3-2. 

It seems necessary to treat the integral in (3 ·9) without the use of "steepest 

decent method ". 

§ 6. Discussions 

In this section, we shall first briefly discuss qualitative properties of the 

cross sections of the stripping and the heavy-particle-stripping reactious, which 

can be inferred directly from the formula obtained in the previous sections. De

tailed discussions, especially quantitative ones, will be left to the subsequent 

paper. 

From the angular distribution of (d, p) and (d, n) reactions, it has been 

conjectured that the heavy-particle-stripping mechanism becomes not to be impor

tant in comparison with the ordinary stripping one in higher incident energy of 

deuteron, say, above 10 Mev, since the angular distributions can be well explain

ed by the theory of stripping reaction at those energies. On the other hand, the 

'heavy-particle-stripping mechanism was proposed by Owen and Madansky2> to 

explain the angular distributions at backward directions in low incident energies 

of deuteron such as E"=1,.,:,4 Mev. In view of the above situations, therefore, 

the energy-dependence of heavy-particle-stripping reaction may be supposed to be 

stronger than that of the "ordinary" stripping reaction. Such circumstances 

will really be true; it can be inferred directly from the expressions of the matrix 

elements presented in § 4. Namely, in the matrix element of the stripping re

action ( 4 ·8) there appears one overlapping integral between an exponentially 

decaying wave function of nuclear bound state and an oscillating wave function 

of positive energy state, whereas the matrix element of the heavy-particle-strip

ping reaction, ( 4 · 9) or [ 4 ·10], contains two or three overlapping integrals of 

the same kind. As the energies of those positive energy state become high, 

these integrals decrease in general, because the higher the energy becomes, the 

rapider the wave function oscillates ; this fact leads to larger cancelation in the 

integral. Numerical calculations will be performed in the subsequent paper. 

Next, we shall discuss the angular distribution of heavy-particle-stripping 

reaction. It may be easily shown from Eqs. (5·4b) and [5·5b] that the angular 

distribution of heavy-particle-stripping will be isotropic in the case of l"=O, or 
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Antisymmetric Treatment of Deuteron-Stripping Reaction 633 

symmetric about 90° direction for ld=FO, provided the approximation (1/ A) =0 

be adopted. On the other hand, the actual calculation of Owen and Madansky 

were confined only to the case of ld=O, obtaining the peak at backward direc

tions. Consequently, we may expect that the improvement of the approximation 

(1/ A), which was discussed in § 2-2, will play an important role in the angular 

distribution of the heavy-particle-stripping reaction at backward directions. 

Finally, it seems necessary to add some remarks concerning the two papers: 

The antisymmetric treatment of (d, p) reaction has already been made by French3> 

and Soga and Nakumura.10> The former author has employed quite a similar 

method to that in § 2-2, whereas the latter ones have used the technique of the 

;Second quantization. Unfortunately, however, they have not divided the matrix 

element of (d, p) reaction clearly into the "orqinary" stripping, the heavy-particle

stripping and the extra terms, but into rather intricated parts. In consequence, 

they have not practically treated the matrix element corresponding to the heavy

particle-stripping reaction. 

§ 7. Final comment 

The formulation presented in the previous sections has been performed within 

the restriction of the cutoff Born approximation. 

It is well-known1> that the cutoff Born approximation may not always be re

liable in the stripping reaction especially for low incident energies of deuteron. 

In fact, Tobocman11l has employed "distorted wave approximation", obtaining 

better agreement with experiments. Consequently, it seems likely that the distor

tion of the plane waves plays an important role in the heavy-particle-stripping 

reaction. Here we shall briefly discuss the use of "distorted wave approximation" 

to our problem. When the distorted wave approximation is adopted in our for

mulation, it may be easily shown that the modification will be confined to the 

overlapping integrals appearing in the matrix elements, all other terms including 

numerical factors remaining unchanged. 
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