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Antisyommetry of subalgebras of O*-algebras
by
WACLAW SZYMANSKI (Cracow)

Absteact; In the present paper we introduce a generalization of antisymmetrie
sels, known in the function algcbras theory, to a nonecommutative ease. We prove
o de Branges-typo theorem and » generalization of the Bishop decomposition theorem.
As applications we prove a version of the Stone—Weierstrass theorem and an approxi-
mation-type result in comnocetion with the Bishop decomposition proved earlier.

1. Preliminaries. L(H) stands for the ¢*-algebra of all linear, bounded
operators in a complex Hilbert space H. A*homomorphism = of a O™
algobra A into I (H,) is called a representation of 4, the dimension of B, is
called the dimension of m. Characters of a 0*-algebra A are one-dimensional
representations of A. A representation = of a (™-algebra A is called irre-
dueible if the algebra m(A4) hag no non-trivial invariant subspace in L(H,).
Tf 4 haws the unit ¢, we will agsume always that, for every represenfation
qof 4, n(e) = I, — the identity operator in H,.

If & is & subset of L(H) we denote by 0%(%) the 0*-algebra generated
by & and the identity. If Z'eL(H), we write 0*(T) for 0*({T}). By the
spectrum A of a C*-algebra A we mean the set of unitary equivalence clagses
of all irreducible representations of 4 equipped with the hull-kernel
topology. Her a subset X of 4 we write J(K) = M{kerp, g« X} It J is
a closed, two-sided ideal in .4, then by the hull of J we mean the set hull(J)
consinting of all ned such that J < kerw. It follows from [2], 2.9.7 (i),
that J = J (hull(J)). The closure K of a subset & of 4 in that topelogy
18 cqual to hull{J(E)), by the definition.

Tt two C*algebras sve *-isomorphic, then thelr speetra are homeo-
morphie. Namely, if @: A;-»d, i3 a *isomorphism of the C*-algebras
Ay, A, then the mapping §: 4,4, given by the formula ¢: p->gop™
is the homeomorphism induced by @. For basic facts concerning C*-alge-
bras we refer to [2].

2. Sets of antisymmetry. To begin with, we recall two results due
to de Branges, Bishop and Glicksberg [31.
Let ¥ be & compact Hansdorit space and let B < ¢(X) be a function

. algebra, B+ denotoes the set of all finite, complex. (regular, Borel) measures
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u on X such that [fdu = 0 for all f<B, ballB stands for the closed
unit ball in BL.

A gubset ¢ of X is called antisymmetric for B if every function feB
real-valued on ¢ is constant on o.

TuporEM A (de Branges). Let B bé a funclion algebra in C(X). If

e is an emtreme point of ball B, then the carrier of p i om anlisymmelric
set for B.

TurorEM B {(The Bighop decomposition). Let B be a function algebra
in C(X). There is o family & of subsets of X such that X = (A" 1% a par-
tition of X and:

(1) Buvery Kex' is a momimal entisymmelric set for B;

(2) If f<C(X) and if for every Ked' flgeBly, then feB.

Our main purpose is 10 prove generalizations of these theorems to
a nonecommutative case.

Let 4 be a C*algebra with the unit e. Let B « 4 bo a subalgebra
of A containing e, Z denotes the center of 4.

For a subbet K of A we define:

Dg(B) = {beB: b—b*eJ(K), Vaed ab—baed (K)}.
Observe that for meK, beDyp(B) =(b) is a self-adjoint element in the
center of m(4). Since » is frreducible, #(b) = o, I, for some «,¢R (veals).
Hence

Dyg(B) = {beB: VYaeK, JazeR: a(b) = a,1,}.

DEFINITION. A subset K of A iy antisymmetric (a set of antisymanetry)
for Bif for every beDy(B) there is 7« R such that, for all me K, m(b) = rl,;
in other words, all the a,’s above are equal. A subalgebra B is called
antisymmetric if 4 is an antisymmetric set for B.

From. the definition follows immediately that one-point subsets of
A are antisymmetric sets for a any subalgebra B of 4. The definition implies
also that all self-adjoint elements of ZNB belong to D, (B) for every
K c 4. I 4 is a simple C*algebra (i.e. 4 has no proper ideals), then for
every med ketm = {0}, Then, for every subalgebra B of a simple (%
algebua A and for every subset I of 4, Dy (B) consists only of seM-ndjoint
elements of Zn B. Bimple C*algebrag exist. Tor example, every VLR
algebra s simple (see [6], p. 88).

Compare now our definition of the antisymmetry with the elassical
one (as at the beginning of this section). If 4 = 0(X) then 4 = X und
if B is'a function algebra in A then D (B) is precisely the set of all fe
which have real values on X < X. Now it is plain that the above definition
of antisymmetric sets iz a natural generalization of the classical one.
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Tirst we give some immediate properties of antisymmetric sets
Agsume that 4 is a O*-algebra with the unit ¢ and with the center Z, B is
a subalgebra of 4 such that e<B.

Remark 1. If K < 4 4s an antisymmetric set for B, then so is its
closure K.

Proof. Since J (K) = J(K), we have Dg(B) = Dg(B). Take beDz(B)
neK, I o(b) = 7¢I, for all gcK, then b — reed(X), henee n(b—re) =0
and the proof is complete.

Remark 2. If Ky, K, are two antisymmetric sets for B such thai
K, I, 5 @, then K, VK, is an antisymmetric set for B.

Proof. Define K = K, VE,. It iz clear that J (&) = J (E;)NJ (K,).
Hence Dy (B) = Dg, (B)N Dy (B). Take beDg(B). There are 7y, rye B such
that for every m el sy (b) =t 1, and for every myeX, m,(b) =11,
Since K,NnK, = 0, we must have 7, =, and Remark 2 is proved.

Remark 3. Bvery antisymmetric set for B is confained in o masimal
amtisymmelric set for B. Mawimal antisymmetrie sels are closed.

It follows from Remarks 1, 2 and from the Kuratowski-Zorn lemma.

Remark 4. Suppose that all self-adjoint elemenis of ZNB are scalar
mulliples of e. Then B is an omtisymmem’c algebra.

Pro of. Tt iz kmown that J(A) = M {kero: o<d} = {0}. Hence
D;(B) = {beB: beZ, b = b*} and Lhe proof is complete.

’J}lns Remark implies in particular that if the center Z is trivial,
then every subalgebra B of A is antisymmetriec.

The next Remark shows that the property of the antisymmetry iz
algebraic.

Remark 5. Suppose that A, Ay are two C*-algebras with unils ey, ey,
respectively. Let p: Ay—d, be o *-isomorphism. Let B < Ay be o subal gebra
of A, containing e,. If K is an antisymmelric sel for B, th(m o (K) (defined
in Preliminaries) is an antisymmetric set for ¢(B). .

Proof. It is easy to check that D,F(K)( (B)) = ¢(Dx(B)). Recall that
#(0) = gop~* for ped,. Let ¢eDymfp(B)). Then there is beDx(B) such
that (p(b) =0 I me@(K) then m = gop™" with some geK. Now (o) =
(gop) (p—(b)) = o(b) and, by the assumption, K is antisymwmetric for B.
Hence m(¢) = rI, for all @ep(K) and the proot is conclnded.

Let A be an irreducible O* operator algebra in L(H). Remark 4
implies thai A i3 antisymmetric. It follows from Remark 5 that an anti-

symmetric operator algebra need not be irreducible. As an example con-
gider the unilateral shift U, of the multlphaw one. The algebra O*(U.)
ig irreduncible. But the algebra C*( ) is not irreducible and. it is *-isomor-
phie with O*(T,.), hence, it is antisymme‘oric.

Now we will give an example of antisymmetric sets.
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ExameLr 1. Denote by J(n) the usual Jordan block in O":
0
0
Jn) = l..O .
0 10

-] o0 N .
We define H =@ €", § =@ J(n), 4 =C*(8). § is a power partial
. n=2 =3

. = =
isometry (in the terminology of [4]). The description of A is given in [1],
[4]. Namely, all irredlucible representations of 4 have the forms:

(8) p(8) = " with rome 1[0, 2], .
(0) 7y (8) = U,

(e) m(8) = UY,

(d) n(8) =d(n), m =2,3,...

up to the unitary equivalence. Denote by I" the set of all characters of 4,
L= {gy, » = 2,8,...}. The values of all pel” at § cover the whole unit
civele. As for the topology of 4; I' is closed, {wf = {m}Ul, i =1,32,
L is dense in 4 (we omit the rather simple proct).

One can checl that the center of 4 consists only of scalat multiples
of the identity I in M. Hence, by Remark 4, 4 is an antisymmetric seb
for every subalgebra of 4. Now we want to consider a subalgebra B of A to
show some, other than A, antisymmetric sets for it. et £ = 8*8 be the
initial amd B = 88" — the final projection of §. Let B be the closed
in norm subalgebra (not symmetric) of 4 generated by 8, , # and I.
Tt i clear that B is not commutative (SZ = BS). Moreover, B 4,
because 8" ¢B. For the distance in norm of §* to, the algebra of all lower-

friangular matrices is equal to one and all elements of B are lower-triangu- '

lar. We claim that I™ i an antisymmetric set for B.

- For the proof let us determine the set D,(B). The ‘algebra B is the
cloau.re in norm of all operators p(E, 7, 8), where p{x, y', 2) is a poly-
normial in three variables #, y, # such that » and ¥ commute and 2 does
not commute with @,y. Let deg,p denote the degres of p with respect
to & The elements of Dr(B) are those operators p(H, ', §) (and their
norm-limits) for which elp (B, I, 8)) are real for all pell Observe that
for an arbitrary gel” we have p{(B) = g(F) = 1. Take p(B, T, 8)fron B.
For gel” we have ‘

oo (B, T, 8)) = plp(®), p(I), p(8)) = p(L,1, 6%,

where (_p(S) = &%, .te[:() y2r]. This equality proves that p(X, ¥, §) is in
Dr(B) if and only if p(1, 1, *) is veal for every te[0, 2x]. The polynomial
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#-+p(1,1,2) has real values on the unif eircle if and only I deg,p = 0.
But it deg,p = 0, then p(1,1,#) equals to the sum of all coefficients
of p. It follows that p (¥, I, §) belongs to D(B) if and only if deg,p = 0
and the sum of all coefficients of p is real. Hence D (B) consists of norm-
limits of such p(#, F, 8). Finally, it follows that the value of a character
pel at an element of Dy(B) it real and it does not depend on . It proves
that I' is an antisymmetric set for B.

Since one-point sets are antisymmetrie, {m,}, {=,} are antisymunetric
for B. Bince the closures of antisymmetric sets are again antisymmetric,
{m Ul and {m,} Ul are closed antisymmetric sets for B. The set Dy(B)
consists only of scalar multiples of I, hence L is also antisymmetric for B.
Tts closure is equal to A, hence A is antisymmetrie for B, as we have
remarked above in a slightly different way.

Finally, we would like to present a subset of A which is not anti-
syminetirie for B. Choose two characters ¢y, e l” such that ¢,(8) =1,
p2(8) = —1. Put K = {p;, g} It is clear that SeDg(B) but K is not
antivymmetrie, because ¢:(8) # ¢q(8).

3, Main theorems, Before proving main results of this paper we will
prove a proposition in connection with funebion algebras and measures
in order to explain the genesis of out further considerations. Let us recall
some definitions. Oonsider a compact Hausdorif space X and a complex,
finite (regular, Borel) measure s on X. [p| denotes the positive total variation
measure of g Let h be the Randon—Nikedym derivative du/d|u|. Since
4 is finite, h is [u|-integrable. Moreover & +* 0 [u|-2.e., because x4 and |u| are
mutually absolutely continuous. A point zeX belongs to the carrier of
» if and only if for every open neighbourhood U of & |a| (U) > 0. Denote
by = the representation of C(X) into L(LZ(LU-I)) given by the formula
n(f)u = fu for feO(X), ueL*{|u|)- It @ X, then we write g, for the point- -
evaluation character g (f) = f(&) for feC(X). Define the following func-
tional on O(X): . 7
o(f) = [fau, f<O(X).

PROPOSITION 1. kerw is the largest ideal of C(X) confained in kerg.
Moreover,
the carrier of p = {weX: kerm = kerg,} = hull(kers).

Proof. It feC(X) and =(f) = 0, then f = 0 |ul-a.e., beeause p is
finite. Tt follows that ¢(f) = 0, hence kerw = kerg. It J iz an ideal of
0(X) such that J < kerp and if feJ, then for every keO(X) fkeJ and
(fldy =0 for all keC(X). Using the Radon-Nikedym theorem, the
continuity of the inner product in I}{|u)) and the density of O(X) in
I*(jul), we obtain [fghd(u| =0 for all geL?(|ul). It follows that fh =
0 |ul-a.e. and hence f = 0 |z]-ae. Hence (f) = 0 and J < kera.
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Now we prove the second part of the proposition. Suppose that
#<X and # does not belong to the carrier of w. Then 1;he.re iz an open
neighbourhood U of @ such that |u] (¥) = 0. Now we can find. a fonction

feC(X) such that f(z) 50 and f =0 off U. It follows that ¢.(f) 50
and for all geZ*(|p))

[feainl = [ fgdiul+ [ fodlul =0,

X 17 XNU

hence m(f) = 0, thus & ¢hull (ker x). Conversely, if #«X is not in hull(kerm).
then there is feC(X) such that f(@) # 0, #{f) = 0, Hence f == 0 |u|-a.0.
But f is continuous, hence there is an open neighbourhood U of # such
~ that f # 0 on U. Tinally,

[iftdu < [ IfPalsl = o,
v X

hence |u| (U} = 0 and the proof is complete.

_ In what follows 4 will denote a (*-algebra with the unit ¢. B < 4
is a fized closed subalgebra of .4 containing e. BL stands for the set of
all continuous complex funetionals on 4 vanishing on B, ballA (ballB*,
resp.) denotes the norm-closed unit ball in 4 (B~+, resp.).

The following theorem is a2 mnoncommutative generalization of
Theorem A.

TunoreM 1. Suppose that ¢ 48 an evireme point of ball B, If J s
the largest two-sided ideal of 4. contained in kerqp then hull(J) is an anti-
symmetric set for B.

Proof. Clearly, X = hull(J) is a closed subset of 4. Tt A, = 4[J
then K can be identified with 4, ([2],8.2.1.), Let q: 4 4, be the quotient
map. Take beDx(B). Then for every wek m(b) = a,I, for some reals «,.
We may assume 0 < o, <'1 for meX. We have to show that all the a.'s
are equal. Note that g(b) is in the center of 4, beeemse J = J(K) and
for all acd ab—baed. ’

Write @ = ¢, +pz, Where g (a) = p(ba), ga(a) = @((e—Db)a) for all
aed. Tt is clear that gy, p,cBY. Now we will provo thait Jipgl - llpall £ 1
It is sufficient to show that sup {lg, (@) - pa(c)]; @, ceballd} 5 1. For take
a, ¢ceball 4. Then we have

@1 (@) + a0 = |p(ba+ (e —b)e)| < g (ba-+ (e ~b)q)||
= sup|ln{ba +(e—b)d|
< sup (el (@) + (X — e m (o)) <1,

because for every a ed |lg{a)]| = sup 7 (

)|l {[2], 2.7.1.), by the identification
of K with 4,. ‘
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Since p is an exireme point of ballBL, we conclude that P =TQ
for some re[0,1]. Tt follows that ¢((b —re)a ) =0 for all aed. Since for
all aed ab—baed = kerp, we have also gle(b—re)) = 0 for all ccA.
It follows that ¢ annihilates the two-sided ideal generated by &-ve.

But, by the definition of J, b —reeJ and hence m(b) = I, for all neX.
The proot is completed.

T would like to express my thanks to the Referee for the essential
simplitication of my initial proof of Theorem 1. The enclosed proof iy
just this simplified version.

Now we consider an ideal of B instead of the whole algebra B. Then
the following theorem holds:

THBOREM 2. Let G be an ideal of B. Suppose that ¢ is am extreme point
is ball@L. If J is the largest two-sided ideal contained in lker @, then Trull (J)
of antisymmetric for B,

To prove this theorem. it is suifieient to repeat step by step the proof
of Theorem 1, observing additionally that if g G and b<B then the func-
tional gy(a) == ¢(ba) for aecd is also an element of gL, )

Let us point out that by Proposition 1 one can consider Theorem
4 and a part of Theorem 2.5. in [3) as special cases of our Theorems
1 and 2, respectively. As a consequence of the previous two theorems we
are able to prove the following theorem which gencralizes Theorem B amd
a result of Glicksberg ([3], Theorem 2.5).

TrmorEM. 3. Suppose that A, B are as above amd that G is an @dea,l
in B. Then there is o fomily A of swbsets of A sueh that A =\ ) o is a porti-
tion of A and:

(1) every Kex 48 a maximal (closed) antisymmeiric set for B;

(2) if aed and if for overy Keot" there is beB such that o —bed (K),
then wel3;

(3) if aed and if for every KeA there is g<G such that a-geJ(K),
then ae@.

Proof. Since all one-point subsets of 4 are antisymmetric for B,
(1) follows from Remarle 3. To prove (2), we will apply the techunique
used. by Glicksberg in [3)]. Let aed be as in (2). Suppose that ¢¢.B. By
the JTahn-Banach theotem, wo find & continuous functional ¢ on 4 such
that geball B, p{a) % 0. By the Krein—~Milman theorem we may choose
@ a9 an extreme point of ballB*~. Let J be the largest two-sided. ideal
eontained in kerp, By Theorem 1, hull(J) is an antisymmetric set for B.
By (1), there is Kex such that hull{J) = K. It follows that J = J {hull(J))
o J (). Our askumptions imply now that there is b eB such that ¢ —beJ (K).
Bul J(K) < J = kery, hence ¢(a) = ¢(b) = 0 which is a contradiction.
The proof of (2) is tinished. i
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To prove (3), we repeat the proof of (2) using Theorem 2 instiead of
Theorem 1. Now our theorem is completely proved.
We call the family o of Theorem 3 the Bishop decomposition for B.

4. Applications. In the function algebrag theory the Bishop decompo-
sition appesrs ag a generalization of the Stone-Weierstrasy theorem. In
the noneommutbative situation considered. in thiz paper we are also able
to prove a verison of the Stone-Weierstrass theorem. Tirst we introduce
some terminology. Let us fix a C*-algebra A. Let @y, w, be two irreducible
representations of 4. We will write m, =~ m, if @, and =, are unitarily equiv-
alent. Similarily, if § is a subseti of 4, we write myy = myly if there is
a unitary operator U: H, —H, such that, for all a8, Um( ) = gy (a) U.
We say that a subset & of A sepwmtes’ A it for any. two irreducible repre-
sentations my, my of 4 m, 4 m, implies oy |g & ng|s The following proposition
is a generalization of the Stone—~Welerstrass theorem.

PROPOSITION 2. Suppose we are given a O"-algebra A with the unit
¢ and with the center Z. Suppose that dimensions of all irreducible represenia-
tions of A ave equal (finite or mot). If & (™-subalgebra B of A satisfies the
following conditions:

(2) eeB,

(b) BnZ separates A,

(c) for all irreducible repﬁresmmtwm wof A a(B) = w(4d),
then B = A.

Proof. Let # be the Bishop decomposition for B. Take Kex and
two points &, w.«K. Suppose that 7, 7 7,. It means that there are two
irredueible representations m;, m, of A guch that =, & =, and the unitary
equivalence class of w; equals to @, @ =1,2. By our asguroption (b),
1lgns ¥ %olpng. Hlence, for every unitary operator U: H, ~~H,,, there i
beBnZ such that Us,(b) % =,(b) U. Since BNZ is & G‘*-algebm, we may
choose b as & self-adjoint element of BnZ. But self-adjoint elements of
BnZ lie in Dg(B) and K is antisymmetric. Hence there iy r<R such that

. g (b) =1l my(b) = rl,,. This is & contradiction which proves that every
maximal, antisymmetrie set for B, must contain strictly one point of A.
Now, it asA then, by (c), there is beB such that = (a) = «(b) and applying
Theorem 8 we finish the proof.

Some remarks are now in order. There are several noncommutative
generalizations of the Stone-Welerstrags theorem. Our generalization
has a connection with one of them due to Fell (see [2], 11.1). He called
a snbalgebra B of a O*algebra A rich if B separates A and for every
irreducible representation = of Ax|g is irreducible. He also proved. ([2],

11.1.6) that every rich subalgebra of a GCR algebra is equal to the whole’

algebra. If B sa#isfies the conditions of Proposition 2 then, obviouwsly, it
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ig rich. Hence we see that Proposition 2 says something new in case where
A is not GCR.

Now we would like to present an example in which assumptions of
our Propogition 2 are ratisfied non-trivially. We will also show that those
assumptions are essential.

ExAwrLe 2. Consider & commutative von Neumann algebra € < L{H)
with. the identity IeL{H). By M,(¥) we will denote the (*-algebra of
all n X n matrices over ¥ (i.e whose entires are elements of ). Takesaki
in [5] proved that all irreducible representations of 4 == M, (¥) are exactly
n-dimensional, Moreover, to every irreducible representation = of 4. there
corresponds & non-zero character ¢ of € such that = is unitarily equivalent
to the representation ¢ of A of the form ¢([Ty]) = [p(Ty)], Tye¥ for
i,j =1, ..., n Conversely, every non-zero character ¢ of % indmnces the
representation ¢ (as above) of A which is irreducible.

‘We can consider # 25 a subalgebra of A if we embed it into 4 as
ollows: for Te%

T
T 0
o

T-T, =
Ve
This embedding is a *-monomorphism. One can check easily that € is
equal to the center of A.
Tet w,, =, be two irreducible representations of A and let ¢, ¢, be

two characters of ¥ corresponding to my, m,, respectively. Observe that
the following three condifions are equivalent:
i)  m =a,,

(11) @1 = Pay

(1)
Indeed, implications (i)
to prove is (i) = (ii). If m,
Henece (1) = pu(T).

Thig equivalence implies that & separates A. Let B be a *-subalgebra
of A containing ¥ and such that for ail med m(B) is irreducible (in this
ease it i equivalent to say thatin (B) = @ {4) = L(C™). Proposition 2 implies
B = A.Tor instance, take B as a C*-subalgebra of A containing % and an
operator

= (iii) and () = (i) are trivial. The only thing
ot my,, then, for Te®, g (1)1, = ¢a(T) I,

o 0
3 E S
0 T,Ho
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where Ty, i =1,...,n—1 are invertible. Since for all me d (8) is an
irreducible operator, we have B = A. The ("-subalgebra ¢ of .4 satisties
(a) and (b) of Proposition 2, it does not satisfy (c) and # # 4, hence (¢)
is essential. .

Let now B = ¢*(T), where

One can check that the center of B iy trivial, hence BN ¥ consists of scalar
multiples of the identity. It follows fhat B .4 (and, by Remark 4,
A is the only maximal, antisymmetrie set for B). If ¢ is a character of 4,
then ¢ ( f?) = J (n) (a8 in Example 1). Hence for any two irreducible rep-
resentations @, 7, 0f A 73] p==mslp. TU is clear now that B does not separate
A and (b) of Proposition 2 is essential.

Ag the gecond application of Theorem 3 we will prove now an approxi-
mation-type property for subalgebras of ~ (*-algebras. . Consider a C*
algebra A with unit e. Let K be a closed subset of A. In this case K
= hull(J (K)). Let v: A~A/J(K) denote the quotient map. As we have
observed in the proof of Theorem 1, we may identity K with the xpectrum
{A/J )" of AJT(K). T @, bed, we define |l —bllx == sup{|=(a)—a b},
neXK}. Now we have [la —blg = ||z(az—d)|.

ProPOSITION 3. Lot A be a O*-algebra with the wnit ¢, let B be its closed
subalgebra containing ¢ and let A" be the Bishop decomposition for B. Then
if acd, we have:

llo — Bl == sup {{la —Bllg, Kexk},

where |lo-Bf = inf{la —b], beB} and (o —Blx = ink{lle —blg, beB}

Proof. Let us recall that all elements K of " are closed in 4., Since
for every wed |jof = sup {|=(2)|, wed}, we have |a-—B] = sup {lle—Blyg,
KEedl, To prove the converse inequality observe that the {ual space
(4/B) of A[B and B! ave isometrically isomorphic as normed linear
spaces. Hence

lle — Bl = sup{|f(a}|: feball B-+}.
It follows from the proof of the Krein-Milman theorem that the last
supremum is agsumed at an extreme point ¢ of ball BL.

Let J be the largest two-sided ideal contained in kerp, By Theorem 1,
hell{J) is an antisymmetric set for B, hence there is K ¢ such. that hull(J) <
= K. It follows that J (&) « J(hull(J)) = J < kerg. Let 7: A—4)J(K)

icm
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be the quotient map. Now we have for every beB:

lp(@)] = lpla—b)| <
and the proof is completed.

This proposition implies a result proved by Glicksberg ([3], p. 419)
in eonnection with the commutative Bishop decomposition.

le{a —b)l| = lla—bllx .
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