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ANTITHETIC MULTILEVEL MONTE CARLO ESTIMATION
FOR MULTI-DIMENSIONAL SDES WITHOUT

LÉVY AREA SIMULATION

BY MICHAEL B. GILES AND LUKASZ SZPRUCH

University of Oxford

In this paper we introduce a new multilevel Monte Carlo (MLMC) es-
timator for multi-dimensional SDEs driven by Brownian motions. Giles has
previously shown that if we combine a numerical approximation with strong
order of convergence O(�t) with MLMC we can reduce the computational
complexity to estimate expected values of functionals of SDE solutions with
a root-mean-square error of ε from O(ε−3) to O(ε−2). However, in gen-
eral, to obtain a rate of strong convergence higher than O(�t1/2) requires
simulation, or approximation, of Lévy areas. In this paper, through the con-
struction of a suitable antithetic multilevel correction estimator, we are able
to avoid the simulation of Lévy areas and still achieve an O(�t2) multilevel
correction variance for smooth payoffs, and almost an O(�t3/2) variance for
piecewise smooth payoffs, even though there is only O(�t1/2) strong con-
vergence. This results in an O(ε−2) complexity for estimating the value of
European and Asian put and call options.

1. Introduction. In many financial engineering applications, one is inter-
ested in the expected value of a financial derivative whose payoff depends upon
the solution of a stochastic differential equation (SDE). Using a simple Monte
Carlo method with a numerical discretisation with first order weak convergence,
to achieve a root-mean-square error of ε would require O(ε−2) independent
paths, each with O(ε−1) time steps, giving a computational complexity which is
O(ε−3), [3].

Recently, Giles [6] introduced a multilevel Monte Carlo (MLMC) estimator
which enables a reduction of this computational cost to O(ε−2(log (1/ε))2) for
Lipschitz payoffs when using the Euler–Maruyama discretisation. For other dis-
continuous and path-dependent payoff functions, the complexity is poorer [7]. The
efficiency of the MLMC method is influenced by the strong convergence order
of the discretisation, and subsequent research using MLMC with the first-order
Milstein discretisation for scalar SDEs, improved the complexity significantly to
O(ε−2) for digital, lookback and barrier options [5]. However, a weakness of the
Milstein discretisation is that in multiple dimensions it generally requires the sim-
ulation of iterated Itô integrals known as Lévy areas, for which there is no known
efficient method except in dimension 2 [4, 17, 18].
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Let (�,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft }t≥0
satisfying the usual conditions, and let w(t) be a D-dimensional Brownian mo-
tion defined on the probability space. We consider the numerical approximation of
a general class of multi-dimensional SDEs driven by Brownian of the form

dx(t) = f
(
x(t)
)

dt + g
(
x(t)
)

dw(t),(1.1)

where x(t) ∈ R
d for each t ≥ 0, f ∈ C2(Rd,Rd), g ∈ C2(Rd,Rd×D), and for

simplicity we assume a fixed initial value x0 ∈ R
d .

In this paper we are primarily concerned with estimating E[P(x(T ))], the ex-
pected value of a payoff depending on the solution at a fixed time T , defining the
tensor hijk(x) as

hijk(x) = 1

2

d∑
l=1

glk(x)
∂gij

∂xl

(x), i = 1, . . . , d and k, j = 1, . . . ,D,(1.2)

when using N uniform timesteps �t = T/N , the ith component of the first order
Milstein approximation X̂n ≈ x(n�t) has the form [13]

X̂i,n+1 = X̂i,n + fi(X̂n)�t +
D∑

j=1

gij (X̂n)�wj,n

(1.3)

+
D∑

j,k=1

hijk(X̂n)(�wj,n�wk,n − �jk�t − Ajk,n),

where � is the correlation matrix for the driving Brownian paths, and Ajk,n is the
Lévy area defined as

Ajk,n =
∫ tn+1

tn

(
wj(t) − wj(tn)

)
dwk(t) −

∫ tn+1

tn

(
wk(t) − wk(tn)

)
dwj(t).

In some applications, the diffusion coefficient g(x) has a commutativity prop-
erty which gives hijk(x) = hikj (x) for all i, j, k. In that case, because the Lévy
areas are anti-symmetric (i.e., Ajk,n = −Akj,n), it follows that hijk(Xn)Ajk,n +
hikj (Xn)Akj,n = 0 and therefore the terms involving the Lévy areas cancel and so
it is not necessary to simulate them. However, this only happens in special cases.

Clark and Cameron [2] proved for a particular SDE that it is impossible to
achieve a better order of strong convergence than the Euler–Maruyama discreti-
sation when using just the discrete increments of the underlying Brownian mo-
tion. The analysis was extended by Müller–Gronbach [15] to general SDEs. As
a consequence if we use the standard MLMC method with the Milstein scheme
without simulating the Lévy areas the complexity will remain the same as for
Euler–Maruyama. Nevertheless, in this paper we show that by constructing a suit-
able antithetic MLMC estimator one can neglect the Lévy areas and still obtain
a multilevel correction estimator with a variance which decays at the same rate as
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the scalar Milstein estimator. This demonstrates that a high order of the strong con-
vergence is not necessary for our new estimator to achieve the optimal complexity
O(ε−2).

We begin the paper by reviewing the multilevel Monte Carlo approach, intro-
ducing the idea of the antithetic estimator and bounding the behaviour of its vari-
ance under certain conditions. Because of its simplicity, we then consider Clark
and Cameron’s model problem, and prove that the antithetic path simulations
do satisfy the required conditions to give an O(�t2) variance convergence for
a smooth payoff. This then motivates the subsequent analysis for the general class
of multi-dimensional SDEs. We support our analysis by suitable numerical exper-
iments in which we demonstrate the superiority of antithetic MLMC over the stan-
dard MLMC for both the Clark–Cameron SDE and the Heston stochastic volatility
model. The Appendix contains the detailed proofs of the key theorems.

In this paper we restrict attention to financial applications with either a European
payoff, dependent on the final value x(T ), or an Asian payoff, dependent on the
average of x(t) over the time interval [0, T ]. It is proved that when the payoff
is twice differentiable, with bounded derivatives, the rate of convergence of the
multilevel correction variance is doubled from O(�t) to O(�t2). If the payoff is
Lipschitz, and twice differentiable almost everywhere, then the rate of convergence
is reduced to O(�t3/2), but this is still sufficient to make the overall complexity
O(ε−2) to achieve a root-mean-square accuracy of ε.

2. Multilevel Monte Carlo estimation.

2.1. MLMC estimators. In its most general form, multilevel Monte Carlo sim-
ulation uses a number of levels of resolution, � = 0,1, . . . ,L, with � = 0 being the
coarsest, and � = L being the finest. In the context of a SDEs simulation, level 0
may have just one timestep for the whole time interval [0, T ], whereas level L

might have 2L uniform timesteps.
If P denotes the payoff (or other output functional of interest), and P� denote

its approximation on level l, then the expected value E[PL] on the finest level is
equal to the expected value E[P0] on the coarsest level plus a sum of corrections
which give the difference in expectation between simulations on successive levels,

E[PL] = E[P0] +
L∑

�=1

E[P� − P�−1].(2.1)

The idea behind MLMC is to independently estimate each of the expectations on
the right-hand side of (2.1) in a way which minimises the overall variance for a
given computational cost. Let Y0 be an estimator for E[P0] using N0 samples, and
let Y�, � > 0, be an estimator for E[P� − P�−1] using N� samples. The simplest
estimator is a mean of N� independent samples, which for � > 0 is

Y� = N−1
�

N�∑
i=1

(
P i

� − P i
�−1
)
.(2.2)
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The key point here is that P i
� − P i

�−1 should come from two discrete approxima-
tions for the same underlying stochastic sample, so that on finer levels of resolution
the difference is small (due to strong convergence) and so the variance is also small.
Hence very few samples will be required on finer levels to accurately estimate the
expected value.

Here we recall the theorem from [8] (which is a slight generalisation of the
original theorem in [6]) which gives the complexity of MLMC estimation.

THEOREM 2.1. Let P denote a functional of the solution of a stochastic dif-
ferential equation, and let P� denote the corresponding level � numerical approxi-
mation. If there exist independent estimators Y� based on N� Monte Carlo samples,
and positive constants α,β, γ, c1, c2, c3 such that α ≥ 1

2 min(β, γ ) and:

(i) |E[P� − P ]| ≤ c12−α�,

(ii) E[Y�] =
{
E[P0], � = 0,
E[P� − P�−1], � > 0,

(iii) V[Y�] ≤ c2N
−1
� 2−β�,

(iv) C� ≤ c3N�2γ �, where C� is the computational complexity of Y�,

then there exists a positive constant c4 such that for any ε < e−1 there are values
L and N� for which the multilevel estimator

Y =
L∑

�=0

Y�

has a mean-square-error with bound

MSE ≡ E
[(

Y −E[P ])2]< ε2

with a computational complexity C with bound

C ≤
⎧⎪⎨⎪⎩

c4ε
−2, β > γ ,

c4ε
−2(log (1/ε)

)2
, β = γ ,

c4ε
−2−(γ−β)/α, 0 < β < γ .

Without the simulation of Lévy areas, the strong order of convergence of the
Milstein discretisation X(T ) which is used is only 1/2, so that

E
[∥∥x(T ) − X(T )

∥∥2]= O(�t).

Hence, for payoffs which are a Lipschitz function of the final value, it follows that

E
[
(P� − P�−1)

2]= O(�t)

and therefore the estimator given by (2.2) satisfies condition (iii) in the theorem
with β = 1 when �t ∝ 2−�. What we will show is that without improving the
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strong order of convergence it is possible to construct an antithetic estimator for
which β = 2.

To do so, we need to exploit some flexibility in the construction of the multilevel
estimator. In (2.2) we have used the same estimator for the payoff P� on every
level �, and therefore (2.1) is a trivial identity due to the telescoping summation.
However, in [5] Giles numerically showed that it can be better to use different
estimators for the finer and coarser of the two levels being considered, P

f
� when

level � is the finer level, and P c
� when level � is the coarser level. In this case, we

require that

E
[
P

f
�

]= E
[
P c

�

]
for � = 1, . . . ,L,(2.3)

so that

E
[
P

f
L

]= E
[
P

f
0

]+ L∑
�=1

E
[
P

f
� − P c

�−1
]
.

The MLMC theorem is still applicable to this modified estimator. The advantage
is that it gives the flexibility to construct approximations for which P

f
� − P c

�−1 is
much smaller than the original P� − P�−1, giving a larger value for β , the rate of
variance convergence in condition (iii) in the theorem.

2.2. Antithetic MLMC estimator. Based on the well-known method of anti-
thetic variates (see, e.g., [10]), the idea for the antithetic estimator is to exploit the
flexibility of the more general MLMC estimator by defining P c

�−1 to be the usual
payoff P(Xc) coming from a level �−1 coarse simulation Xc, and define P

f
� to be

the average of the payoffs P(Xf ),P (Xa) coming from an antithetic pair of level
� simulations, Xf and Xa .

Xf will be defined in a way which corresponds naturally to the construction
of Xc. Its antithetic “twin” Xa will be defined so that it has exactly the same
distribution as Xf , conditional on Xc, which ensures that E[P(Xf )] = E[P(Xa)]
and hence (2.3) is satisfied, but at the same time(

Xf − Xc)≈ −(Xa − Xc)
and therefore (

P
(
Xf )− P

(
Xc))≈ −(P (Xa)− P

(
Xc)),

so that 1
2(P (Xf ) + P(Xa)) ≈ P(Xc). This leads to 1

2(P (Xf ) + P(Xa)) − P(Xc)

having a much smaller variance than the standard estimator P(Xf ) − P(Xc).
We now present a lemma which motivates the rest of the paper by giving an

upper bound on the convergence of the variance of 1
2(P (Xf ) + P(Xa)) − P(Xc).
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LEMMA 2.2. If P ∈ C2(Rd,R) and there exist constants L1,L2 such that for
all x ∈ R

d ∥∥∥∥∂P

∂x

∥∥∥∥≤ L1,

∥∥∥∥∂2P

∂x2

∥∥∥∥≤ L2,

then for p ≥ 2,

E
[(1

2

(
P
(
Xf )+ P

(
Xa))− P

(
Xc))p]

≤ 2p−1L
p
1E
[∥∥1

2

(
Xf + Xa)− Xc

∥∥p]+ 2−(p+1)L
p
2E
[∥∥Xf − Xa

∥∥2p]
.

PROOF. If we define �Xf ≡ 1
2(Xf + Xa), then a Taylor expansion gives

P
(
Xf )= P

(�Xf )+ ∂P

∂x

T (�Xf )(Xf − �Xf )+ 1

2

(
Xf − �Xf )T ∂2P

∂x2 (ξ1)
(
Xf − �Xf )

for some ξ1 on the line between �Xf and Xf . Performing a similar expansion for
P(Xa) and then averaging the two, the linear terms cancel, and one obtains

1

2

(
P
(
Xf )+ P

(
Xa))= P

(�Xf )+ 1

4

(
Xf − �Xf )T ∂2P

∂x2 (ξ1)
(
Xf − �Xf )

+ 1

4

(
Xa − �Xf )T ∂2P

∂x2 (ξ2)
(
Xa − �Xf )

= P
(�Xf )+ 1

8

(
Xf − Xa)T ∂2P

∂x2 (ξ3)
(
Xf − Xa)

for some ξ3 on the line between Xa and Xf , due to the mean value theorem. We
then obtain

1

2

(
P
(
Xf )+ P

(
Xa))− P

(
Xc)= ∂P

∂x

T

(ξ4)
(�Xf − Xc)

+ 1

8

(
Xf − Xa)T ∂2P

∂x2 (ξ3)
(
Xf − Xa),

for some ξ4 on the line between �Xf and Xc. Hence,∣∣1
2

(
P
(
Xf )+ P

(
Xa))− P

(
Xc)∣∣≤ L1

∥∥�Xf − Xc
∥∥+ 1

4L2
∥∥Xf − Xa

∥∥2

and the final result follows from the standard inequality∣∣∣∣∣
N∑

n=1

an

∣∣∣∣∣
p

≤ Np−1
N∑

n=1

|an|p(2.4)

and then taking the expectation. �

In the multi-dimensional SDE applications considered in this paper, we will
show that the Milstein approximation with the Lévy areas set to zero, combined
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with the antithetic construction, leads to Xf − Xa = O(�t1/2) but �Xf − Xc =
O(�t). Hence, the variance V[1

2(P
f
l +P a

l )−P c
l−1] is O(�t2), which is the order

obtained for scalar SDEs using the Milstein discretisation with its first order strong
convergence. We first show this for the simple Clark and Cameron model problem
which can be analysed in detail. We then extend the analysis to a general class of
multi-dimensional SDEs.

3. Clark–Cameron example.

3.1. Clark–Cameron analysis. The paper of Clark and Cameron [2] addresses
the question of how accurately one can approximate the solution of an SDE driven
by an underlying multi-dimensional Brownian motion, using only uniformly-
spaced discrete Brownian increments. Their model problem is

dx1(t) = dw1(t),
(3.1)

dx2(t) = x1(t)dw2(t)

with x(0) = y(0) = 0, and zero correlation between the two Brownian motions
w1(t) and w2(t). These equations can be integrated exactly over a time interval
[tn, tn+1], where tn = n�t , to give

x1(tn+1) = x1(tn) + �w1,n,
(3.2)

x2(tn+1) = x2(tn) + x1(tn)�w2,n + 1
2�w1,n�w2,n + 1

2A12,n,

where �wi,n ≡ wi(tn+1) − wi(tn), and A12,n is the Lévy area defined as

A12,n =
∫ tn+1

tn

(
w1(t) − w1(tn)

)
dw2(t) −

∫ tn+1

tn

(
w2(t) − w2(tn)

)
dw1(t).

This corresponds exactly to the Milstein discretisation presented in (1.3), so for
this simple model problem, the Milstein discretisation is exact.

The point of Clark and Cameron’s paper is that for a given set of discrete Brow-
nian increments, the value for x1(tn) is determined exactly for all n, but the value
for x2(tn) depends on the unknown Lévy areas. Since E[A12,n|�w1,n,�w2,n] = 0,
the conditional expected value is given by (3.2) with the Lévy areas set to zero. In
addition, it follows that for any numerical approximation X(T ) based solely on
the set of discrete Brownian increments �w,

E
[(

x2(T ) − X2(T )
)2]= E

[
E
[(

x2(T ) − X2(T )
)2|�w

]]
≥ E
[
V
[
x2(T )|�w

]]
= 1

4

N−1∑
n=0

V[A12,n]

= 1

4
T �t.



1592 M. B. GILES AND L. SZPRUCH

Hence, one cannot achieve better than O(�t1/2) strong convergence, and the mean
square error is minimised when the inequality in the above equation is an equality,
which is when

X2(T ) = E
[
x2(T )|�w

]
,(3.3)

which is achieved by setting the Lévy areas set to zero.

3.2. Antithetic MLMC estimator. We define a coarse path approximation Xc

with timestep �t by neglecting the Lévy area terms to give

Xc
1,n+1 = Xc

1,n + �w1,n,
(3.4)

Xc
2,n+1 = Xc

2,n + Xc
1,n�w2,n + 1

2�w1,n�w2,n.

This is equivalent to replacing the true Brownian path by a piecewise linear ap-
proximation as illustrated in Figure 1.

Similarly, we define the corresponding two half-timesteps of the first fine path
approximation Xf by

X
f
1,n+1/2 = X

f
1,n + δw1,n,

X
f
2,n+1/2 = X

f
2,n + X

f
1,nδw2,n + 1

2δw1,nδw2,n,

X
f
1,n+1 = X

f
1,n+1/2 + δw1,n+1/2,

X
f
2,n+1 = X

f
2,n+1/2 + X

f
1,n+1/2δw2,n+1/2 + 1

2δw1,n+1/2δw2,n+1/2

in which δwn ≡ w(tn+1/2)−w(tn), δwn+1/2 ≡ w(tn+1)−w(tn+1/2) are the Brow-
nian increments over the first and second halves of the coarse timestep, and so

FIG. 1. Brownian path and approximations over one coarse timestep.
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�wn = δwn+δwn+1/2. Using this relation, the equations for the two fine timesteps
can be combined to give an equation for the increment over the coarse timestep,

X
f
1,n+1 = X

f
1,n + �w1,n,

X
f
2,n+1 = X

f
2,n + X

f
1,n�w2,n + 1

2�w1,n�w2,n(3.5)

+ 1
2(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2).

The antithetic approximation Xa
n is defined by exactly the same discretisation

except that the Brownian increments δwn and δwn+1/2 are swapped, as illustrated
in Figure 1. This gives

Xa
1,n+1/2 = Xa

1,n + δw1,n+1/2,

Xa
2,n+1/2 = Xa

2,n + Xa
1,nδw2,n+1/2 + 1

2δw1,n+1/2δw2,n+1/2,

Xa
1,n+1 = Xa

1,n+1/2 + δw1,n,

Xa
2,n+1 = Xa

2,n+1/2 + Xa
1,n+1/2δw2,n + 1

2δw1,nδw2,n

and hence

Xa
1,n+1 = Xa

1,n + �w1,n,

Xa
2,n+1 = Xa

2,n + Xa
1,n�w2,n + 1

2�w1,n�w2,n(3.6)

− 1
2(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2).

Swapping δwn and δwn+1/2 does not change the distribution of the driving Brow-
nian increments, and hence Xa has exactly the same distribution as Xf . Note also
the change in sign in the last term in (3.5) compared to the corresponding term
in (3.6). This is important because these two terms cancel when the two equations
are averaged.

These last terms correspond to the Lévy areas for the fine path and the antithetic
path, and the sign reversal is a particular instance of a more general result for time-
reversed Brownian motion, [12]. If (wt ,0 ≤ t ≤ 1) denotes a Brownian motion on
the time interval [0,1], then the time-reversed Brownian motion (zt ,0 ≤ t ≤ 1)

defined by

zt = w1 − w1−t ,(3.7)

has exactly the same distribution, and it can be shown that its Lévy area is equal in
magnitude and opposite in sign to that of wt .

LEMMA 3.1. If X
f
n , Xa

n and Xc
n are as defined above, then

X
f
1,n = Xa

1,n = Xc
1,n,

1
2

(
X

f
2,n + Xa

2,n

)= Xc
2,n ∀n ≤ N

and

E
[(

X
f
2,N − Xa

2,N

)4]= 3
4T (T + �t)�t2.
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PROOF. Comparing (3.4), (3.5) and (3.6), it is clear that X
f
1,n, Xa

1,n and Xc
1,n

all satisfy the same difference equation and so are equal. Given this, averaging the
equations for X

f
2,n and Xa

2,n gives the same difference equation as for Xc
2,n, and so

therefore 1
2(X

f
2,n +Xa

2,n) = Xc
2,n. Finally, summing the difference of the equations

for X
f
2,n and Xa

2,n gives

X
f
2,N − Xa

2,N =
N−1∑
n=0

(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2).

Since the δwj,n are all i.i.d. normal variables with variance 1
2�t , it is easily shown

that

E
[
(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2)

2]= 1
2�t2,

E
[
(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2)

4]= 3
2�t4

and it then follows that

E
[(

X
f
2,N − Xa

2,N

)4]= (1

2
�t2
)2 N(N − 1)

2

4 × 3

2
+ 3

2
�t4N = 3

4
T (T + �t)�t2.

In the above derivation, when expanding (X
f
2,N − Xa

2,N )4, the first contribu-
tion comes from terms of the form (δw1,mδw2,m+1/2 − δw2,mδw1,m+1/2)

2 ×
(δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2)

2 for m 
= n, while the second contribution
comes from terms of the form (δw1,nδw2,n+1/2 − δw2,nδw1,n+1/2)

4. All other
terms have zero expectation. �

Combining the above result with Lemma 2.2 for p = 2 gives a second order
bound on the multilevel estimator variance for payoffs satisfying the required
smoothness conditions. It is worth noting that an antithetic MLMC based on the
simpler Euler–Maruyama discretisation, omitting the term �w1,n�w2,n in (3.4),
would not give similar benefits. The identity 1

2(X
f
2,n + Xa

2,n) = Xc
2,n no longer

holds, and a similar analysis to that in the proof above gives

V
[1

2

(
X

f
2,N + Xa

2,N

)− Xc
2,N

]= E
[(1

2

(
X

f
2,N + Xa

2,N

)− Xc
2,N

)2]= O(�t).

Hence, in the simple case in which the payoff is P = X2(T ), the variance of the
antithetic multilevel estimator is first order, the same as the standard MLMC, and
not second order.

4. General theory.

4.1. Milstein discretisation. In this section we extend the analysis of the
Clark–Cameron example to general the multi-dimensional SDE (1.1). We make
the standard assumptions that f , g and h have a uniform Lipschitz bound, and so
have uniformly bounded first derivatives. In addition, we make the assumption that
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f and g have uniformly bounded second derivatives. More formally, we have the
following:

ASSUMPTION 4.1. Let f ∈ C2(Rd,Rd) and g ∈ C2(Rd,Rd×D). There exists
a constant L such that for any x ∈R

d , and for all 1 ≤ i ≤ d and 1 ≤ j, k, l ≤ D,∣∣∣∣ ∂fi

∂xl

(x)

∣∣∣∣≤ L,

∣∣∣∣∂gij

∂xl

(x)

∣∣∣∣≤ L,

∣∣∣∣∂hijk

∂xl

(x)

∣∣∣∣≤ L,

∣∣∣∣ ∂2fi

∂xk∂xl

(x)

∣∣∣∣≤ L,

∣∣∣∣ ∂2gij

∂xk ∂xl

(x)

∣∣∣∣≤ L.

Let us recall that the general Milstein scheme [13] has the form

X̂i,n+1 = X̂i,n + fi(X̂n)�t +
D∑

j=1

gij (X̂n)�wj,n

(4.1)

+
D∑

j,k=1

hijk(X̂n)(�wj,n�wk,n − �jk�t − Ajk,n).

As in the Clark–Cameron example, we drop the Lévy areas terms, and instead use
the truncated Milstein approximation

Xi,n+1 = Xi,n + fi(Xn)�t +
D∑

j=1

gij (Xn)�wj,n

(4.2)

+
D∑

j,k=1

hijk(Xn)(�wj,n�wk,n − �jk�t).

Under Assumption 4.1 it is a standard result that the moments of the general
Milstein approximation X̂n are bounded, and X̂n strongly converges to the solution
of the SDE (1.1); this remains true for the truncated Milstein approximation as
stated in the following lemma.

LEMMA 4.2. For p ≥ 2, there exists a constant Kp , independent of the time
step, such that

E

[
max

0≤n≤N
‖Xn‖p

]
≤ Kp

and

E

[
max

0≤n≤N

∥∥Xn − x(tn)
∥∥p]≤ Kp�tp/2.

PROOF. The proof in [15] follows the standard method of analysis in refer-
ences such as [13, 14]. �
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Hence, the rate of strong convergence is O(�t1/2), which is no better than
the Euler–Maruyama discretisation. Nevertheless, we will show that the antithetic
multilevel estimator has a variance which converges to zero at the same rate as the
full Milstein approximation.

COROLLARY 4.3. For p ≥ 2, there exists a constant Kp , independent of the
time step, such that

E

[
max

0≤n≤N

∣∣fi(Xn)
∣∣p]≤ Kp, E

[
max

0≤n≤N

∣∣gij (Xn)
∣∣p]≤ Kp,

E

[
max

0≤n≤N

∣∣hijk(Xn)
∣∣p]≤ Kp

for all 1 ≤ i ≤ d and 1 ≤ j, k ≤ D.

PROOF. The bounded first derivatives of f (x), g(x), h(x) imply that they
grow no faster than linearly as ‖x‖ → ∞, and the result then follows from the
bound in Lemma 4.2. �

In order to derive appropriate bounds on the antithetic estimator we also need
the following lemma.

LEMMA 4.4. For p ≥ 2, there exists a constant Kp , independent of the time
step, such that

max
0≤n≤N

E
[‖Xn+1 − Xn‖p]≤ Kp�tp/2.

PROOF. We start from (4.2) and inequality (2.4) which gives

E
[|Xi,n+1 − Xi,n|p]≤ 3p−1

(
E
[∣∣fi(Xn)�t

∣∣p]+E

[∣∣∣∣∣
D∑

j=1

gij (Xn)�wj,n

∣∣∣∣∣
p]

+E

[∣∣∣∣∣
D∑

j,k=1

hijk(Xn)(�wj,n�wk,n − �jk�t)

∣∣∣∣∣
p])

.

The first term on the right has a O(�tp) bound due to the uniform bound on
E[|fi(Xn)|p]. For the second term we note that because �wj,n is independent
of Xn, then

E

[∣∣∣∣∣
D∑

j=1

gij (Xn)�wj,n

∣∣∣∣∣
p]

≤ Dp−1
D∑

j=1

E
[∣∣gij (Xn)

∣∣p]E[|�wj,n|p]
and we obtain a O(�tp/2) bound due to the uniform bound on E[|gij (Xn)|p] and
standard results for the moments of Brownian increments. The third term is han-
dled in a similar way and has a O(�tp) bound.

Together these give a O(�tp/2) bound for E[|Xi,n+1 − Xi,n|p] for each i, and
hence also for E[‖Xn+1 − Xn‖p]. �
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4.2. Antithetic MLMC estimator. Using the coarse timestep �t , the coarse
path approximation Xc

n, is given by the Milstein approximation without the Lévy
area term,

Xc
i,n+1 = Xc

i,n + fi

(
Xc

n

)
�t +

D∑
j=1

gij

(
Xc

n

)
�wj,n

+
D∑

j,k=1

hijk

(
Xc

n

)
(�wj,n�wk,n − �jk�t).

The first fine path approximation X
f
n uses the corresponding discretisation with

timestep �t/2,

X
f
i,n+1/2 = X

f
i,n + fi

(
Xf

n

)
�t/2 +

D∑
j=1

gij

(
Xf

n

)
δwj,n

(4.3)

+
D∑

j,k=1

hijk

(
Xf

n

)
(δwj,nδwk,n − �jk�t/2),

X
f
i,n+1 = X

f
i,n+1/2 + fi

(
X

f
n+1/2

)
�t/2 +

D∑
j=1

gij

(
X

f
n+1/2

)
δwn+1/2

(4.4)

+
D∑

j,k=1

hijk

(
X

f
n+1/2

)
(δwj,n+1/2δwk,n+1/2 − �jk�t/2),

in which

δwn ≡ w(tn+1/2) − w(tn), δwn+1/2 ≡ w(tn+1) − w(tn+1/2)(4.5)

are the Brownian increments over the first and second halves of the coarse
timestep, and so �wn = δwn + δwn+1/2.

The antithetic approximation Xa
n is defined by exactly the same discretisation,

except that the Brownian increments δwn and δwn+1/2 are swapped, so that

Xa
i,n+1/2 = Xa

i,n + fi

(
Xa

n

)
�t/2 +

D∑
j=1

gij

(
Xa

n

)
δwn+1/2

+
D∑

j,k=1

hijk

(
Xa

n

)
(δwj,n+1/2δwk,n+1/2 − �jk�t/2),

(4.6)

Xa
i,n+1 = Xa

i,n+1/2 + fi

(
Xa

n+1/2
)
�t/2 +

D∑
j=1

gij

(
Xa

n+1/2
)
δwj,n

+
D∑

j,k=1

hijk

(
Xa

n+1/2
)
(δwj,nδwk,n − �jk�t/2).
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Since δwn and δwn+1/2 are independent and identically distributed, Xa has ex-
actly the same distribution as Xf , and hence E[P(Xa)] = E[P(Xf )]. In addition,
the following lemma follows directly from Lemmas 4.2 and 4.4.

LEMMA 4.5. Let Xf and Xa be as defined above. Then for p ≥ 2, there exists
a constant Kp , independent of the time step, such that

E

[
max

0≤n≤N

∥∥Xf
n

∥∥p]≤ Kp, max
0≤n<N

E
[∥∥Xf

n+1/2 − Xf
n

∥∥p]≤ Kp�tp/2,

E

[
max

0≤n≤N

∥∥Xa
n

∥∥p]≤ Kp, max
0≤n<N

E
[∥∥Xa

n+1/2 − Xa
n

∥∥p]≤ Kp�tp/2.

4.3. Numerical analysis. The analysis is presented as a sequence of lemmas
and theorems, with the proofs deferred to the Appendix. The outline is as follows:

• Lemma 4.6 bounds ‖Xf
n − Xa

n‖ over a coarse timestep;

• Lemma 4.7 gives a representation of the discrete equation for X
f
n over a coarse

timestep, and Corollary 4.8 gives the corresponding representation for Xa
n ;

• Lemma 4.9 gives a representation of the discrete equation describing the evolu-
tion of the average �Xf

n = 1
2(X

f
n + Xa

n) over a coarse timestep;

• Theorem 4.10 bounds ‖�Xf
n − Xc

n‖ over a coarse timestep.

LEMMA 4.6. For all integers p ≥ 2, there exists a constant Kp such that

E

[
max

0≤n≤N

∥∥Xf
n − Xa

n

∥∥p]≤ Kp�tp/2.

LEMMA 4.7. Difference equation (4.4) for X
f
n can be expressed as

X
f
i,n+1 = X

f
i,n + fi

(
Xf

n

)
�t +

D∑
j=1

gij

(
Xf

n

)
�wj,n

+
D∑

j,k=1

hijk

(
Xf

n

)
(�wj,n�wk,n − �jk�t)

−
D∑

j,k=1

hijk

(
Xf

n

)
(δwj,nδwk,n+1/2 − δwk,nδwj,n+1/2)

+ M
f
i,n + N

f
i,n,

where E[Mf
n |Fn] = 0, and for any integer p ≥ 2 there exists a constant Kp such

that

max
0≤n≤N

E
[∥∥Mf

n

∥∥p]≤ Kp�t3p/2, max
0≤n≤N

E
[∥∥Nf

n

∥∥p]≤ Kp�t2p.
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COROLLARY 4.8. Difference equation (4.6) for Xa
n can be expressed as

Xa
i,n+1 = Xa

i,n + fi

(
Xa

n

)
�t +

D∑
j=1

gij

(
Xa

n

)
�wj,n

+
D∑

j,k=1

hijk

(
Xa

n

)
(�wj,n�wk,n − �jk�t)

+
D∑

j,k=1

hijk

(
Xa

n

)
(δwj,nδwk,n+1/2 − δwk,nδwj,n+1/2)

+ Ma
i,n + Na

i,n,

where E[Ma
n |Fn] = 0, and for any integer p ≥ 2 there exists a constant Kp such

that

max
0≤n≤N

E
[∥∥Ma

n

∥∥p]≤ Kp�t3p/2, max
0≤n≤N

E
[∥∥Na

n

∥∥p]≤ Kp�t2p.

LEMMA 4.9. The difference equation for �Xf
n ≡ 1

2(X
f
n + Xa

n) can be ex-
pressed as

�Xf
i,n+1 = �Xf

i,n + fi

(�Xf
n

)
�t +

D∑
j=1

gij

(�Xf
n

)
�wj,n

+
D∑

j,k=1

hijk

(�Xf
n

)
(�wj,n�wk,n − �jk�t)

+ Mi,n + Ni,n,

where E[Mn|Fn] = 0, and for any integer p ≥ 2 there exists a constant Kp such
that

max
0≤n≤N

E
[‖Mn‖p]≤ Kp�t3p/2, max

0≤n≤N
E
[‖Nn‖p]≤ Kp�t2p.

THEOREM 4.10. For all p ≥ 2, there exists a constant Kp such that

E

[
max

0≤n≤N

∥∥�Xf
n − Xc

n

∥∥p]≤ Kp�tp.

4.4. Piecewise linear interpolation analysis. The piecewise linear interpolant
Xc(t) for the coarse path is defined within the coarse timestep interval [tk, tk+1] as

Xc(t) ≡ (1 − λ)Xc
k + λXc

k+1, λ ≡ t − tk

tk+1 − tk
.
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Likewise, the piecewise linear interpolants Xf (t) and Xa(t) are defined on the fine
timestep [tk, tk+1/2] as

Xf (t) ≡ (1 − λ)X
f
k + λX

f
k+1/2, Xa(t) ≡ (1 − λ)Xa

k + λXa
k+1/2,

λ ≡ t − tk

tk+1/2 − tk

and there is a corresponding definition for the fine timestep [tk+1/2, tk+1].
The proofs of the next two lemmas are in the Appendix, and the theorem then

follows directly.

LEMMA 4.11. For all integers p ≥ 2, there exists a constant Kp such that

max
0≤n<N

E
[∥∥Xf

n+1/2 − Xa
n+1/2

∥∥p]≤ Kp�tp/2.

LEMMA 4.12. For all p ≥ 2, there exists a constant Kp such that

max
0≤n<N

E
[∥∥�Xf

n+1/2 − Xc(tn+1/2)
∥∥p]≤ Kp�tp,

where Xc(tn+1/2) = 1
2(Xc

n + Xc
n+1) is the midpoint value of the coarse path inter-

polant.

THEOREM 4.13. For all p ≥ 2, there exists a constant Kp such that

sup
0≤t≤T

E
[∥∥Xf (t) − Xa(t)

∥∥p]≤ Kp�tp/2,

sup
0≤t≤T

E
[∥∥�Xf (t) − Xc(t)

∥∥p]≤ Kp�tp,

where �Xf (t) is the average of the piecewise linear interpolants Xf (t) and Xa(t).

5. European and Asian payoffs.

5.1. European options. In the case of payoff which is a smooth function of
the final state x(T ), taking p = 2 in Lemma 2.2, p = 4 in Lemma 4.6 and p = 2
in Theorem 4.10, immediately gives the result that the multilevel variance

V
[1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(
Xc

N

)]
has an O(�t2) upper bound. This matches the convergence rate for the multilevel
method for scalar SDEs using the standard first order Milstein discretisation, and
is much better than the O(�t) convergence obtained with the Euler–Maruyama
discretisation.
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However, very few financial payoff functions are twice differentiable on the en-
tire domain R

d . A more typical 2D example is a call option based on the minimum
of two assets,

P
(
x(T )

)≡ max
(
0,min

(
x1(T ), x2(T )

)− K
)
,

which is piecewise linear, with a discontinuity in the gradient along the three lines
(s,K), (K, s) and (s, s) for s ≥ K .

To handle such payoffs, we introduce a new assumption which bounds the prob-
ability of the solution of the SDE having a value at time T close to such lines
with discontinuous gradients, and then formulate a theorem to show that the multi-
level variance which results from using the antithetic estimator has an upper bound
which is almost O(�t3/2).

ASSUMPTION 5.1. The payoff function P ∈ C(Rd,R) has a uniform Lips-
chitz bound, so that there exists a constant L such that∣∣P(x) − P(y)

∣∣≤ L|x − y| ∀x, y ∈ R
d

and the first and second derivatives exist, are continuous and have uniform bound
L at all points x /∈ K , where K is a set of zero measure, and there exists a constant
c such that the probability of the SDE solution x(T ), being within a neighbourhood
of the set K , has the bound

P

(
min
y∈K

∥∥x(T ) − y
∥∥≤ ε

)
≤ cε ∀ε > 0.

In a 1D context, Assumption 5.1 corresponds to an assumption of a locally
bounded density for x(T ).

THEOREM 5.2. If the SDE satisfies the conditions of Assumption 4.1, and the
payoff satisfies Assumption 5.1, then

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(
Xc

N

))2]= o
(
�t3/2−δ)

for any δ > 0.

PROOF. We start by noting that

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(
Xc

N

))2]
≤ 2E

[(1
2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))2]+ 2E
[1

2

(
P
(�Xf

N

)− P
(
Xc

N

))2]
.

The second term on the right-hand side has an O(�t2) bound due to the uniform
Lipschitz bound for the payoff, together with the result from Theorem 4.10 for
p = 2.
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The objective now is to prove that the first term has a o(�t3/2−δ) bound for any
δ > 0. The analysis follows the approach used in [7]. To prove this for a particular
value of δ, we define ε = �t1/2−δ/2, and consider the three events

A ≡
{
min
y∈K

∥∥x(T ) − y
∥∥≤ ε

}
,

B ≡ {∥∥x(T ) − X
f
N

∥∥≥ 1
2ε
}
,

C ≡ {∥∥Xf
N − Xa

N

∥∥≥ 1
2ε
}
.

Using 1A to indicate the indicator function for event A, and Ac to denote the
complement of A, we have

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))2]
= E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21A∪B∪C

]
+E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21Ac∩Bc∩Cc

]
.

Looking at the first of the two terms on the right-hand side, then Hölder’s in-
equality gives

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21A∪B∪C

]
≤ E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))2p]1/p(
P(A) + P(B) + P(C)

)1/q

for any p,q ≥ 1, with p−1 + q−1 = 1. The Markov inequality gives

P(B) ≤ E
[∥∥x(T ) − X

f
N

∥∥m]/(12ε
)m

for any m ≥ 1. Using the strong convergence property from Lemma 4.2, and the
definition of ε, we can take m to be sufficiently large so that

1

2
m − 1 − δ

2
m >

1 − δ

2

and hence there exists a constant c1 such that P(B) ≤ c1ε. Using Lemma 4.6, one
can obtain a similar bound P(C) ≤ c2ε, and then q can be chosen sufficiently close
to 1 so that(

P(A) + P(B) + P(C)
)1/q ≤ (1 + c1 + c2)

1/q�t(1/2−δ/2)/q = o
(
�t1/2−δ).

Since

1
2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

)= 1
2

(
P
(
X

f
N

)− P
(�Xf

N

))+ 1
2

(
P
(
Xa

N

)− P
(�Xf

N

))
,

the uniform Lipschitz bound gives

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))2p]1/p ≤ L2
E
[∥∥Xf

N − Xa
N

∥∥2p]1/p ≤ c3�t
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for some constant c3 due to Lemma 4.6, and hence

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21A∪B∪C

]= o
(
�t3/2−δ).

Lastly, we consider the second term

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21Ac∩Bc∩Cc

]
.

Given a path sample ω ∈ (Bc ∩ Cc), if the straight line between X
f
N and Xa

N con-
tains a point y ∈ K , then ‖y − X

f
N‖ and ‖x(T ) − X

f
N‖ are both less than ε/2, and

hence ‖x(T ) − y‖ < ε.
Thus, for a path sample ω ∈ (Ac ∩ Bc ∩ Cc), the straight line between X

f
N and

Xa
N does not contain any points in K . It is therefore possible to perform a second

order truncated Taylor expansion as in the proof of Lemma 2.2, and deduce that
there exists a constant c4 such that

E
[(1

2

(
P
(
X

f
N

)+ P
(
Xa

N

))− P
(�Xf

N

))21Ac∩Bc∩Cc

]≤ c4E
[∥∥Xf

N − Xa
N

∥∥4]
,

which has an O(�t2) bound due to Lemma 4.6. �

5.2. Asian payoffs. For an Asian option, the payoff depends on the average

xave ≡ T −1
∫ T

0
x(t)dt.

This can be approximated by integrating the appropriate piecewise linear inter-
polant which gives

Xc
ave ≡ T −1

∫ T

0
Xc(t)dt = N−1

N−1∑
n=0

1

2

(
Xc

n + Xc
n+1
)
,

Xf
ave ≡ T −1

∫ T

0
Xf (t)dt = N−1

N−1∑
n=0

1

4

(
Xf

n + 2X
f
n+1/2 + X

f
n+1

)
,

Xa
ave ≡ T −1

∫ T

0
Xa(t)dt = N−1

N−1∑
n=0

1

4

(
Xa

n + 2Xa
n+1/2 + Xa

n+1
)
.

Due to Hölder’s inequality,

E
[∥∥Xf

ave − Xa
ave
∥∥p]≤ T −1

∫ T

0
E
[∥∥Xf (t) − Xa(t)

∥∥p]dt

≤ sup
[0,T ]

E
[∥∥Xf (t) − Xa(t)

∥∥p]
and similarly,

E

[∥∥∥∥1

2

(
Xf

ave + Xa
ave
)− Xc

ave

∥∥∥∥p]≤ sup
[0,T ]

E
[∥∥�Xf (t) − Xc(t)

∥∥p].
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Hence, if the Asian payoff is a smooth function of the average, then taking p = 2
in Lemma 2.2, p = 4 in Corollary 4.11 and p = 2 in Corollary 4.12, again gives a
second order bound for the multilevel correction variance.

This analysis can be extended to include payoffs which are a smooth function
of a number of intermediate variables, each of which is a linear functional of the
path x(t) of the form ∫ T

0
gT (t)x(t)μ(dt)

for some vector function g(t) and measure μ(dt). This includes weighted averages
of x(t) at a number of discrete times, as well as continuously-weighted averages
over the whole time interval.

As with the European options, the analysis can also be extended to payoffs
which are Lipschitz functions of the average, and have first and second derivatives
which exist and are continuous and uniformly bounded, except for a set of points K

of zero measure.

ASSUMPTION 5.3. The payoff P ∈ C(Rd,R) has a uniform Lipschitz bound,
so that there exists a constant L such that∣∣P(x) − P(y)

∣∣≤ L|x − y| ∀x, y ∈ R
d

and the first and second derivatives exist, are continuous and have uniform bound
L at all points x /∈ K , where K is a set of zero measure, and there exists a constant
c such that the probability of xave being within a neighbourhood of the set K has
the bound

P

(
min
y∈K

‖xave − y‖ ≤ ε
)

≤ cε ∀ε > 0.

THEOREM 5.4. If the SDE satisfies the conditions of Assumption 4.1, and the
payoff satisfies Assumption 5.3, then

E
[(1

2

(
P
(
Xf

ave
)+ P

(
Xa

ave
))− P

(
Xc

ave
))2]= o

(
�t3/2−δ)

for any δ > 0.

5.3. Nonasymptotic result. The analysis above concerns the asymptotic be-
haviour of the multilevel variance as �t → 0. However, it is also worth noting that
since Xf and Xa have exactly the same distribution, conditional on the coarse path
Brownian increments �Wc, then P f −P c and P a −P c are identically distributed,
and hence

V
[1

2

(
P f + P a)− P c]= V

[1
2

(
P f − P c)+ 1

2

(
P a − P c)]

(5.1)
= 1

2(1 + ρ)V
[
P f − P c],
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where ρ is the correlation between the P f − P c and P a − P c. Thus, regardless
of the size of the timestep, the variance of the antithetic estimator cannot be larger
than the variance of the standard estimator, and could be significantly smaller if
ρ is negative. What the asymptotic analysis shows is that ρ → −1 as �t → 0.

6. Numerical experiments. In this section we present numerical tests in
which we compare classical Monte Carlo (MC), standard MLMC and antithetic
MLMC estimators. We consider the Clark–Cameron SDEs and Heston’s stochas-
tic volatility model with both smooth and non-smooth payoffs. We will see that in
all cases the antithetic MLMC variance is significantly smaller than the standard
MLMC variance on all levels of approximation.

6.1. Clark–Cameron SDEs. The first set of results in Figure 2 is for the Clark–
Cameron SDEs with initial conditions x1(0) = x2(0) = 0, final time T = 1, and
smooth payoff P = cos(x1(T )).

The top left plot shows the behaviour of the variance as a function of the level of
approximation, so that �t = 2−�. These values were estimated using 106 samples,

FIG. 2. Clark–Cameron SDEs with smooth payoff P = cos(x1(T )).
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so the sampling error is very small. The solid line is the variance of the standard
Monte Carlo estimator which varies very little with level. The dashed line is the
usual MLMC estimator P

f
� − P c

�−1, and the accompanying reference line with
slope −1 confirms its expected first order convergence. The dot-dash line is for the
antithetic estimator 1

2(P
f
� +P a

� )−P c
�−1, and its accompanying reference line with

slope −2 confirms its second order convergence. Note also that even on level � = 1
in which the multilevel estimator comes from the difference between simulations
with 2 timesteps (on level 1) and 1 timestep (on level 0), the antithetic estimator has
a variance which is roughly a factor 4 smaller than the standard MLMC estimator.

The top right plot shows the mean value for the multilevel correction. As ex-
pected the standard MLMC and antithetic MLMC estimator have exactly the same
expected value, and it converges at first order as indicated by the reference line
with slope −1.

The bottom right plot shows the dependence of the computational complexity
C (defined as the total number of random numbers generated) as a function of the
desired accuracy ε. Because of Theorem 2.1 the plot is of ε2C versus ε, because we
expect to see that ε2C is only weakly dependent on ε for the standard MLMC and
independent of ε for the antithetic MLMC. For the standard Monte Carlo method,
theory predicts that ε2C should be proportional to the number of timesteps on the
finest level, which in turn is roughly proportional to ε−1 due to the first order weak
convergence order. We see that computational complexity of the antithetic MLMC
is much lower than for the standard MLMC.

Further insight into the complexity cost is provided by the bottom left plot. Each
point in the bottom right complexity plot corresponds to a line in the bottom left
plot, showing the number of samples taken on each level of the multilevel ap-
proximation. Lines with the same plotting symbol correspond to the same desired
accuracy ε, with the upper line being for the MLMC estimator, and the lower line
being for the antithetic estimator.

There are several points to note in this plot. The first is that for a given accuracy,
the number of samples on each level decays rapidly as � increases. This follows
the prescription given in [6] in which the optimal number of samples on each level
is proportional to

√
Vl/Cl where Vl is the multilevel variance and Cl is the cost

of a single sample on level �. The constant of proportionality is chosen so that the
overall variance

∑L
�=0 N−1

� V� is less than ε2/2. Because the antithetic variance
converges to zero more rapidly, the slope of the antithetic lines is slightly greater
than the slope of the standard MLMC lines.

The next point to note is that the lines with circular symbols (which correspond
to the tightest accuracy specification ε = 10−4) extend to level � = 10, while the
other lines terminate at lower levels. This is again following the prescription in [6]
in which the mean square error is brought below ε2 by ensuring that the square
of the bias is also below ε2/2, like the total variance. Using a simple heuristic to
estimate the remaining discretisation bias, because of the first order weak conver-
gence, fewer approximation levels are required when ε is larger.
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The final observation to be made is that the antithetic line lies well below the
standard MLMC line for the same accuracy ε. This is what produces the overall
computational savings shown in the bottom right plot. However, on level 0 the
two are using exactly the same estimator, so why does the antithetic estimator use
fewer samples than the standard MLMC on level 0? The answer is that both have
a variance budget of ε2/2 to be spread over all of the levels in the way which min-
imises the total computational cost [6]. In the standard MLMC case, this budget is
spread fairly evenly over the different levels, but in the antithetic case most of the
budget is allocated to level 0 (because the estimator variance decays so rapidly on
the higher levels) and so fewer samples are required on level 0.

The next set of results in Figure 3 are for the same Clark–Cameron SDE but
with the Lipschitz payoff

P = max
(
x1(T ),0

)
.

The same comments as before apply to the plots in this figure. The only difference
is that the lower of the two reference lines in the top left plot has slope −1.5,

FIG. 3. Clark–Cameron SDEs with P = max(x1(T ),0).
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confirming that the multilevel variance is O(�t3/2) rather than O(�t2) because
of the discontinuity in the first derivative of the payoff function. Apart from that,
the results are very similar with the antithetic estimator have a much lower variance
on all grid levels, and overall giving a much reduced computational cost.

6.2. Heston stochastic volatility model. The Heston model [11], which is an
asset price model with stochastic volatility, is one of the most popular SDEs in
finance

ds(t) = rs(t)dt +√v(t)s(t)dw1(t), s(0) > 0,

dv(t) = κ
(
θ − v(t)

)
dt + σ

√
v(t)dw2(t), v(0) > 0,

where E[w1(t)w2(t)] = 0, r > 0 and 2κθ ≥ σ 2, ensuring that the zero boundary
is not attainable for the volatility process. Due to the nonlinearity of the diffusion
coefficient in the price process s(t) we work with log-Heston model

d log
(
s(t)
)= (r − 1

2v(t)
)

dt +√v(t)dw1(t),

dv(t) = κ
(
θ − v(t)

)
dt + σ

√
v(t)dw2(t).

Although the coefficients of the volatility process {v(t)}t≥0 are not Lipschitz
continuous, and hence the assumptions imposed in the current paper are not sat-
isfied, the numerical tests show that the antithetic MLMC performs very well. To
approximate the volatility process we use a drift implicit Milstein scheme that
preserves the positivity of the original SDE, and has a good strong convergence
property recently established by Neuenkirch and Szpruch in [16]. Hence, the Mil-
stein scheme for Heston’s stochastic volatility model with the Lévy area term set
to zero is given by

log(Sn+1) = log(Sn) + (r − 1
2Vn

)
�t +√Vn�w1,n + 1

4σ�w1,n�w2,n,

Vn+1 = Vn + κ(θ − Vn+1)�t + σ
√

Vn�w2,n + 1
2σ 4(�w2

2,n − �t
)
.

For the simulation studies we choose s0 = v0 = 1, r = 0.05, T = 1 and κ = 0.5,
θ = 0.9, σ = 0.05 in order to ensure the Feller boundary condition for the volatility
process.

Figure 4 presents our results for the smooth payoff P = x(T ). The four plots
have a similar structure to the results of the Clark–Cameron application. The two
reference lines in the top left plot again have slopes −1 and −2, confirming that
the antithetic MLMC variance is O(�t2), whereas the standard MLMC variance
is O(�t). The top right plot shows that the weak discretisation error is again first
order.

The bottom right plot shows that computational savings of the antithetic MLMC
compared to the standard MLMC are not as great as for the Clark–Cameron ap-
plication. The reason for this can be seen in the bottom left plot. The multilevel
variance on levels 1 and above is much smaller than the variance on level 0, where
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FIG. 4. Heston SDEs with P = x(T ).

both methods use the same estimator. Hence, in both cases much of the computa-
tional effort is expended on the coarsest level and so the benefits of the antithetic
treatment are reduced.

The final results in Figure 5 are for the same Heston SDEs but with the call
option payoff P = max(s(T ) − 1,0). The steeper of the two reference lines in the
top left plot has a slope of −2, not the −1.5 used for the Clark–Cameron case
for the non-smooth payoff. This indicates that the antithetic variance is O(�t2),
not the O(�t3/2) predicted by the analysis. It is possible that there is indeed an
O(�t3/2) component to the error, but that the corresponding coefficient is so small
that it does not become apparent until much smaller values of �t . Other than this,
the results are very similar to the previous case.

7. Conclusions. In this paper we have constructed a new antithetic multi-
level Monte Carlo estimator for multi-dimensional SDEs, with a variance which is
O(�t2) when the payoff function is smooth, and almost an O(�t3/2) when it is
Lipschitz and piecewise smooth. The algorithm is very easy to implement; all that
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FIG. 5. Heston SDEs with P = max(s(T ) − 1,0).

is required is to calculate a second fine path for which the odd and even Brownian
increments are swapped.

In the European and Asian payoff cases considered in this paper, it reduces the
computational complexity for an ε root-mean-square error to O(ε−2), compared
to O(ε−2(log (1/ε))2) for the multilevel method using the Euler–Maruyama dis-
cretisation, and O(ε−3) for the standard Monte Carlo method. Furthermore, by
ensuring that the dominant computational effort is on the coarsest levels (since
β > 1), it is now feasible to obtain further improvements using quasi-Monte Carlo
techniques [9].

In a future paper, we will extend the analysis to cover digital and barrier op-
tions. The improvements from an extended version of the antithetic treatment are
then more substantial, improving the complexity from O(ε−5/2) to approximately
O(ε−2).

APPENDIX: PROOF OF MAIN RESULTS

A.1. Proof of Lemma 4.6. Conditional on the Brownian increments �w for
the coarse path Xc, the Brownian increments for Xf and Xa have exactly the same
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distribution, and therefore Xa
n − Xc

n has exactly the same distribution as X
f
n −Xc

n.
Hence we obtain, using inequality (2.4),

E

[
max

0≤n≤N

∥∥Xf
n − Xa

n

∥∥p]
≤ 2p−1

(
E

[
max

0≤n≤N

∥∥Xf
n − Xc

n

∥∥p]+E

[
max

0≤n≤N

∥∥Xa
n − Xc

n

∥∥p])
= 2p

E

[
max

0≤n≤N

∥∥Xf
n − Xc

n

∥∥p]
≤ 22p−1

(
E

[
max

0≤n≤N

∥∥Xf
n − x(tn)

∥∥p]+E

[
max

0≤n≤N

∥∥Xc
n − x(tn)

∥∥p]).
The desired result then follows from the strong convergence property in
Lemma 4.2.

A.2. Proof of Lemma 4.7 and Corollary 4.8. Combining the two equations
in (4.3), and using the identity

�wj,n�wk,n = (δwj,n + δwj,n+1/2)(δwk,n + δwk,n+1/2)

together with the definition of hijk in (1.2) gives, after considerable re-arrange-
ment,

X
f
i,n+1 = X

f
i,n + fi

(
Xf

n

)
�t +

D∑
j=1

gij

(
Xf

n

)
�wj,n

+
D∑

j,k=1

hijk

(
Xf

n

)
(�wj,n�wk,n − �jk�t)

−
D∑

j,k=1

hijk

(
Xf

n

)
(δwj,nδwk,n+1/2 − δwk,nδwj,n+1/2)

+ Ri,n + M
(2)
i,n + M

(3)
i,n ,

where

Ri,n = (fi

(
X

f
n+1/2

)− fi

(
Xf

n

))
�t/2,

M
(2)
i,n =

D∑
j=1

(
gij

(
X

f
n+1/2

)− gij

(
Xf

n

)− 2
D∑

k=1

hijk

(
Xf

n

)
δwk,n

)
δwj,n+1/2,

M
(3)
i,n =

D∑
j,k=1

(
hijk

(
X

f
n+1/2

)− hijk

(
Xf

n

))
(δwj,n+1/2δwk,n+1/2 − �jk�t/2).
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Considering Rn, a Taylor expansion gives

fi

(
X

f
n+1/2

)− fi

(
Xf

n

)
=

d∑
j=1

∂fi

∂xj

(
Xf

n

)(
X

f
j,n+1/2 − X

f
j,n

)

+ 1

2

d∑
j,k=1

∂2fi

∂xj ∂xk

(ξ1)
(
X

f
j,n+1/2 − X

f
j,n

)(
X

f
k,n+1/2 − X

f
k,n

)
for some ξ1 which lies on the line between X

f
n and X

f
n+1/2. Hence, Rn can be split

into two parts, Rn = M
(1)
n + Nn, where

M
(1)
i,n =

d∑
j=1

D∑
k=1

∂fi

∂xj

(
Xf

n

)
gjk

(
Xf

n

)
δwk,n�t/2,

and

Ni,n =
d∑

j=1

∂fi

∂xj

(
Xf

n

)(
fj

(
Xf

n

)
�t/2

+
D∑

k,l=1

hjkl

(
Xf

n

)
(δwk,nδwl,n − �kl�t/2)

)
�t/2

+ 1

2

d∑
j,k=1

∂2fi

∂xj ∂xk

(ξ1)
(
X

f
j,n+1/2 − X

f
j,n

)(
X

f
k,n+1/2 − X

f
k,n

)
�t/2.

Considering M
(2)
n , a Taylor expansion gives

gij

(
X

f
n+1/2

)− gij

(
Xf

n

)
=

d∑
k=1

∂gij

∂xk

(
Xf

n

)(
X

f
k,n+1/2 − X

f
k,n

)

+ 1

2

d∑
k,l=1

∂2gij

∂xk ∂xl

(ξ2)
(
X

f
k,n+1/2 − X

f
k,n

)(
X

f
l,n+1/2 − X

f
l,n

)
for some ξ2 on the line between X

f
n and X

f
n+1/2, and therefore

M
(2)
i,n =

D∑
j=1

d∑
k=1

∂gij

∂xk

(
Xf

n

)(
fk

(
Xf

n

)
�t/2

+
D∑

l,m=1

hklm

(
Xf

n

)
(δwl,nδwm,n − �lm�t/2)

)
δwj,n+1/2
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+ 1

2

D∑
j=1

d∑
k,l=1

∂2gij

∂xk ∂xl

(ξ2)
(
X

f
k,n+1/2 − X

f
k,n

)(
X

f
l,n+1/2 − X

f
l,n

)
δwj,n+1/2.

Finally, considering M
(3)
n we have

M
(3)
i,n =

D∑
j,k=1

(
hijk

(
X

f
n+1/2

)− hijk

(
Xf

n

))
(δwj,n+1/2δwk,n+1/2 − �jk�t/2)

=
D∑

j,k=1

d∑
l=1

∂hijk

∂xl

(ξ3)
(
X

f
l,n+1/2 − X

f
l,n

)
(δwj,n+1/2δwk,n+1/2 − �jk�t/2)

for some ξ3 on the line between X
f
n and X

f
n+1/2.

Setting M
f
n ≡ M

(1)
n + M

(2)
n + M

(3)
n , it is clear that E[Mf

n |Fn] = 0 since δwn is
independent of X

f
n , and δwn+1/2 is independent of X

f
n and X

f
n+1/2.

All that remains is to bound the magnitude of E[‖Mf
n ‖p] and E[‖Nf

n ‖p]. Look-
ing at two of the terms in M

(2)
i,n , for example, the uniform bound on the first deriva-

tives of g, together with the fact that δwn+1/2 is independent of both X
f
n and δwn

leads to

E

[∣∣∣∣∂gij

∂xk

(
Xf

n

)
hklm

(
Xf

n

)
δwl,nδwm,nδwj,n+1/2

∣∣∣∣p]
≤ Lp

E
[∣∣hklm

(
Xf

n

)∣∣p]E[‖δwn‖2p]
E
[‖δwn+1/2‖p]

and the uniform bound on the second derivatives of g, together with the fact that
δwn+1/2 is independent of both X

f
n and X

f
n+1/2 leads to

E

[∣∣∣∣ ∂2gij

∂xk ∂xl

(ξ2)
(
X

f
k,n+1/2 − X

f
k,n

)(
X

f
l,n+1/2 − X

f
l,n

)
δwj,n+1/2

∣∣∣∣p]
≤ Lp

E
[∥∥Xf

n+1/2 − Xf
n

∥∥2p]
E
[‖δwn+1/2‖p].

Combining the uniform bound on E[|hijk(X
f
n )|2p] from Corollary 4.3 with the

bounds from Lemma 4.4, and standard results for the moments of Brownian incre-
ments, gives the required O(�t3p/2) bound for each of the two terms considered.

Deriving similar bounds for the other terms in Mf and Nf , and combining
them using (2.4), eventually gives the desired bounds for both E[‖Mf

n ‖p] and
E[‖Nf

n ‖p].
The proof is almost exactly the same for Corollary 4.8. The sign change in the

second line of the equation in the statement of the corollary is due to the swapping
of the Brownian increments for the first and second halves of the timestep.



1614 M. B. GILES AND L. SZPRUCH

A.3. Proof of Lemma 4.9. Recalling that �Xf = 1
2(Xf + Xa), taking the av-

erage of the results from Lemma 4.7 and Corollary 4.8 gives

�Xf
i,n+1 = �Xf

i,n + fi

(�Xf
n

)
�t +

D∑
j=1

gij

(�Xf
n

)
�wj,n

+
D∑

j,k=1

hijk

(�Xf
n

)
(�wj,n�wk,n − �jk�t)

+ 1

2

(
M

f
i,n + N

f
i,n + Ma

i,n + Na
i,n

)+ M
(1)
i,n + M

(2)
i,n + M

(3)
i,n + N

(1)
i,n ,

where

N
(1)
i,n = (1

2

(
fi

(
Xf

n

)+ fi

(
Xa

n

))− fi

(�Xf
n

))
�t,

M
(1)
i,n =

D∑
j=1

(
1

2

(
gij

(
Xf

n

)+ gij

(
Xa

n

))− gij

(�Xf
n

))
�wj,n,

M
(2)
i,n =

D∑
j,k=1

(
1

2

(
hijk

(
Xf

n

)+ hijk

(
Xa

n

))− hijk

(�Xf
n

))
(�wj,n�wk,n − �jk�t),

M
(3)
i,n =

D∑
j,k=1

1

2

(
hijk

(
Xf

n

)− hijk

(
Xa

n

))
(δwj,nδwk,n+1/2 − δwk,nδwj,n+1/2).

Setting

Mn = 1
2

(
Mf

n + Ma
n

)+ M(1)
n + M(2)

n + M(3)
n , Nn = 1

2

(
Nf

n + Na
n

)+ N(1)
n ,

it is clear that E[Mn|Fn] = 0, and all that remains is to bound the magnitude of
E[‖Mn‖p] and E[‖Nn‖p]. By performing second order Taylor series expansions
for f (x) and g(x), and first order expansions for h(x), all about �Xf

n , we obtain

N
(1)
i,n = 1

16

d∑
j,k=1

(
∂2fi

∂xj ∂xk

(ξ1) + ∂2fi

∂xj ∂xk

(ξ2)

)(
X

f
j,n − Xa

j,n

)(
X

f
k,n − Xa

k,n

)
�t,

M
(1)
i,n = 1

16

D∑
j=1

d∑
k,l=1

(
∂2gij

∂xk ∂xl

(ξ3) + ∂2gij

∂xk ∂xl

(ξ4)

)

× (Xf
k,n − Xa

k,n

)(
X

f
l,n − Xa

l,n

)
�wj,n,

M
(2)
i,n = 1

4

D∑
j,k=1

d∑
l=1

(
∂hijk

∂xl

(ξ5) − ∂hijk

∂xl

(ξ6)

)

× (Xf
l,n − Xa

l,n

)
(�wj,n�wk,n − �jk�t),
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M
(3)
i,n = 1

4

D∑
j,k=1

d∑
l=1

(
∂hijk

∂xl

(ξ7) + ∂hijk

∂xl

(ξ8)

)

× (Xf
l,n − Xa

l,n

)
(δwj,nδwk,n+1/2 − δwk,nδwj,n+1/2)

for some ξ1, ξ3, ξ5, ξ7 between �Xf
n and X

f
n , and ξ2, ξ4, ξ6, ξ8 between �Xf

n

and Xa
n .

Using the same arguments as in the final part of the proof of Lemma 4.7, to-
gether with the bounds on E[‖Mf

n ‖p], E[‖Ma
n‖p], E[‖Nf

n ‖p] and E[‖Na
n‖p],

leads to the required bounds for the moments of Mn and Nn.

A.4. Proof of Theorem 4.10. If we define Sn = E[max
m≤n

‖�Xf
m − Xc

m‖p], then

inequality (2.4) gives

Sn ≤ dp−1
d∑

i=1

E

[
max
m≤n

∣∣�Xf
i,m − Xc

i,m

∣∣p].(A.1)

Taking the difference between the equation in Lemma 4.9 and equation (4.2),
and summing over the first m timesteps, we obtain

�Xf
i,m − Xc

i,m =
m−1∑
l=0

(
fi

(�Xf
i,l

)− fi

(
Xc

i,l

))
�t

+
m−1∑
l=0

D∑
j=1

(
gij

(�Xf
i,l

)− gij

(
Xc

i,l

))
�wj,l

+
m−1∑
l=0

D∑
j,k=1

(
hijk

(�Xf
i,l

)− hijk

(
Xc

i,l

))
(�wj,l�wk,l − �jk�t)

+
m−1∑
l=0

Mi,l +
m−1∑
l=0

Ni,l

and using inequality (2.4) again gives

E

[
max
m≤n

∣∣�Xf
i,m − Xc

i,m

∣∣p]

≤ 5p−1

(
E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

(
fi

(�Xf
i,l

)− fi

(
Xc

i,l

))
�t

∣∣∣∣∣
p]

+E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

D∑
j=1

(
gij

(�Xf
i,l

)− gij

(
Xc

i,l

))
�wj,l

∣∣∣∣∣
p]

(A.2)
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+E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

D∑
j,k=1

(
hijk

(�Xf
i,l

)− hijk

(
Xc

i,l

))

× (�wj,l�wk,l − �jk�t)

∣∣∣∣∣
p]

+E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

Mi,l

∣∣∣∣∣
p]

+E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

Ni,l

∣∣∣∣∣
p])

.

We now need to bound each of the five expectations on the right-hand side
of (A.2). The last is the easiest, since∣∣∣∣∣

m−1∑
l=0

Ni,l

∣∣∣∣∣
p

≤ mp−1
m−1∑
l=0

|Ni,l|p ≤ np−1
n−1∑
l=0

|Ni,l|p

and therefore

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

Ni,l

∣∣∣∣∣
p]

≤ np−1
n−1∑
l=0

E
[|Ni,l|p]≤ c1(n�t)p�tp

for some constant c1 (which like other such constants in this proof will depend on
p, L and T but not on �t) due to Lemma 4.9.

Similarly, there exists a constant c2 such that

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

(
fi

(�Xf
i,l

)− fi

(
Xc

i,l

))
�t

∣∣∣∣∣
p]

≤ np−1
m−1∑
l=0

E
[∣∣fi

(�Xf
i,l

)− fi

(
Xc

i,l

)∣∣p]�tp

≤ c2(n�t)p−1
n−1∑
m=0

Sm�t

with the second step being due to the uniform bound on the first derivatives of f .
The other three expectations in (A.2) involve martingales, and so we can use the

discrete Burkholder–Davis–Gundy inequality [1]. Starting again with the easiest,
there are constants c3, c4 such that

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

Mi,l

∣∣∣∣∣
p]

≤ c3E

[(
n−1∑
m=0

(Mi,m)2

)p/2]

≤ c3n
p/2−1

n−1∑
m=0

E
[|Mi,m|p]≤ c4(n�t)p/2�tp

with the final step being due to Lemma 4.9.
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Similarly, there exists a constant c5 such that

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

D∑
j=1

(
gij

(�Xf
i,l

)− gij

(
Xc

i,l

))
�wj,l

∣∣∣∣∣
p]

≤ c5n
p/2−1Dp−1

n−1∑
m=0

D∑
j=1

E
[∣∣(gij

(�Xf
i,m

)− gij

(
Xc

i,m

))
�wj,m

∣∣p].
Since �wj,m is independent of both �Xf

i,m and Xc
i,m, it follows that

E
[∣∣(gij

(�Xf
i,m

)− gij

(
Xc

i,m

))
�wj,m

∣∣p]= E
[∣∣gij

(�Xf
i,m

)− gij

(
Xc

i,m

)∣∣p]E[|�wj,m|p].
Hence, because of the uniformly bounded first derivatives of g, and standard results
for the moments of Brownian increments, there exists a constant c6 such that

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

D∑
j=1

(
gij

(�Xf
i,l

)− gij

(
Xc

i,l

))
�wj,l

∣∣∣∣∣
p]

≤ c6(n�t)p/2−1
n−1∑
m=0

Sm�t.

Finally, following the same approach, there exists a constant c7 such that

E

[
max
m≤n

∣∣∣∣∣
m−1∑
l=0

D∑
j,k=1

(
hijk

(�Xf
i,l

)− hijk

(
Xc

i,l

))
(�wj,l�wk,l − �jk�t)

∣∣∣∣∣
p]

≤ c5(n�t)p/2−1�tp/2
n−1∑
m=0

Sm�t.

Since n�t ≤ T in all of the above inequalities, combining the above bounds for
each term in (A.2), and inserting these into (A.1), there then exists a constant c8
such that

Sn ≤ c8

(
�tp +

n−1∑
m=0

Sm�t

)
.

The desired result is then obtained from a discrete Grönwall inequality.

A.5. Proof of Lemma 4.11. The identity X
f
n+1/2 − Xa

n+1/2 = (X
f
n+1/2 −

X
f
n ) + (X

f
n − Xa

n) + (Xa
n − Xa

n+1/2) gives∥∥Xf
n+1/2 − Xa

n+1/2

∥∥p
≤ 3p−1(∥∥Xf

n+1/2 − Xf
n

∥∥p + ∥∥Xf
n − Xa

n

∥∥p + ∥∥Xa
n+1/2 − Xa

n

∥∥p).
It then follows from Lemmas 4.5 and 4.6 that there exists a constant Kp , indepen-
dent of both �t and n, for which

E
[∥∥Xf

n+1/2 − Xa
n+1/2

∥∥p]≤ Kp�tp/2.



1618 M. B. GILES AND L. SZPRUCH

A.6. Proof of Lemma 4.12. Averaging the discrete equations for X
f
n+1/2 and

Xa
n+1/2, and using the identities δwn = 1

2�wn + 1
2(δwn −δwn+1/2) and δwn+1/2 =

1
2�wn − 1

2(δwn − δwn+1/2), gives

�Xf
i,n+1/2 = �Xf

i,n + 1

2
fi

(�Xf
n

)
�t + 1

2

D∑
j=1

gij

(�Xf
n

)
�wj,n + Ni,n,(A.3)

where

Ni,n = 1

2

(
1

2

(
fi

(
Xf

n

)+ fi

(
Xa

n

))− fi

(�Xf
n

))
�t

+ 1

2

D∑
j=1

(
1

2

(
gij

(
Xf

n

)+ gij

(
Xa

n

))− gij

(�Xf
n

))
�wj,n

+ 1

4

D∑
j=1

(
gij

(
Xf

n

)− gij

(
Xa

n

))
(δwj,n − δwj,n+1/2)

+ 1

2

D∑
j,k=1

(
hijk

(
Xf

n

)(
δwj,nδwk,n − 1

2
�jk�t

)

+hijk

(
Xa

n

)(
δwj,n+1/2δwk,n+1/2 − 1

2
�jk�t

))
.

Following the same method of analysis as in the proof of Lemma 4.7 it can be
proved that E[|Ni,n|p] has an O(�tp) bound.

Next, defining Xc
n+1/2 to be the linear interpolant value 1

2(Xc
n +Xc

n+1), then the
equation for Xc

n+1 yields

Xc
i,n+1/2 = Xc

i,n + 1

2
fi

(
Xc

n

)
�t + 1

2

d∑
j=1

gij

(
Xc

n

)
�wj,n

(A.4)

+ 1

2

d∑
j,k=1

hijk

(
Xc

n

)
(�wj,n�wk,n − �jk�t).

Subtracting (A.4) from (A.3) gives

�Xf
i,n+1/2 − Xc

i,n+1/2 = �Xf
i,n − Xc

i,n + 1

2

(
fi

(�Xf
n

)− fi

(
Xc

n

))
�t

+ 1

2

d∑
j=1

(
gij

(�Xf
n

)− gij

(
Xc

n

))
�wj,n

+ Ni,n + 1

2

d∑
j,k=1

hijk

(
Xc

n

)
(�wj,n�wk,n − �jk�t).
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Using the bounds on E[‖�Xf
n − Xc

n‖p], the bounded first derivatives of f (x) and
g(x), the uniform bound on E[|hijk(X

c
n)|p] and standard results for Brownian in-

crements, we can conclude that there exists a constant Kp , independent of both �t

and n, such that such that

E
[∥∥�Xf

i,n+1/2 − Xc
i,n+1/2

∥∥p]≤ Kp�tp.
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