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Viral infections are amongst the most common diseases affecting people worldwide.

New viruses emerge all the time and presently we have limited number of vaccines and

only few antivirals to combat viral diseases. Fungi represent a vast source of bioactive

molecules, which could potentially be used as antivirals in the future. Here, we have

summarized the current knowledge of fungi as producers of antiviral compounds and

discuss their potential applications. In particular, we have investigated how the antiviral

action has been assessed and what is known about the molecular mechanisms and

actual targets. Furthermore, we highlight the importance of accurate fungal species

identification on antiviral and other natural products studies.

Keywords: antiviral agents, antiviral mechanisms, endophytes, fungal secondary metabolites, medicinal

mushrooms, natural products

INTRODUCTION

Viruses cause serious outbreaks in all continents leading to difficult symptoms and mortality, and
enormous economic burden for society. In addition, the constant emergence of new serotypes in
virus groups that have a high mutation rate and low fidelity for viral replication adds challenges in
combatting against these viruses.

Viruses can be divided into those containing a lipid envelope and those whose genome is
only covered by a protein shell. Enveloped viruses are less stable and more prone to degradation
when treated with lipid solvents. Their infection mechanisms are usually based on the presence of
fusogenic peptides in the lipid envelope leading to a merge of viral and cellular membranes. The
non-enveloped viruses are much more stable and may stay active in wastewaters and on surfaces
from several weeks to months. The non-enveloped viruses such as Noro viruses and enteroviruses
are therefore causing outbreaks that are difficult to handle. In addition, they show little sensitivity
to chemical disinfectants (Wutzler and Sauerbrei, 2004; Chan and Abu Bakar, 2005). Thus, there
is a need for both vaccines and antivirals to encounter viral infections. However, the development
of vaccines against a wide range of newly emerging virus serotypes is challenging, and currently
vaccines are available only against a handful of viruses. In addition, vaccination cannot help if the
infection is already present in the system.

The antiviral drugs inhibit the virus infection either by specifically targeting the viral proteins
or the host cellular factors that the viruses exploit for their reproduction (Clercq, 2002). However,
the problem in using viral proteins as drug targets is the high rate at which viruses produce mutant
resistant strains against them (De Palma et al., 2008). Cellular factors exploited by viruses also serve
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as potential drug targets. However, they cannot be considered
automatically as reliable targets, since viruses may deviate from
their original pathway and still cause an effective infection (Van
der Linden et al., 2015). Also, targeting cellular factors might
have an adverse effect on normal functioning of the host cells.
Furthermore, the mechanisms of non-enveloped viruses to break
the host cell membrane barrier is less well known, which forms an
additional challenge in developing strategies against these viruses.

An antiviral drug has to fulfill a set of prerequisites when
undergoing preclinical and clinical trials. A vital requirement
is that the drug should be effective in inhibiting the virus
infection without causing any cytotoxicity and with minimal
side effects to the host cells. In addition, a drug should be
able to completely inhibit the virus infection, partial inhibition
leads to the generation of drug resistant mutant strains. Due to
these prerequisites, only a handful of synthetic antiviral drugs
have made it past the clinical phase. Until today, the successful
‘one bug–one drug’ approach has been used for antiviral drug
development. However, today the focus has shifted toward
designing broad-spectrum antivirals, which can act on multiple
viruses by targeting a common but essential viral function (Vigant
et al., 2015). Combinatorial chemistry is nowadays a preferred
approach adapted by major drug companies for discovering
pharmacologically significant compounds (Strobel and Daisy,
2003). Although combinatorial chemistry approach has proven
successful in optimizing structures of drug compounds, only one
de novo new chemical entity (NCE) has been approved as a drug
[sorafenib (Nexavar) acting as anti-tumor] in these 25 plus years
from this method (Cragg and Newman, 2007).

On the other hand, bioactive compounds isolated from
natural biological sources offer a vast and unexplored diversity
of chemical structures, unmatched by even the biggest
combinatorial databases (Strobel and Daisy, 2003). Since
thousands of years, natural products have served as traditional
medicine and still provide the most affordable treatment for
diseases in many developing countries (Amzat and Razum,
2018). Around 40% of modern drugs and 49% of new chemical
products registered by the United States Food and Drug
Administration (FDA) are based on natural products or their
derivatives (Brewer, 2000). Bioactive compounds are naturally
derived metabolites and/or by-products from microorganisms,
plants, or animals (Baker et al., 2000). Since the past 25 years,
bioactive compounds from many traditional medicinal plants
have been screened for their antiviral activity by various research
groups in Asia, Far East, Europe, and America (Jassim and Naji,
2003).

Particular importance for novel drug discoveries has been
bioactive molecules of fungal origin. Especially fungi growing in
unique environments such as endophytic and marine fungi are
being constantly explored for their antibacterial and antifungal
potential. During the past decade, many novel bioactive
natural products possessing cytotoxic, anticancer, antibacterial
or antifungal activities have been discovered from marine fungi
(Mayer et al., 2013; Cheung et al., 2014; Singh et al., 2015). Fungi
potentially contain and/or produce several effective molecules
that could also be used as antivirals for other hosts. The
discovery and characterization of fungal compounds having

antiviral activities is an emerging field of research, and several
compounds have already been identified as promising. In this
review, we go through the present knowledge of fungi-derived
extracts and other bioactive agents against viral infection. We
especially focus on how the antiviral action has been assessed and
how much is known about the mechanisms of action and actual
targets.

FUNGI AS A SOURCE OF ANTIVIRAL
AGENTS - AN OVERVIEW

The kingdom Fungi represents a rich source of various
biologically active compounds. During the past decades,
thousands of compounds with diverse biological activities
have been recognized and continue to be investigated. Fungal
compounds with antiviral activities are less extensively studied,
but also number of these investigations is on the increase. We
have compiled a list of fungal orders with reported positive
antiviral activities (Table 1) and also mapped this information on
illustrative phylogenetic trees (Figures 1–3). Fungal species with
reported antiviral activities are given in Supplementary Table S1.
These demonstrate that the previous studies have focused on
the late-diverging fungal phyla (Ascomycota and Basidiomycota)
and on rather limited taxonomic groups, while several remaining
completely uninvestigated.

Particularly well-studied for their biologically active
compounds, including antivirals, are edible and medicinal
mushrooms. Another group of fungi that has been a focus
of interest are endophytic fungi, particularly those that grow
in marine habitats. The biologically active compounds can
be roughly divided into two major groups of molecules; the
high-molecular weight compounds present in the extracts
and products derived from the fruiting bodies of edible and
medicinal mushrooms, and the small organic molecules
(secondary metabolites) excreted by the endophytic and other
fungi in a liquid culturing (fermentation) setups.

Further rough division can be made when considering the
repertoire of antiviral compounds found from different fungal
taxonomic groups. Mapping the antiviral compounds on the
larger phylogeny of Fungi (Figure 1) demonstrates that all the
currently known secondary metabolites have been identified
from Ascomycota and Basidiomycota. Ascomycota with antiviral
activities includes endophytes and other microfungi restricted
to limited number of orders (Figure 2), while the edible
and medicinal mushrooms in the Agaricales and Polyporales
(Basidiomycota) (Figure 3) are recognized as a source of
high-molecular weight compounds. The increasing number of
published fungal genome data combined with the traditional
bioactivity screening methods has provided novel insights
into the true capacity of fungi as producers of bioactive
compounds (Bergmann et al., 2007; Khaldi et al., 2010;
Brakhage, 2013; Clevanger et al., 2017). These studies indicate
that differences exist between these two phyla in a number
of secondary metabolites biosynthetic gene clusters and their
dominance in their genomes; basidiomycetes typically having
fewer compared to ascomycetes (Brakhage, 2013). However, the
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TABLE 1 | Fungal orders with positive antiviral activities.

Phylum Order Virus∗ Reference

Ascomycota Amphisphaeriales EV711, HIV-I1 Li et al., 2008; Wang J. et al., 2014; Jia et al., 2015

Capnodiales H1N11 Peng et al., 2013; Wu et al., 2014

Chaetothyriales HIV-I4 Ondeyka et al., 2003; Mlinaric et al., 2005

Diaporthales HIV-14, HSV-11 Jayasuriya et al., 2003; Bunyapaiboonsri et al., 2010

Dothideales HSV-15 Isaka et al., 2007

Eurotiales EV712, DENV3, H1N12, HIV-14,

H3N22, JEV1, Zika virus2

Omura et al., 1993; Matsuzaki et al., 1995; Singh et al., 2003a; Shiomi et al.,

2005; Sebastian et al., 2011; Zhang et al., 2011; Gao et al., 2013a; He et al.,

2013; Bashyal et al., 2014; Fang et al., 2014; Peng et al., 2014; Wang J.-F.

et al., 2014; Stierle and Stierle, 2015; Yu et al., 2016; Raekiansyah et al., 2017

Glomerellales HIV-14 Mlinaric et al., 2005

Helotiales HSV-11 Rowley et al., 2003

Hypocreales EV712, HIV-14, HSV-11,

H1N11,4, H3N21,4

Hazuda et al., 1999; Yoshimoto et al., 1999; Minagawa et al., 2002; Singh

et al., 2003a,b; Sawadjoon et al., 2004; Mlinaric et al., 2005; Jiang et al., 2011;

Ma et al., 2013; Li et al., 2014; Zhao et al., 2017; Pang et al., 2018

Microascales HIV-14 Mlinaric et al., 2005

Ophiostomatales HIV-14 Mlinaric et al., 2005

Pezizales HIV-14 Pérez et al., 2014

Pleosporales HIV-14, HSV-11 Hazuda et al., 1999; Singh et al., 2002; Guo et al., 2009; Shushni et al., 2011;

Bashyal et al., 2014; Zhang et al., 2015

Saccharomycetales HIV-14 Mlinaric et al., 2005

Sordaliales HIV-14, influenza A and B4 Mlinaric et al., 2005; Sacramento et al., 2015

Xylariales H1N12, HIV-14, HSV-11 Hazuda et al., 1999; Pittayakhajonwut et al., 2005; Zhang et al., 2016

Basidiomycota Agaricales BoHV-11,3, H1N12, HCV5,

HBV4,5, HCV5, HIV-12,

HSV-11,2,3, HSV-21,2, influenza

A2, polio2, RSV1,2, vaccinia1,

VS1, VZV2, WEE2

Kandefer-Szerszeń et al., 1980; Amoros et al., 1997; Saboulard et al., 1998;

Piraino and Brandt, 1999; Wang and Ng, 2000, 2001; Sorimachi et al., 2001;

Lehmann et al., 2003; Chen et al., 2004; Mlinaric et al., 2005; Bruggemann

et al., 2006; Grinde et al., 2006; Faccin et al., 2007; Razumov et al., 2010; Zhu

et al., 2010; Cardozo et al., 2011, 2014; Gao et al., 2013b; Yamamoto et al.,

2013; Krupodorova et al., 2014

Boletales HIV-14, HSV-15, vaccinia1, VS1 Kandefer-Szerszeń et al., 1980; Kanokmedhakul et al., 2003; Mlinaric et al.,

2005

Cantharellales HIV-14, vaccinia1 Kandefer-Szerszeń et al., 1980; Mlinaric et al., 2005

Gomphales vaccinia1 Kandefer-Szerszeń et al., 1980

Hymenochaetales influenza A and B4 Ichimura et al., 1998; Awadh Ali et al., 2003;

Polyporales BoHV-11, EBV-A3, EV712,

H1N12, H3N22, HCV2,

HHV-12,4, HIV4, HSV-11,2,4,

HSV-21,2, influenza A2,

MCMV1,2, measles2, mumps2,

polio1,2,3, PV-11, VSV2, WEE2,

EMCV2,4

Hirose et al., 1987; Okada and Minamishima, 1987; Tochikura et al., 1987,

1988; Suzuki et al., 1989; Sorimachi et al., 1990; Sarkar et al., 1993; Amoros

et al., 1997; Collins and Ng, 1997; El-Mekkawy et al., 1998; Min et al., 1998;

Eo et al., 1999a,b, 2000; Kim et al., 2000; Iwatsuki et al., 2003; Mothana et al.,

2003; Ngai and Ng, 2003; Singh et al., 2003a; Mlinaric et al., 2005;

Niedermeyer et al., 2005; Gu et al., 2007; El Dine et al., 2008; Sato et al., 2009;

Razumov et al., 2010; Rincão et al., 2012; Teplyakova et al., 2012;

Krupodorova et al., 2014; Zhang et al., 2014; Matsuhisa et al., 2015;

Mizerska-Dudka et al., 2015

Russulales HIV-14, vaccinia1, VS1 Kandefer-Szerszeń et al., 1980; Mlinaric et al., 2005; Wang et al., 2007

Categories for antiviral methods used in the studies: 1plague reduction assay; 2CPE (cytopathic effect) inhibition assay; 3microscope immunofluorescent assay; 4Specific

protease assay; 5other. ∗WEE, Western equine encaphilitis; VZV, Varicella zoster; RSV, respiratory syncytial virus; HCV, hepatitis C virus; HBV, hepatitis B virus;

MCMV, murine cytomegalovirus; VSV, vesicular stomatitis virus; EBV, Epstein-Barr virus; PV-1, poliovirus 1; WNV, west nile virus; HHV, human herpes virus; EMCV,

encephalomyocarditis virus; DENV, Dengue Virus; JEV, Japanese encephalitis virus.

reported differences between Ascomycota and Basidiomycota
reflect also to the bias from the different methods that have
been commonly used in screening their biologically active
compounds, not differences in their true arsenals of bioactive
compounds.

The most recent estimates predicting fungal species diversity
indicate that only 3–8% of existing fungal species are discovered
and described (Hawksworth and Lücking, 2017). Therefore, the
fungi investigated and found to have potential positive antiviral

activities thus far represent only a minute fraction of these
organisms and their potential.

Edible and Medicinal Mushrooms
Mushrooms have been an important part of our diet for centuries
due to their nutritional properties. Their rich content in proteins,
carbohydrates, minerals, vitamins, unsaturated fatty acids and
low values of fat and energy content makes them a valuable food
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FIGURE 1 | A tree illustrating the larger phylogeny of Fungi shows that the origin of presently known fungal-derived antiviral agents (highlighted) is restricted to the

late-diverging fungal phyla (Ascomycota and Basidiomycota). The figure is constructed based on phylogenetic relationships of Fungi on Tree of Life Web Project

(http://tolweb.org). This tree is illustrative and does not represent real phylogenetic data. Dashed lines: The group may not be monophyletic, or phylogenetic position

of the group is uncertain.

source (Barros et al., 2007, 2008; Çağlarırmak, 2007; Kalač, 2009;
Ouzouni et al., 2009; Reis et al., 2012).

Some species producing conspicuous fruiting bodies have
a long history of medicinal use. Bioactive compounds of the
fungal genera which have had an important role in traditional
medicine, such as Ganoderma, have been subject to extensive
research. However, there is a broad number of other edible
and medicinal species from different genera considered to
be potential antiviral precursors (Supplementary Table S1

and Figure 3). The antiviral activity of these mushrooms is
associated mainly to the presence of polysaccharides in mycelium
and fruiting bodies, and synthesis of triterpenoid secondary
metabolites (Chen et al., 2012; Rincão et al., 2012). However,
large number of other potentially bioactive compounds and/or
genes involved in their synthesis has been reported (Shiao,
2003; Chen et al., 2012), indicating that the full potential
of mushroom and medicinal fungi as a source of bioactive
compounds remains only partially understood. Previous study
has reported considerable differences in the contents of bioactive
compounds produced at different stages of fungal life cycle (Chen
et al., 2012), implying that antiviral studies need to take into
account the phenotypic variation and growth conditions of the
fungal material.

Endophytes, Marine Fungi and Plant
Pathogens
Endophytic fungi that inhabit above-ground tissues of healthy
plant at least part of their life cycle are highly diverse
in terms of species richness. These primarily ascomycetous
(Ascomycota) fungi common in all terrestrial habitats are

considered to have important ecological roles in the terrestrial
plant communities. Their interactions with host plants and
cross-talk with other endophytic microorganisms colonizing the
same plant are complex and dynamic (Kusari et al., 2012).
Endophytic fungi have been recognized as a rich source of
secondary metabolites, which role in the natural habitat likely
include chemical signaling, defense against other microorganism,
and establishment of symbiosis with host plant (Schulz and
Boyle, 2005; Yim et al., 2007; Khaldi et al., 2010). Some also
mimic plant defense compounds, and can, therefore, protect host
plants against herbivores and pathogens (Kusari et al., 2012).
These secondary metabolites are known to have great chemical
variety and numerous biological activities with pharmaceutical
and biotechnological potential.

It has been hypothesized that extreme habitats harbor greater
changes for novel drug discovery (Thatoi et al., 2013; Chávez
et al., 2015). Interestingly, rich fungal species diversity inhabits
extreme environments such as deep-sea sediments andmangrove
ecosystems (Kumaresan and Suryanarayanan, 2001; Mahé et al.,
2013). Many of ascomycetous species found in these habitats have
been discovered having antiviral and other biological activities
(Desmukh et al., 2018). The extreme conditions are thought
to shape the secondary metabolite patterns of fungi, and these
fungi are recognized as a particularly promising source of diverse
and structurally unprecedented novel compounds, which some
have already been structurally characterized and several been
discovered to constitute of novel carbon skeletons (Saleem et al.,
2007).

However, also already relatively well-known fungi should
not be overlooked. Less intensively investigated fungi for their
bioactivities include tree-pathogens that also seem promising
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FIGURE 2 | In phylum Ascomycota, antiviral agents have been mainly identified from endophytes and other microfungi restricted to limited number of orders. Higher

red color intensity indicates higher number of reports in literature. The figure is constructed based on phylogenetic relationships of Fungi on Tree of Life Web Project

(http://tolweb.org). This tree is illustrative and does not represent real phylogenetic data. IA, indole alkaloids; NRPS, non-ribosomal peptides; PKS, polyketides;

NRPS-PKS, hybrids; T, terpenoids; N/A, information not available. Dashed lines: The group may not be monophyletic, or phylogenetic position of the group is

uncertain.

source of antiviral agents. A previous study has detected a number
of plant pathogenic fungi with various ecological roles (white-
rot fungi, soft-rot fungi, blue-stain fungi and insect-symbionts)
having antiviral activities (Mlinaric et al., 2005).

Antiviral Research and Fungal Taxonomy
Accurate organism identification is the basis for any biological
research and its applications. This is particularly important for

bioactive compounds aimed for pharmaceutical products. When
the physical material used is reported with a misapplied name,
the reproducibility of the study is very low. Unfortunately,
in the literature on bioactivity and mechanisms of action
of isolated compounds or crude extracts of fungal origin,
reporting on the methods used to identify fungal materials
reveals insensitivity to the relevant taxonomic discussion.
Methodologically, only a minority of studies have included
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FIGURE 3 | Antiviral agents reported from the phylum Basidiomycota. Higher red color intensity indicates higher number of reports in literature. The figure is

constructed based on phylogenetic relationships of Fungi on Tree of Life Web Project (http://tolweb.org). This tree is illustrative and does not represent real

phylogenetic data. L, lignin derivative; PS, polysaccharides; P, proteins; C, polysaccharide-protein/amino acid complex; NRPS, non-ribosomal peptides; PKS,

polyketides; T, terpenoids; N/A, information not available. Dashed lines: The group may not be monophyletic, or phylogenetic position of the group is uncertain.

a combination of morphological and molecular methods for
species identification (Raja et al., 2017). Given the factual
diversity of kingdom Fungi, and the resulting difficulties in
delimitating species and genera, as well as constant discoveries
of species new to science (Hawksworth and Lücking, 2017),
transparency in this matter is paramount. Long lasting debates
among taxonomists, whether to accept new names, splitting
of an old species into many new, or combinations of old
names are an everyday affair in the field. This has in some
cases resulted in considerable nomenclatural stratification,
highlighting the need to engage taxonomists also in the study of
applications.

To illustrate this problem, we evaluated literature on one of
the most commonly reported name appearing in fungal antiviral
research, ‘Ganoderma lucidum,’ as well as other species in the
genus Ganoderma Karst. The poroid, saprotrophic fungal species
G. lucidum (W. Curt. : Fr.) Karst is an concise example of the
broader issue. The traditional medicinal use of Ganoderma spp.
in East Asia, South-East Asia, and Africa has promoted interest
in studying the bioactivity of these fungi, with ‘G. lucidum’ often
cited as the species of the material. However, exact delimitation of
the species concept for G. lucidum, with a European type locality,
has been difficult due to lack of a holotype specimen (Steyaert,
1972; Moncalvo and Ryvarden, 1997). After morphological and
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molecular phylogenetic studies on the diversity of the genus in
the past decades (Moncalvo et al., 1995; Cao et al., 2012; Zhou
et al., 2015), the consensus in the taxonomic literature is that the
industrially cultivated “Linghzi” and “Reishi” do not represent
the G. lucidum s. str, but in fact other species (Wang et al., 2009;
Cao et al., 2012). Therefore, careful consideration is required
when identifying such samples under this name. Here, we listed
the reported methods of acquisition and identification used in
each antiviral study on Ganoderma (Supplementary Table S2).
As a summary, out of the 13 studies, only four used material that
we can safely assume to represent the species declared, as a fungal
taxonomist was being consulted. In eight cases it seems unlikely
given the sourcing of the materials, but could in principle be
verified to the contrary, assuming access to the original material
in herbaria. In one case, the experimental set-up is likely not
reproducible due to vague description of the material used, and
apparent lack of any preserved specimens. No studies reported
sequence data accession numbers, nor morphological criteria
used for species determination. Various forms of authorship,
including outdated and erroneous, were present with the name
G. lucidum.

Whether fungal material is in fact correctly identified, has
consequences to the independent reproducibility of the study,
and reflects also to understanding the species characteristics (i.e.,
requirements and phenotypic variation in artificial cultivation
settings). There is yet a limited amount of comparative work on
the differences between species and strains of the composition in
the bioactive compounds within Ganoderma. The publications
available at the moment indicate that differences may be
considerable (Welti et al., 2015; Hennicke et al., 2016), though
assessments into the extent of occurrence of compounds of
interest within the genus is again convoluted by the non-
transparent reporting of materials (Richter et al., 2015). In
conclusion, given the likelihood of misapplied names in the
literature, citing studies not reporting identification criteria as
evidence on the antiviral potential of G. lucidum s. str. needs to
take this ambiguity into account.

The misidentification of species and even genera is even more
likely with microscopic fungi (such as endophytes) containing
minute and overlapping morphological characteristics, and of
which taxonomy and diversity remains widely uninvestigated.
Therefore, we highlight the importance for transparency in
reporting of used nomenclature, physical fungal material and
method of identification, which is paramount to the advancement
of research on antivirals from fungi. Furthermore, we encourage
the natural product research community adopting the recently
suggested set of standardized procedures for the identification of
fungi (Raja et al., 2017).

Overview of Methods Assessing Antiviral
Activity
The most widely used methods for the initial screening of
fungal extracts to evaluate their antiviral activity are the plaque
reduction assay (Zhu et al., 2004; Faccin et al., 2007; Rincão
et al., 2012), cytopathic effect (CPE) assay (Liu et al., 2004; Zhang
et al., 2011) and immunofluorescence assay (Faccin et al., 2007)
(Table 2). In addition, various commercially available viability

assays monitoring for, e.g., the cellular ATP levels have also been
used. These assays are also used for performing the time of
addition studies and investigating the direct virucidal activity of
the fungal extracts (Liu et al., 2004; Faccin et al., 2007).

All of these methods calculate in different ways the viability of
the cells after virus action, and the antiviral activity is monitored
as the rescue of the cells from the viral infection. The read out for
the plaque reduction assay is the visual counting of the number of
plaques formed [plaques forming unit (PFU)/ml] i.e., number of
unstained “holes” in the culture plate after crystal violet staining
of the cells that still adhere on the plate. This number is then
used to calculate the percentage of viral inhibition (% V.I.) (Zhu
et al., 2004). In immunofluorescence assay, the cells are observed
under microscope and typically several hundreds of cells are
scored. First, the number of infected cells is calculated from the
number of cells showing high abundance of viral capsid proteins
produced in the cell cytoplasm (Marjomäki et al., 2002). Then,
from the obtained number, V.I. is calculated with respect to
untreated infected cells (Faccin et al., 2007). In the case of CPE
assay, the read out is based on the spectrophotometric absorbance
reading of the stained viable cells, which is used to calculate
the % V.I. (Liu et al., 2004). Typically, the viable cells left on
the bottom of the culture plate and stained with crystal violet,
are dissolved in the lysis buffer to provide a homogenous blue
suspension that is easy to measure in the spectrophotometer
(Schmidtke et al., 2001). The linear regression analysis of the plots
of % V.I. is used to determine the 50% inhibitory concentration
(IC50) which is used further to calculate the selectivity index
(SI) (Rincão et al., 2012). The calculations are also given here as
formulas:

% VI calculated from the plaque reduction assay read-out =

[1 − (number of plaques in test/number of plaques in virus

control)] × 100 (Rincão et al., 2012)

% VI calculated from the CPE assay read-out =

[(ODt)v − (ODc)v]/ [(ODc)mock − (ODc)v]

× 100 (Liu et al., 2004)

where (ODt)v is the optical density (OD) of the cell, treated with
virus and bioextract (test), (ODc)v is the OD of the cell, treated
with virus (virus control) and (ODc)mock is the OD of the mock
infected cell (cell control).

SI = CC50/IC50

Where CC50 is 50% cytotoxic concentration, i.e., the
concentration which caused a 50% reduction in the number of
viable cells or in the optical density and IC50 is 50% inhibitory
concentration, i.e., the concentration capable of reducing 50%
PFU in relation to the controls.

These above-mentioned methods only affirm the antiviral
potential of bioactive compounds and do not reveal any
information regarding their mechanism of action. Only few
papers have progressed to evaluate the actual molecular targets.
In order to study various viral or cellular targets of drug action,
several approaches could be used. To study the direct effect on the
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TABLE 2 | Methods used to evaluate antiviral effects.

To study Method Read out Reference

Antiviral activity,

Virucidal activity and

CPE assay using crystal violet to stain viable

cells

OD values at 550–595 nm Schmidtke et al., 2001

Time of addition studies Plaque reduction assay No of plaques per well−> PFU/ml Rincão et al., 2012

Microscopy immunofluorescent assay to label

newly synthetized capsid proteins

% of infected cells with respect to untreated

infected cells

Faccin et al., 2007

Direct effect on virus Negative staining TEM Unstained, intact viruses vs. darkly stained,

empty viruses

Myllynen et al., 2016

Structural studies (e.g., x-ray crystallography or

cryo-EM)

Atomistical model exhibiting drug binding or

virus opening

De Colibus et al., 2014

Real-time spectroscopy using SYBR-Green Fluorescence intensity increase upon genome

release

Myllynen et al., 2016

Density gradient of radioactively labeled virus

showing intact and uncoated viruses

Radioactive counts (CPM) per each gradient

fraction showing peaks of intact and empty

viruses

Marjomäki et al., 2002;

Myllynen et al., 2016

Adsorption/receptor

attachment

Binding assay Radioactive counts (CPM) per each gradient

fraction showing peaks of intact and empty

viruses

Marjomäki et al., 2002;

Myllynen et al., 2016

Computational simulations (molecular docking) Binding energy upon drug binding (−kcal/mol) Zhang et al., 2014

Uncoating Density gradient of radioactively labeled virus

showing intact and uncoated viruses

Radioactive counts (CPM) per each gradient

fraction showing peaks of intact and empty

viruses

Marjomäki et al., 2002;

Myllynen et al., 2016

Real-time spectroscopy

Structural studies (e.g., x-ray crystallography or

cryo-EM)

Fluorescence intensity increase upon genome

release

Myllynen et al., 2016

Hewat and Blaas, 2004;

Levy et al., 2010

Replication intermediates

(replication) and capsid protein

production (translation)

Immunolabeling and confocal microscopy Fluorescence intensity quantification of capsid

or dsRNA production

Martikainen et al., 2015

Specific viral proteases HIV-1 protease peptide cleavage assay Monitoring the fluorescence of the enzyme

catalyzed reaction

Singh et al., 2004

X-ray crystallography Atomistic details for binding Singh et al., 2004

scintillation proximity assay (SPA) Measuring radioactivity of the enzymatic

reaction using radioactive biotinylated substrate

and streptavidin tagged scintillant

Guo et al., 2000

virus, there are several methods that could be employed. First of
all, perhaps the easiest way to see gross effect on the virus particle
is to negatively stain the virus samples and observe them under
transmission electron microscope (TEM) (Myllynen et al., 2016).
There is a characteristic feature to distinguish between intact
viruses from empty particles in TEM imaging. The staining dye,
e.g., 2% Uranyl acetate or 1% phosphotungstic acid cannot enter
the capsid of intact viruses because of which the intact particles
appear bright, i.e., unstained, in TEM images (due to the contrast
of the dye). However, in case of empty viruses, since the capsid is
open, the dye enters the capsid and stains the insides of the virus
thus giving a dark appearance for empty virus particles in TEM
images. Density gradient centrifugation of either radioactively
labeled or non-labeled virus is also insightful in revealing the
direct effect of the extract on the virus (Marjomäki et al., 2002;
Myllynen et al., 2016). The read out of radioactive gradient
fractionation is the radioactivity [counts per minute (CPM)] of
various fractions from different densities showing peaks of more
dense intact virus and less dense empty viruses or even smaller
products like pentamers. Direct effects of bioactive agents should
show clear changes in the fraction of intact versus empty viruses.

The effect on the virus attachment on cellular receptors has
been studied using binding assays. Binding is most sensitively
studied using radioactively labeled virus and by performing
binding assays in cold, hence eliminating the virus entry inside
the cells by endocytosis (Marjomäki et al., 2002). Specific
effects of molecules interfering with receptor binding have
been also performed in silico by using molecular docking
studies (Zhang et al., 2014). Whether the drug targets the
virus uncoating in vitro or while the virus is inside cellular
compartments, can be evaluated using real-time spectroscopy by
using RNA/DNA binding fluorescent dyes (Myllynen et al., 2016)
and using radioactive gradient fractionation studies, respectively.
Radioactively labeled virus may be isolated from the cells for
gradient fractionation which may reveal if there is a block in
the viral genome release, thus leaving the virus as intact for
longer periods. In order to assess the effect of bioextract on the
efficiency of replication and viral translation, immunofluorescent
labelingmay be performed that reveals production of virus capsid
proteins and specific replication intermediates, such as, e.g.,
dsRNA (Martikainen et al., 2015). Furthermore, qPCR to reveal
new viral RNA production may be used.
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There are also more specific assays that have been used to
test the bioactive agents against virus-specific proteins such as
proteases. Those assays have been developed directly against
specific viruses such as HIV or human cytomegalovirus (hCMV)
(Guo et al., 2000; Singh et al., 2004). Those assays are usually
in vitro assays relying on purified proteases.

BIOACTIVE AGENTS ACTING AS
ANTIVIRALS

Small-molecule fungal secondary metabolites have been a source
of various drugs, and the same classes of secondary metabolites
seem promising also against viruses (Table 3). Other bioactive
compounds with potential antiviral activities include high
molecular weight compounds, such as polysaccharides, proteins
and lignin-derivatives.

Small Organic Molecules (Secondary
Metabolites)
Fungal secondary metabolites are low-molecular-weight
compounds, which in contrast to primary metabolites, are

not directly required for the growth of the organism. Their
ecological function in nature remains widely unknown. It
has been hypothesized that secondary metabolites contribute
to chemical communication with and competition against
other organisms (Yim et al., 2007; Khaldi et al., 2010). Some
also mimic plant defense compounds, and can, therefore,
protect host plants against herbivores and pathogens (Kusari
et al., 2012). A majority of known secondary metabolites have
been identified from ascomycetes in traditional culture-based
screening approaches, particular interest have been marine and
plant endophytic fungi (Strobel and Daisy, 2003; Saleem et al.,
2007; Kusari et al., 2012; Thatoi et al., 2013; Stierle and Stierle,
2015; Desmukh et al., 2018).

The production of secondary metabolites has been most
commonly studied in in vitro setups, where the compounds
secreted by hyphal cells to a culture medium are studied.
Although these studies have formed an important basis for the
discovery of fungal bioactive metabolites, it is likely that the
true potential of fungi as producers of secondary metabolites
has been underestimated. Genome-based projects have provided
novel insights and demonstrated that many cryptic gene clusters
involved in secondary metabolite biosynthesis are silent or not

TABLE 3 | Fungal bioactive agents with reported antiviral activities.

Chemical class Source (fungal order) Phylum Reference

High molecular weight compounds

Lignin derivatives Polyporales Basidiomycota Suzuki et al., 1989; Sorimachi et al., 1990; Sarkar et al.,

1993

Polysaccharides Agaricales, Polyporales Basidiomycota Faccin et al., 2007; Razumov et al., 2010; Cardozo et al.,

2011; Yamamoto et al., 2013

Proteins Agaricales, Polyporales Basidiomycota Piraino and Brandt, 1999; Wang and Ng, 2000; Ngai and

Ng, 2003; Gu et al., 2007

Polysaccharide-protein/amino

acid complex

Polyporales Basidiomycota Hirose et al., 1987; Okada and Minamishima, 1987;

Tochikura et al., 1988; Collins and Ng, 1997; Eo et al.,

1999a,b, 2000; Kim et al., 2000; Wang and Ng, 2000

Small molecular weight compounds (secondary metabolites)

Indole alkaloids Capnodiales, Eurotiales, Hypocreales,

Pleosporales

Ascomycota Guo et al., 2009; Zhang et al., 2011; Ma et al., 2013; Peng

et al., 2013; Li et al., 2014; Zhao et al., 2017

Non-ribosomal peptides

(NRPS)

Dothideales, Helotiales, Xylariales Ascomycota Rowley et al., 2003; Pittayakhajonwut et al., 2005; Isaka

et al., 2007

Russulales Basidiomycota Wang et al., 2007

Polyketides (PKS) Amphisphaeriales, Diaporthales,

Eurotiales, Hypocreales, Pezizales,

Pleosporales, Sordaliales

Ascomycota Singh et al., 2002, 2003a; Jayasuriya et al., 2003; Li et al.,

2008; Bunyapaiboonsri et al., 2010; Shushni et al., 2011;

Gao et al., 2013a; Bashyal et al., 2014; Peng et al., 2014;

Pérez et al., 2014, Wang J.-F. et al., 2014; Jia et al., 2015;

Sacramento et al., 2015; Pang et al., 2018

Polyporales Basidiomycota Awadh Ali et al., 2003; Singh et al., 2003a

NRPS-PKS hybrids Capnodiales, Eurotiales, Helotiales,

Hypocreales, Pleosporales

Ascomycota Krohn et al., 1997; Hazuda et al., 1999; Bunyapaiboonsri

et al., 2010; Sebastian et al., 2011; Wu et al., 2014; Stierle

and Stierle, 2015; Zhang et al., 2015

Terpenoids Amphisphaeriales, Eurotiales,

Hypocreales, Pleosporales, Xylariales

Ascomycota Hazuda et al., 1999; Yoshimoto et al., 1999; Minagawa

et al., 2002; Sawadjoon et al., 2004; Singh et al., 2003b;

Fang et al., 2014; Wang J. et al., 2014; Zhang et al., 2014

Agaricales, Polyporales, Russulales Basidiomycota El-Mekkawy et al., 1998; Min et al., 1998; Iwatsuki et al.,

2003; Kanokmedhakul et al., 2003; Krawczyk et al., 2003;

Lehmann et al., 2003; Mothana et al., 2003; Niedermeyer

et al., 2005; El Dine et al., 2008; Sato et al., 2009; Zhu

et al., 2010; Zhang et al., 2016
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well expressed in standard cultivation/fermentation conditions
traditionally used for screening for the secondary metabolites
(Bergmann et al., 2007; Khaldi et al., 2010; Brakhage, 2013;
Clevanger et al., 2017). To activate silent biosynthetic gene
clusters, altering the growth conditions (such as carbon and
nitrogen sources, temperature, light, pH and aeration) have been
used as stimuli. However, regulation of secondary metabolism
biosynthesis pathway is complex, and these are not universally
relevant stimuli for most gene clusters and fungal species
(Brakhage, 2013). Genome mining provides novel possibilities
for understanding the genetic basis of secondary metabolite
production and developing strategies for activation of the silent
metabolic pathways (Bergmann et al., 2007; Andersen et al., 2012;
Ochi and Hosaka, 2013).

The genome of each fungus contains a remarkable capacity
of biosynthetic gene clusters encoding the production of
diverse secondary metabolites (Khaldi et al., 2010; Chen
et al., 2012; Inglis et al., 2013; Han et al., 2016). Although
the secondary metabolites are structurally highly diverse,
they are produced by a few common biosynthetic pathways
(Keller et al., 2005). Previous studies which have applied
genome predictions have identified non-ribosomal peptide
synthase (NRPSs) and polyketide synthase (PKSs) gene clusters
being the most abundant, while also hybrid NRPS-PKS
enzymes, prenyltransferases (DMATSs), terpene cyclases (TCs)
are commonly present in fungi (Bergmann et al., 2007;
Khaldi et al., 2010; Andersen et al., 2012; Han et al., 2016).
These “backbone” enzymes are responsible for the synthesis
of the secondary metabolite core structures which include
non-ribosomal peptides, polyketides, NRPS-PKS hybrids, indole
alkaloids and terpenoids, respectively (Hoffmeister and Keller,
2007). The synthesized core structures and product intermediates
are typically further modified by tailoring enzymes before the
final product is transported outside the fungal cell (Andersen
et al., 2012; Brakhage, 2013).

HIGH MOLECULAR WEIGHT
COMPOUNDS

The fungal cell wall is an essential structure component that
protects the cells against the environment and other organisms.
The fungal cell wall allows the selective exchange of compounds
with other cells and with their surroundings. Apart from that,
it also provides of shape and strength to the fungal cell. The
composition of the cell wall varies between fungal species and
within the same species or strains (e.g., growth stage, growth
conditions, environmental factors). Despite the variability of the
composition, the main components that can be commonly found
in mushrooms are proteins and polysaccharides (Bowman and
Free, 2006). High molecular weight polysaccharides (such as
glucan, chitin, mannan, PSK or lentinan) extracted from fruiting
bodies and fungal mycelia have been reported to present antiviral
activities (Tochikura et al., 1987, 1988; Cardozo et al., 2011;
Rincão et al., 2012).

To study the mechanism of action of polysaccharides against a
determinate virus, its chemical composition must be understood.

The analysis of the structure of polysaccharides is a complex
task that requires several isolation steps. When polysaccharides
are extracted from a fungal sample, the determination of the
purity becomes a priority in order to understand the chemical
structure. Knowledge on the monosaccharide composition, the
linkage positions between glycosidic linkages, the distinction of
furanosidic and pyranosidic rings, the anomeric configuration,
the sequences of monosaccharide residues and repeating units,
the substitutions and the molecular weight including its
distribution are essential to define the structure of a certain
polysaccharide (Cui, 2005).

The presence of proteins in the cell wall has also a
protective function since they are the responsible of stimuli
perception (Geoghegan et al., 2017). Hence, proteins are involved
in the production and regulation of secondary metabolites
(Bok and Keller, 2016). Moreover, their presence in the cell
wall in combination with polysaccharide complexes allows the
interaction with the environment, helping to the fungal cell to the
transport of substances in and out of the fungal cell.

Several reports refer to replication inhibition for several virus
types, suggesting that both polysaccharides and proteins act at
the first phases of viral replication system (Tochikura et al., 1988;
Collins and Ng, 1997; Eo et al., 1999a,b, 2000; Piraino and Brandt,
1999; Kim et al., 2000; Wang and Ng, 2000; Ngai and Ng, 2003;
Gu et al., 2007; Cardozo et al., 2011; Yamamoto et al., 2013).
However, the interaction of proteins and polysaccharides with the
viral replication system is not completely understood.

ANTIVIRAL MECHANISMS

Possibility to Act at Different Stages of
Virus Life Cycle
There are several possibilities to interfere viral infection
(Figure 4). Viruses can be directly attacked outside cells in order
to destroy the viral particles before their attachment on cellular
receptors. Such agents could irreversibly modify viral particles on
different surfaces, or, if being non-toxic, also in human body. For
human enteroviruses, several molecules have been designed to fit
in to the special hydrophobic pocket, thus replacing the aliphatic
fatty acid normally housed in the virus particle (De Colibus et al.,
2014). The hope in this strategy is to stabilize the virus particle
and prevent virus uncoating. This pocket is also close to the
receptor binding area and thus molecules targeted to the pocket
could potentially inhibit receptor binding. These molecules have
shown some potency in their antiviral effect. However, binding
to these pockets is usually dynamic, and the effects in long-term
studies have not been successful. However, during short time
periods, these molecules have shown efficacy.

Inhibiting the receptor binding is another possibility to
prevent virus infection. When several virus groups use similar
receptors, this strategy offers a nice possibility to prevent viral
infection, e.g., in the case of heparan sulfate binding (Cagno
et al., 2018). Most viruses use cytoplasmic endosomes as their
portal for cellular entry. This may be considered as a true rate
limiting step for many viruses, especially those of non-enveloped
viruses. By using fusogenic peptides that normally act in low pH,
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FIGURE 4 | A schematic representation of the life-cycle of a non-enveloped, positive sense single-stranded RNA. The infection stages of the virus that include

attachment, entry, uncoating, genome release, genomic replication, translation, assembly and exit serve as potential targets for antivirals.

enveloped viruses have developed means to fuse with the limiting
membrane of the endosomes, thus releasing their contents to
the cytoplasm. Thus, several molecules that prevent the lowering
of the endosomal pH quite effectively inhibit viral infection.
However, as the low pH is such a crucial event for normal nutrient
uptake and signaling through endosomes, such strategies are
not really feasible. Non-enveloped viruses do not usually rely
on low acidity. We have shown recently that enteroviruses in
general do not use low pH in their strategy to infect cells, but
rather accumulate in endosomes with higher acidity (Marjomäki
et al., 2015). There is very little information yet available on
the strategies of non-enveloped viruses to break the endosomal
barrier.

RNA-based viruses start their translation and transcription
usually in the cytoplasm. Those events are a good target for
several antivirals as many of the mechanisms could target a larger
amount of virus groups. DNA-viruses travel to the nucleus and
start their replication there. The replication for several viruses
take advantage of various membranous organelles as usually
the replication occurs on the surface of membranous structures.
Indeed, virus infection usually strongly perturbs the functioning
of various endosomes, ER and Golgi for the profit of viruses. In
addition, often cholesterol and some more rare forms of lipids

are being utilized for viral replication, and may serve as targets
for combatting viral infection.

During translation and replication, in addition to the viral
structural proteins, several non-structural viral proteins are being
synthetized in the cytoplasm. Several present strategies against
viral infection target the viral proteases or viral polymerases and
may prove successful in preventing viral infection.

Virus assembly occurs in the cytoplasm for several non-
enveloped viruses that, in the end, causes lytic disruption of
the cell and spread of the progeny viruses to neighboring cells.
The lytic events are often preceded by activation of caspases
to promote apoptosis. Viruses are master manipulators of anti-
apoptotic growth factor signaling and proapoptotic caspase
pathways. Usually viruses try to prevent apoptosis during the
early infection but may boost apoptotic processes later to
facilitate an efficient spread to the cell surroundings. Therefore,
the strategies to manipulate apoptosis may be complicated.
However, we showed previously that targeting BCl-molecules,
thus boosting apoptosis, facilitated killing of virus infection early,
and prevented possibilities for influenza and HSV to develop
difficult symptoms usually encountered with virus infection
(Bulanova et al., 2017). Thus, maybe in combination with other
antivirals, this strategy could perhaps be used for antiviral action.
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Enveloped viruses take their envelope usually from the plasma
membrane and use some components of the cellular machinery,
ESCRTS, to facilitate the topologically outbound formation of
viral particles, as in the case of HIV viruses budding from cells.
Attacking those ESCRT components could potentially prevent
virus spread but also would target the elementary aspects of
multivesicular structure formation of endosomes.

Mechanisms Found So Far
For mechanistic studies, rather limited numbers of viruses have
been studied so far. Herpes simplex virus (HSV) has been most
thoroughly tested against some purified and unpurified fungal
products (Table 4). In addition to HSV, also influenza viruses
(IF) have been tested against some purified fungal products.
Both HSV and IF are enveloped viruses that are in general
suspected to be more prone to degradation and destabilization.
In contrast, non-enveloped viruses are considered more robust
and may keep stabile even in the harsh conditions for long
time periods. Maybe therefore, less hits have been discovered
from fungal products. However, poliovirus, a member of non-
enveloped enteroviruses, has been shown to be affected by
Lentinula edodes and Agaricus subrufescens -derived products
(Table 4). In addition, triterpenoids from G. lucidum have been
shown to effectively reduce the infectivity of enterovirus 71
(Table 4).

There are several published antiviral studies especially with
edible mushrooms and with their aqueous and ethanol/methanol
extracts. Most studies on antiviral action have been performed
using standard plaque assay or CPE assay, measuring the amount
of infective particles after the treatment. With such assays,
the inhibitory action may have occurred during any step of
the viral infection, starting from direct action on the virus
particle itself. More information on the inhibitory effect has
been acquired from time of addition studies, where inhibitory
molecules were added at different stages along viral infection
(Faccin et al., 2007; Yamamoto et al., 2013). These studies
have pinpointed several extracts and isolated molecules that
showed inhibitory action directly on the virus particles or
on the adsorption of the virus on cells (see Table 4). More
detailed studies with Ganoderma triterpenoids using molecular
docking tools showed affinity to the hydrophobic pocket of
enterovirus 71 suggesting that either uncoating or binding to the
cellular receptor could be affected (Zhang et al., 2014). These
triterpenoids showed best efficacy when they were first mixed
with the virus before adding on cells, confirming that either
uncoating or binding on cells indeed were targeted. However,
without further analysis addressing those steps with specific
binding assays or uncoating assays the actual mechanism remains
unknown.

Some studies showed preferential inhibition still some hours
p.i. suggesting that the inhibitory action was probably in the
viral protein translation or replication. More direct studies have
been done with assays that specifically target viral proteins
in vitro. These studies have been performed most heavily with
HIV proteases and reverse transcriptases. Such studies have
pinpointed ganoderic acid and triterpenoids, as well as adenosine,
velutin and a novel 4.5 kDa agent to directly act on HIV proteins

(Sato et al., 2009). In many cases the bioactive compound is
chemically modified to increase its antiviral potency. Cardozo
et al. (2011), produced a sulfated derivative of a polysaccharide,
isolated from Agaricus brasiliensis and found that the sulfated
polysaccharide showed increased antiviral activity against HSV I.

FUTURE PERSPECTIVES

Currently, numerous fungal-derived metabolites such as
lovastatins, antibiotics and antifungal agent griseofulvin are
present on the drug markets. Fungal-derived compounds
have not been approved for antiviral treatment. However, as
numerous previous studies have found many of them exhibiting
potential antiviral efficacy agents (Tables 1, 4), it is probably only
a matter of time before some molecules will be taken for clinical
testing. The effective antiviral fungal compounds showing
the best ADME (pharmacokinetic characteristics adsorption,
distribution, metabolism and excretion) in vitro will be taken
for animal testing in vivo. However, thus far there are very few
well-designed, high-quality clinical trials on treatments with
fungal-derived standardized pharmaceuticals (Zhou et al., 2005;
Gargano et al., 2017).

Standardizing the biosynthesis of biologically active
compounds for trials, as well as up-scaling to industrial
scale has to deal with complexity of fungal biology and ecology.
The interspecies interactions are known to influence the
fungal metabolism in the organism’s native environment, but
their importance in biotechnological applications remains an
underexplored issue (Kusari et al., 2014a,b). Intraspecies genetic
and morphological variation complicates the optimization of
cultivation conditions (Posch et al., 2013). Still, increasing
number of fungal genome sequences in combination with
metabolomics provide novel possibilities for understanding the
regulation of secondary metabolism, enhancing the yields of
target compounds, as well as providing a platform for novel drug
discoveries (Harvey et al., 2015).

Alongside liquid cultivation, potential fungal antivirals have
been extracted from harvested sporocarps, especially in studies
on basidiomycetes. Domestication of various such sporocarp-
producing species has been successful within industrial symbiosis
built on easily obtainable lignocellulosic waste from agriculture
and forestry. This approach has been supported in some cases
by the observed difficulties in obtaining particular metabolites
otherwise (Chen et al., 2012), though there are known issues of
economic costs and quality control (Hu et al., 2017; Wu et al.,
2017).

Despite these numerous challenges with species that have been
studied in some cases for decades, it is also important to continue
investigating fungal species diversity, as only a small number
of the known fungi have been investigated for antiviral activity.
Whereas biodiversity hot-spots and little-explored habitats are
particularly important for finding unrecognized fungal species,
cryptic species represent considerable genetic reserve also in
long studied ecosystems (Hawksworth and Lücking, 2017).
Multidisciplinary engagement between virologists and fungal
taxonomists is particularly pressing in this case.
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CONCLUSION

As fungi are a rich source of bioactive agents, the accumulation of
know how on the actual bioactive molecules enriched, and their
detailed targets in virus families will probably increase in the near
future. Presently, there is a rather limited understanding of the
antiviral mechanisms of fungal products on virus infection. Thus,
more detailed knowledge on the actualmolecular targets is crucial
in order to develop these molecules further to efficiently combat
virus infections in the future. Laboratory assays targeting directly
various steps along virus infection are needed to understand in
detail the mechanisms of action.
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