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Antiviral Effect of Ribavirin against 
HCV Associated with Increased 
Frequency of G-to-A and C-to-U 
Transitions in Infectious Cell Culture 
Model
Andrea Galli1, Helene Mens1,2, Judith M. Gottwein1, Jan Gerstoft2,3 & Jens Bukh1

Ribavirin (RBV) is a broad-spectrum antiviral active against a wide range of RNA viruses. Despite 
having been used for decades in the treatment of chronic hepatitis C virus (HCV) infection, the precise 
mechanism of action of RBV is unknown. In other viruses, it inhibits propagation by increasing the rate 
of G-to-A and C-to-U transitions. Here, we utilized the J6/JFH1 HCV cell-culture system to investigate 
whether RBV inhibits HCV through the same mechanism. Infected Huh7.5 cells were treated with 
increasing concentrations of RBV or its phosphorylated forms. A fragment of the HCV NS5B-polymerase 
gene was amplified, cloned, and sequenced to estimate genetic distances. We confirm that the antiviral 
effect of all three RBV-drug forms on HCV relies on induction of specific transitions (G-to-A and C-to-U). 
These mutations lead to generation of non-infectious virions, reflected by decreased spread of HCV in 
cell culture despite relatively limited effect on virus genome titers. Moreover, treatment experiments 
conducted on a novel Huh7.5 cell line stably overexpressing adenosine kinase, a key enzyme for RBV 
activation, yielded comparable results. This study indicates that RBV action on HCV in hepatoma cell-
culture is exerted through increase in mutagenesis, mediated by RBV triphosphate, and leading to 
production of non-infectious viruses.

Ribavirin (RBV; 1-(β-D-Ribofuranosyl)-1H-1,2,4-triazole-3-carboxamide) is a purine nucleoside analogue and 
currently the only licensed broad-spectrum antiviral. When introduced in the treatment of patients chronically 
infected with hepatitis C virus (HCV), a major cause of morbidity and mortality resulting from end-stage liver 
diseases, RBV in combination with pegylated α-interferon led to a major improvement in treatment outcome1,2. 
It subsequently remained a cornerstone of HCV treatment until the recent introduction of the highly-e�ective 
Directly-Acting Antivirals (DAAs)3. However, RBV is still a therapeutic option in combination with DAAs 
in special cases, such as presence of cirrhosis in genotype 3 infections, and in combination with Ombitasvir/
Paritaprevir/r for genotype 1a and genotype 44–6. Treatment with RBV is also recommended in severe cases 
of hepatitis E infection, severe respiratory syncytial virus (RSV) pneumonia, and hemorrhagic fevers such as 
Lassa- and Crimean-Congo-fever. In addition, RBV has proven e�cacious in vitro against several RNA and DNA 
viruses7. Unfortunately, RBV has many adverse e�ects, also when administered without pegylated interferon-α 
mostly due to the induction of anemia8. Understanding its mode of action will hopefully facilitate the develop-
ment of more potent broad-spectrum drug candidates with less adverse events.

Despite having been in use for several decades, the mechanism of action of RBV is not fully understood. In 
poliovirus9,10, lymphocytic choriomeningitis virus11, and foot-and-mouth disease virus12, RBV has been shown 
to act by increasing mutation rates by promoting G-to-A and C-to-U transitions. In addition, recent studies have 
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demonstrated that RBV acted as a mutagen for di�erent viruses7,13. As a mutagen, RBV structurally resembles 
adenosine or guanosine. �us, when incorporated into nascent RNA as an analog of either adenine or guanine, 
it will pair equally well with either uracil or cytosine, thereby inducing G-to-A and C-to-U transitions. RNA 
viruses have extraordinary high mutation rates14, and it is hypothesized that RBV, by increasing the rate of G-to-A 
and C-to-U mutations, forces the virus over a mutational threshold resulting in the generation of non-infectious 
genomes (this mechanism of action is also referred to as lethal mutagenesis).

HCV infection is a leading cause of hepatic cirrhosis and hepatocellular carcinoma worldwide15. It 
is a positive-sense, single-stranded RNA virus, classified as a member of the Hepacivirus genus, family 
Flaviviridae16,17. �e viral genome encodes three structural and seven nonstructural (NS) genes, translated as 
a single polyprotein which is then cleaved by cellular and viral proteases into individual proteins16,17. �e viral 
RNA-dependent-RNA-polymerase is error-prone and lacks proofreading ability, leading to high variability and 
heterogeneity of HCV18. Phylogenetic analysis of HCV isolates led to the de�nition of seven major genotypes with 
more than 80 subtypes, which di�er from one another by up to 30% at the nucleotide level16,17,19. Genetic variability 
also leads to the generation of quasispecies during infection, which can have an impact on treatment outcome16,18,20.

Several modes of action have been proposed for RBV in the control of HCV infection, including immune 
modulation, inhibition of the inosine monophosphate dehydrogenase (IMPDH)21, inhibition of the HCV 
RNA-dependent RNA polymerase22, and increase of mutation rate23. Previous studies on the mutagenic e�ect 
of RBV on treated HCV patients have shown con�icting results, with some authors reporting an association 
between antiviral e�ect and increased mutation frequency24,25, while others have not26. Similarly, in vitro studies 
have shown either increase27,28 or no increase29 in mutation frequencies upon RBV treatment, but these studies 
have been for the most part conducted in replicon systems, which do not recapitulate the entire viral life cycle. 
�e only study performed on cell-culture adapted viruses could detect increased mutation frequencies but used a 
system that surprisingly led to clearance of infection under RBV treatment28.

To clarify the role of RBV as a mutagen in HCV infection, we tested its e�ect at di�erent concentrations in an 
infectious HCV cell-culture model. �e J6/JFH1 cell-culture system recapitulates the complete HCV life cycle, by 
replicating the full-length intra-genotypic J6/JFH1 genotype 2a recombinant30,31 in the human hepatoma-derived 
cell line Huh7.532. We evaluated the e�ect on virus complexity by analyzing the mutational landscape of viral 
genomes obtained from supernatant in treated and untreated in vitro HCV infections. Our results show a correla-
tion between the antiviral e�ect of RBV and the induction of predominantly G-to-A, as well as C-to-U transitions, 
supporting mutagenesis as one mechanism of action for RBV in the control of HCV infection.

Results
Ribavirin inhibits HCV spread and infectivity but has limited effect on virus RNA titers. To 
assess the e�ect of RBV on HCV infection in cell-culture, we treated Huh7.5 cells infected with the J6/JFH1 
recombinant virus using increasing drug concentrations. Initially, we evaluated IC50 (50% inhibitory concentra-
tion) and cytotoxicity of RBV in this cell-culture model (Fig. 1a and b). Using a 48 hours dose-response assay, the 
IC50 of RBV on J6/JFH1 was estimated at 214 µM, whereas the cytotoxic e�ect of RBV on naïve cells was estimated 
to have an LC50 (50% lethal concentration) of 123 mM, with more than 90% live cells at concentrations of up to 
1 mM. �e concentration of RBV in hepatocytes of treated patients is unknown, but the concentration of RBV 
in human plasma and PBMC has been estimated to be 10–20 µM33. We previously observed that treatment of J6/
JFH1 with 20 µM RBV had no e�ect on viral spread in cell culture34.

Based on these data and the IC50 estimation, we thus treated J6/JFH1-infected Huh7.5 cells with RBV concen-
trations of 20 µM, 100 µM, and 150 µM in parallel with non-treated control cells (NTC). Treatment was initiated 
24 hours a�er infection and viral spread was subsequently monitored by immunostaining every 2–3 days. Viral 
supernatants collected at the same time points were used to determine HCV RNA and infectivity of released 
viruses. RBV inhibited virus spread and infectivity in cell culture in a concentration-dependent manner (Fig. 1 
and Supplementary Fig. 1). Viral spread of J6/JFH1 was slightly reduced by 20 µM RBV, whereas higher concen-
trations delayed (100 µM) or inhibited (150 µM) viral spread (Fig. 1c). Viral infectivity was similarly reduced in a 
concentration-dependent manner, indicating that a reduction in the number of released infectious viral particles 
is the likely cause of spread inhibition (Fig. 1d). With the exception of cultures treated with 150 µM RBV, by day 9 
all J6/JFH1 infections had spread to the majority of cultured cells and reached high infectivity levels. RBV reduced 
RNA titers of supernatant virus with increasing drug concentrations, although the e�ect was subtler compared 
to the e�ects on spread and infectivity (Fig. 1e). We observed growth of J6/JFH1 to RNA titers of 107 IU/mL by 
day 9 in the NTC, as reported previously35. �e RNA curves obtained from supernatants of treated cultures were 
reduced by 1–2 logs, depending on RBV concentration, and showed no rebound during the observation period. 
However, the reduction in viral infectivity was 1 to 2-fold higher than the decrease in RNA titers, for samples 
treated with 100 µM and 150 µM RBV. In particular, while RBV 150 µM led to full viral inhibition at day 9, show-
ing a drop in infectivity of at least 3.5 logs, the supernatant viral RNA titers were only reduced by about 1.3 logs 
compared to the NTC, suggesting that virus RNA production was less a�ected. �is is re�ected in a sharp and 
signi�cant drop in relative speci�c infectivity over time, indicating that the increase in HCV RNA titer is not 
matched by an equal increase in viral infectivity in samples treated with RBV 100 µM and 150 µM (Supplementary 
Fig. 2). Taken together, these results suggest the antiviral e�ect by RBV primarily involves impairing infectivity. 
Such pattern of viral spread would be expected, if RBV acted as a viral mutagen. To explore this hypothesis, we 
examined the mutational patterns of viruses obtained from cell culture supernatants.

Increasing diversity of the virus population correlates with the antiviral effect of ribavirin. To 
study the mutational patterns of HCV under the e�ect of RBV, a 1245 base-pair region of the viral polymerase 
gene (NS5B) was ampli�ed (positions 7847 to 9091 of J6/JFH1), cloned, and sequenced from virus recovered at 
day 4 and at day 9 post infection. An average of 62 sequences (range 32–81) per time point were analyzed (Table 1).  
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In the optimization phase of the protocol, ampli�cation was carried out using both a limiting dilution technique 
described by Mens et al.36 and standard molecular cloning. As had been reported previously37, we found no dif-
ference in sequencing depth or polymorphism detection between these approaches. �us, molecular cloning was 
used for all subsequent data.

Nucleotide diversity is a crude measure of the degree of polymorphism within a population. Natural selection 
has a u-shaped impact on virus diversity: highest diversities can be expected with intermediate selecstion pres-
sure, whereas high selection pressure o�en leads to loss of diversity due to bottleneck events. However, if RBV 
acts as a mutagen, one would expect a linear correlation between selection and mutation. Nucleotide diversity 
among samples was estimated as p-distance with the Jukes and Cantor correction38,39 (Fig. 1f), calculated as the 
proportion of di�erent nucleotides between each pair of sequences. �e NTC displayed low nucleotide diversity 

Figure 1. Ribavirin treatment of Huh7.5 cells infected with HCV J6/JFH1. (a) Dose-response curves of RBV, 
RMP and RTP in J6/JFH1 infected cells estimated by immunostaining of NS5A, obtained with triplicate 
determinations for each drug dilution. Data was normalized to non-treated controls, and curve �tting was 
thus performed with 0%-100% constraints. Error bars indicate standard deviation (SD). (b) Cell viability assay 
performed on Huh7.5 cells treated with RBV, RMP, and RTP. All data points were determined in triplicate; 
error bars indicate SD. (c–f) Panels representing data from one of two sets of independent experiments (for 
the second set of experiments see Supplementary Fig. 1). (c) Infection spread of J6/JFH1 virus estimated 
by immunostaining of NS5A in treated and non-treated samples. Data points represent the average of 1–3 
determinations. (d) Viral infectivity of �ltered supernatants obtained from treated and non-treated samples, 
data points represent the average of at least 3 determinations, error bars represent SD. (e) HCV RNA titers of 
viruses recovered from supernatants of treated and non-treated samples; data points represent averages of at 
least 2 measurements. (f) Nucleotide diversity of genomes extracted from stock virus and supernatants from 
RBV treated and non-treated samples, calculated as average p-distance. �is distance is the average proportion 
of di�erent nucleotides between sequence pairs. Sample sizes for each sample are found in Table 1. Banded bars 
indicate samples from day 4. Error bars represent standard deviations (SD).
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at day 4 which did not increase at day 9 (1.3 × 10–3 vs 1.2 × 10−3 nucleotide di�erences per site, nds). In compar-
ison to NTC, treatment with RBV resulted in a concentration-dependent increase in virus diversity, resulting in 
values of 1.6 × 10−3 nds (20 µM), 1.7 × 10−3 nds (100 µM), and 1.8 × 10−3 nds (150 µM) at day 9 (Fig. 1f). �e 
stock virus used for inoculation was analyzed with the same protocol and showed a baseline diversity of 0.2 × 10−3 
nds (n = 30). Nucleotide divergence is a measure of the degree of genetic distance between two populations. 
Nucleotide divergence from the J6/JFH1 reference strain, as well as between day 4 and day 9, was estimated as 
p-distance with Jukes and Cantor correction, computed as the average number of nucleotide substitutions per 
site between populations40. Treatment with RBV led to a time- and concentration-dependent increase in virus 
divergence from the reference J6/JFH1 sequence (Table 1). Analysis of samples from day 9 showed that NTC had 
a divergence from the J6/JFH1 reference strain of 0.6 × 10−3 nds. In comparison, treated samples had 0.8 × 10−3 
nds (20 µM), 0.9 × 10−3 nds (100 µM), and 1.0 × 10−3 nds (150 µM) from the J6/JFH1 reference strain. Divergence 
between day 4 and day 9 samples was also estimated and found to increase with increasing drug concentrations; 
divergence between day 4 and 9 was 1.3 × 10−3 nds for the NTC, compared to 1.3 × 10−3 nds (20 µM), 1.6 × 10−3 
nds (100 µM), and 2.1 × 10−3 nds (150 µM). �ese observations link the e�ect of RBV to an accelerated mutation 
rate of HCV by revealing a steady accumulation of mutations despite inhibition of virus spread. Continuous accu-
mulation of mutations also suggests an intact viral RNA replication.

Mutations accumulate as single nucleotide changes in individual supernatant viruses. In order 
to understand the observed mutational pattern, we next investigated Hamming distances. Hamming distance plots 
were obtained by counting the number of nucleotide di�erences between pairs of sequences, plotting them against 
the number of sequence-pairs, and �tting them to a Poisson distribution. �e lambda (λ) value of the Poisson 
curve re�ects the average number of di�erences between pairs of sequences: greater lambda values indicate popu-
lations with higher mean number of di�erences (Fig. 2). Treatment with RBV resulted in a right shi� of Hamming 
distance curves, with average distances increasing by 1-3 nucleotide changes per sequence pair with the concen-
tration of RBV. Lambda values on day 9 were 0.84 in the NTC compared to 1.50 (20 µM), 1.15 (100 µM), and 1.60 
(150 µM). We did not observe occurrence of sequences with very high number of mutations (more than 10). �e 
increase in nucleotide diversity was driven by induction of single mutations in individual virus genomes.

Sample Time Drug Na
π

b Divergc Kd G-to-Ae p-valuef C-to-Ug p-valueh

Day 4

NTC d4 78 1.32 0.67 1.65 0.028 0.087

RBV 20 d4 20 µM 81 1.06 0.55 1.32 0.046 ○ 0.044 ○

RBV 100 d4 100 µM 53 1.42 0.71 1.76 0.076 ● 0.057 ○

RBV 150 d4 150 µM 32 2.31 1.23 2.88 0.214 ●●● 0.145 ●●●

RMP 20 d4 20 µM 48 0.90 0.45 1.12 0.039 ○ 0.045 ○

RMP 100 d4 100 µM 38 1.80 0.91 2.24 0.065 ○ 0.100 ○

RMP 150 d4 150 µM 32 2.67 1.38 3.32 0.136 ●●● 0.213 ●

RTP 20 d4 20 µM 39 1.64 0.85 2.04 0.047 ○ 0.069 ○

RTP 100 d4 100 µM 30 1.80 0.91 2.24 0.072 ○ 0.127 ○

ADK NTC d4 37 2.75 1.48 3.42 0.109 0.022

ADK 20 d4 20 µM 38 0.63 0.32 0.78 0.016 ○ 0.007 ○

ADK 100 d4 100 µM 35 2.12 1.22 2.64 0.053 ○ 0.109 ●

Day 9

NTC d9 78 1.18 0.60 1.47 0.036 0.045

RBV 20 d9 20 µM 78 1.60 0.82 1.98 0.032 ○ 0.066 ○

RBV 100 d9 100 µM 67 1.70 0.85 2.11 0.088 ● 0.077 ○

RBV 150 d9 150 µM 32 1.82 0.98 2.26 0.126 ●● 0.068 ○

RMP 20 d9 20 µM 41 2.19 1.10 2.72 0.076 ● 0.086 ○

RMP 100 d9 100 µM 40 1.68 0.85 2.09 0.078 ● 0.068 ○

RMP 150 d9 150 µM 31 1.98 1.01 2.46 0.150 ●●● 0.096 ○

RTP 20 d9 20 µM 33 2.07 1.05 2.58 0.047 ○ 0.091 ○

RTP 100 d9 100 µM 30 1.82 0.91 2.26 0.062 ○ 0.145 ●

RTP 150 d9 150 µM 37 0.93 1.15 1.16 0.025 ○ 0.265 ●●●

ADK NTC d9 30 1.64 0.86 2.05 0.051 0.018

ADK 20 d9 20 µM 28 2.07 1.06 2.57 0.055 ○ 0.116 ●

ADK 100 d9 100 µM 31 1.94 0.99 2.41 0.101 ○ 0.114 ●

Table 1. Sequence analysis of supernatant J6/JFH1 from treated and untreated cultures. aNumber of analyzed 
sequences. bDiversity (nucleotide di�erence per site × 10−3). cDivergence from J6/JFH1(nucleotide di�erence 
per site × 10−3). dAverage number of pairwise nucleotide di�erences. enumber of G-to-A changes per G in 
reference per sequence. fp-value. Mann-Whitney test of the number of G-to-As compared to NTC. gNumber 
of C-to-U changes per C in reference per sequence. hp-value. Mann-Whitney test of the number of C-to-Us 
compared to NTC. ○non-signi�cant; ●p < 0.05; ●●p < 0.001; ●●●p < 0.0001.
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Ribavirin tri-phosphate and mono-phosphate have effects comparable to that of RBV on J6/
JFH1 infection. RBV is a pro-drug, requiring intra-cellular phosphorylation for activation. Several cellu-
lar enzymes are responsible for the phosphorylation process, but the initial phosphorylation of RBV to RBV 
monophosphate (RMP) by the cellular adenosine kinase (ADK) is considered a critical limiting step for the for-
mation of both RMP and RBV triphosphate (RTP). Recent �ndings41 suggested that Huh7 cell lines might have 
impaired expression of ADK, reducing the sensitivity of these cells to RBV treatment. To investigate the e�ect 
of RBV phosphorylation in our cell-culture system, we treated infected Huh7.5 cells with RMP and RTP. When 
tested against J6/JFH1 in a dose-response assay, these compounds showed IC50 of 277 µM for RMP and 330 µM 
for RTP, similar to that of RBV (Fig. 1a). Both drugs showed higher cytotoxicity than RBV, with LC50 of 4.4 mM 
(RMP) and 2.0 mM (RTP) (Fig. 1b), however the assay showed more than 90% live cells at concentrations of up to 
300 µM, thus allowing us to perform RMP and RTP treatment using the same range of concentrations as for RBV. 
Infections and treatment were conducted in the same fashion as done with RBV. �e e�ects of RMP and RTP on 
virus spread and infectivity were very similar to what had been observed with RBV (Fig. 3 and Supplementary 
Fig. 1). Both drugs were less e�ective at fully inhibiting viral spread, even at the highest concentration. At day 
9, infection had spread to 30% and 10% of the entire cell culture when the cultures were treated with RMP 
150 µM and RTP 150 µM, respectively. Viral infectivity also decreased up to 3 logs as observed with RBV treat-
ment (Fig. 3b and e). In a similar pattern to what was seen with RBV treatment, supernatant virus RNA titers 
declined only 1–2 logs compared to NTC, in a concentration-dependent manner, again showing a more limited 
e�ect of treatment on HCV RNA production in comparison to viral spread and infectivity (Fig. 3c and Fig. 3f). 
At day 9, viral infectivity reduction was 2.2- and 2.3-fold higher than the decrease in RNA titers for 150 µM 
RMP and RTP, respectively. �e di�erence in reduction between RNA and infectivity is similarly re�ected in the 
signi�cant reduction in speci�c infectivity of samples treated with both RMP and RTP at 100 µM and 150 µM 
(Supplementary Fig. 2). Overall, inhibition of HCV by RMP and RTP was concentration-dependent and showed 
e�cacy comparable to RBV, indicating that phosphorylation by ADK is not a limiting factor in our system and 
supporting a model in which RBV acts through its tri-phosphorylated form.

Ribavirin associated transitions (G-to-A and C-to-U) increase more than non-ribavirin asso-
ciated transitions (A-to-G and U-to-C) with increasing antiviral activity. To investigate whether 
mutations generated under treatment were ribavirin-associated transitions (G-to-A and C-to-U), we next ana-
lyzed the number and type of mutations detected. All sequences from day 9 samples treated with RBV, RMP, 
and RTP were compared to the J6/JFH1 reference strain. To calculate frequencies of base changes, the number 
of mutations was normalized to the frequency of each nucleotide in the reference sequence and the number of 
sequences in the alignment. Table 1 reports the numbers, kinds, and signi�cances of mutations in treated and 
non-treated samples. In samples treated with RBV the increase in G-to-A was signi�cantly accelerated; the fre-
quency of G-to-A changes in the NTC was 0.036% compared to 0.032% (20 µM RBV; not signi�cant), 0.088% 
(100 µM RBV; p = 0.01) and 0.126% (150 µM RBV; p < 0.0001). �e frequency of C-to-U in the RBV samples 
(0.066%, 0.077%, and 0.068% for 20 µM, 100 µM, and 150 µM, respectively) was higher than that in the NTC 

Figure 2. Hamming distances in HCV sequences obtained from supernatants of RBV treated and non-treated 
J6/JFH1 cell cultures. Graphs show the distribution of number of base di�erences per sequence pairs, at day 
4 (banded bars) and day 9 (solid bars) for each sample. Colors represent di�erent RBV dilutions matched to 
the values in Fig. 1. �e shown lambda values were calculated by �tting the datasets to a Poisson distribution. 
Sample sizes for each sample are found in Table 1.
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(0.045%) although the di�erence was not statistically signi�cant. Among cultures treated with RMP, all sam-
ples showed a signi�cant increase of G-to-A transitions, which raised from 0.036% (NTC) to 0.076% (20 µM; 
p = 0.01), 0.078% (100 µM; p = 0.03), and 0.150% (150 µM; p < 0.0001). C-to-U transitions were increased at all 
RMP concentrations, compared to the NTC, although this increase was not statistically signi�cant. Lastly, sam-
ples treated with RTP showed a marked increase in C-to-U transitions compared to the NTC; frequencies were 
0.045% (NTC) compared to 0.091% (20 µM; not signi�cant), 0.145% (100 µM; p = 0.03) and 0.265% (150 µM 
RBV; p < 0.0001). On the other hand, G-to-A changes and other non-ribavirin associated mutations did not 
increase signi�cantly in these samples.

To verify that the observed increase in RBV-associated mutations was driven by treatment and was not the result 
of co-selection or sequence resampling, we excluded all identical sequences and repeated the analyses on unique 
sequences only (Fig. 4). Notwithstanding the lower overall number of sequences included in the analysis (sample 
sizes were 37 for NTC, 115 for RBV, 76 for RMP, and 61 for RTP), the resulting mutation frequencies were sim-
ilar to those observed in the un�ltered dataset, showing signi�cant peaks for G-to-A and C-to-U transitions. In 
some instances, the relative increase of RBV-associated mutations in treated samples versus NTC was more pro-
nounced when identical sequences were �ltered out, whereas non-RBV-associated mutations were reduced. Samples 
treated with 150 µM RMP, for instance, showed a signi�cant increase in C-to-U transitions (from 0.096% to 0.157%; 
p < 0.0001) compared to the NTC (0.045%), while di�erences at lower concentrations remained non-signi�cant.

Figure 3. Treatment of HCV J6/JFH1 infected Huh-7.5 cells with RMP and RTP. Representative charts 
depicting one of two sets of independent experiments (for the second set of experiments see Supplementary 
Fig. 1). (a and d) Infection spread of J6/JFH1 virus estimated by immunostaining of NS5A in samples treated 
with RMP and RTP, respectively. Data points express average of 1–3 determinations. (b and e) Viral infectivity 
of �ltered supernatants obtained from samples treated with RMP and RTP, respectively. Data points represent 
average of at least 3 determinations, error bars indicate SD. (c and f) HCV RNA titers of viral supernatants 
from treated and non-treated samples, data points represent averages of at least 2 measurements. �e colors 
explanation is visible at the bottom of the �gure.
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Overall, treatment with phosphorylated and non-phosphorylated forms of RBV resulted in a marked increase 
in G-to-A and C-to-U transitions. �e e�ect was, at least partially, concentration-dependent and resulted in 2- to 
4-fold increase in the frequency of RBV-associated transitions (Table 1 and Fig. 4). In addition, the mutation pro-
�les produced by RBV, RMP, and RTP were comparable, again supporting a model in which RBV acts through its 
tri-phosphorylated form. �ese observations con�rm that the increase in virus population diversity when treating 
with RBV and its phosphorylated forms is driven by an increase in the frequency of RBV-associated mutations. 
Subsequently, we investigated whether mutations were grouped at speci�c sites in the HCV NS5B-polymerase 
region.

Uniform accumulation of ribavirin-associated mutations in the HCV genome. Figure 5 illustrates 
the numbers and kinds of mutations in reference to the analyzed J6/JFH1 NS5B sequence for non-treated controls 
(Fig. 5a) and samples treated with RBV at day 9 (Fig. 5b). In the 78 analyzed sequences from untreated controls 
we identi�ed 58 total mutations, of which 40 were unique mutations. Mutations occurring in more than two 
sequences were equally distributed between RBV-associated and non-associated mutations (10 were A-to-G or 
U-to-C vs 8 G-to-A or C-to-U). A total of 190 mutations were identi�ed in the 177 analyzed sequences from 
treated samples, of which most (107 nucleotide changes) were unique. Most RBV-associated mutations were also 
unique (44 of 76 mutations). Similarly to NTCs, mutations occurring in more than two sequences were not pre-
dominantly RBV-associated mutations (32 were A-to-G or U-to-C vs 41 G-to-A or C-to-U). Both RBV-associated 

Figure 4. Mutations frequencies in unique HCV sequences obtained from supernatants of treated and non-
treated J6/JFH1 cell cultures. All nucleotide substitutions identi�ed in unique sequences were scored and 
normalized to the number of each nucleotide in the baseline reference sequence. (a) Mutation frequencies from 
day 9 samples treated with RBV. (b) Mutation frequencies from day 9 samples treated with RMP. (c) Mutation 
frequencies from day 9 samples treated with RTP. Drug concentrations are indicated by color legends in each 
panel. Bars represent overall frequencies calculated from unique sequences. Sample sizes: n = 37 (NTC); n = 115 
(RBV); n = 76 (RMP), n = 61 (RTP).
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and non-associated mutations appeared to be overall randomly distributed along the analyzed region. Only 2 
sites had a relatively high mutation frequency in treated samples, these were positions 7933 and 9074 with 15 
and 7 mutations, respectively (corresponding to positions 7868 and 9009 in the H77 reference genome). Position 
7933 was also observed to have a higher mutation frequency in NTCs (6 mutations; Fig. 5a) and in experiments 
with RTP and RMP (7 and 5 mutations, respectively (data not shown)). �e mutation was a C-to-U and did not 
confer changes in the amino acid composition. Currently, it is unclear why this position was prone to mutate; it 
has not previously been associated with RBV exposure and since it was synonymous and identi�ed also in NTCs, 
it is unlikely to directly confer resistance to RBV. Overall, RBV-associated mutations were mostly unique and 
uniformly distributed in the NS5B region.

Generation of Huh7.5 cell-line overexpressing ADK. To further assess whether reduced ADK expres-
sion in our cell system could explain the observed high IC50 for J6/JFH1 infections, we produced a derivative cell 
line of Huh7.5 (Huh-ADK) stably transfected with a plasmid expressing human ADK. Intracellular levels of ADK 
were determined by quantitative �uorescent western blot in four independent experiments (Fig. 6a). �e novel 
Huh-ADK cell line showed a signi�cant 2.2-fold increase in ADK expression (p < 0.05, paired t-test), while tran-
siently transfected cells displayed a 6-fold increase 48 hours post-transfection (p < 0.05, paired t-test), compared 
to the original Huh7.5 cell line. �us, we generated a stably transfected hepatic cell line overexpressing the ADK 
enzyme, to be used in comparative studies of RBV e�cacy in cell-culture.

Overexpression of ADK does not affect ribavirin treatment outcome. To assess whether ADK 
overexpression in Huh-ADK would improve the e�cacy of RBV against J6/JFH1 infections, we performed a 
48 hours dose-response assay using Huh7.5 and Huh-ADK cells in parallel (Fig. 6b). �e dose-response curves 
obtained with these two cell lines were very similar, yielding IC50 of 215 µM and 221 µM for Huh7.5 and 
Huh-ADK, respectively. Subsequently, Huh-ADK cells were infected with J6/JFH1 and treated with RBV at 20 
and 100 µM, using the same protocol as used for Huh7.5 cells. �e antiviral e�ect of 100 µM RBV on J6/JFH1 in 
Huh-ADK cells was very similar to what was observed in Huh7.5 cells, showing delay in viral spread, reduced 

Figure 5. Location of nucleotide substitutions along the analyzed HCV NS5B region of J6/JFH1 in RBV treated 
and non-treated samples. �e graphs depict the position and frequency of each substitution identi�ed in (a) 
NTC (n = 78) and (b) RBV-treated samples (n = 177). Colors de�ne the kind of substitution, with blue tones 
representing RBV-associated mutations and red tones representing other mutations. Positions are relative to 
H77 reference HCV genome (Accession number: AF009606).
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HCV infectivity, and lower RNA titers (Fig. 6c,d, and data not shown). We sequenced HCV from cell supernatant 
treated with RBV 20 µM and RBV 100 µM, and observed concentration-dependent enrichment of virus diversity 
in treated samples, at a similar level as in Huh7.5 cells (Table 1). Accumulation of RBV-associated transitions in 
J6/JFH1 cultured in Huh-ADK cells was comparable to �ndings in Huh7.5 cells. �ese results con�rm that ADK 
expression in our Huh7.5 cell-culture system is not a limiting factor for RBV sensitivity.

Discussion
Studies of the e�ect of RBV in HCV infectious cell culture models have been limited in scope28,29,42. In vitro 
models have the advantage over clinical studies of controlling for host and virus variability. Furthermore, they 
recapitulate the complete viral infectious cycle compared to replicon systems, which primarily cover RNA repli-
cation16. We therefore used a well-established HCV cell culture model31 to investigate the e�ect of RBV on spread, 
infectivity, RNA production, and mutational spectrum of released viruses.

Our results show that high concentrations of RBV (150 µM) can fully inhibit HCV spread and infectivity in 
cell culture, while having reduced e�ect on supernatant virus RNA titers. In a similar in vitro assay, our group has 
studied the e�ect of the DAA Sofosbuvir (a chain-terminator nucleotide analog) and found it to be associated 
with a sharp decrease in HCV RNA titers along with inhibition of spread and infectivity43, indicating that inhibi-
tion of RNA replication can lead to measurable reduction in supernatant HCV genome titers. Our observations 
of relatively small changes in RNA titers, despite large drops in viral infectivity at the highest drug concentra-
tions, suggest that the biological e�ect of RBV is mediated through post-transcriptional rather than replicative 
inhibition. To our knowledge, this is the �rst time such a dichotomic e�ect of RBV has been reported for HCV 
infection, and is an indication that RBV acts through an increased mutagenesis mode of action. �ese �ndings are 
supported by our analysis of the mutational pattern of released viruses, showing that RBV and its phosphorylated 
forms increase the overall diversity of the viral population in a concentration-dependent manner.

Studies analyzing plasma virus from patients undergoing RBV mono-therapy, have found an increase in the 
overall complexity of the virus population24,25, while others have not26. Diversity is a very crude measure of the 
polymorphisms in a viral population, and can be a�ected by selection and migration, as well as viral factors 
including �tness and structural RNA constrains. A possible explanation for these con�icting results could be that 

Figure 6. E�cacy of RBV against HCV J6/JFH1 in Huh-ADK cells. (a) Fluorescent western blot analysis 
of the expression of ADK in di�erent cell lines. �e red and green pictures display a representative western 
blot of ADK and βActin stained simultaneously with di�erent antibodies. �e chart depicts normalized 
quanti�cation of ADK expression, relative to Huh7.5 stock cell line. Lines represent the mean value of 4 
independent quanti�cations. Huh-ADK: stably expressing ADK; ADK-TF: Huh7.5 transiently transfected 
with ADK expression plasmid. See Supplementary Fig. 3 for the full-length blots. (b) Dose-response curves 
of RBV performed in Huh7.5 and Huh-ADK cells. Values were obtained from triplicate determinations for 
each dilution and normalized to non-treated controls. Curve �tting was performed with 0%-100% constraints, 
error bars represent SD. (c,d) Representative graph from one of two sets of independent experiments on 
Huh-ADK cells (for the second set of experiments see Supplementary Fig. 1). (c) Infection spread of HCV J6/
JFH1 virus under RBV treatment, monitored by immunostaining of NS5A. Data points represent average of 2 
determinations. (d) Viral infectivity of �ltered supernatants obtained from infected Huh-ADK cells treated with 
RBV. Data points represent average of 2 determinations, error bars represent SD.
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these studies compared viruses across di�erent genotypes and infectious stages, so that overlaying confounding 
factors masked the diversity signal. By studying the evolution of a relatively homogeneous virus inoculum in a 
controlled environment, in vitro cell-culture studies minimize the signi�cance of these factors, thus allowing the 
detection of small changes in the population sequence space.

We found that RBV-associated transitions (G-to-A and C-to-U) were enriched in HCV genomes from treated 
cultures. Mutations accumulated in a concentration-dependent way and at a higher frequency (2–4 fold) than 
non-RBV associated transitions (A-to-G and U-to-C). �ese results are in good agreement with �ndings from in 
vivo studies, reporting increase in G-to-A and C-to-U transitions24,25. We observed comparable, but not identical 
mutation pro�les in samples treated with RBV, RMP, and RTP. Rather than representing functional di�erences 
between the drugs, we believe this is attributable to the relatively limited sample size and number of mutations 
detected. A recent in vitro analysis of RBV e�ect on HCV also reported comparable increased mutation rates28, 
however, the system used in that study led to cure of HCV infected cells with RBV monotherapy, an event seldom 
observed both in vivo and in vitro. Overall, our �ndings indicate that our cell-culture system can accurately reca-
pitulate the e�ect of RBV observed in patients and further support a mutagenic mechanism of action for RBV.

We found that mutations were most o�en unique and synonymous. �e genomes in the cell supernatant 
viruses went from having on average 0–1 mutations (compared to the J6/JFH1 reference) to having an average of 
1–3 mutations. It should be noted that any selection pressure on the virus most likely will increase the mutational 
spectrum, however, the detected mutations were speci�c to RBV (G-to-A and C-to-U) and increased in frequency 
despite strong antiviral pressure, which normally would be associated with loss of diversity. We sequenced super-
natant culture viruses, which may over-represent functional genomes selected for infectivity or packaging capac-
ity, possibly limiting the detection of the mutagenic potential of RBV. �us, the mutational ability of RBV may be 
greater than what we report in here. Also, for the �rst time we examined the distribution of mutations throughout 
the NS5B region, revealing that they were overall evenly spread. �is suggests that the observed mutations did not 
represent drug escape mutations, but rather random substitutions induced by RBV treatment.

�e concentration of RBV in plasma in treated patients has been estimated to be 10–20 µM, while the con-
centration in hepatocytes is unknown. We studied a range of concentrations of RBV from 20 µM to 150 µM. �e 
antiviral e�ect below 100 µM was subtle. �ese observations are in good agreement with clinical data on RBV, as 
mono-therapy has little and only transient e�ect on plasma HCV RNA levels1.

Recent studies have proposed that Huh-7 cells have a reduced expression of cellular adenosine kinase (ADK)41, 
a critical enzyme for phosphorylation of RBV into its active forms. We wanted to know if ADK expression would 
a�ect the potency of RBV in our culture system, which is based on Huh7.5 cells. We therefore developed a Huh7.5 
cell line that stably over-expresses ADK. ADK over-expression did not a�ect the potency or mutagenic action of 
RBV in our culture model. �ese observations were further supported by experiments investigating the e�ect of 
phosphorylated forms of RBV. �e mono- and tri-phosphorylated forms of RBV showed e�ects comparable to 
RBV in inhibiting virus spread and infectivity, and were as e�ective in inducing RBV-associated mutations. We 
thus conclude that ADK activity is not a limiting factor on RBV activity in our infectious cell culture system. It 
should be noted that Mori and coworkers41 used Huh-7 cells for their experiments, which could possess di�erent 
native ADK levels compared to Huh7.5 cells. In addition, the similar activities observed for RBV, RMP, and RTP, 
support a model of action of RBV through its tri-phosphate form RTP, which is the common phosphorylation 
end point of both RBV and RMP.

Overall, our data support a mechanism of action of RBV as a mutagen, mediated by its tri-phosphate form, 
acting by increasing the frequency of RBV-associated transitions (G-to-A and C-to-U) in the viral population. 
Lethal mutagenesis should be explored as an antiviral strategy for the development of new broadly acting antivi-
rals, which are urgently needed in the modern world with increased risk of emerging or re-emerging diseases, in 
particular outbreaks by mutable RNA viruses, that require fast intervention.

Materials and Methods
Cell culture and infections. �e human hepatoma derived cell line Huh7.532 was grown in Dulbecco’s 
Modi�ed Eagle Medium (DMEM, Gibco) supplemented with 10% fetal calf serum, 100 µg/mL streptomycin, 
and 100 u/mL penicillin (Gibco). �e Huh-ADK cell line generated in the present study (see below) was main-
tained in the same medium as Huh7.5, supplemented with 250 µg/mL Hygromycin-B (InvivoGen). For infections, 
1.8 × 106 naïve cells were plated on 10 cm dishes and infected at MOI 0.0005 with culture-derived sterile-�ltered 
J6/JFH131 supernatant 24 hours post-seeding. To minimize carryover of input virus, cells were washed twice with 
PBS 4 hours a�er inoculation, brie�y treated with 10% trypsin-EDTA (Gibco), and washed again with PBS. Cells 
were then incubated overnight in complete medium. Infected cells were split 24 hours post-infection, plated in 
25 mL �asks at 4 × 105 cells per �ask, and subjected to treatment. For treated cultures, medium containing RBV 
or its related forms was added at each cell split.

Generation of Huh-ADK cell line. We produced a derivative cell line of Huh7.5 (Huh-ADK) stably trans-
fected with a plasmid expressing human ADK. �e commercial expression plasmid pCMV-ADK (HG13149-G-N, 
Sino Biologicals) encoding the cDNA of human ADK (accession number BC003568) and the Hygromycin resist-
ance selection marker was transfected into Huh7.5 cells. Selection of stably transfected cells was started 48 hours 
post-transfection by culturing cells with 500 µM Hygromycin-B. A�er 2 weeks of selection, surviving cells were 
pooled and maintained in 250 µM Hygromycin-B for subsequent experiments. Overexpression of ADK was ver-
i�ed by quantitative western blot analysis.

Monitoring of infection spread and viral titers. Infected cells were split and viral supernatants collected 
every 2 to 3 days. Viral spread was monitored by immunostaining of cells, plated on microscopy slides, with pri-
mary mouse antibody against HCV NS5A protein (9E10)31 and secondary goat anti-mouse antibody conjugated 
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to AlexaFluor 488 (�ermoFisher). Viral infectivity was determined using poly-D-lysine-coated 96-well plates 
(Nunc) seeded with 6 × 103 Huh7.5 cells per well, as previously described44,45. Cells were inoculated in triplicate 
with 100 µL of sample dilutions ~24 hours post seeding. Fixation with ice-cold methanol and overnight immu-
nostaining were performed 48 hours a�er infection, using the 9E10 primary antibody. Secondary staining was 
carried out with anti-mouse antibody linked to HRP enzyme (GE Healthcare Amersham), followed by 30 min-
utes incubation with DAB substrate (DAKO) to produce colored precipitate in positive cells. �e number of FFU 
was determined on an ImmunoSpot Series 5 UV Analyzer (CTL Europe GmbH) with customized so�ware, as 
previously described45. In the determination of viral infectivity of treated samples, carryover drug present in the 
supernatant could a�ect the FFU readout. However, given that samples were diluted at least 2 to 10 times for this 
assay, and that drug concentrations below 100 µM had marginal e�ect of J6/JFH1 spread, we estimate this e�ect 
to be negligible for the purpose of this study.

Antiviral Drug Treatment. All compounds used were synthesized by ACME Bioscience (Palo Alto, USA). 
Lyophilized compounds were re-suspended in PBS upon receipt to a �nal concentration of 100 mM, aliquoted, 
and stored at −20 °C. Working dilutions were prepared fresh before use by serially diluting stock solutions in 
complete DMEM at the desired concentrations. In treatment experiments, drug dilutions were applied to infected 
cells one day post-infection and every 2–3 days therea�er, upon cell splitting.

Dose-response and cell viability assays. Cells were plated at 6 × 103 cells per well on poly-d-lysine-coated 
96-well plates (Nunc). To determine the dose-response curve of RBV and related compounds, cells were infected 
~24 hours post seeding with J6/JFH1 stock virus at high MOI, then treated with triplicate serial dilutions of drugs 
24 hours post-infection. Cell were �xed in methanol 72 hours post-infection, immunostained with primary 9E10 
antibody, secondary anti-mouse antibody linked to HRP enzyme (GE Healthcare Amersham), and colored with 
DAB substrate (DAKO). Infected cells were counted individually using ImmunoSpot Series 5 Analyzer (CTL 
Europe GmbH) with customized so�ware, as previously described44,46. To assess cell viability under treatment, 
naïve cells were treated in triplicate with serial dilutions of drugs for 48 hours, and the percentage of live cells 
compared to untreated controls was determined using CellTiter 96 AQueous One Solution cell proliferation assay 
(Promega), following manufacturer’s instructions.

Fluorescent western blot. Cell lysates were prepared using RIPA bu�er (�ermoFisher) supplemented 
with protease inhibitors, following manufacturer recommendations. Brie�y, cells were washed twice with cold 
PBS, lysed in cold RIPA bu�er for 30 minutes, centrifuged for 15 minutes at maximum speed at 4 °C, supernatants 
collected and stored at −20 °C for subsequent analysis. Total protein concentration was determined on a Qubit 
�uorometer using the Qubit Protein Assay Kit (�ermoFisher), according to recommendations. PAGE was per-
formed using Mini-PROTEAN TGX 4–20% gels (Biorad), and separated proteins were blotted on Immun-Blot 
Low Fluorescence PVDF membranes (Biorad). Membrane blocking was performed in Rockland blocking bu�er 
for �uorescent western blotting (Rockland Immunochemicals) overnight, followed by primary staining in the 
same bu�er using rabbit-anti-ADK antibody at 1:200 (ab38010, AbCam) and mouse-anti-βActin antibody at 
1:1000 (sc47778, Santa Cruz Biotechnology). Secondary staining was carried out in PBS using goat-anti-rabbit 
antibody conjugated to AlexaFluorPlus 647 and goat-anti-mouse antibody conjugated to AlexaFluorPlus 555 
(�ermoFisher). Imaging was obtained with a Chemidoc MP (Biorad) equipped for multicolor western-blot. 
Protein band quanti�cation was calculated using ImageLab 6.0 (BioRad) using β-Actin bands for normalization 
(see Supplementary Fig. 3).

HCV RNA extraction and sequencing. HCV RNA was extracted from 50 µL of cell culture supernatant 
as described previously36. Viral RNA was transcribed into cDNA as previously described using JB9470R_JFH1 
(reverse) 5′-CTATGGAGTGTACCTAGTGTGTGC-3′47 and a 1245 bp region of the NS5B gene was ampli�ed 
by nested PCR using primers NS5B_F1 (forward) 5′-TTGCTCCGAGGAGGACGATAC-3′ and JB9470R_JFH1 
(reverse) for �rst round PCR, and NS5B_F2 (forward) 5′-GTAACTCGCTGTTGCGATAC-3′ and NS5B_R2 
(reverse) 5′-CGGTGAACCAACTGGATAAGTC-3′ for second round PCR. Ampli�cation was carried out using 
Platinum Taq DNA polymerase high �delity (Invitrogen) following manufacturer recommendations and anneal-
ing temperature of 55 °C in both rounds of PCR. Molecular cloning of PCR products was performed using the 
TOPO TA cloning kit (�ermoFisher) according to manufacturer instructions. Plasmids were extracted with the 
Nucleospin 8 kit (Macherey-Nagel) and bi-directionally sequenced using 4 primers (Macrogen Europe).

Viral RNA titers. For determination of HCV RNA titers in culture supernatant, RNA was extracted from 
200 µL supernatant using the Total Nucleic Acid Isolation Kit (Roche Applied Science); titers were determined by 
TaqMan real-time PCR as previously described47.

Genetic analyses. Sequences were assembled using the Lasergene so�ware (DNASTAR). Sequences were 
manually checked for errors and aligned to the J6/JFH1 reference sequence using the ClustalW algorithm inte-
grated in Bioedit 7.2.5 so�ware48. In total, 1096 individual sequences were produced and analyzed. Of these, only 
two contained stop codons in the NS5B reading frame and three contained single nucleotide deletions (which 
were not counted in the mutation analyses). Sequence diversity and divergence from the J6/JFH1 reference 
sequence were estimated using average pairwise distance (p-distance) corrected by the Jukes and Cantor model 
(JC), as described by Nei and Kumar, using MEGA 7.0 so�ware (MEGA7: Molecular Evolutionary Genetics 
Analysis version 7.0 for bigger datasets49). �is distance is the proportion of nucleotides that are di�erent between 
two sequences, calculated dividing the number of nucleotide changes by the total number of nucleotides and cor-
rected using the Jukes-Cantor nucleotide substitution model. Brie�y, sequences from each sample were compared 
among themselves (diversity) or to the reference J6/JFH1 consensus sequence (divergence) to obtain average 
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p-distance and SD that describe diversity and divergence for each sample. RBV associated mutations (G-to-A and 
C-to-U) and non-RBV associated mutations (A-to-G and U-to-C) were counted by comparing to the baseline ref-
erence sequence, using the program Hypermut50, and the percentage was obtained by dividing with the number 
of sequences in the alignment and normalizing for the number of each particular base (e.g. G if counting G-to-A 
changes) in the reference sequence, and calculated as percentage. Sequence average number of di�erence within 
sets of sequences was calculated by using the DNAsp program 5.1051.

Statistical analysis. Dose-response and cytotoxicity curves were estimated using non-linear regression 
curve-�tting on baselined and normalized values, with variable slope and constrains at 0% and 100%. Lambda 
values were obtained by �tting the distribution of Hamming distances to a Poisson curve. Variation signi�cance 
among sample groups was evaluated using 2way ANOVA with multiple comparisons. �e Mann-Whitney U test 
was used to test di�erences in mutation frequencies between groups. All statistical analyses were performed using 
Prism 7 (GraphPad So�ware).

Data availability. �e Huh-ADK cell line is available upon request and completion of standard Material 
Transfer Agreement. All sequences generated and analyzed in this study are available from the Genbank reposi-
tory (Accession numbers: MG890638 - MG891733).
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