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Abstract: Marine sponges are currently one of the richest sources of pharmacologically 

active compounds found in the marine environment. These bioactive molecules are often 

secondary metabolites, whose main function is to enable and/or modulate cellular 

communication and defense. They are usually produced by functional enzyme clusters in 

sponges and/or their associated symbiotic microorganisms. Natural product lead 

compounds from sponges have often been found to be promising pharmaceutical agents. 

Several of them have successfully been approved as antiviral agents for clinical use or have 

been advanced to the late stages of clinical trials. Most of these drugs are used for the 

treatment of human immunodeficiency virus (HIV) and herpes simplex virus (HSV). The 

most important antiviral lead of marine origin reported thus far is nucleoside Ara-A 

(vidarabine) isolated from sponge Tethya crypta. It inhibits viral DNA polymerase and 

DNA synthesis of herpes, vaccinica and varicella zoster viruses. However due to the 

discovery of new types of viruses and emergence of drug resistant strains, it is necessary to 

develop new antiviral lead compounds continuously. Several sponge derived antiviral lead 

compounds which are hopedto be developed as future drugs are discussed in this review. 

Supply problems are usually the major bottleneck to the development of these compounds 

as drugs during clinical trials. However advances in the field of metagenomics and high 

throughput microbial cultivation has raised the possibility that these techniques could lead 

to the cost-effective large scale production of such compounds. Perspectives on 

biotechnological methods with respect to marine drug development are also discussed. 
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1. Introduction 

Marine sponges (phylum Porifera) are among the oldest multicellular invertebrate organisms [1] 

exhibiting a wide variety of colors and shapes. About 8,000 species of sponges, inhabiting different 

marine and freshwater ecosystems have been described to date [2]. Marine sponges are a rich source of 

potent natural products, some of which are considered as highly significant lead compounds for drug 

development. Most of these are secondary metabolites produced by the sponges [3] which may be 

produced to defend themselves against pathogenic bacteria, algae, fungi and other potential predators; 

a system they have developed during the process of evolution throughout thousands of years. More 

than 5,300 different natural compounds have been discovered from sponges and their associated 

microorganisms, and every year several hundred new compounds are being added [4]. 

Antiviral compounds are currently of particular interest since viral diseases (e.g., HIV, H1N1, HSV, 

etc.) have become major human health problems in recent decades. The ability of a virus to rapidly 

evolve and develop resistance to existing pharmaceuticals calls for continuing development of new 

antiviral drugs. Several lead antiviral compounds have been isolated from marine sponges, and there 

has been a consistent effort to identify new compounds.  

The nucleosides spongothymidine and spongouridine were the first compounds isolated from a 

marine sponge (Tethya crypta) [5,6] which further led to the synthesis of Ara-C, an anticancer agent 

and Ara-A, the first antiviral drug. Ara-A inhibits viral DNA synthesis by conversion into adenine 

arabinoside triphosphate which inhibits viral DNA polymerase and DNA synthesis of herpes, vaccinica 

and varicella zoster viruses. It has been used clinically for treatment of herpes virus infection. Ara-A 

was the only sponge derived compound which was approved by the US FDA as an antiviral drug, 

although its marketing was later stopped as it was found to be less efficient and more toxic than the 

newer drug acyclovir (Zovirax) [7,8]. In addition to nucleosides, marine sponges are also the source of 

many alkaloids, sterols, terpenes, peptides, fatty acids, peroxides, etc. exhibiting the remarkable 

chemical diversity of compounds found in these organisms [9].  

Several other sponge derived antiviral compounds are in preclinical/clinical trials for various 

diseases. However significant problems associated with these compounds have been a major limitation 

in the drug development and approval process. This is primarily due to the many technological 

challenges in detecting, isolating, characterizing, and scaling up production of bioactive compounds 

from marine sponges. To solve the critical supply problem, several efforts are being made in sponge 

farming, metagenomics and microbial cultivation, which are discussed below. Here we focus on 

existing or promising antiviral lead compounds from marine sponges which may have the potential to 

be future drugs.  
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2. Antiviral Lead Compounds 

2.1. Nucleosides 

2.1.1. Vidarabine or Ara-A 

In 1950, Bergmann et al. [6] isolated from the Caribbean sponge Tethya crypta (Tethylidae) the 

nucleosides spongothymidine and spongouridine, which contained an arabinose sugar rather than the 

more common ribose sugar  found in these nucleosides. Vidarabine or Ara-A is a synthetic analogue of 

spongouridine with improved antiviral activity. The antiviral activity of adenine arabinoside 

(vidarabine, Ara-A, Figure 1) was first described by Privat de Garilhe and De Rudder in 1964 [10]. 

The work of Whitley in 1976 further confirmed the clinical usefulness of the compound in the 

treatment of herpes encephalitis and the other herpes infections that occasionally occur in newborns 

[11]. It was the first nucleoside antiviral to be licensed for the treatment of systematic herpes virus 

infection and one of the three marine-derived drugs currently approved by the FDA in the United 

States [12], however the marketing of the drug has been discontinued because the availability of newer 

and better antiviral agents on the market.  

Figure 1. Structure of Ara-A. 

 

 

 

 

 

 

Despite its proven ability as a therapeutic agent which is active against a variety of viruses, 

vidarabine has some significant limitations. It is readily metabolized by adenosine deaminase (ADA) 

to arabinofuranosyl hypoxanthine (ara-H), which is 10-fold less potent [13,14] and has low 

lipophilicity and thus low intestinal membrane permeability. It is also poorly soluble in aqueous 

solutions and has low intramuscular absorption, requires large fluid volumes for intravenous 

administration, and must be given over prolonged periods (8 to 12 h) [15] to obtain therapeutic effects. 

Later acyclovir (Zovirax) was found to be a better drug than vidarabine for the treatment of herpes 

virus infections [7,8] however vidarabine was reported to be capable of inhibiting acyclovir-resistant 

HSV and VZV (varicella-zoster virus) [16,17]. Vidarabine is an inhibitor of viral DNA synthesis [18]. 

Adenine arabinoside (vidarabine) is converted into adenine arabinoside triphosphate (ara-ATP) in vivo 

[19] by kinases encoded by viruses, which in turn inhibit viral DNA polymerase and hence DNA 

synthesis of herpes, vaccinia and varicella zoster viruses [12,20]. Another study found that vidarabine 

is incorporated into RNA as well as DNA, leading to another possible mechanism of action of the 

drug. It was observed that vidarabine inhibited the initial RNA polyadenylation reaction catalyzed by 

chromatin-bound poly (A) polymerase [21]. It was also recently reported that vidarabine was 3–5 fold 
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more active in plaque reduction assays against vaccinia and cowpox viruses than was cidofovir 

(Vistide) [22].  

Stereocontrolled synthesis of vidarabine [23] and several analogues/derivatives with antiviral 

activity has been described [24–26]. Its biosynthesis from Streptomyces antibioticus has also been 

reported [27]. 

2.1.2. Mycalamide A, Mycalamide B 

Perry et al. [28] first reported the isolation and in vitro antiviral activity of mycalamide A and 

mycalamide B (Figure 2) from a New Zealand sponge of the genus Mycale in 1988 and 1990, 

respectively. The crude extract containing 2% mycalamide A was found to be active against A59 

corona virus. After treatment with crude extract at 0.1 mg/kg, mice infected with virus survived for 14 

days, however the mice infected with virus died within eight days. Mycalamide A also inhibited the 

Herpes simplex type I and Polio type I viruses at a concentration of 5 ng/disc. Mycalamide B was 

found to be more potent than mycalamide A, which was active at a concentration of 1–2 ng/disc [29]. 

Examining the mechanisms involved in the actions of these compounds, Burres and Clement 

discovered the inhibition of protein synthesis and translation of RNA into protein in a cell-free lysate 

of rabbit reticulocytes [30]. A new study also described the binding of mycalamide A to the E site of 

the large ribosomal subunit of Haloarcula
 
marismortui and inhibition of protein synthesis [31]. This 

property of protein synthesis inhibition may be attributed to their biological activity as antiviral agents. 

Several studies regarding the total synthesis of mycalamides have been published [32–35]. Four 

analogues of mycalamide A have recently been reported [36] to bind the nucleoprotein (NP) of 

influenza virus and inhibit its multiplication. It has also shown experimentally that these compounds 

might bind to the N-terminal 13-amino acid region of NP which mediates the nuclear transport of NP 

and its binding to viral RNA, and hence may inhibit viral replication [36]. 

Figure 2. Structures of mycalamide A and B. 

 

2.2. Sesquiterpene Hydroquinones 

Avarol 

Avarol, a sesquiterpenoid hydroquinone with a rearranged drimane skeleton, was first isolated from 

the marine sponge Disidea avara in 1974 [37]. The chemical structure of avarol (Figure 3) was 
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established by standard analytical methods and chemical degradation [38] and by its stereocontrolled 

total synthesis [39].  

Figure 3. Structure of avarol. 

 

The compound showed a dose-dependent inhibitory effect on the replication of the etiologic agent 

of acquired immune deficiency syndrome (AIDS) and human T-lymphotropic retrovirus  

(HTLV III)/lymphadenopathy-associated virus in human H9 cells in vitro at a concentration of  

0.1 µg/mL [40]. The study suggested that the mechanism involved blocking the expression of the p24 

and p17 gag proteins of HTLV-III in H9 cells after virus infection, and hence blocking viral 

replication. Studies dating back to 1988 showed that the antiviral effects of avarol were due to an 

increase in intracellular levels of superoxide radicals such as superoxide dismutases and of glutathione 

peroxidase [41]. The effects of avarol were further elucidated and it was found that it completely 

blocks the synthesis of glutamine transfer tRNA, which is crucial for synthesis of a viral protease 

required for viral proliferation [42–44]. Other important biological targets inhibited by avarol or its 

derivatives include reverse transcriptase [45] which plays a key role in early stages of viral infection, 

inhibition of cyclooxygenase and 5’-lipoxygenase, thus reducing the levels of leukotriene B4 and 

prostaglandin E2 in vitro in HIV-1 infected monocytes [46], and modulating the expression of genes in 

HIV-infected cells [88].  

The anti-viral activity of avarone [47], a structurally similar compound also from the marine sponge 

Disidea avara, and its derivatives [48] has also been reported. Several new derivatives of avarol 

showing antiviral activities have also been extracted from the Red Sea sponge Dysidea cinerea [49]. 

The first enantioselective total synthesis of avarol was reported by Ling et al. [50]. In another attempt, 

the primmorph model (in vitro culture of sponge cells) was used as a model system to produce avarol 

in the laboratory [51]. The cell culture and gene cluster approaches used for sustainable production of 

avarol have also been reviewed [52]. 

2.3. Cyclic Depsipeptides 

2.3.1. Papuamide A, B, C, and D 

The anti-HIV and cytotoxic cyclic depsipeptides, papuamides, were isolated from the sponges 

Theonella mirabilis and Theonella swinhoei that were collected along the north coast of Papua New 

Guinea [53]. Two groups from the National Cancer Institute and the University of British Columbia 

independently reported the isolation of papuamides A and B from T. mirabilis and papuamides A, B, 

C, and D from T. swinhoei, respectively (Figure 4).  
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Figure 4. Structures of Papuamide A, B, C and D. 

 

 

 

Extensive NMR analysis confirmed the presence of different amino acid residues, including alanine, 

threonine, two glycine residues, homoproline, N-methylthreonine, 3-methoxyalanine, β-methoxy-

tyrosine, 3-hydroxyleucine, 3,4-dimethylglutamine, 2,3-diaminobutanoic acid and an amide linked 2,3 

dihydroxy-2,6,8-trimethyldeca-(4Z,6E)-dienoic acid [54]. Papuamides A and B have been evaluated 

for their anti-HIV activity in cell based assays in CEM-SS T-cell cultures, and found to be highly 

potent with an effective concentration of3.6 ng/mL [54]. Activities for both compounds were found to 

be virtually identical. 

Detailed mechanistic studies for the anti-HIV activity of papuamides A and B have been performed 

by Andjelic et al. [55]. Inhibition of viral entry into cells is shown to be independent of CD4, gp120, 

chemokine co-receptors and gp41, key proteins which are involved in the process of viral entry and are 

the targets of most of the FDA approved inhibitors of this process [56]. The mechanism of a direct 

interaction of papuamide A with the virus has been proposed witha membrane targeting mechanism 

believed to be responsible for the virucidal activity of the compound [55].A similar type of mechanism 
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has been proposed for an antifungal sterol dependent lipopeptide [57]. Papuamide B also inhibited 

viral entry at a concentration of 710 nM, with the proposed mechanism of targeting 

phosphatidylserine, a phospholipid present on the viral membrane. Papuamides C and D were found to 

be less potent with 30% and 55% inhibition at a concentration of 40 and 20 fold higher than 

papuamides A and B. In a recent study Xie et al. reported the total synthesis of papuamide B [54].  

2.3.2. Microspinosamide 

Isolation of microspinosamide, a cyclic depsipeptide (Figure 5), from an Indonesian collection of 

the sponge Sidonops microspinosa was reported in 2001 [58]. Microspinosamide contained 13 amino 

acid residues including alanine, tryptophan, arginine, threonine, aspartate, valine, two prolines,  

tert-leucine, β-methylisoleucine, N-methylglutamine, cysteic acid and a new residue, β-hydroxy-p-

bromo-phenylalanine. The Anti-HIV activity of crude extract of S. microspinosa was first discovered 

during the National Cancer Institute’s primary anti-HIV screening [59]. Both aqueous and organic 

extracts of S. microspinosa exhibited anti-HIV activity. Microspinosamide was also evaluated for  

anti-HIV activity in a cell based in vitro assay and found to be effective at a concentration of  

0.2 µg/mL in CEM-SS arget cells. Other cyclic depsipeptides from sponges with anti-HIV activity 

have also been reported [53,60,61]. 

Figure 5. Structure of microspinosamide. 

 

2.4. Alkaloids 

2.4.1. 4-Methylaaptamine 

Isolation of the alkaloid 4-methylaaptamine (Figure 6) from the marine sponge Aaptos sp. (collected 

in Abrolhos, Bahia, Brazil) and the preliminary activity of its crude extract to inhibit 76% of HSV-1 

replication in Vero cells at a concentration of 2.4 µg/mL was first reported by Coutinho et al. [62]. 

Another study confirmed the anti-HSV-1 activity of 4-methylaaptamine with an EC50 of 2.4 µM [63], 

which is even more potent than acyclovir, which has an EC50 of 8.6 µM [62]. 4-Methylaaptamine was 

found to inhibit HSV-1-infection in Vero cells even 4 h after infection, suggesting the inhibition of 

initial events during HSV-1 replication. Apparently the compound could inhibit expression of an  
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HSV-1 immediate-early protein, ICP27, which regulates splicing, termination, and nuclear export of 

viral transcripts thus preventing viral replication [63]. 

Synthetic transformation of methylaaptamine, which was first isolated by Nakamura and  

co-workers [64], into 4-methylaaptamine has also been reported [65].  

9-O-4-Ethylbenzoylisoaaptamine, a novel derivative of isoaaptamine also displays potent activity 

against HIV-1 with an EC50 of 0.47 µg/mL [66]. 

Figure 6. Structure of 4-methylaaptamine. 

 

2.4.2. Dragmacidin F 

Cutignano et al. reported the isolation of a new bromoindole alkaloid, dragmacidin F (Figure 7), 

from a marine sponge of the genus Halicortex collected off the southern coast of Ustica Island  

(Italy) [67].  

Figure 7. Structure of Dragmacidin F. 

 

The compound demonstrated in vitro antiviral activity against HSV-1 and HIV-1 with an EC50 of 

96 μM and EC50 of 0.9 μM respectively and hence is most likely responsible for the antiviral property 

exhibited by Halicortex extracts. The compound has an unprecedented carbon skeleton that is 

presumed to be derived biosynthetically from dragmacidin D by the cyclization of its partially oxidized 

form [67]. Total synthesis of (+)-dragmacidin F has been described by Garg et al. [68]. 

2.4.3. Manzamine A 

Manzamine A (Figure 8) was isolated from Haliclona sp. Found in waters near Okinawa (Japan) by 

Sakai and Higa in their quest to find antitumor compounds from marine organisms [69]. The 

manzamine class of alkaloids has unique complex polycyclic ring systems coupled with a β-carboline 

moiety and has been reported to have a diverse range of bioactivities, including antimicrobial [70,71], 

antiparasitic [72], antipesticidal [73], and anti-HIV-1 and activity against AIDS opportunistic 

infections [74]. Isolation of manzamine A from the sponge Pachypellina sp. (Porifera, Demospongia, 
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Petrosida, Oceanapiidae) collected at Manado Bay, Sulawesi, Indonesia has also been described [75]. 

The same study reported the first anti HSV-II activity of this compound with a minimal effective 

concentration of 0.05 µg/mL. Isolation of manzamine A has also been reported from other species of 

marine sponges [76–78]. Enantioselective total synthesis of manzamine A has been described by 

Humphrey et al. [79]. 

Figure 8. Structure of manzamine A. 

 

A more recent study describes the isolation of manzamine A from an undescribed sponge of  

the genusAcanthostrongylophora from Manado Bay, Indonesia; and its key oral and intravenous 

pharmacokinetic properties in rats have also been reported [80]. This study, which was the first 

published information regarding the pharmacokinetic properties of manzamine A, indicated that the 

compound has a low metabolic clearance, a reasonably long pharmacokinetic half-life, and good 

absolute oral bioavailability, making it a promising potential lead for further preclinical assessment 

and possible development. This study also reported the anti-HIV-1 activity of manzamine A,  

8-hydroxymanzamine A, 6-deoxymanzamine X, and neokauluamine with EC50 of 4.2, 0.6, 1.6, and  

2.3 µM, respectively. 

2.5. Phenolic Macrolides 

Hamigeran B 

This compound (Figure 9) was isolated from the marine sponge Hamigera tarangaensis (family 

Anchinoidae) from the Hen and Chicken Islands in New Zealand and showed 100% in vitro virus 

inhibition against both the herpes and polio virus with only slight cytotoxicity at a concentration of  

132 µg per disk [51]. Syntheses of hamigeran B have been reported by several groups 1 [81–83]. 

Figure 9. Structure of hamigeran B. 
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3. Discussion 

A total of 40 compounds have been officially approved for clinical use in the treatment of various 

viral ailments and at least half of them are used for the treatment of HIV infection [84]. Most of the 

sponge-derived compounds have also been screened for anti-HIV activity, showing the interest and 

potential importance of this field. This has led to the discovery of many compounds with anti-HIV 

activity, such as avarol, microspinosamide, papuamides A–D etc. Although many antiviral lead 

compounds have been derived from sponges, none of them has yet been approved as a drug (except 

Ara-A which is no longer in use). One of the reasons for this is the difficulty in obtaining a sustainable 

supply of these complex molecules for pre-clinical and clinical trials [85]. Most of the 

pharmaceutically interesting compounds found in sponges are present in minute amounts. For 

example, in order to obtain even 300 mg of halichondrins, a potent cytostatic polyketide of sponge 

origin, 1 metric ton of the sponge Lissodendoryx sp. must be extracted [86]. In addition, it is difficult 

to chemically synthesize most of these compounds due to their highly complex structures. In addition, 

the very long drug development process [87] makes this problem even more challenging. It is clear that 

such a large amount of biomass of marine sponges cannot be harvested from nature, and in the event 

that it were it would put these species at risk of extinction. More environmentally friendly and 

economically feasible strategies are clearly needed. Mariculture of sponges for large scale production 

of these compounds is an option but insufficient knowledge of the conditions and specific parameters 

for the growth and cultivation of sponges in the laboratory are the limiting factors. Culturing cells and 

primmorphs for production of metabolites may be feasible in the future but at present this technique is 

unable to produce large amount of biomass [88]. 

A growing body of evidence suggests that marine natural products may be the products of bacterial 

symbionts of sponges [89,90]. The Faulkner group demonstrated for the first time that natural products 

from sponges could be of bacterial origin [91]. Microorganisms associated with sponges have been 

characterized into 14 different phyla and their diversity and biotechnological importance have been 

reviewed [92]. Isolation and cultivation of sponge-associated microorganisms (microbial fermentation) 

producing the bioactive natural products is also another option for the large scale production of 

compounds of interest [93,94]. The success of this strategy depends on many factors. The majority of 

sponge associated microorganisms are difficult to culture [95,96]. Improved culturing of sponge 

associated microorganisms by supplementing the media with sponge extract [97] or catalase and 

sodium pyruvate [98] has been reported, but the proportion of total cultured bacteria has remained low. 

Only 0.06 and 0.1% of total bacteria could be cultured from the sponges Candidaspongia flabellate 

[99] and Rhopaloeides odorabile [97]. Furthermore, microorganisms isolated from sponges may not 

necessarily produce the same compound due to the requirement of intermediate compound/s from the 

host. Some bacteria also stop producing the compound of interest after a certain time on artificial 

media, which may be caused by a number of genetic factors linked to lack of selective pressure in 

culture [100]. To develop successful sponge culturing methods it is essential to understand the biology 

and natural living conditions of the sponges affecting growth and metabolite production. Various 

methods to culture sponges and sponge symbionts have been reviewed previously [101,102]. The 

attempts to develop and grow in vitro cell lines from sponges from metabolite production have also 

been reported [103]. 



Mar. Drugs 2010, 8             

 

 

2629 

Metagenomics is another strategy that has been used successfully to identify the biosynthetic origin 

of natural products. This procedure involves the genomic analysis of the total DNA in an organism and 

its symbionts. In the past few years metagenomics has emerged as a potential solution for genetic 

characterization of unculturable bacteria associated with marine sponges [104]. The method involves 

direct extraction and cloning of DNA from a group of bacteria and its genomic sequencing [105]. 

Initial efforts included the identification and isolation of gene clusters responsible for production of 

secondary metabolites involved in biosynthetic pathways, such as polyketide synthase (PKS) gene 

clusters [106,107]. Another study reported the cloning of chondramide biosynthesis cluster from C. 

crocatus, a myxobacterium [108]. The metagenomic approach was also employed for characterizing 

sponge-specific candidate phylum ―Poribacteria‖ [109,110] and a new molybdenum-containing 

oxidoreductase and transmembrane proteins were identified [110]. The gene clusters identified using 

metagenomics approach is a step forward towards solving the problem of mass production of relevant 

natural products which further depends on the expression of the isolated gene clusters in relevant host. 

Heterologous expression vectors have been used to express the PKS biosynthetic clusters in 

Pseudomonas putida [111,112]. Other examples of expression hosts include E. coli [111–115], 

Myxobacteria and Streptomyces [116,117] used for expression of various biosynthetic pathways. Long 

et al. [118] applied the expression based techniques to identify expressing clones. The isolation of 

compounds from marine metagenomes is successful to a limited extent but this technology has been 

effectively employed on soil metagenomes where several antibiotics have been isolated using 

metagenomic approaches [119–122]. Although these studies demonstrate the success achieved by 

using the metagenomics approach there are still some technological issues related to this approach 

which must be overcome. Studies have provided compelling evidences that natural products known as 

polyketides are structurally similar in sponges and symbiont bacteria [2,123] . It has been made clear 

that these bacteria are the key producers of polyketides [124,125]. The complexity of the genomes of 

the group of organisms makes it very difficult to identify the target genome, and is further complicated 

by the use of inappropriate host organisms for cloning and expression [105,126] as well as the large 

size of the gene clusters [127]. The obstacles are manifold since sponges play host to a wide diversity 

of organisms such as bacteria, fungi, protists etc [128] resulting in a complex community. The 

expression of such complex metagenome will not be feasible in simple expression systems such as E. 

coli. The complex expression systems are needed to achieve the success in case of sponges [104]. To 

overcome the challenges associated with successful implementation of metagenomics approach, new 

methods have been developed and tested recently. One possible future direction could be to perform 

sequence based screens in order to identify enzymes that have been shown to be involved in the 

synthesis of anti-viral compounds. This strategy has been successfully developed and implicated to 

known polyketide synthase genes in an effort to identify new polyketides [129]. Other recently 

developed phylogenetic approaches can be applied to study the structure and function of biosynthetic 

enzymes as well as to isolate target gene clusters [130]. The metagenomic libraries can also be 

screened for antiviral activities by tailoring the methodologies previously used to identify natural-

product clusters using genome sequence tags (GSTs). GSTs are the parts of the genes that can be used 

as probes to screen for similar genes in a clonal library. Any clone containing a GST can be a potential 

candidate for screening of novel natural-product gene clusters. This approach has been utilized to 

identify more than 450 natural-product clusters [131]. 
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4. Conclusions 

The literature regarding antiviral compounds from sponges shows the significance of marine natural 

products in the drug discovery and development process. With advancement of technologies a new 

generation of potent and effective antiviral agents may be obtained from these sources. Sequence based 

screens, metagenomic clonal library screening using GSTs and other phylogenetic approaches could 

provide a new future dimension in search for antiviral natural compounds from sponges. The successes 

in metagenomics coupled with heterologous expression and high throughput microbial cultivation 

techniques could pave the way for commercial production of such compounds in the future, greatly 

facilitating their analysis and commercialization.  
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