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Abstract

While scientific advances have led to large-scale production and widespread distribution of vaccines and antiviral drugs, 
viruses still remain a major cause of human diseases today. The ever-increasing reports of viral resistance and the emergence 
and re-emergence of viral epidemics pressure the health and scientific community to constantly find novel molecules with 
antiviral potential. This search involves numerous different approaches, and the use of antimicrobial peptides has presented 
itself as an interesting alternative. Even though the number of antimicrobial peptides with antiviral activity is still low, they 
already show immense potential to become pharmaceutically available antiviral drugs. Such peptides can originate from 
natural sources, such as those isolated from mammals and from animal venoms, or from artificial sources, when bioinfor-
matics tools are used. This review aims to shed some light on antimicrobial peptides with antiviral activities against human 
viruses and update the data about the already well-known peptides that are still undergoing studies, emphasizing the most 
promising ones that may become medicines for clinical use.
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Introduction

Even though viral infections have been reported since 
ancient times, it was only during the nineteenth century that 
scientists were able to isolate “the filterable particles”, later 
called viruses. Since then, major breakthroughs regarding 
the control of viral reproduction, infection, and the pro-
duction of vaccines have led to remarkable advances in 
the human–virus interaction, such as smallpox eradication 

and the control of measles and poliomyelitis transmission. 
Nevertheless, viruses still remain one of the main causes of 
human diseases, mainly because the discovery and devel-
opment of new vaccines is usually challenging and time 
consuming [1]. For this reason, the most commonly uti-
lized alternative available for viral control is treatment with 
antiviral drugs [2, 3]. In an overall view, the most common 
mechanisms of action for antiviral drugs are virus-targeting 
antivirals and host-targeting antivirals [3]. Virus-targeting 
antivirals focus on the inhibition of important transcription 
and replication enzymes, such as proteases and polymerases 
[4, 5], or the direct inactivation of viral structural proteins 
[6]. In contrast, host-targeting antivirals focus on: the inhibi-
tion cyclophilins, known to be important cellular factors that 
are hijacked by some viruses during the replication cycle [3]; 
the use of immunomodulators such as interferons [7, 8]; and 
gamma globulins [9].

First-generation antiviral molecules (described in the 60 s 
and early 70 s) had serious side effects on humans due to 
their poor specificity. For example, vidarabine, an adenosine 
analog used as a replication inhibitor, can affect not only 
viral DNA polymerase, but also the eukaryotic analog [10]. 
The advance of research in the area led to the description 
of better molecules, such as acyclovir, the first nucleoside 
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analog, and antiviral drug to be considered successful for 
the treatment of herpes simplex virus (HSV) and varicella 
zoster virus (VZV) infections. Because of its specific-
ity—it requires a phosphorylation step mediated by a viral 
protein—this molecule causes lower toxicity for the host 
when compared with previously used treatments [10, 11]. 
Unfortunately, the low efficacy of antiviral treatments is still 
evidenced by the ever-increasing reports of viral resistance 
[12–14], concomitant viral infections [15], and the emer-
gence and re-emergence of viral epidemics in relatively 
short periods of time, as observed for H1N1, Ebola and zika 
virus (ZIKV) only in the first 5 years of the present decade 
[16–20]. Therefore, the demand for production of new anti-
viral drugs is higher than ever, with increased preference 
for molecules capable of presenting broad-spectrum activity 
[21]. The search for these new molecules involves differ-
ent approaches such as bioinformatics-assisted predictions 
based on molecule interaction with important viral structures 
or enzymes [22–24] and the isolation of new compounds 
obtained from natural sources [25–27]. Using such tech-
niques, many new molecules have been described so far, 
and, most recently, the description of antimicrobial peptides 
has been gaining attention [28–32].

Recent evidence highlights the function of antiviral 
proteinaceous compounds as a defensive barrier, and it 
is being demonstrated that some antimicrobial peptides 
may also present activity against a broad range of viruses, 

thus being called antiviral peptides (AVPs) [33–36]. These 
molecules can also be obtained through the utilization of 
bioinformatic tools, and are then called designed or arti-
ficial AVPs. They can derive from bait studies where an 
artificial peptide is tested for interaction against a specific 
target, such as a surface glycoprotein or an important viral 
enzyme [37]; or obtained in silico using specific software 
designed for the prediction of peptides [38, 39]. In both 
cases, many settings are taken into consideration, such as 
the topology, amino acid composition, charge, and many 
other chemical and structural characteristics that may 
influence the antiviral activity of a peptide [40, 41].

The study of AVPs has been the focus of numerous 
research projects in recent years, and the structures and 
mechanisms of action of such molecules have been pre-
viously reviewed and even compiled in online databases 
such as the antiviral peptide database (AVPdb—http://
crdd.osdd.net/serve rs/avpdb /) with 2683 entries of experi-
mentally tested peptides [42–45]. Regarding their mecha-
nism of action (Fig. 1), these are mostly called virucidal 
when they act directly by inhibiting the viral particle; 
or by competing for the protein link site in the host cell 
membrane, interfering in their interaction and consequent 
adsorption [46]. However, they may also act in other stages 
of the viral cycle, causing, for example, the suppression of 
viral gene expression [47, 48].

Fig. 1  Antiviral peptide inhibition sites on viral replication cycle. The 
antiviral peptides with a described mechanism of action were placed 
in their inhibition sites as follows: 1, virion inhibition; 2, adsorption; 

3, viral penetration; 4, endosomal escape; 5, viral uncoating; 6, viral 
genome replication and 7, release of mature virions

http://crdd.osdd.net/servers/avpdb/
http://crdd.osdd.net/servers/avpdb/
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Due to the increasing number of studies demonstrating 
the antiviral activity of peptides and the pressing need for 
new antiviral drugs, this article aimed to compile relevant 
information from the most promising antiviral peptides that 
may become effective drugs and that are still undergoing 
studies and/or in clinical trials.

Natural AMPS with antiviral activities: 
the AVPs

Peptides have been studied for at least 40 decades, and a 
broad spectrum of biological activities has been described 
so far. In some cases, a given peptide shows more than one 
activity and is, therefore, called a promiscuous peptide. The 
overall biochemical features of AVPs are cationic and amphi-
pathic characteristics and positive net charges, all of which 
are essential for these peptides to work as antimicrobials 
[49]. Moreover, there is no evidence of great physicochemi-
cal differences between AMPs and other AVPs, as Wang 
et al., showed in a large-scale analysis correlating antimi-
crobial activities with amphipathicity and charge. However, 
data show that hydrophobicity seems to be a very important 
property for those peptides with activity against enveloped 
viruses [50, 51]. Among the advantages of natural AVPs, 
one can cite the possibility of high specificity and effective-
ness, low toxicity and peptidase biodegradability (which 
limits the accumulation in tissues), and low molecular 
weight. Otherwise, short half-life, immunogenic potential, 
high cost of production, and low oral absorption are some of 
the limitations in the use of those compounds as antivirals 
[46]. In the following sections, we provide a description of 
naturally derived AVPs, and their mode of action and poten-
tial as a pharmaceutical molecule. Moreover, some examples 

of antiviral peptide structures and alignments are shown in 
Figs. 2 and 3, respectively.

AVPs derived from plants

Plants utilize a diverse array of small, cationic, cysteine-
rich proteins as toxic weapons to fend off pest and patho-
gen attack. These peptides are well known for their capac-
ity to obstruct a wide array of virus infections that cause 
economically important diseases in crops [43, 52]. In 
recent years, plant-derived defensive peptides have become 
the focus of numerous studies for their potential use as 
novel molecules in the treatment of human viral diseases. 
Cyclotides are a large family of plant-derived peptides 
characterized by a cyclic backbone and three conserved 
disulfide bonds that form a knot-like rigid structure [53]. 
They have a broad range of biological roles, including 
antimicrobial, anthelminthic, nematocidal, and insecticidal 
activities [53, 54]. Cyclotides from different plant species 
have been significantly investigated for their ability to hin-
der the growth of viruses involved in human diseases, such 
as human immunodeficiency virus (HIV), influenza H1N1, 
and dengue (DENV) [55–59]. One example is kalata B1, 
a well-studied cyclotide found in the leaves of the African 
plant Oldenlandia affinis. Kalata B1 shows strong anti-
HIV activity, being capable of destroying the viral parti-
cles prior to cell entry as well as inhibiting fusion of the 
virus to the host membrane [57, 60]. The antiviral activity 
of kalata B1 and other plant cyclotides seems to rely on the 
same mechanism utilized by these peptides to hinder the 
growth of microbial pathogens: its ability to bind and dis-
rupt the pathogen cell membrane. Due to their cationic and 
amphipathic nature, as well as their small size, cyclotides 
can easily bind and aggregate within lipids of bacterial and 

Fig. 2  Structure of some AVPs 
already described. Magainin 
1 and 2, melittin, lactarcin, 
clavanin, dermaseptin S4, 
lactoferricin, HNP1 and 4, HBD 
2 and 3, protegrin, and temporin 
B
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fungal membranes. This interaction disrupts the membrane 
organization, leading to the formation of pores that cause 
leakage of internal cell components and, consequently, cell 
death [52, 54]. Enveloped viruses such as HIV use the host 
cell membrane to form an outer wrapping composed of 
specific lipid microdomains that are necessary for the virus 
replication cycle [61]. Thus, cyclotides are also capable of 
disturbing the virus’ lipid envelope, leading to inhibition 
of viral fusion to the target cells and to destruction of the 
viral particles [57, 62, 63]. The pharmaceutical potential 
of cyclotides has been highlighted by their aforementioned 
antiviral properties and also by their capacity to tolerate a 
high number of substitutions in their amino acid backbone 
while maintaining their biological activities. For this rea-
son, cyclotides are constantly used as scaffolds for novel 
drug design [64]. As an example, amino acid modifica-
tions performed on kalata B1 allowed the design of a novel 
“kalata B1-inspired peptide” that presents activity against 
the dengue virus [58].

Other plant defense-related peptides may curtail human 
virus infections by interaction and interference with pro-
teins that are fundamental for the viral replication cycle. 
For example, phaseococcin and sesquin, two antimicrobial 
peptides isolated, respectively, from the seeds of runner 
beans (Phaseolus coccineus) and ground beans (Vigna 

sesquipedalis) are capable of inhibiting the reverse tran-
scriptase activity of the HIV virus, thus hindering viral 
replication [65, 66]. HSV-1 virucidal activity observed in 
a 2 kDa antiviral peptide isolated from Sorghum bicolor 
seeds may be explained by the capacity of the peptide to 
bind and mask essential viral envelope proteins [67]. In 
fact, modulation in the activity of enzymes involved in 
viral infection and replication appears to be one of the 
most prominent mechanisms utilized by plant peptides to 
inhibit viral proliferation [68].

Arthropod-derived AVPs

Arthropods are a rich source of compounds with diverse 
activities, including several antimicrobial peptides. Surpris-
ingly, until recently, there were not many arthropod-derived 
molecules with described antiviral activity [69]. This situ-
ation appears to be changing, as numerous novel molecules 
with antiviral properties have now been isolated from these 
organisms. For example, cecropin A, a 37-amino acid pep-
tide derived from the moth Hyalophora cecropia [70], 
showed inhibitory activity against HIV through a mechanism 
that seems to suppress viral gene expression [71]. In 2004, 
another assay showed that cecropin A also has inhibitory 
activity against herpes simplex virus 1 and 2 (HSV) and 
against Junin virus (JV). The replication inhibition of JV 
has reached 90% at 40 µM [72]. Bee (Apis mellifera) venom 
is also an interesting source of AVP. One example of bee 
venom-derived AVP is melittin, which was tested against 
HIV-1 in an assay with infected T lymphoma cells. Interest-
ingly, the cell culture treated with melittin showed an almost 
total absence of viral particles [73]. This peptide was also 
tested against HSV-1, 2, and JV, showing high inhibition 
of viral replication for all tested viruses at relatively low 
concentrations (3 µM) [72]. In a previous study carried out 
by Wachinger et al. [73], the action of the antiviral melittin 
against HIV-1 had already been proven. It is believed that 
peptide activity against enveloped viruses relies on viral 
envelope lysis [46]. Recently, Hood et al. [74] have shown 
that nanoparticles incorporated with melittin were able to 
prevent in vitro HIV infection, and were not toxic for the 
vaginal epithelium cells used in the assay.

Arthropod venoms are a recurring theme in studies 
searching for new AVPs. Recently, researchers used mas-
toparan, a peptide derived from wasp venom (Vespula lew-

isii), to develop a new peptide, mastoparan 7, which showed 

Fig. 3  Antimicrobial peptides 
aligned per family
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broad antiviral activity against enveloped viruses. From the 
ten viruses tested, this AVP reached 99% of replication inhi-
bition in eight of them. In pre-incubation, in vivo assays 
performed with Indian vesicular stomatitis virus (VSV) 
and MP7-NH2; the peptide made the virus non-infectious 
and unable to replicate in vivo. In a transmission electron 
microscopy (TEM) assay, it was observed that VSV virions 
treated with mastoparan 7 had a significant envelope disrup-
tion, appearing to be separated from the capsid [75].

Lactarcin 1, derived from the venom of Lachesana tara-

baeve, a spider from central Asia, demonstrated inhibitory 
activity against DENV2. A protein–protein docking analysis 
suggested that lactarcin 1 could bind to the viral protease 
NS2B-NS3 (NS2B-NS3Bpro) near its active site, which was 
verified with ELISA and western blot assays, and antivi-
ral activity confirmed in cell culture assays, reaching viral 
inhibition at 12.68 µM at 37 °C and 6.58 µM at 40 °C. This 
viral protease seems to be vital for viral replication, and its 
blocking leads to consequent dengue inhibition [27].

Venoms from scorpion are another rich source of arthro-
pod venom-derived AVPs [76]. The venomous secretion of 
the Asian forest scorpion (Heterometrus petersii) contains 
the peptides Hp1090, Hp1239, and Hp1036, which are capa-
ble of inhibiting the replication of hepatitis C virus (HCV), 
preventing infection installation [77]. Further assays using 
Hp1239 and Hp1036 against HSV-1 showed that these AVPs 
were capable of blocking the virus attachment to the tar-
get cell and of inactivating viral particles that had already 
attached but not yet penetrated [78]. Mucroporin-M1, an 
artificially designed peptide derived from the Chinese swim-
ming scorpion (Lychas mucronatus), presented outstand-
ing inhibitory activity against the measles virus, influenza 
H5N1, and severe acute respiratory syndrome coronavirus 
(SARS-CoV). The difference between mucroporin-M1 and 
the original molecule is the exchange of all glycine and pro-
line residues by arginine or lysine (G3R, P6K, G10K, and 
G11R), which gives the variant a greater positive net charge 
on the peptide hydrophilic side, improving interaction with 
the virus envelopes. For this reason, the authors suggested 
a virucidal mechanism of action [79]. In a further study, 
mucroporin-M1 showed activity against the hepatitis B virus 
(HBV) both in vitro and in vivo, inhibiting viral replica-
tion by activating the MAP kinase route and decreasing the 
expression of HNF4α, an important factor for HBV replica-
tion [80]. In 2012, Chen et al. [81] synthesized a 13-amino 
acid residue peptide named Kn2-7 from the improvement 
of the Bmkn1 peptide, derived from Mesobuthus marten-

sii scorpion venom. Kn2-7 showed low cytotoxicity and 
antiviral activity against 13 variants of the HIV-1 subtype 
B, reaching almost 99% of viral inhibition at 16 µg/mL, by 
direct inactivation of the viral particle, presenting itself as a 
promising antiviral drug candidate. Recently, Zeng et al. [82] 
screened venom peptides derived from Euscorpiops validus 

scorpion and identified Eva1418 as an antiviral peptide 
against HSV-1. In this study, the authors tried to improve 
this peptide’s cellular uptake and intracellular distribution, 
by introducing histidine residues that would enhance helicity 
and amphiphilicity. The results showed that modified peptide 
Eva1418-FH5 had the lowest cytotoxicity, highest antiviral 
activity against HSV-1, enhanced cellular uptake, and better 
cellular distribution.

Finally, the peptides alloferon 1 and 2, derived from the 
hemolymph of blowfly (Calliphora vicina), showed antitu-
mor activity as well as antiviral activity against two influ-
enza variants. These peptides were also tested regarding 
their immunomodulatory activity, and it was demonstrated 
that alloferon 1 and 2 have the capacity to influence the acti-
vation of natural killer cells and host release of interferon, an 
important cytokine involved in the immune response process 
[83]. In more recent studies, Kuczer et al. [69, 84, 85] tested 
alloferon 1 and some analogs against HSV-1 and against 
coxsackievirus B2 (CBV-2) in three different types of cell 
culture. The results showed inhibitory activity of the original 
peptide and analogs 1 and 2, which considerably diminished 
viral replication at 24 h of contact in the in vitro assay, and 
of compounds 2, 4, 5, and 9, all against HSV-1. The analogs 
that showed the best inhibitory activity against CBV-2 were 
analogs 1 and 4, both with modifications in their N-termi-
nal portions. Alloferon 1 is a promising candidate for the 
design of new AVPs, due to its optimal antiviral activity and 
absence of toxicity towards mammalian cells. However, its 
mechanism of action remains to be fully elucidated [85].

AVPs derived from amphibians

Frog skin is considered an abundant source of antimicrobial 
peptides; however, there are still not many frog-derived pep-
tides with antiviral activities described in the literature. They 
are produced in dermal glands, deployed in events of stress 
and, generally, present a cationic, amphipathic α-helical sec-
ondary structure, with 10–50 amino acids [86, 87]. Exam-
ples are magainin 1 and 2, derived from the frog Xenopus 

laevis, with 23 amino acid residues each. These AVPs were 
tested against HSV-1 and -2, and showed efficient inhibition 
of both viruses [72]. Previously, some magainin variants 
were also tested against HSV-1, and the ones presenting 
lysine-rich regions or many lysine residues in their structure 
showed the best results in inhibiting the virus. The authors 
suggested that cationic charge associated with an amphip-
athic structure may enable these peptides to interact with the 
viral envelope anionic phospholipids, consequently disrupt-
ing its structure by some unknown mechanism and exerting 
virucidal activity [88]. In 2010, Dean et al. [89] tested an 
alanine-substituted magainin-2 amide along with three other 
peptides against vaccinia virus to evaluate their virucidal 
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activity, and the magainin-2 variant showed satisfactory 
activity against the virus, attacking its envelope.

Another peptide capable of targeting viral envelopes is 
temporin B, derived from the frog species Rana temporaria. 
This AVP showed high antiviral activity against HSV-1 in 
in vitro plaque assays. The authors showed that temporin B 
inhibited HSV-1 in a dose-dependent manner (reaching IC50 
at 2.507 µg/ml); interfered in cell-to-cell spread of the virus, 
suggesting that the peptide may target other cellular mecha-
nisms used by the virus; and had virucidal action reaching 
99.99% of inhibition, suggesting that the peptide acts on the 
viral particle. To verify the hypothesis, a TEM study was 
conducted and showed that virions treated with temporin B 
had a loss of envelope integrity [86].

Dermaseptins are a large family of antimicrobial peptides 
produced by frogs from the Phyllomedusa genus. The anti-
viral activity of these peptides had already been described 
against HSV-1, -2, and HIV-1 [22, 90–92], where viral enve-
lopes appear to be the preferential target of dermaseptin S4 
and its derivatives. Most recently, derivatives of dermasep-
tins S3, S4, and S4 derivatives have been tested against 
rabies virus in both in vitro and in vivo assays. S4 and an S4 
derivative, where methionine 4 was exchanged for a lysine 
 (S4M4K) derivative, showed the strongest antiviral activity, 
reaching over 85% of inhibition from 7.5 µM to 10 µM in 
the cell culture assay. Moreover, when tested in mice,  S4M4K 
showed a protective effect by increasing the survival rate of 
treated mice, in relation to control mice, by 62.5% at 100 µg 
and 75% at 200 µg. Thus, the authors suggested that there 
was a specific exchange of a Met4 by a Lys4 in dermaseptin 
S4, therefore, creating  S4M4K and decreasing cytotoxicity 
because of the substitution of a hydrophobic with a posi-
tively net charged amino acid. Given these results, not only 
do these dermaseptins have a virucidal mechanism of action, 
but they also affect early stages of the intracellular infection 
of the rabies virus [93].

Moreover, HS-1, an AVP derived from anuran Hypsi-

boas semilineatus skin, showed remarkable antiviral activity 
against DENV2 and 3. More specifically, in the pre-treat-
ment and inhibition of viral adsorption assays, the percent-
age of inhibition reached almost 100% for both viruses, but 
no antiviral activity was observed in other stages of the viral 
cycle, which led the authors to infer that HS-1 acts upon the 
early stages of the infection. To corroborate these results, a 
qPCR assay and atomic force microscopy analysis were con-
ducted, showing not only that the number of viral genomes 
of both viruses was reduced but also that the viral envelope 
appeared disturbed by some invaginations when in contact 
with the peptide [94].

A last example of virucidal frog peptide is urumin, an 
AVP derived from the Indian frog Hydrophylax bahuvistara. 
Urumin showed strong inhibitory activity against influenza 
virus in both in vitro and in vivo tests. In the in vitro assays, 

urumin showed inhibition against all strains of H1N1 and 
H1N2, but H3N1 and H3N2 were unaffected. This fact 
led the authors to suggest that urumin was able to interact 
with hemagglutinin 1 (H1); a TEM assay was, therefore, 
conducted, and this showed that influenza virions were 
destroyed. In the in vivo assays, BALB/C mice were treated 
with urumin, administered intranasally, and then inoculated 
with influenza. The results showed that urumin-treated mice 
had less morbidity than the non-treated [95].

AVPs derived from marine organisms

Another rich source of AVPs is found among aquatic living 
beings. The most studied of them are possibly the clava-
nins, a class of peptides derived from a tunicate called Styela 

clava. In a study performed by Yasin et al., clavanin AK 
showed inhibition against HSV-1 (percentage of inhibition 
of 70.4%) [96]. Clavanin A had been tested against rotavirus 
and adenovirus, both non-enveloped, and in vitro, it was 
possible to verify the viral inactivation before inoculation 
in cell culture, in a pre-treatment step with the peptide, and 
after inoculation in the cell culture—called a simultaneous 
test—clavanin A showed better inhibition of rotavirus dur-
ing the pre-treatment, reaching 95% of inhibition at 50 µM. 
However, the peptide’s best activity against adenovirus hap-
pened in the simultaneous test, reaching 94% of inhibition 
at 25 µM [97]. Clavanin B also showed inhibitory activity 
against HIV [55].

In addition, the four cyclic depsipeptides, mirabamides 
E, F, G, and H, isolated from the marine sponge Stelletta 

clavosa, had their chemical properties and structures defined 
and were tested against an HIV strain showing strong inhibi-
tory activity. In the in vitro assays, the peptide mirabamide H 
showed the best antiviral activity with an  IC50 value around 
40 µM, followed by F and G, both with 65 µM, and mira-
bamide E with 120 µM [98]. Most recently, in a study car-
ried out by Migliolo et al. (2012), the peptide Pa-MAP 1, 
derived from the polar fish called Pleunorectus americanus, 
had its structural, physicochemical, and antimicrobial prop-
erties extensively studied and showed not only antibacte-
rial and antifungal activity, but also anti-tumoral and finally 
antiviral activity against HSV-1 (94%) and -2 (97%) [99]. 
In later assays, it was found that Pa-MAP 1 has a virucidal 
mechanism of action, which means that this peptide possibly 
interacts with some viral surface glycoprotein [100].

AVPs derived from mammals

Among the antimicrobial peptides derived from mammals, 
two main families are frequently studied for their antiviral 
properties: the defensins and the cathelicidins. Both have 
cationic charges and amphipathic properties, but defensins 
have a predominance of β sheets stabilized by three disulfide 
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bonds and range from 18 to 45 amino acid residues [101], 
whereas cathelicidins have an N-terminal signal sequence, 
a conserved cathelin-like domain and a variable C-termi-
nal domain that needs proteolytic cleavage to be matured 
and range from 12 to 88 amino acid residues [44]. The 
defensins are produced by keratinocytes upon a skin lesion 
and are classified in three groups; α-defensins, also known 
as human neutrophil peptide (HNP), β-defensins (HBD), and 
θ-defensins, which are not produced by higher primates such 
as human beings [101]. Regarding their antiviral activity, the 
defensin HNPs 1, 2, and 4 showed antiviral activity against 
HIV, among which HNP-4 presented the best results [102, 
103]. In another study, Salvatore et al. [104] also showed 
the activity of HNP-1 against the influenza A virus and sug-
gested that this peptide inhibits the virus in its most initial 
stages of the cycle. To establish the infection, influenza uses 
the PKC signaling pathway of the cell, and the data showed 
that PKC phosphorylation was decreased in infected cells 
treated with HNP-1, showing that it interfered with the viral 
cycle [104].

On the other hand, from the many human β-defensins 
already described, two stand out for their potential antiviral 
activity, HBD-2 and HBD-3, as both have been described 
as having their production induced by viral presence in the 
organism. Meyer-Hoffert et al. [105] investigated the pres-
ence of these peptides in lesions of verrucae vulgaris and 
condylomata acuminata, both cutaneous lesions caused by 
different subtypes of HPV. The results showed an increased 
expression of HDB-2 and HDB-3 during viral infection. 
However, the authors were unable to ensure if the expres-
sion of those peptides is, in fact, induced by HPV infec-
tion, since it can also be induced by pro-inflammatory 
cytokines, and they suggested further studies to address the 
matter. Moreover, HBD-3 also demonstrates the capabil-
ity of inhibiting the vaccinia virus, demonstrating that the 
presence of the virus induces the production of this peptide 
in keratinocytes [106]. In addition, another study showed 
VZV inhibition in keratinocytes by HBD-2 [35]. In 2003, 
Quiñones-Mateu et al. [107] showed the antiviral activity 
of HBD-2 and HBD-3 against HIV, and Zapata et al. [48] 
recently showed HDB2 and HBD-3 mRNA expression in 
HIV-1-exposed seronegative (HESN) individuals and in 
seropositive patients. The results suggested that HBDs can 
inhibit the virus not only in the early steps of the cycle, but 
also the late reverse transcripts and nuclear import of HIV; 
and indicated that HBD-3 had the best results. Finally, the 
authors proposed these peptides could be used in retroviral 
therapy in the future.

Furthermore, cathelicidin LL-37 [108] demonstrates 
inhibitory activity toward several enveloped viruses, includ-
ing: VZV; the vaccinia virus (VV), HSV-1; HIV; the syncyt-
ial respiratory virus (RSV); influenza A virus; HCV; dengue 
virus serotype 2; Zika virus; and, more recently, Venezuelan 

equine encephalitis virus (VEEV), which can infect both 
equines and humans [35, 45, 109–114]. The proposed mech-
anism of action against enveloped viruses is described as 
damaging the envelope or protecting the target cells against 
infection. The modulation of viral components necessary for 
replication and infection (such as HIV reverse transcriptase) 
has also been described [44]. Moreover, LL-37 showed anti-
viral activity against non-enveloped virus such as adenovi-
rus, Aichi virus, and rhinovirus [100, 115, 116]. However, it 
is suggested that this peptide uses a different mechanism to 
inhibit non-enveloped viruses such as the adenovirus strains. 
Therefore, more studies are needed for elucidation of this 
matter [44].

Besides defensins and cathelicidins, there are other 
peptides found in mammals, such as lactoferrin, a pep-
tide derived from mammals’ milk and studied for the past 
30 years, which possesses various antimicrobial and immu-
nomodulatory properties. Lactoferrin’s antiviral activity has 
already been described against many viruses such as CMV, 
HSV-1, and -2, adenovirus, rotavirus, poliovirus, RSV, 
HIV, influenza, HCV, HBV, and, recently, bovine lactofer-
rin showed activity against dengue, chikungunya, and Zika 
viruses, all three transmitted by the Aedes aegypti mosquito 
[117–120]. Lactoferricin, a smaller peptide derived from the 
N-terminal region of lactoferrin, has also been described as 
an antiviral peptide. Its inhibitory activity has been showed 
against various viruses such as CMV, in which a cyclic form 
of lactoferricin was able to prevent viral entry into fibro-
blasts [121]. Variants of this peptide were also tested against 
HPV, demonstrating different percentages of inhibition in 
in vitro tests [122]. Lactoferricin was further tested against 
HSV-1 in an in vitro assay, where the results showed that 
intracellular HSV-1 trafficking is delayed in the presence 
of this peptide. The molecular mechanism of action pro-
posed possibly involves an interference with the host cell 
microtubules, which are needed for successful viral replica-
tion [123]. Moreover, when this peptide was tested against 
HSV-2 in a well-established in vivo assay, female C57/BL6 
mice were inoculated with the virus and the peptide, and 
showed no signs of disease [124]. Finally, Wang et al. [125] 
showed that when in the presence of lactoferricin, there is 
a reduction of the HIV-1 integrase nuclear distribution, the 
mechanism used by the virus to integrate its genetic mate-
rial within the cell’s, mediated by its own enzyme, called 
integrase.

In addition, protegrin-1, a cyclical cationic peptide with 
18 amino acid residues, derived from swine white blood 
cells, showed activity against dengue virus. This peptide 
was able to inhibit the specific viral protease important for 
its replication, named NS2B-NS3pro [28]. Interestingly, a 
protegrin-1 enantiomer, composed entirely of amino acids 
in their D form, showed activity against HSV-1 (82%) and 
HSV-2 (75%) [96]. Finally, there is CYVIP derived from 
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human hemofiltrate, which showed efficient inhibition of 
CMV and HSV-1 in vitro. Its mechanism of action resides 
in the peptide’s interaction with the heparan sulfate receptors 
in the host cell surfaces, which are also these viruses’ target. 
These receptors are used by the viral surface glycoproteins 
for its adsorption, and, therefore, if its binding sites are not 
available, adsorption would be compromised [126].

Finally, Sala et al. [127] evaluated several synthetic pep-
tides derived from different human serum proteins against 
four viruses. Among them, the peptide called KP showed 
remarkable antiviral activity against HSV-1 (reaching 99% 
of inhibition), in a virucidal manner. Against VSV, another 
enveloped virus, the inhibition rate reached only 78%. The 
authors suggested that KP shows hydrophobic amino acids 
in its sequence that may interact with viral envelope lipids 
and/or glycoproteins. Nevertheless, the different composi-
tion and organization of HSV-1 and VSV enveloped may 
have influenced the different results.

Rationally designed AVPs

Besides the description of natural peptides, another way of 
discovering new antiviral drugs is the prediction and rational 
design of novel molecules. Basically, there are three major 
methods used for rational design: template-based design, 
physicochemical, and de novo methods, all of which aim 
to create novel peptides and/or improve already existing 
ones. Template-based design aims to add selectivity and/or 
increase activity of a known peptide sequence, by includ-
ing an amino acid or by changing its position, therefore, 
reducing the peptide sizes. These modifications can lead to 
the creation of a novel AVP even from inactive peptides. 
The physicochemical design also uses a known sequence 
to generate analogs with different physicochemical prop-
erties. Finally, the de novo method creates new peptides 
using amino acid patterns or frequencies [128]. Recently, 
a new algorithm was created specifically to predict antivi-
ral peptides, called AntiVPP 1.0 (available at https ://githu 
b.com/bio-codin g/AntiV PP). The authors suggest that this 
algorithm is a fast, accurate, and intuitive tool, and stated 
that the number of hydrogen-bond donors is an important 
feature to be considered in the development of AVP predic-
tion algorithms [129].

When these methods are applied to AVP design, research-
ers usually base their new molecules on specific viral struc-
tures such as surface glycoproteins [37], viral proteases, 
and other important enzymes brought within the viral parti-
cles. Therefore, the knowledge of the viral genome, protein 
structure, replication cycle, and host cell targets is of great 
importance for the description of efficient inhibitors [23]. 
Interestingly, in some cases, a peptide designed to target a 
specific virus can be used as a template for the design of a 

new peptide against a different virus [130]. Viral surface 
glycoproteins are often a target, because they are essential 
in both the entry and penetration process, and require con-
formational changes given the protein–protein interaction 
which they undergo [23]. In addition, their sequence has 
conserved regions that are used as models for new mole-
cules [131]. Given that the rational design of AVPs tends 
to be virus-specific, in the following section of the review, 
we have listed the most recent AVPs separated by the virus 
which they target.

Dengue virus as a sca�old for peptide design

Dengue virus is a mosquito-borne Flavivirus. Its genome 
encodes three structural proteins: capsid (C), pre-membrane 
(prM) and envelope (E), and seven non-structural proteins 
(NSs). The E protein is glycosylated and has an important 
role in viral adsorption and entry, with 500 amino acids; a 
C-terminal that consist of a highly conserved stem region, 
formed by two helices (H1 and H2) and partially inserted 
in the lipid envelope; and finally, the N-terminal ectodo-
main formed by three domains (EDI, EDII, and EDII) [132]. 
DN59, a peptide mimetic to the E protein stem region, was 
tested against DENV2 and WNV, showing inhibition of both 
viruses at a concentration lower than 25 µM [133], and in a 
more recent assay, when tested against all four dengue sero-
types, DN59 showed inhibition of infectivity by the release 
of the viral genome through holes formed in the envelope. 
Moreover, in in vitro assays with mammalian epithelial and 
mosquito cells, no toxicity was found. Inhibition was neither 
seen in pre-incubation assays with the peptide nor in post-
infection assays—only in co-incubation—proving that DN59 
clearly attacks the viral particle directly [134].

Costin et al. [135] designed various peptides that mimic 
sequences from EDII, near the EDI/EDII hinge region, and 
from an extended beta sheet region comprising the first con-
nection between EDI and EDII. After computational work 
aiming to optimize their structure, seven artificial AVPs 
were selected for synthesis and in vitro challenges against 
DENV2. The results showed that the peptides DN57opt, 
DN81opt and 1OAN1 were able to inhibit the virus at con-
centrations of 50 µM (97, 57, and 99%, respectively). Fur-
thermore, DN57opt and 1OAN1 were chosen for cryoEM 
assay, and the results showed that the viral particles treated 
with these peptides lost icosahedral symmetry, leading to 
inhibition of viral entry [135].

Recently, Cui et al. [131] tested the hypothesis that den-
gue E protein could interact with β3 integrin (a host cell 
surface receptor). After some specific assays, the occurrence 
of this interaction was proven. Therefore, eight peptides 
were synthesized based on the structure of the E protein. 
The results showed that the two peptides designed based on 
the EDIII region, named P4 and P7, were able to inhibit the 

https://github.com/bio-coding/AntiVPP
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interaction between the DENV 2 E protein and β3 integrin, 
and only P7 against DENV 1. The authors also mentioned 
that the mechanism of inhibition of these two peptides is by 
occupying the binding site in β3 integrin and, consequently, 
preventing viral entry in the host cell [131].

AVPs designed from herpes simplex virus

Glycoprotein B is a well-conserved and important surface 
protein present in the HSV-1 and 2 envelopes, which, along 
with 10 other surface glycoproteins (gC-gM), is involved in 
virus attachment and penetration in the host cells [136]. Its 
structure has been the target of assays in search of an HSV 
entry inhibitor, such as the one conducted by Akkarawongsa 
et al. [137], in which multiple peptides homologous to gB 
were synthesized and tested against HSV-1. The results 
showed that, from the 138 molecules synthesized, gB94, 
gB122, and gB131 had the best inhibitory activities at con-
centrations lower than 20 µM. Further assays performed 
to infer the mechanism of action showed that gB122 and 
gB131 were able to interfere in the HSV-1 entry step with 
an  EC50 of 12 and 18 µM, respectively; however, gB94 could 
only inhibit direct viral particles at higher concentrations 
(125 µM). Finally, VP16 translocation and ICP0 expression, 
a viral tegument protein and an immediate early protein, 
respectively, were measured to confirm gB122 activity at an 
early step of infection, showing a reduction in nuclear VP16 
and ICP0 expression in the presence of the peptide [137].

In another study, peptides were synthesized based on a 
highly conserved amino acid sequence from both gB and 
gH for inhibition assays against HSV-1 and -2 and, given 
the established parameters, only four peptides (two from 
each glycoprotein) were selected for virucidal and antivi-
ral in vitro assays. Interestingly, both peptides derived from 
gB (U-1 and U-2) showed virucidal activity against both 
viruses, reaching 80% of inhibition at 100 µM, whereas 
CB-2, derived from gH, was able to inhibit HSV-1 infectiv-
ity particles in more than 90%, but with higher concentra-
tions, and it also presented limited activity against HSV-2. 
Almost the same was observed in the antiviral assay: while 
gB peptides showed more than 80% of inhibition against 
both viruses (U-1 at 6.25 µM, and U-2 at 50 µM), gH pep-
tides CB-1 showed better protection against HSV-2 (90%) 
and CB-2 against HSV-1, again in much higher concen-
trations, 250 and 500 µM, respectively. Further assays led 
the authors to suggest that U-1 and U-2 may act in a post-
binding step, possibly in upstream components of the entry 
machinery, and that CB-1 and CB-2 may interact with gC, 
the least herpes-conserved glycoprotein. In conclusion, 
further improvement of gH derived peptides are needed to 
diminish the concentration necessary to achieve satisfactory 
viral inhibition [138].

Human immunode�ciency virus

Among all the viruses causing human diseases, none 
has ever caused more concern worldwide than HIV, with 
more than 36 million people infected [139]. The currently 
available antiviral treatment targets four steps of the viral 
cycle: viral entry, reverse transcription, integration, and 
virion maturation [140]. However, since HIV-1 and HIV-2 
have different evolutionary histories, sharing only 50% of 
genetic similarity, most antivirals are capable of inhibiting 
only HIV-1, and a few inhibit HIV-2 [141, 142]. Recently, 
many studies have focused on entry/fusion inhibitor mole-
cules, mainly the ones targeting the gp41 of the HIV enve-
lope, which is an important glycoprotein for viral fusion 
and entry into the host cells [6]. The gp41 has 345 amino 
acid residues, which form a cytoplasmic domain, a trans-
membrane domain, and an ectodomain. The ectodomain 
has three important regions: a fusion peptide region, an 
N-terminal helical heptad repeats region (NHR), and a 
C-terminal helical heptad repeat region (CHR); when, in 
the fusion process, the NHR and CHR form a six-helix 
bundle (6-HB) core. Moreover, the hydrophobic pocket 
in the NHR trimer is very important to stabilize the gp41 
6-HB, being, thus, an interesting target for small molecule 
design. [6, 143]. Briefly, there are two major classes of 
HIV entry inhibitors: those targeting the CHR and those 
targeting the NHR of gp41 [144].

Based on the gp41 native CHR sequence, peptide T-20 
(generic name “Efurtivide”, brand name “Fuzeon”) is the 
only example of an antiviral peptide already approved for 
clinical use in HIV patients. It represents the first gen-
eration of entry inhibitor, basically used for treatment of 
patients who show evidence of viral replication despite 
ongoing antiretroviral therapy [145]. Despite its efficacy, 
T-20 resistance occurs due to extended exposure, poor bio-
availability, large-dose requirements, and cross reaction 
with preexisting antibodies in the patient. Furthermore, it 
has been shown that activity against HIV-2 is decreased 
[142, 146–148]. In addition, a C-peptide-based molecule, 
Sifuvirtide, showed longer half-life, higher potency and a 
lower threshold for resistance than T-20. Besides, in the 
phase IIb clinical trial in China, it showed improved effi-
cacy and a better rate of undetectable viral loads, recently 
being approved for phase III clinical trials [144, 149]. 
Another promising C-peptide is V2o, which was designed 
with an amino acid profile that minimized antigenicity and 
immunogenicity, while preserving and enhancing antiviral 
activity from its mother molecule C46-EHO. The decrease 
in antigenicity and immunogenicity is a strategy used in 
several studies to avoid cross reactions with the patient’s 
preexisting antibodies, which can potentially impair treat-
ment. Furthermore, the authors tested whether V2o would 
be recognized by HIV-1-infected patient’s serum when 



3534 L. C. P. Vilas Boas et al.

1 3

already immunized for C46-EHO, and no recognition was 
observed, thus, suggesting that V2o could be a safer drug 
[150].

The strategy mentioned above was also used with another 
peptide called P3, an N-peptide. Borrego et al. [147] studied 
ancestral sequences from gp41 derived from HIV-2 and sim-
ian immunodeficiency virus (SIV) and designed the peptide 
P3, which overlaps the N-terminal pocket-binding region 
and heptad repeat core of the HR2 region. In the in vitro 
assay, P3 inhibited both HIV-1 and HIV-2 infection, being 
significantly more active against the former than the lat-
ter. Moreover, when, in the presence of a patient infected 
with HIV-1 plasma, a poor reaction of peptide P3 and the 
patients’ antibodies was seen in comparison with the T-20 
reaction. This result was expected, since the HR2 region of 
HIV-1 and HIV-2 differs significantly; therefore, antibodies 
generated against this region in HIV-1 are unlikely to bind 
to a peptide derived from HIV-2/SIV. Finally, the authors 
suggest that P3 could be used as an alternative treatment for 
T-20-resistant HIV-1-infected patients. In a further assay, 
Bártolo et al. [151] formulated P3 in a gel of hydroxyethyl 
cellulose (HEC) and performed in vivo tests with Balb/c 
mice. The idea was to create a microbicide that could be 
used intravaginally to prevent HIV infection. The authors 
described high stability and bioactivity in genital human 
fluids even a month after exposure, in different pH values 
and temperatures, and in the presence of hydrogen peroxide. 
More importantly, no bacterial toxicity of vaginal microbiota 
was observed, making P3/HEC gel a promising candidate for 
the development of a vaginal microbicide gel to be used as 
prophylaxis in women.

The Met115–Thre116 (or simply M–T) hook structure is 
another approach used to improve entry inhibitor peptides 
for HIV treatment, which is formed by two residues that 
precede the pocket-binding domain (PBD) of CHR pep-
tides. Such a modification confers extensive hydrophobic 
interactions with the PBD, thus improving binding affinity 
and antiviral activity, suggesting a highly conserved pocket 
region between HIV-1, -2 and SIV. Therefore, Xiong et al. 
[152] generated 2P23, a fusion inhibitor peptide that had the 
pocket site of gp41 as the target. In comparison with pep-
tides used as the control, like T-20, 2P23 showed increased 
inhibitory activity against HIV-1, HIV-2, and SIV. It was 
also effective against subtypes of T-20-resistant HIV mutants 
and primary HIV-2 isolates. A further assay from the same 
group led to the improvement of 2P23 which, by adding a 
fatty acid group  (C16) to its C terminus, produced LP-19 
[16]. The results showed that LP-19 could inhibit HIV-1, -2 
and SIV in much lower concentrations than 2P23, especially 
in the assay for inhibition of virus entry. The lipid conjuga-
tion strategy improved the peptide’s binding stability and 
antiviral activity in both in vitro and ex vivo assays, provid-
ing a good candidate for drug development [140].

In�uenza virus inspired peptides

The influenza virus presents a major threat to human health 
as it has been responsible for many epidemics over the years 
[16]. Given their segmented single-stranded RNA genome, 
influenza viruses have a high degree of genomic variation, 
which is caused by point mutation changes or large sequence 
reassortment [153], triggered when an animal is infected by 
different strains of influenza that can exchange genome seg-
ments, thus resulting in a new strain [154]. Despite frequent 
vaccination policies to minimize viral transmission, events 
of antigenic mismatch between the viruses used in the vac-
cine and the ones circulating in the community still make 
this measure ineffective. In addition, the only two classes 
of antiviral drugs against influenza are the adamantane 
and neuraminidase inhibitors, for which there are already 
described cases of resistance [155]. Thus, new molecules 
are needed, and current studies target one of the viral spikes 
called hemagglutinin (HA); this and neuraminidase (NA) are 
the principal glycoproteins involved in the entry and release 
process [156]. Influenza HA is formed by two subunits 
(HA1 and HA2), and it is considered a homotrimeric type 
1 membrane glycoprotein. The subunits are connected by 
one disulfide bond, forming a globular head domain, which 
contains the receptor-binding site (RBS), while HA stem 
structure is responsible for intraendosomal membrane fusion 
[156, 157].

Based on a conserved region of the HA from influenza 
A, several peptides were designed by López-Martinéz et al. 
[158]. From the nine peptides designed, three derived from 
the N-terminal region of HA1, three derived from the C-ter-
minal of the HA1, and another three derived from HA2. All 
of them were tested in vitro against four different strains 
of influenza from human, swine and avian origin, with HA 
subtype H1 or H5. The results showed that all nine peptides 
were able to inhibit the four influenza strains in concen-
trations ranging from 20 to 74 µM. Furthermore, docking 
analysis with the subtype H1 suggested that the antiviral 
activity could be related with multiple interactions between 
each AVP and relevant regions of HA, which could impair 
the conformational changes needed for the membrane fusion 
process.

A recent strategy is the design of peptides based on broad 
neutralizing monoclonal antibodies (bnAbs) that bind to the 
conserved HA stem region. Koday et al. [159] described a 
peptide named HB36.5, whose structure mimics the stem-
binding region of bnAbs for HA in vitro. The results showed 
that HB36.5 has activity against multiple HA subtypes, and 
neutralized distinct human avian influenza viruses such as 
H5N1. Furthermore, when tested in mice, a pre-exposure 
treatment not only prevented infection but also did not 
induce an inflammatory response. Hence, as a post-expo-
sure treatment HB36.5 blocked and interfered with the viral 
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spread. Altogether, these results suggest the peptide could 
be used both to prevent infection and to treat the disease 
without exacerbating the inflammatory response.

AVPs against coronavirus

Human coronaviruses are positive-sense RNA enveloped 
viruses that belong to the Coronaviridae family. So far, six 
coronaviruses (CoV) have been reported to infect humans: 
HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, 
severe acute respiratory syndrome coronavirus (SARS-
CoV), and the Middle East respiratory syndrome corona-
virus (MERS-CoV) [160]. While HCoV-229E and HCoV-
OC43 are associated with upper and mild respiratory tract 
infections, SARS-CoV and MERS-CoV cause a variety of 
severe flu-like symptoms and were responsible for recent 
epidemics (in 2002/3 and 2015, respectively) [161, 162].

Basically, the viral particle is formed by spike glyco-
protein (S), the envelope (E), the membrane (M), and the 
nucleocapsid (N). The spike is a type 1 transmembrane 
protein and is formed by two subunits (S1 and S2) which 
are involved in the fusion/entry process. While S1 has the 
receptor-binding domain (RBD) and is responsible for bind-
ing to the cellular receptor, S2 has the fusion peptide (FP), 
the heptad repeat 1 (HR1), the heptad repeat 2 (HR2), a 
transmembrane domain (TM), and a cytoplasmic domain 
peptide (CP), and acts in the viral fusion and entry into the 
cell [163, 164]. Both HR1 and HR2 have three segments 
each that, altogether, form a six-helix bundle (6-HB) fusion 
core. Disruption of this core formation leads to viral fusion 
inhibition, therefore, preventing infection [165].

For this reason, Gao et al. [165] designed two AVPs (P1 
and P2) based on the HR2 sequence and challenged its effects 
against a pseudotyped MERS-CoV system. The peptide P1 
showed good inhibitory effect with an EC50 ~ 3.013 µM, 
while P2 showed no activity at all even at the highest con-
centration. In another assay, Lu et al. [166] also designed 
peptides based on the HR2 and the HR1 regions of MERS-
CoV. Among the tests performed, they analyzed whether 
these peptides interact with each other to form the 6-HB 
core, which was proved by an SDS-PAGE gel, suggesting 
that this interaction mimics the fusion core structure in vitro 
for academic purposes. Furthermore, cell–cell fusion inhibi-
tion assays showed that HR2P was more efficient at inhib-
iting both MERS-CoV spread and syncytium formation. 
The mechanism described by the authors was that HR2P 
could interact with the viral HR1 domain, blocking viral 
fusion core formation. In addition, an antiviral assay per-
formed in Vero cells expressing the DPP4 receptor, which is 
used by MERS-CoV, showed only that HRP2 inhibited the 
viral replication in a dose-dependent manner. Finally, the 
authors suggest that this peptide should be used as a tem-
plate for the design of analogs with enhanced activity against 

MERS-CoV infection and possibly used in clinical patients. 
As another example, Sun et al. [167], inspired by the same 
fusion core proteins, designed a peptide named MERS-5HB, 
which contains three copies of HR1 and two copies of HR2. 
Besides the tests describing the peptide’s structure and pos-
sible interaction with another MERS inspired peptide, a 
pseudotyped inhibition assay and a cell–cell spread assay 
were carried out. The results showed that MERS-5HB inhib-
ited both the MERS-pseudovirus and syncytia formation. 
Finally, the author suggested that this peptide may prevent 
the interaction of the HR1 and HR2 regions, consequently 
blocking the formation of 6HB fusion core.

Most recently, the same group designed peptides for the 
HR1 and HR2 regions from the HCoV-229E and tested them 
against HCoV-229E S protein-mediated cell–cell fusion, 
and both pseudotyped and live HCoV-229E. The peptides 
named 229E-HR1P and 229E-HR2P both showed inhibition 
of cell–cell spread, and inhibition of the pseudovirus infec-
tion, but 229E-HR2P was much more effective. Besides, 
in vivo assays showed that 229E-HR2P could retain its 
antiviral activity in both upper and lower respiratory tracts 
when administered intranasally. In the end, the authors sug-
gested that 229E-HR2P could become an antiviral drug to 
be used along with different antiviral molecules with a dif-
ferent mechanism of action, possibly exerting synergistic 
activity [168].

Final considerations

Since the majority of viral infections still have no avail-
able treatment, and due to the emergence/re-emergence of 
some virus strains, chances of viral pandemics that pose real 
threats to the worldwide population are still a real risk. In a 
highly globalized world, an infected individual can spread 
diseases much faster than centuries ago. Such an example is 
the Ebola virus outbreak from 2013 to 2016, which spread 
from West Africa, where it is endemic, to other places in 
Europe and the United States by infected health care agents. 
The rise of the disease in mid-2014 led the World Health 
Organization (WHO) to consider it a public health event of 
international concern [18].

Therefore, novel antiviral molecules for clinical treat-
ments are indispensable. Current approaches have proved 
to be insufficient in some cases, such as nucleoside analogs 
that were considered satisfactory in the past, but their first 
generation showed many side effects, and later generations 
struggled with viral resistance. As indicated at the beginning 
of this review, many alternatives are proposed nowadays, 
and antiviral peptides are among them, here, as summa-
rized in Table 1. However, even if there are several peptides 
described as antivirals, why do so few of these molecules 
actually reach the clinical trial phase?
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Despite these molecules’ advantages, some potential 
problems still need to be addressed. First, the production 
cost is high, due to current solid-phase techniques that 
require coupling reagents, resin, and, in some cases, protec-
tive amino acids. The process can become quite challeng-
ing depending on the peptide composition; for instance, the 
presence of disulfide bridges and the repetition of a single 

amino acid residue [169]. Cost reduction could be achieved 
by rethinking both synthesis and purification methods, like 
the use of recombinant peptide expression [170]. Second, 
short half-life and poor oral absorption are common chal-
lenges, since peptides are highly susceptible to degrada-
tion by proteases and peptidases [171]. This issue could be 
solved by the use of D-enantiomers, which allow increased 

Table 1  AVPs derived from diverse sources and the respective virus for which they show activity

HIV human immunodeficiency virus, HSV Herpes simplex virus, VSV vesicular stomatitis virus, YFV yellow fever virus, RSV respiratory syncyt-
ial virus, WNV West Nile virus, HCV hepatitis C virus, SARS-CoV severe acute respiratory syndrome coronavirus, HBV hepatitis B virus, DENV 
dengue virus, CBV-2 coxsackievirus B2, VZV varicella zoster virus, VV vaccinia virus, CMV cytomegalovirus

Peptides Sources Antiviral activity References

Kalata B1 Oldenlandia affinis HIV [61, 64]

Kalata B1-inspired peptide Oldenlandia affinis DENV [62]

Phaseococcin Phaseolus coccineus HIV [69]

Sesquin Vigna sesquipedalis HIV [70]

Cecropin A Hyalophora cecropia HIV; HSV-1 and 2; Junin virus [75, 76]

Melitin Apis mellifera HIV-1; HSV-1 and 2; Junin virus [76–78]

Mastoparan 7 Vespula lewisii VSV; HSV-1; YFV RSV; WNV [79]

Hp1090 Heterometrus petersii HCV [80, 81]

Hp1239 Heterometrus petersii HCV; HSV-1 [80, 81]

Hp1036 Heterometrus petersii HCV; HSV-1 [80, 81]

mucroporin-M1 Lychas mucronatus Measle virus; Influenza H5N1; SARS-CoV; HBV [82, 83]

Lactarcin 1 Lachesana tarabaeve DENV-2 [27]

Kn2-7 Mesobuthus martensii HIV-1 subtype B [84]

Alloferon 1 Calliphora vicina Influenza [86]

Alloferon 2 Calliphora vicina Influenza [86]

Alloferon 1 analogs – CBV-2 [73, 87, 88]

Magainin 1 and 2 Xenopus laevis HSV-1; HSV-2 [76]

Magainin variants – HSV-1; vaccinia virus [91, 92]

Temporin B Rana temporaria HSV-1 [89]

Dermaseptins Phyllomedusa HSV-1; HSV-2; rabies virus; HIV-1 [22, 93–96]

HS-1 H. semilineatus DENV-2 and -3 [97]

clavanin A Styela clava rotavirus; adenovirus [99]

clavanin AK Styela clava HSV-1 [98]

clavanin B Styela clava HIV [22]

mirabamide E, F, G, and H Stelletta clavosa HIV [100]

Pa-MAP1 Pleunorectus americanus HSV-1; HSV-2 [101, 102]

HNP-1 Human neutrophil HIV; Influenza A [104, 106]

HNP-2 Human neutrophil HIV [104, 105]

HNP-4 Human neutrophil HIV [104, 105]

HBD-2 HPV; HIV [52, 107, 109]

HBD-3 HPV; vaccinia; VZV; HIV [52, 107–109]

LL-37 Human neutrophil granules VZV; VV; HSV-1; adenovirus; HIV; RSV; HCV; Influenza A; HCV; 
aichi virus; DENV 2; rhinovirus

[39, 49, 
102, 111, 
113–116]

Protegrin-1 Swine white blood cells DENV; HSV-1 and -2 [28, 98]

Lactoferrin Mammals secretions CMV; HSV-1 and -2; adenovirus; rotavirus; poliovirus; RSV; HIV; 
Influenza; HCV; HBV; DENV; chikungunya; Zika

[117–120]

Lactoferricinin Mammals secretions CMV; HPV; HSV-1 and -2; HIV [121–124]

CYVIP Human filtrate HSV-1 [126]
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stability and decreased substrate recognition and binding 
affinity to proteolytic enzymes; or post-translational modi-
fications such as amidation and acetylation, also to improve 
peptide stability; or even by the addition of fatty acid chains 
to improve membrane permeability [87, 172]. Finally, there 
is the challenge of delivery systems. Thus, it will depend 
on the viral target, if it is the viral envelope or intracellular 
replication steps; and drug administration via oral or paren-
teral; solutions may be the conjugation with nanocarriers, 
antibodies, carbohydrates, and lipids [173, 174].

With the development of techniques to produce and to 
improve both pharmacodynamics and pharmacokinetics of 
AVPs, such problems will be overcome one day, since inter-
est in peptide-based drugs is rising. Large-scale production 
and screening are speeding up the drug discovery phase, 
and it is expected that more antiviral peptides will enter 
the phase of clinical trials. Even so, for recently discovered 
viruses, there is little information, and the current methods 
for antiviral peptide design seem to work not only for drug 
description but also to help understand viral structure.

In addition, some authors suggest the use of peptide-
based drugs as adjuvants or in combination therapy with 
other antivirals with different mechanisms of action, thus 
diminishing drug resistance establishment and producing 
fewer side effects. Finally, the description of new antiviral 
drugs supplements the existing therapies and provides alter-
natives to treat viral diseases that cause serious pandemics, 
reducing the mortality/morbidity associated with them.
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