
Vol.:(0123456789)1 3

https://doi.org/10.1007/s11224-022-01959-3

ORIGINAL RESEARCH

Antiviral phytocompounds “ellagic acid” and “(+)‑sesamin” of Bridelia 
retusa identified as potential inhibitors of SARS‑CoV‑2 3CL pro using 
extensive molecular docking, molecular dynamics simulation studies, 
binding free energy calculations, and bioactivity prediction
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Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected billions and has killed millions to date. 
Studies are being carried out to find therapeutic molecules that can potentially inhibit the replication of SARS-CoV-2. 
3-chymotrypsin-like protease (3CL pro) involved in the polyprotein cleavage process is believed to be the key target for 
viral replication, and hence is an attractive target for the discovery of antiviral molecules. In the present study, we aimed to 
identify natural phytocompounds from Bridelia retusa as potential inhibitors of SARS-CoV-2 3CL pro (PDB ID: 6M2N) 
using in silico techniques. Molecular docking studies conducted with three different tools in triplicates revealed that ellagic 
acid (BR6) and (+)-sesamin (BR13) has better binding affinity than the co-crystal inhibitor “3WL” of 6M2N. BR6 and BR13 
were found to have a high  LD50 value with good bioavailability. 3WL, BR6, and BR13 bind to the same active binding site 
and interacted with the HIS41-CYS145 catalytic dyad including other crucial amino acids. Molecular dynamics simulation 
studies revealed stability of protein–ligand complexes as evidenced from root-mean-square deviations, root-mean-square 
fluctuations (RMSF), protein secondary structure elements, ligand-RMSF, protein–ligand contacts, ligand torsions, and 
ligand properties. BR6 (−22.3064 kcal/mol) and BR13 (−19.1274 kcal/mol) showed a low binding free energy value. The 
Bayesian statistical model revealed BR6 and BR13 as better protease inhibitors than 3WL. Moreover, BR6 and BR13 had 
already been reported to elicit antiviral activities. Therefore, we conclude that ellagic acid and (+)-sesamin as natural antiviral 
phytocompounds with inhibitory potential against SARS-CoV-2 3CL pro.
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Introduction

Coronavirus disease 2019 (COVID-19) has spread to all 
parts of the world. The total number of COVID-19 cases 
has reached 2.5 billion cases, with the death toll reaching 
over 5 million [1]. The severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) is the causative agent of 
COVID-19 [2–4]. During viral replication, SARS-CoV-2 
produces large viral polyproteins which exhibit excessive 
variability. These polyproteins undergo proteolytic cleav-
age which is mediated by the 3-chymotrypsin-like protease 
(3CL pro) enzyme at 11 different sites [5, 6]. This enzyme 
(3CL pro) breaks down polyproteins into a variety of non-
structural proteins that are essential for viral replication 
[6]. As 3CL pro is essential for viral replication of SARS-
CoV-2, the protein was investigated as a potential drug 
target for the development of anti-SARS-CoV-2 agents [7, 
8]. Several studies have used 3CL pro as the target protein 
to identify a potential inhibitor of SARS-CoV-2 [9–11].

Although modern medicines and vaccines are avail-
able to treat COVID-19, the emergence of new variants 
of SARS-CoV-2 might weaken the efficacy of the present 
vaccines and antiviral medications [12, 13]. Adverse drug 
reactions are sometimes reported against COVID-19 vac-
cines resulting in vaccine hesitancy [14–16]. SARS-CoV-2 
continues to mutate potentially leading to the emergence 
of deadlier variants with higher transmissibility [17]. 
Therefore, the development of new/adjuvant/alternative 
drugs against SARS-CoV-2 is the need of the hour. Among 
different approaches that are available for the discovery 
and development of drugs for COVID-19, investigat-
ing the bioactive molecules of plant origin seems to be 
a promising approach [6, 10, 11]. Many plants such as 
Lycoris radiata, Artemisia annua, Pyrrosia lingaua, Lin-
dera aggregata, Isatis indigotica, Torreya nucifera, Hout-
tuynia cordata, Echinacea, Cinchona, Curcuma longa, 
and Curcuma xanthorrhiza have been reported to contain 
antiviral phytoconstituents that might be effective against 
SARS-CoV-2 [18–20]. A study reported that selected 
herbal extracts have the potential to inhibit SARS-CoV-2 
[21]. Another study reported that the polyphenolic leaf 
extract of Vitis vinifera inhibited in vitro replication of 
SARS-CoV-2 [22]. Furthermore, several in silico inves-
tigations have revealed many phytocompounds as having 
the potential to inhibit the replication of SARS-CoV-2 
by binding with target proteins such as 3CL pro [23–25]. 
These studies highlight the significance of phytocom-
pounds from medicinal plants in curtailing the viral repli-
cation of SARS-CoV-2 by 3CL pro inhibition.

Bridelia retusa has been reported as an antiviral 
medicinal plant of Northeast India [26]. B. retusa is also 

distributed in different parts of the Asian continent. In 
China, B. retusa has been traditionally used as a herbal 
medicine [27]. According to reported in vivo studies, B. 
retusa elicited antinociceptive, anti-inflammatory, anti-
fungal, and antimicrobial activities [28–31]. In this study, 
fourteen phytocompounds (Fig. 1) namely β-sitosterol 
(BR1), stigmasterol (BR2), lupeol (BR3), friedelin (BR4), 
gallic acid (BR5), ellagic acid (BR6), (E)-4-(1,5-dimethyl 
-3-oxo-1-hexenyl) benzoic acid (BR7), (E)-4-(1,5-dimethyl 
-3-oxo-1,4-hexadienyl) benzoic acid (BR8), (R)-4-(1, 
5-dimethyl-3-oxo-4-hexenyl) benzoic acid (BR9), (-)- 
isochaminic acid (BR10), (R)-4-(1,5-dimethyl-3-oxohexyl) 
benzoic acid (ar-todomatuic acid) (BR11), 5-allyl-1,2,3-
trimethoxybenzene (elemicin) (BR12), (+)-sesamin 
(BR13), and 4-isopropylbenzoic acid (cumic acid) (BR14) 
that have been reported to be present in B. retusa were 
computationally investigated for their inhibitory poten-
tial against the SARS-CoV-2 3CL pro [28–30]. Among 
the phytocompounds present in B. retusa, gallic acid and 
ellagic acid have been reported to possess antiviral activity 
[32, 33]. Other phytocompounds present in B. retusa such 
as (+)-sesamin and β-sitosterol were also reported to play 
an important role in ameliorating viral infection [34, 35].

Therefore, molecular docking simulation studies were 
carried out with three different docking approaches in trip-
licates. Phytocompounds with better binding affinity than the 
co-crystal inhibitor (CCI) were investigated for their toxicity, 
bioavailability, drug-likeness, and other important param-
eters. Following this, the phytocompounds were subjected to 
100 ns molecular dynamics (MD) simulations to determine 
the stability of the protein–ligand complexes. The molecular 
mechanics-generalized born surface area (MM-GBSA) bind-
ing free energies of the protein–ligand complexes were cal-
culated. The protease inhibitory potential of the phytocom-
pounds was also evaluated. Finally, two phytocompounds 
of B. retusa (ellagic acid and (+)-sesamin) with reported 
antiviral activities were found as the most promising bioac-
tive molecules for the inhibition of SARS-CoV-2 3CL pro.

Materials and methods

Preparation of phytocompound library

The compound library consisting of the structure data file 
format of 14 phytocompounds of B. retusa was manually 
prepared with MarvinSketch 20.10 software (ChemAxon). 
The structure of the prepared phytocompounds was checked 
with the ‘Structure checker’ add-on feature of the Marvin-
Sketch 20.10 software.
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Retrieval of the target protein

The crystal structure of SARS-CoV-2 3CL pro (PDB ID: 
6M2N) was retrieved from the RCSB-PDB website (https:// 
www. rcsb. org/ struc ture/ 6M2N). The co-crystallized inhibi-
tor of 6M2N “3WL” was taken and its structure was also 
manually prepared with MarvinSketch 20.10 software. The 

co-crystallized inhibitor (3WL) of 6M2N was used as a posi-
tive control throughout the study.

Pre‑processing of protein

The Discovery Studio Visualizer v20.1.0.19295 software 
was used to pre-process the protein before further studies. 

Fig. 1  Chemical structures of phytocompounds of B. retusa 
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The software was used to remove water and ligands. After 
this, polar hydrogens were added to the protein structure. 
The “define and edit binding site” feature of Discovery 
Studio Visualizer v20.1.0.19295 software was used to 
obtain the active binding site coordinates (x =  −33.516547, 
y =  −63.976760, z = 41.592773) of SARS-CoV-2 3CL pro.

Molecular docking studies

In the present study, molecular docking studies were carried 
out with three different in silico tools. Also, molecular dock-
ing was carried out in triplicates.

DockFlin

The default geometry of all the phytocompounds was 
removed with the “clean geometry” feature in Discovery 
Studio 2021 Client (DS) (BIOVIA, San Diego, CA, USA). 
Energy minimization (MM2) was performed with Chem3D. 
Each ligand was then optimized with AutoDockTools 
1.5.6 (ADT) (The Scripps Research Institute, USA) to add 
Gasteiger charges, set rotatable bonds, and TORSDOF. Fur-
thermore, the ligands are stored in the PDBQT format.

The protein was optimized using ADT to regulate the 
charges (Kollman charges). The protein was then stored in 
the PDBQT format. The grid position was arranged based on 
the active site coordinates previously defined with DS. The 
grid dimension was set to 40 × 40 × 40 magnification with a 
spacing of 0.375 Å.

Molecular docking was performed with DockFlin soft-
ware (ETFLIN, Palu City, Indonesia). This software is an in 
silico tool that allows systematic scheduling of multi-ligand 
and multi-protein docking processes using the AutoDock 
Vina. Ligands and proteins were added to their respective 
list panel, then the docking parameters (grid file) per protein 
were also loaded in the grid list panel. Loading of all neces-
sary files follows the same order. The docking parameters 
used were energy range of 4 and exhaustiveness of 8.

PyRx

The in-built energy minimization parameters of the PyRx 0.8 
tool were used to minimize the energy of all the ligands. The 
energy minimization parameters were kept default (force 
field = universal force field; optimization algorithm = con-
jugate; total number of steps = 200; number of steps for 
update = 1; stop is energy difference is less than = 0.1). The 
ligands were converted into the PDBQT file format.

The pre-processed protein was converted into the PDBQT 
file format after it was loaded onto the 3D scene of the PyRx 
tool. In the Vina search space, the 3D affinity grid box was 
manually adjusted according to the pre-defined active bind-
ing site coordinates so that the entire active site residues are 

covered. The size of the 3D affinity grid box (25 Å) and the 
exhaustiveness were kept default (n = 8).

Molecular docking simulation with the PyRx 0.8 tool. 
PyRx is a useful tool that uses AutoDock 4 and AutoDock 
Vina for docking while providing a simple graphical user 
interface. Also, it uses ADT and Open Babel for preparing 
all the necessary files required for docking [36].

AutoDock Vina standalone package

The target protein was prepared for docking by minimizing 
its energy (force field = OPLS_2005 and the minimization 
proceeds until there is no significant change) with Schrod-
inger Maestro (Schrödinger, LLC, New York, NY). Kollman 
charges were added to the target protein with ADT followed 
by its conversion to “pdbqt” file format.

Energy minimization of all the phytocompounds was 
carried out with the same procedure and parameters of the 
PyRx 0.8 tool. Polar hydrogens and Gasteiger charges were 
added with ADT. The ligands were then converted to the 
PDBQT file format.

The size of the grid box was set (X = 18 points, Y = 14 
points, and Z = 18 points). The active binding site coordi-
nates previously defined with DS were used. AutoDock Vina 
standalone package was used for molecular docking.

Toxicity study

The toxicity of the phytocompounds with a binding affinity 
higher than 3WL was subjected to toxicity screening. Data 
Warrior v4.5.1 software was used to generate the output of 
different toxicity parameters such as mutagenic, tumori-
genic, reproductive effective, and irritant [37]. The overall 
drug score was also calculated with the Data Warrior v4.5.1 
software.

The ProTox-II web tool (https:// tox- new. chari te. de/ pro-
tox_ II/) was then used to predict the  LD50 and toxicity class 
of the phytocompounds. In addition, hepatotoxicity, carci-
nogenicity, immunotoxicity, mutagenicity, and cytotoxicity 
of the phytocompounds were also computed.

Bioavailability study

Pharmacokinetic parameters such as absorption, distribu-
tion, metabolism, and excretion were studied with the Swis-
sADME web tool (http:// www. swiss adme. ch/ index. php#). 
Different physicochemical parameters such as molecu-
lar weight, heavy atoms, rotatable bonds, hydrogen bond 
donors, hydrogen bond acceptors, molar refractivity, topo-
logical surface area, lipophilicity, and water solubility were 
also computed. Then, the bioavailability of the phytocom-
pounds was computed.
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Visualization and analysis of ligand interactions

The protein–ligand interactions shown by the phytocom-
pounds that pass through the ADMET screening were visu-
alized and analyzed with the Discovery Studio Visualizer 
v20.1.0.19295 software.

Molecular dynamic simulation studies

Molecular dynamics study was carried out on Linux Ubuntu 
20.04.1 LTS 64-bit, NVIDIA Quadro P2200 graphic card, 
16 GB RAM, and Intel Xeon(R) W-2223 @3.60 GHz octa-
core processor with Desmond on Maestro Schrödinger 
2021–2 [38–40]. The molecular dynamics protocol 
described by Zubair et al. was followed [41]. MD process 
was commenced by generating complexes of the ligand– 
protein system from docking results and placing them in a 
cubic box at 10 Å solvating with SPC (simple point charge) 
water model. To simulate under physiological conditions, 
salts ion (sodium and chloride) was set at 0.15 M and added 
counter ions consisting of 31Na+ and 29 Cl- for original 
and sesamin,  41Na+ and 29  Cl− for ellagic to neutralize the 
charge. The MD simulation was performed for 100 ns in 
NPT conditions with temperature 300 K, pressure 1.63 bar, 
OPLS_2005 force field, recording intervals set to 1.2 ps for 
energy and 20 ps for trajectory.

MM‑GBSA binding free energy calculations

The MD trajectories were generated by the Desmond module 
from Maestro-Schrodinger 2021–3. As described by Duarte 
et al. (2021) and Mahmoud et al. (2021), the calculations 
of the average MM-GBSA binding free energy in Desmond 
MD trajectory (*-cms.out) was carried out by executing the 
thermal_mmgbsa.py script of Schrodinger [42, 43]. The 
thermal script processed the MD trajectory of Desmond and 
splits it into 1001 individual frame snapshots that were used 
as input to compute the average binding free energy and each 
individual snapshot runs through MM-GBSA analysis. The 
MM-GBSA binding free energy was estimated according to 
the formula: ΔGbind = Gcomplex – Greceptor – Gligand, 

where ΔGbind is the binding free energy and Gcomplex, 
Greceptor, and Gligand are the free energies of the complex, 
receptor, and ligand, respectively. MM-GBSA values were 
obtained from the script of thermal MM-GBSA provided 
by Schrödinger (https:// www. schro dinger. com/ scrip tcent er) 
and were used to calculate the ΔGbind for the protein–ligand 
complexes [44, 45].

Bioactivity prediction using Bayesian statistical 
model

The SMILES ID of the phytocompounds was generated 
with MarvinSketch 20.10 software. The protease inhibi-
tory activity of the phytocompounds was studied with the 
Molinspiration Chemoinformatics web tool (https:// www.  
molin spira tion. com/) which uses a sophisticated Bayesian 
statistical model to predict the bioactivity of a molecule. 
Initially, a Bayesian statistical model was generated by 
fragmenting a library of active molecules and inactive mol-
ecules. After the SMILES ID of the phytocompound was 
entered into the Molinspiration Chemoinformatics web tool, 
the phytocompounds were also fragmented into ~ 80,000 
fragments. The contribution of each fragment toward the 
bioactivity was studied to determine the protease inhibitory 
potential of the phytocompounds.

Results and discussion

Features of SARS‑CoV‑2 3CL pro

The target protein (SARS-CoV-2 3CL pro) used in the pre-
sent study falls under the classification of viral proteins. The 
crystal structure of the target protein was obtained from the 
Research Collaboratory for Structural Bioinformatics-Protein  
Data Bank (RCSB-PDB) (https:// www. rcsb. org/ struc ture/ 
6M2N) and has a resolution of 2.20 Å. The viral protein 
is made up of four chains (A, B, C, and D) and it has a 
sequence length of 306 amino acids. A snapshot of SARS-
CoV-2 3CL pro is given in Fig. 2. The target protein is com-
plexed with a co-crystallized inhibitor “3WL.” Chemically, 

Fig. 2  Snapshot of a SARS-
CoV-2 3CL pro; b chain A of 
SARS-CoV-2 3CL pro; c active 
binding pocket at chain A of 
SARS-CoV-2 3CL pro
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baicalein or 3WL is a trihydroxyflavone with many phar-
macological activities including antiviral activity [46, 47].

Molecular docking simulation studies

Molecular docking simulation studies (MDSS) is an effective 
technique to study the binding potential of any compound 
against a particular target protein. MDSS is now widely rec-
ognized and used by many in their drug discovery endeavors 
[48]. Interestingly, to find out new potential drug candidates 
against the ongoing pandemic, many scholars have also used 
the technique of molecular docking [49, 50]. In the present 
study, MDSS was carried out with three different approaches 
in triplicates. This initiative was taken to minimize biased 
outcomes. Although DockFlin, PyRx, and AutoDock Vina 
standalone packages used the same algorithm (i.e., Auto-
Dock Vina) to carry out molecular docking, preparation of 
proteins and ligands were carried out with multiple software 
and different techniques.

Generally, a certain amount of numerical value (scoring 
function) is given for a ligand. Based on this, the ligands 
can be ranked in the order of their binding affinity for a 
target protein [51]. This output of MDSS is useful to fil-
ter out potent candidates for a target from ligands with low 
binding affinity. Higher binding energy means low binding 
affinity while lower binding energy correlates to a high bind-
ing affinity. The binding energy (kcal/mol) of the phyto-
compounds of B. retusa toward the active binding site of 
SARS-CoV-2 3CL pro is given in Table 1. The mean of the 
binding energies calculated from the three simulations was 
used to prioritize and obtain ligands with the highest bind-
ing affinities.

According to DockFlin, BR6 (−8.0 kcal/mol) has a better 
binding affinity than 3WL (−7.66 kcal/mol). According to 
PyRx, BR6 (−7.7 kcal/mol) and BR13 (−7.7 kcal/mol) have 
a better binding affinity than 3WL (−7.3 kcal/mol). Accord-
ing to AutoDock Vina standalone package, BR6 (−8.0 kcal/
mol) and BR13 (−7.86 kcal/mol) has a better binding affin-
ity than 3WL (−7.1 kcal/mol). The MDSS conducted with 
three different approaches in triplicates revealed that BR6 
and BR13 can be potential candidates’ worthy of further 
investigations as they had shown a remarkably high binding 
affinity toward the active binding site of SARS-CoV-2 3CL 
pro. Thus, BR6 and BR13 were subjected to further analy-
sis. In addition to the binding affinity, ligand interaction is 
an equally important parameter that can determine a drug’s 
suitability for further studies. To inhibit an enzyme, a drug 
must interact with the crucial amino acids of an enzyme 
through hydrogen bonds and hydrophobic interactions 
[11]. Thus, ligand interaction can also be used to filter out 
promising drug candidates. As it is industrious to check for 
protein–ligand interactions for all the ligands used in large-
scale drug screening, only the binding affinity was taken 

into consideration at this preliminary stage to filter out low-
affinity candidates.

Toxicity study

Toxicity is a serious issue when it comes to drug develop-
ment. For instance, many drugs had been withdrawn from 
the market due to toxicity issues. Due to this, several years 
of hard work, labor, and money that is invested in a drug 
development program can go to waste [52]. Therefore, toxic-
ity study constitutes an important part of a drug development 
program. In the present study, different toxicity parameters 
of BR6 and BR13 were studied with Data Warrior v.4.5.1 
software (Table 2) and the ProTox-II web tool (Table 3).

According to Data Warrior v.4.5.1 software (Table 2), 
both the phytocompounds and the positive control (3WL) 
were found to be non-toxic. This is a good indicator that 
both the phytocompounds exhibit a good safety profile. Data 
Warrior v.4.5.1 software was also used to calculate the drug 
score which correlates to the quality of a compound as a 
potential drug candidate [53]. The co-crystallized inhibitor 
(3WL) has the highest drug score (0.6981475) followed by 
BR6 (0.5104488) and BR13 (0.4094924).

The toxicity class of each compound is presented in 
Table 2. The ProTox-II web tool has categorized toxicity 
into different classes which determines the risk associated 
with each class. 3WL belonged to class 5 which means that 
3WL may be harmful if swallowed. BR6 falls under the cat-
egory of class 4 which indicates that BR6 might be harmful 
if swallowed. BR13 belonged to class 3 which means that it 
might be toxic if swallowed.

The  LD50 (median lethal dose) is the amount of a sub-
stance that is required to kill half of the participants in a 
research study [54]. Although 3WL showed signs of carci-
nogenicity and mutagenicity, it was computed to have a high 
 LD50 value of 3919 mg/kg body weight (Table 2). Accord-
ing to ProTox-II, BR6 also showed signs of carcinogenic-
ity. However, it has a high  LD50 value of 2991 mg/kg body 
weight (Table 2). Signs of carcinogenicity and immunotoxic-
ity were observed in BR13. Also, BR13 has the lowest  LD50 
(1500 mg/kg body weight) among the three compounds. The 
experimental  LD50 of medicinal plants and polyherbal for-
mulations showed a lower  LD50 value than BR6 and BR13 
[55–57]. BR6 and BR13 can be considered safe and there-
fore, they are subjected to further studies.

Physicochemical properties, pharmacokinetics, 
drug‑likeness, and medicinal chemistry

In computational studies such as MDSS, any compound 
that has a high binding affinity for a target protein does not 
mean that it will become the potential lead. A compound 
must also have suitable drug-like properties. Therefore, it 
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is important to study different properties and parameters of 
a compound to make a definitive conclusion. The physico-
chemical properties, pharmacokinetics, drug-likeness, and 
medicinal chemistry of 3WL, BR6, and BR13 are given in 
Table 4. The graphical representation of the oral bioavail-
ability diagram is also given in Fig. 3.

From Table  4, it can be observed that 3WL, BR6 
and BR13 abide by the Lipinski’s rule of 5 (molecular 
weight ≤ 500, cLogP ≤ 5, hydrogen acceptor ≤ 10, hydro-
gen donor ≤ 5), Ghose filter (molecular weight < 480, molar 
refractivity < 130, WLOGP < −0.4, number of atoms < 70), 
and Muegge filters (molecular weight < 600, topological 
polar surface area < 150, hydrogen acceptor < 10, hydro-
gen donor < 5) [58–60]. Also, 3WL and BR13 abide by the 
Veber filter (rotatable bonds ≤ 10, topological polar surface 
area ≤ 140) and the Egan filter (WLOGP ≤ 5.88, topological 
polar surface area ≤ 131.6) [61, 62]. However, the topologi-
cal polar surface area of ellagic acid (BR6) is 141.34 Å2 and 
therefore it does not completely abide by the Veber and Egan 
filters. In a drug discovery process, a compound with a lower 
topological polar surface area is preferred over those having 
a higher value [63].

Drugs that are intended to be administered orally must 
be soluble in water. This is because low water solubility 
can lead to gastrointestinal toxicity. Low water solubility 
can also lead to low bioavailability [64]. BR6 and BR13 are 
more soluble in water when compared to 3WL (Table 4). 
The gastrointestinal absorption of BR6 and BR13 is also 
predicted to be high (Table 4). Also, BR13 was predicted 
to be able to permeate through the blood–brain barrier 
(Table 4). Bioavailability issues can also slow down the pace 
of a drug discovery process [61, 62]. BR6 and BR13 had a 
bioavailability score of 0.55 which is also the same as the 
bioavailability score of 3WL (0.55) (Table 4). 3WL and BR6 
showed lead likeness potential while BR13 did not show a 
lead likeness potential (Table 4). This is because the molecu-
lar weight of BR13 is 354.35 g/mol which is higher than the 
acceptable 350 g/mol. 3WL, BR6, and BR13 have a syn-
thetic accessibility score of 3.02, 3.17, and 4.12 (Table 4). 
This means that 3WL will be able to be synthesized easily 
followed by BR6 while BR13 will be the hardest to be syn-
thesized among the three phytocompounds [65].

According to generated data, 3WL, BR6, and BR13 will 
be absorbed in the gastrointestinal tract. However, only 

Table 1  Binding energy (kcal/mol) of the phytocompounds of B. retusa toward the active binding site of SARS-CoV-2 3CL pro

Comp compounds, 1st 1st simulation, 2nd 2nd simulation, 3rd 3rd simulation

Comp DockFlin PyRx AutoDock Vina

1st 2nd 3rd Mean 1st 2nd 3rd Mean 1st 2nd 3rd Mean

3WL −7.7 −7.6 −7.7 −7.66 −7.3 −7.3 −7.3 −7.3 −7.1  −7.1 −7.1 −7.1
BR1 −6.3 −6.9 −6.8 −6.66 −6.8 −7.0 −6.9 −6.9 −6.8 −6.8 −6.9 −6.83
BR2 −7.1 −7.0 −7.1 −7.06 −6.7 −6.7 −6.7 −6.7 −6.7 −6.7 −6.7 −6.7
BR3 −7.6 −7.6 −7.6 −7.6 −7.3 −7.3 −7.3 −7.3 −4.6 −4.6 −4.6 −4.6
BR4 −7.7 −7.5 −7.5 −7.56 −7.0 −7.0 −7.0 −7 −4.0 −4.0 −4.1 −4.03
BR5 −5.1 −5.1 −5.1 −5.1 −5.3 −5.3 −5.3 −5.3 −5.3 −5.3 −5.3 −5.3
BR6 −8.0 −8.0 −8.0 −8.0 −7.7 −7.7 −7.7 −7.7 −8.0 −8.0 −8.0 −8.0
BR7 −6.0 −6.1 −6.1 −6.06 −6.3 −6.3 −6.4 −6.3 −6.0 −6.0 −6.1 −6.03
BR8 −6.2 −6.3 −6.1 −6.2 −6.5 −6.4 −6.5 −6.46 −6.3 −6.3 −6.3 −6.3
BR9 −5.7 −5.8 −5.8 −5.76 −6.4 −6.3 −6.4 −6.36 −6.3 −6.3 −6.3 −6.3
BR10 −6.7 −6.7 −6.7 −6.7 −5.4 −5.4 −5.4 −5.4 −5.4 −5.4 −5.3 −5.36
BR11 −5.6 −5.6 −5.6 −5.6 −6.2 −6.3 −6.1 −6.2 −6.1 −6.1 −6.0 −6.06
BR12 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9 −4.9 −5.3 −5.3 −5.3 −5.3
BR13 −6.8 −6.8 −6.8 −6.8 −7.7 −7.7 −7.7 −7.7 −7.9 −7.9 −7.8 −7.86
BR14 −5.1 −5.1 −5.1 −5.1 −5.4 −5.4 −5.4 −5.4 −5.3 −5.3 −5.3 −5.3

Table 2  Toxicity parameters 
and drug score of 3WL, BR6, 
and BR13

Compound Mutagenic Tumorigenic Reproductive 
effective

Irritant Drug score

3WL None None None None 0.6981475
BR6 None None None None 0.5104488
BR13 None None None None 0.4094924
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Table 3  Toxicity parameters,  LD50, and toxicity class of 3WL, BR6, and BR13

Compound Hepatotoxicity Carcinogenicity Immunotoxicity Mutagenicity Cytotoxicity LD50 (mg/kg 
body weight)

Toxicity 
class

3WL Inactive Active Inactive Active Inactive 3919 5
BR6 Inactive Active Inactive Inactive Inactive 2991 4
BR13 Inactive Active Active Inactive Inactive 1500 3

Table 4  Different properties of 
3WL, BR6, and BR13

Properties 3WL BR6 BR13

Physicochemical properties
Molecular weight 270.24 g/mol 302.19 g/mol 354.35 g/mol
Heavy atoms 20 22 26
Aromatic heavy atoms 16 16 12
Rotatable bonds 1 0 2
H-bond acceptors 5 8 6
H-bond donors 3 4 0
Molar refractivity 73.99 75.31 90.00
TPSA 90.90 Å2 141.34 Å2 55.38 Å2

Lipophilicity
iLOGP 2.43 0.79 3.46
XLOGP3 3.16 1.10 2.68
WLOGP 2.58 1.31 2.57
MLOGP 0.52 0.14 1.98
SILICOS-IT 2.52 1.67 3.25

Water solubility
ESOL Moderately soluble Soluble Soluble
Ali Moderately soluble Soluble Soluble
SILICOS-IT Moderately soluble Soluble Moderately soluble

Pharmacokinetics
GI absorption High High High
BBB permeant No No Yes
P-gp substrate No No No
CYP1A2 inhibitor Yes Yes No
CYP2C19 inhibitor No No Yes
CYP2C9 inhibitor No No No
CYP2D6 inhibitor Yes No Yes
CYP3A4 inhibitor Yes No Yes
Skin permeation −5.70 cm/s −7.36 cm/s −6.56 cm/s

Drug likeness
Lipinski Yes Yes Yes
Ghose Yes Yes Yes
Veber Yes No Yes
Egan Yes No Yes
Muegge Yes Yes Yes
Bioavailability score 0.55 0.55 0.55

Medicinal chemistry
PAINS 1 alert 1 alert 0 alert
Brenk 1 alert 3 alerts 0 alert
Leadlikeness Yes Yes No
Synthetic accessibility 3.02 3.17 4.12
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BR13 was computed to be able to penetrate the blood–brain 
barrier. 3WL might interact with CYP1A2, CYP2D6, 
and CYP3A4. BR6 might interact with CYP1A2. BR13 
might interact with CYP2C19, CYP2D6, and CYP3A4. 
Cytochromes are enzymes produced in the liver that can 
determine the pharmacokinetic profile of a drug [66]. Over-
all, 3WL, BR6, and BR13 have an acceptable pharmacoki-
netic profile (Table 4). From Fig. 3, it can be observed that 
all the properties of BR13 lie within the physicochemical 
space that is suitable for oral bioavailability. The majority 
of the properties of BR6 also lie within the suitable phys-
icochemical space for oral bioavailability. In comparison to 
3WL, BR6 and BR13 are also computed to be orally bio-
available. From the evidence available at hand, it can be 
concluded that BR6 and BR13 possessed suitable properties 
which qualifies them to be subjected for further studies.

Visualization and analysis of ligand interactions

In the active binding site of SARS-CoV-2 3CL pro, impor-
tant catalytic residues of the viral protein such as HIS41 and 
CYS145 are present. This catalytic dyad is directly involved 
in the chemical catalysis of the protein. Other amino acid 
residues such as SER46, LEU141, ASN142, GLU166, 
PRO168, GLN189, THR190, and ALA191 are also found 
at the catalytic site cavity [67]. For our phytocompounds to 
be regarded as a potential inhibitor of SARS-CoV-2 3CL 
pro, they must bind to the active catalytic site and interact 
(preferably form a hydrogen bond) with the active site resi-
dues. BR6 and BR13 cannot be considered potential inhibi-
tors of SARS-CoV-2 3CL pro simply because they had a 
high binding affinity for the target protein. It is important 
that BR6 and BR13 must bind with catalytic dyad and other 
crucial amino acids present at the active site. Therefore, the 
ligand interactions of 3WL, BR6, and BR13 were studied 
with Discovery Studio Visualizer v20.1.0.19295 software, 
and the output is represented in Fig. 4.

As 3WL is the standard drug, the ligand interactions 
of the original binding pose of 3WL was also studied 
(Fig. 4a, b). 3WL formed conventional hydrogen bond 
with GLU166 (bond length = 3.11 Å); two conventional 
hydrogen bonds with GLY143 (bond length = 2.97 
and 3.10  Å); pi-alkyl interaction with CYS44 (bond 
length = 4.89 Å), MET49 (bond length = 4.26 Å), CYS145 
(bond length = 5.17 Å); pi-pi stacked with HIS41 (bond 
length = 4.62  Å); carbon-hydrogen bonds with HIS41 
(bond length = 3.30 Å), ASN142 (bond length = 3.27 Å 
and 3.54 Å), and CYS145 (bond length = 3.32 Å). 3WL 
interacted with 4 amino acid residues (HIS41, CYS145, 
ASN142, and GLU166) present at the catalytic cavity of 
SARS-CoV-2 3CL pro.

Ellagic acid (BR6) also showed good ligand inter-
actions with SARS-CoV-2 3CL pro (Fig.  4c, d). BR6 
formed conventional hydrogen bonds with HIS41 (bond 
length = 3.00 Å), MET49 (bond length = 3.18 Å), ASN 142 
(bond length = 2.17 Å), GLU166 (bond length = 2.00 Å), 
ASP187 (bond length = 3.27  Å); pi-alkyl interaction 
with MET49 (bond length = 4.73  Å), MET165 (bond 
length = 4.95 Å); pi-cation interactions with HIS41 (bond 
length = 4.19 Å, 4.91 Å, 4.97 Å, 4.91 Å); pi-sulfur inter-
actions with CYS44 (bond length = 5.97 Å), and CYS145 
(bond length = 4.50 Å). BR6 interacted with 4 amino acid 
residues (HIS41, CYS145, ASN142, and GLU166) present 
at the catalytic cavity of SARS-CoV-2 3CL pro.

The ligand interactions between (+)-sesamin (BR13) 
and SARS-CoV-2 3CL pro is given in Fig. 4e, f. BR13 
formed conventional hydrogen bond with CYS145 (bond 
length = 3.54 Å), ASN142 (bond length = 3.40 Å); pi-pi 
stacked with HIS41 (bond length = 3.91  Å); pi-cation 
interaction with GLU166 (bond length = 3.67 Å); carbon-
hydrogen bond with ASP48 (bond length = 3.79 Å). BR13 
also interacted with 4 amino acid residues (HIS41, CYS145, 
ASN142, and GLU166) present at the catalytic cavity of 
SARS-CoV-2 3CL pro.

Fig. 3  Graphical representation of the oral bioavailability of a 3WL, b ellagic acid, and c (+)-sesamin
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3WL, BR6, and BR13 interacted with a total of 7, 8, and 
5 amino acid residues, respectively. A total of 3, 5, and 2 
conventional hydrogen bonds were formed by 3WL, BR6, 
and BR13, respectively. BR6 was able to form a conven-
tional hydrogen bond with HIS41 while BR13 formed a 
conventional hydrogen bond with CYS145 of the catalytic 

dyad of SARS-CoV-3 3CL pro. BR6 also formed a conven-
tional hydrogen bond with two crucial amino acid residues 
(ASN142 and GLU166) that are found at the catalytic cavity 
of SARS-CoV-2 3CL pro. BR13 also formed a conventional 
hydrogen bond with ASN142 that is present at the catalytic 
cavity of SARS-CoV-2 3CL pro. BR6 and BR13 interacted 

Fig. 4  2D and 3D ligand interactions of a, b 3WL, c, d ellagic acid, and e, f (+)-sesamin

1454 Structural Chemistry (2022) 33:1445–1465



1 3

with the active site residues (HIS41 and CYS145) of SARS-
CoV-2 3CL pro that are directly involved in the catalysis of 
the protein.

Analysis of the ligand interactions showed that the 
antiviral phytocompounds of B. retusa (ellagic acid and 
(+)-sesamin) were able to form significant interactions 
with crucial active site amino acid residues present at the 
catalytic cavity of SARS-CoV-2 3CL pro. Also, visualiza-
tion of the 3-dimensional binding pose of BR6 and BR13 
(Fig. 5) revealed that they bind to the same position with a 
similar pose as that of 3WL. Hydrogen bonds are impor-
tant interactions that occur between a protein and a ligand. 
Hydrogen bonds are present almost everywhere and they 
play an important role in catalysis, protein folding, and pro-
tein–ligand interactions [68]. Analysis of the ligand interac-
tions of BR6 and BR13 revealed that they formed hydrogen 
bonds with at least one of the HIS41-CYS145 catalytic dyad 
in addition to forming hydrogen bonds with other amino 
acids present at the catalytic cavity. This justifies that BR6 
and BR13 have the potential to inhibit SARS-CoV-2 3CL 
pro by interacting with the important amino acids. After the 
careful examination of protein–ligand interactions, BR6 and 
BR13 were subjected for further studies.

Molecular dynamics simulation studies

Molecular docking results are validated with MD simula-
tion studies [69]. The conformational stability of the pro-
tein–ligand complexes is also evaluated with MD simulation 
studies [24]. Some images of the MD simulation snapshot 
over time are given in Fig. 6. The numbers 0, 20, 40, 60, 80, 
and 100 highlighted in yellow in Fig. 6 represents the time 
period (nanoseconds) of the MD simulation. The MD simu-
lation snapshot of 3WL is given in Fig. 6a−f. The MD simu-
lation snapshot of ellagic acid (BR6) is given in Fig. 6g−l. 
The MD simulation snapshot of (+)-sesamin (BR13) is 
given in Fig. 6m−r. From the MD simulation snapshots, it 

can be observed that during the entire course of 100 ns simu-
lations, each ligands interacts with different active amino 
acid residues of the target protein through different binding 
poses. In this way, the ellagic acid and (+)-sesamin were 
able to interact with the catalytic dyad (HIS41-CYS145) and 
other important amino acids of SARS-CoV-2 3CL pro.

In the present study, MD simulations were carried out at 
a timescale of 100 ns and the generated RMSD and RMSF 
plots are given in Fig. 7. The RMSD of the protein-3WL, 
protein-ellagic acid, and protein-(+)-sesamin complexes are 
given in Fig. 7a, c, e respectively. In Fig. 7a, c, e, the protein 
RMSD trajectory scale is given on the left side while the 
ligand RMSD trajectory scale is given on the right side of 
each Y-axis plot. For small globular proteins, RMSD fluc-
tuations between the range of 1 to 3 Å are acceptable [70]. 
The ligand RMSD determines the stability of the original 
docked ligand at the active binding site of the protein. A 
ligand RMSD value slightly higher than that of the protein 
RMSD is acceptable. If the RMSD of a ligand fluctuates 
significantly, it means that the ligand is trying to find a new 
pose as the simulation progress with time [67, 68]. The 
protein RMSF can be used to evaluate local changes that 
took place for each amino acid during the simulations as it 
interacts with a ligand. In the RMSF plot, the peak of each 
residue determines the degree of changes occurring for each 
amino acid. The lower the RMSF value, the more stable are 
the amino acids [24]. Loops or terminal residues often show 
high RMSF values, and α-helices and β-sheets are associated 
with low RMSF values [71]. A low RMSF value of a pro-
tein indicates the structural stability of the interacting amino 
acids during the MD simulation. The result suggests that the 
protein–ligand complex showed equilibrium fluctuation [71].

In Fig. 7a, the fluctuations of the protein RMSD tra-
jectory in the protein-3WL complex ranged between 1.2 
and 2.8 Å. Large deviations were observed for the protein 
RMSD between 0 and 10 ns. The protein RMSD remained 
stable between 10 and 50 ns followed by a sharp drift. After 

Fig. 5  Binding pose of 3WL 
(sky blue), ellagic acid (red), 
and (+)-sesamin (green) at the 
active binding pocket of SARS-
CoV-2 3CL pro
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50 ns, the protein RMSD reached equilibrium and stabilizes 
around an RMSD value of 2.0 Å. The ligand RMSD of the 
protein-3WL complex remained stable at around 4.0 Å for 
up to 60 ns followed by a sharp rise in the RMSD value. 
After 70 ns, the ligand RMSD trajectory gradually drops, 

attained equilibrium, and stabilizes around an RMSD value 
of 7.0 Å till the end of the simulation. The stable trajectory 
of the protein–ligand complex after 60 ns indicates that the 
complex takes more time to attain equilibrium. The stable 
trajectory of the complex after 60 ns suggests that 3WL is 

Fig. 6  MD simulation snapshots of 3WL (a, b, c, d, e, f), ellagic acid (g, h, i, j, k, l), and (+)-sesamin (m, n, o, p, q, r) at various time points 
(0 ns, 20 ns, 40 ns, 60 ns, 80 ns, and 100 ns)
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stabilized and spatially occupied at the binding pocket of 
SARS-CoV-2 3CL pro [71–73]. In Fig. 7b, the protein resi-
dues that interacted with 3WL are marked in green color. 
The RMSF of all the amino acid residues that interacted 
with 3WL remained below 2.0 Å. The protein RMSD, the 
ligand RMSD, and the protein RMSF data suggest that 3WL 
formed a stable complex with SARS-CoV-2 3CL pro during 
the 100 ns MD simulations. For the protein-3WL complex, 
the 100 ns MD simulations is sufficient for further analysis.

In Fig.  7c where the protein-ellagic acid complex is 
depicted, the protein RMSD trajectory initially fluctuated 
between 2.0 and 3.5 Å (0 − 10 ns). Between 10 and 50 ns, 
the RMSD trajectory remained stable. The RMSD gradu-
ally rises between 50 and 60 ns. After 60 ns, the protein 

attained equilibrium, showed stability in conformation and 
the protein RMSD stabilizes around 3.0 Å until around 
90 ns. A small fluctuation is observed in the protein RMSD 
trajectory just before the end of the 100 ns simulation. In 
the protein-ellagic acid complex, the ligand RMSD showed 
sharp fluctuations at around 10 ns (6 to 12 Å), 30 ns (8 to 
14 Å), 50 ns (8 to 14 Å), and 85 ns (8 to 16 Å). The major-
ity of the ligand RMSD fluctuates between the range of 8 to 
11 Å. After 85 ns, the ligand RMSD trajectory slowly rises 
until the end of the MD simulation. The ligand RMSD value 
(Å) is slightly higher than the protein RMSD value (Å) and 
can be considered to lie within the acceptable range [67, 
68]. In Fig. 7d, the RMSF value of all the amino acid resi-
dues of SARS-CoV-2 3CL pro that interacted with ellagic 

Fig. 7  RMSD (Y-axis, left side: protein RMSD, right side: ligand RMSD) of a protein-3WL complex, c protein-ellagic acid complex, e protein-
(+)-sesamin complex; RMSF of b protein-3WL complex, d protein-ellagic acid complex, f protein-(+)-sesamin complex
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acid remained below 2.0 Å. A low RMSF value of a protein 
indicates the structural stability of the interacting amino 
acids during the MD simulation. The result suggests that 
the protein–ligand complex showed equilibrium fluctuation 
[71]. The protein RMSD, the ligand RMSD, and the protein 
RMSF data suggest that ellagic acid tends to form a stable 
complex with SARS-CoV-2 3CL pro during the 100 ns MD 
simulations. For the protein-ellagic acid complex, the 100 ns 
MD simulations is sufficient for further analysis.

In Fig. 7e, the majority of the RMSD value in the trajec-
tory of the protein-(+)-sesamin complex stabilized between 
1.2 and 2.0 Å. Small fluctuations in the protein RMSD tra-
jectory were observed at around 15 ns, 35 ns, and 60 ns. 
The protein RMSD trajectory gradually rises after 70 ns. At 
around 90 ns, the protein RMSD fluctuated sharply and then 
the protein RMSD trajectory gradually decreases to stabilize 
between 1.6 and 2.0 Å till the end of the simulation. For the 
majority of the 100 ns MD simulation, the ligand-RMSD 
of the protein-(+)-sesamin complex stabilizes between 10 
and 14 Å. The ligand RMSD trajectory fluctuated sharply 
at around 10 ns, gradually increases from 20 up to 30 ns, 
dropped sharply at 30 ns, increased sharply at 40 ns, stabi-
lizes from 40 up to 65 ns, dropped sharply at around 65 ns, 
stabilizes from 65 up to 85 ns, dipped slightly at 85 ns, sta-
bilized up to 90 ns, increased sharply at 90 ns, gradually 
increased till 95 ns, and then the ligand RMSD began to 
drop again till the end of the MD simulations. The ligand 
RMSD value (Å) is slightly higher than the protein RMSD 
value (Å) and can be considered to lie within the accept-
able range [67, 68]. In Fig. 7f, the majority of the RMSF of 
the amino acids that interacted with (+)-sesamin remained 
below 2.0 Å. Few amino acid residues have an RMSF value 
above 2.0 Å. A low RMSF value of a protein indicates the 
structural stability of the interacting amino acids during the 
MD simulation. The result suggests that the protein–ligand 
complex showed equilibrium fluctuation [71]. The protein 
RMSD, ligand RMSD, and the protein RMSF data suggest 
that (+)-sesamin formed a stable complex with SARS-
CoV-2 3CL pro during the 100 ns MD simulations. For the 
protein-(+)-sesamin complex, the 100 ns MD simulations is 
sufficient for further analysis.

Protein secondary structure elements (SSE) such as 
α-helicases and β-strands are monitored throughout the 
100 ns MD simulations. SSE plays an important role in the 
overall protein folding and protein structure [74]. The MD 
simulations analyze different protein SSE data such as the 
%SSE distribution by residue index throughout the pro-
tein structure, SSE composition for each trajectory frame 
throughout the simulation, monitoring of each residue, and 
its SSE assignment over time for each protein–ligand com-
plex. The α-helicases and β-strands are represented in red 
and blue color, respectively. During the MD simulation, the 
protein that is complexed with 3WL highlighted in Fig. s1a 

has a total of 43.37% protein SSE (19.61% α-helicases and 
23.76% β-strands). The protein complexed with ellagic acid 
highlighted in Fig. s1b has a total of 41.41% protein SSE 
(19.32% α-helicases and 22.09% β-strands). The protein 
in complex with (+)-sesamin highlighted in Fig. s1c has a 
total of 43.58% protein SSE (19.47% α-helicases and 24.11% 
β-strands).

The ligand-RMSF depicted in Fig. 8a−c showed atom-
specific fluctuations. The ligand RMSF may give insights 
into how ligand fragments interact with the protein and their 
entropic role in the binding event. In the bottom panel, the 
“fit ligand on protein” line shows the ligand fluctuations, 
with respect to the protein. The protein–ligand complex is 
first aligned on the protein backbone, and then the ligand 
RMSF is measured on the ligand heavy atoms. The RMSF 
of each atom of the CCI “3WL” complexed with the target 
protein ranged between 2 and 6 Å (Fig. 8a). The RMSF 
of each atom of the ellagic acid complexed with the target 
protein ranged between 2 and 5 Å (Fig. 8b). The RMSF 
of each atom of the (+)-sesamin complexed with the target 
protein ranged between 5 and 9 Å (Fig. 8c). Ellagic acid has 
the lowest RMSF value followed by 3WL and (+)-sesamin.

Protein interactions with the ligand can be monitored 
throughout the simulation. These interactions can be cat-
egorized by type and summarized, as shown in Fig. 9a, c, 
e. Protein–ligand interactions (or “contacts”) are catego-
rized into four types: hydrogen bonds (green), hydropho-
bic (purple), ionic (pink), and water bridges (blue). Each 
interaction type contains more specific subtypes, which 
can be explored through the “simulation interactions dia-
gram” panel given in Fig. 9a, c, e. The stacked bar charts 
are normalized throughout the trajectory: for example, a 
value of 0.7 suggests that 70% of the simulation time the 
specific interaction is maintained. Values over 1.0 are pos-
sible as some protein residue may make multiple contacts 
of the same subtype with the ligand. In Fig. 9b, d, f, a 
timeline representation of the interactions and contacts 
(H-bonds, hydrophobic, ionic, water bridges) are summa-
rized. The total number of specific contacts the protein 
makes with the ligand throughout the trajectory is given 
in the top panel (Fig. 9b, d, f). The bottom panel showed 
which residues interact with the ligand in each trajectory 
frame (Fig. 9b, d, f). Some residues make more than one 
specific contact with the ligand, which is represented by a 
darker shade of orange, according to the scale to the right 
of the plot.

MDSS revealed that 3WL interacted with HIS41, CYS44, 
MET49, ASN142, GLY143, CYS145, and GLU166 (Fig. 4a, 
b). Simulation interactions diagram and timeline represen-
tation of interactions generated from MD simulations vali-
date the MDSS by confirming that 3WL interacted with 
HIS41, CYS44, MET49, ASN142, GLY143, CYS145, and 
GLU166 at certain time points (0–100 ns) during the 100 ns 
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simulations (Fig. 9a, b). MDSS revealed that ellagic acid 
interacted with HIS41, CYS44, MET49, ASN142, CYS145, 
MET165, GLU166, and ASP187 (Fig. 4c, d). MD simula-
tions validate the docking study by confirming that ellagic 
interacted with HIS41, CYS44, MET49, ASN142, CYS145, 
MET165, GLU166, and ASP187 at certain time points 
(0–100 ns) during the 100 ns MD simulations (Fig. 9c, d). 
MDSS revealed that (+)-sesamin interacted with HIS41, 
ASP48, ASN142, CYS145, and GLU166 (Fig. 4e, f). MD 
simulations validate the docking study by confirming that 
(+)-sesamin interacted with HIS41, ASP48, ASN142, 
CYS145, and GLU166 at certain time points (0–100 ns) 
during the 100 ns MD simulations (Fig. 9e, f).

The ligand torsions plot summarizes the conformational 
evolution of every rotatable bond (RB) in the ligand through-
out the simulation trajectory (0.00 through 100.00 ns). 
The top panel shows the 2D schematic of a ligand with 
color-coded rotatable bonds. Each rotatable bond torsion 
is accompanied by a dial plot and bar plots of the same 
color (Fig.  10a−e). Dial (or radial) plots describe the 

conformation of the torsion throughout the simulation. The 
beginning of the simulation is in the center of the radial plot 
and the time evolution is plotted radially outwards. The bar 
plots summarize the data on the dial plots, by showing the 
probability density of the torsion. The data provided on the 
dial plots and the bar plots of 3WL (Fig. 10a), ellagic acid 
(Fig. 10c), and (+)-sesamin (Fig. 10e) revealed that these 
ligands underwent a conformational strain to maintain the 
protein-bound conformation.

Different ligand properties such as the RMSD, radius of 
gyration (rGyr), intramolecular hydrogen bonds, molecu-
lar surface area (MolSA), solvent accessibility surface area 
(SASA), and polar surface area are given in Fig. 10b, d, f. 
The RMSD of a ligand is depicted with respect to the refer-
ence conformation wherein the first frame is used as the 
reference and it is considered time t = 0. An RMSD trajec-
tory with minimum fluctuations indicates greater stability 
[75]. rGyr measures the “extendedness” of a ligand and is 
equivalent to its principal moment of inertia [76]. A small 
fluctuation in the rGyr trajectory is acceptable and denotes 

Fig. 8  Ligand-RMSF plot of a 3WL, b ellagic acid, and c (+)-sesamin
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the stability of the ligand [75]. Intramolecular hydrogen 
bonds refer to the number of internal hydrogen bonds within 
a ligand molecule. MolSA is calculated within a 1.4 Å probe 
radius and the calculated value is equivalent to a van der 
Waals surface area [75]. SASA refers to the surface area of a 
molecule accessible by a water molecule [75]. PSA refers to 
the solvent-accessible surface area in a molecule contributed 
only by oxygen and nitrogen atoms [77].

The ligand properties of 3WL bound to the target protein 
during the 100 ns MD simulations are given in Fig. 10b. 

The RMSD of 3WL ranged between 0.25 and 0.75 Å, and 
the equilibrium was observed at around 0.50 Å. The rGyr of 
3WL ranged between 3.50 and 3.60 Å, and the equilibrium 
was observed at around 3.55 Å. Around one intramolecular 
hydrogen bond was found to be present in the ligand mol-
ecule. The RMSD and rGyr trajectory of 3WL remained 
stable during the entire simulation period. The MolSA of 
3WL ranged between 237.5 and 242.5 Å2, and the equi-
librium was observed at around 240.0 Å2. The SASA of 
3WL ranged between 60 and 240 Å2, and the equilibrium 

Fig. 9  Simulation interactions diagram (hydrogen bonds (green), 
hydrophobic (purple), ionic (pink), and water bridges (blue)) between 
the protein and a 3WL, c ellagic acid, and e (+)-sesamin; timeline 

representation of interactions and contacts between the protein and b 
3WL, d ellagic acid, and f (+)-sesamin
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was observed at around 120 Å2. The PSA of 3WL ranged 
between 172 and 184 Å2, and the equilibrium was observed 
at around 176 Å2.

The ligand properties of ellagic acid bound to the tar-
get protein during the 100 ns MD simulations are given in 
Fig. 10d. The RMSD of ellagic acid ranged between 0.15 

Fig. 10  Ligand torsion plot (a, c, e) and ligand properties (b, d, f) of a, b 3WL; c, d ellagic acid; e, f (+)-sesamin
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and 0.45 Å, and the equilibrium was observed at around 
0.15 Å. The rGyr of ellagic acid ranged between 3.250 
and 3.300 Å, and the equilibrium was observed at around 
3.275 Å. The RMSD and rGyr trajectory of ellagic acid 
remained stable during the entire simulation period. No 
intramolecular hydrogen bond was found to be present in the 
ligand molecule. The MolSA of ellagic acid ranged between 
227.5 and 235.0 Å2, and the equilibrium was observed at 
around 231.0 Å2. The SASA of ellagic acid ranged from 60 
to 240 Å2, and the equilibrium was observed at around 120 
Å2. The PSA of 3WL ranged between 300 and 308 Å2, and 
the equilibrium was observed at around 304 Å2.

The ligand properties of (+)-sesamin bound to the tar-
get protein during the 100 ns MD simulations is given in 
Fig. 10f. The RMSD of (+)-sesamin ranged between 0.2 and 
0.6 Å, and the equilibrium was observed at around 0.2 Å. 
The rGyr of (+)-sesamin ranged between 4.3 and 4.5 Å, and 
the equilibrium was observed at around 4.4 Å. The RMSD 
and rGyr trajectory of (+)-sesamin remained stable during 
the entire simulation period. No intramolecular hydrogen 
bond was found to be present in the ligand molecule. The 
MolSA of (+)-sesamin ranged between 320 and 328 Å2, 
and the equilibrium was observed at around 324 Å2. The 
SASA of (+)-sesamin ranged between 200 to 500 Å2, and 
the equilibrium was observed at around 400 Å2. The PSA 
of (+)-sesamin ranged between 100 and 112 Å2, and the 
equilibrium was observed at around 108 Å2.

MM‑GBSA binding free energy calculations

The estimation of the binding free energies of the protein– 
ligand complexes was performed with MM-GBSA analy-
sis. A low binding free energy value is preferred over a 
higher value. When compared to the scoring function given 
by molecular docking simulation studies, MM-GBSA is 
more accurate and reliable for binding energy calculations 
[78, 79]. The binding free energy for all the protein–ligand 
complexes during the 100 ns MD simulation was carried 
out to have a better estimate of the binding strength and 
potency of ellagic acid and (+)-sesamin against SARS-
CoV-2 3CL pro. The MM-GBSA binding free energies of 
protein-3WL, protein-ellagic acid, and protein-(+)-sesamin 
complexes are given in Table 5. Among the protein–ligand 
complex, protein-3WL showed the lowest binding free 
energy value (−23.2356 kcal/mol) followed by protein-
ellagic acid (−22.3064 kcal/mol) and protein-(+)-sesamin 
(−19.1274 kcal/mol). Among the two phytocompounds, 
ellagic acid has a better binding energy value than (+)- 
sesamin. The MM-GBSA binding free energy calculations 
reveal that BR6 and BR13 will bind to the active binding 
pocket of SARS-CoV-2 3CL pro with a significantly low 
energy involvement.

Bioactivity prediction using Bayesian statistical 
model

Proteases constitute an important target for drugs that are 
intended for antiviral therapy. Proteases are generally asso-
ciated with viral diseases. When a viral protease is inhib-
ited, the replication of the viral genome is hindered and 
this prevents transcription and replication of the viral RNA 
[80]. Since SARS-CoV-2 3CL pro is a protease, it will be 
interesting to study the general protease inhibitory potential 
of BR6 and BR13. Therefore, for the present study, the pro-
tease inhibitory potential of the phytocompounds was prior-
itized and studied with the sophisticated Bayesian statistical 
model. This statistical model can be accessed through the 
Molinspiration Chemoinformatics web tool (https:// www. 
molin spira tion. com/). The predicted bioactivity of the phy-
tocompounds is given in Table 6.

The Bayesian statistical model generally provides an idea 
regarding the bioactivity of a molecule within the numerical 
range of −3 to +3 (https:// www. molin spira tion. com/ docu/ 
miscr een/ virtu alscr eening. html). A higher score indicates a 
higher activity and vice versa. 3WL has a bioactivity score 
of -0.35, BR6 has a bioactivity score of −0.18 and BR13 has 
a bioactivity score of −0.15. The predicted protease inhibi-
tory potential of BR6 and BR13 is higher than that of 3WL 
(Table 6). From the numeral range provided by the statisti-
cal model, it can be observed that BR6 and BR13 might be 
active against viral protease enzymes. Interestingly, ellagic 
acid had been reported to exhibit antiviral activity against 
the Zika virus and human rhinoviruses [33, 81]. Although 
(+)-sesamin was not directly reported to show antiviral 
activity, it was demonstrated that (+)-sesamin could reduce 
cytokine production in influenza type A H1N1 infection 
[34].

In addition to the protease inhibition, the Molinspiration 
Chemoinformatics web tool also generates other relevant 

Table 5  MM-GBSA binding free energies of each protein–ligand 
complexes

Protein–ligand complex ΔG (kcal/mol)

SARS-CoV-2 3CLpro-3WL complex −23.2356
SARS-CoV-2 3CLpro-ellagic acid complex −22.3064
SARS-CoV-2 3CLpro-(+)-sesamin complex −19.1274

Table 6  Predicted protease inhibitory potential of 3WL, BR6, and 
BR13

Activity Activity range 3WL BR6 BR13

Protease inhibition −3 to +3 −0.35 −0.18 −0.15
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data such as GPCR ligand, ion channel modulator, a kinase 
inhibitor, nuclear receptor ligand, and enzyme inhibitor. As 
the present study deals with a protease (SARS-CoV-2 3CL 
pro), only the protease inhibitory potential of the compounds 
was highlighted. The other data can be found in Table s1.

Conclusion

The computational studies on the phytocompounds of the 
traditional medicinal herb B. retusa are reported for the first 
time in this paper. Ellagic acid and (+)-sesamin has a high 
binding affinity for the catalytic cavity and they interact with 
catalytic amino acid residues of SARS-CoV-2 3CL pro. 
Based on RMSD, RMSF, protein SSE, ligand-RMSF, protein 
–ligand contacts, ligand torsions properties, and ligand prop-
erties generated for 3WL, ellagic acid, and (+)-sesamin, it 
was observed that all the ligands formed stable conforma-
tions with the active binding site of SARS-CoV-2 3CL Pro. 
The MM-GBSA binding free energy calculations showed 
that ellagic acid and (+)-sesamin bind to the active pockets 
of SARS-CoV-2 3CL pro with a significantly low energy 
involvement. The MM-GBSA values of ellagic acid and 
(+)-sesamin also complement the low binding energy (high 
binding affinity) values obtained from molecular docking 
simulation studies. Ellagic acid and (+)-sesamin have a high 
 LD50 value, a good safety profile, and good bioavailability. 
Ellagic acid and (+)-sesamin were also computed to have 
more activity against protease enzyme than the CCI (3WL) 
of SARS-CoV-2 3CL pro. Based on our computational find-
ings, we conclude that the antiviral phytocompounds (ellagic 
acid and (+)-sesamin) of B. retusa has the potential to inhibit 
the chymotrypsin-like protease (3CL Pro) of SARS-CoV-2. 
Further studies such as in vitro assays are recommended for 
ellagic acid and (+)-sesamin to confirm their anti-SARS-
CoV-2 activity.

Supplementary information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11224- 022- 01959-3.

Acknowledgements The corresponding author thanks Airlangga Uni-
versity and Universitas Tadulako, Indonesia, for providing computa-
tional facilities to carry out MD simulations.

Author contribution Study design: James H. Zothantluanga; computa-
tional work: Abd. Kakhar Umar, James H. Zothantluanga, S Keerthic 
Aswin, Saipul Maulana, and Muhammad Sulaiman Zubair; paper draft-
ing: Abd. Kakhar Umar and James H. Zothantluanga; critical review 
and additional inputs: H. Lalhlenmawia, Mithun Rudrapal, and Dipak 
Chetia.

Availability of data and material All data associated with the paper 
shall be made available upon request to the corresponding author.

Declarations 

Conflict of interest The authors declare no competing interests.

References

 1. World Health Organization (2021) WHO coronavirus (COVID-
19) Dashboard. https:// covid 19. who. int/. Accessed 10 Nov 2021

 2. Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C (2020) Cytokine storm 
in COVID-19: the current evidence and treatment strategies. Front 
Immunol 11:1708

 3. Melo AKG, Milby KM, Caparroz ALMA, Pinto ACPN, Santos 
RRP, Rocha AP, Ferreira GA, Souza VA, Valadares LDA, Vieira 
RMRA, Pileggi GS, Trevisani VFM (2021) Biomarkers of cytokine 
storm as red flags for severe and fatal COVID-19 cases: a living 
systematic review and meta-analysis. PLoS ONE 16:335–341

 4. Ruscitti P, Berardicurti O, Iagnocco A, Giacomelli R (2020) 
Cytokine storm syndrome in severe COVID-19. Autoimmun Rev 
19:102562

 5. Anand K, Ziebuhr J, Wadhwani P, Mesters JR, Hilgenfeld R 
(2003) Coronavirus main proteinase (3CLpro) structure: basis 
for design of anti-SARS drugs. Science 300:1763–1767

 6. ul Qamar MT, Alqahtani SM, Alamri MA, Chen LL (2020) Struc-
tural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug dis-
covery from medicinal plants. J Pharm Anal 10:313–319

 7. Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, 
Sridhar VS (2019) Recent aspects on the pathogenesis mecha-
nism, animal models and novel therapeutic interventions for 
middle east respiratory syndrome coronavirus infections. Front 
Microbiol 10:569

 8. Totura AL, Bavari S (2019) Broad-spectrum coronavirus antiviral 
drug discovery. Expert Opin Drug Discov 14:397–412

 9. Zothantluanga JH (2021) Molecular docking simulation studies, 
toxicity study, bioactivity prediction, and structure-activity rela-
tionship reveals rutin as a potential inhibitor of SARS-CoV-2 3CL 
pro. J Sci Res 65:96–104

 10 Zothantluanga JH, Gogoi N, Shakya A, Chetia D, Lalthanzara 
H (2021) Computational guided identification of potential leads 
from Acacia pennata (L.) Willd. as inhibitors for cellular entry 
and viral replication of SARS-CoV-2. Futur J Pharm Sci 7:201

 11. Rudrapal M, Celik I, Khan J, Ansari MA, Alarousy RMII, Yadav R, 
Sharma T, Tallei TE, Pasala PK, Sahoo RK, Khairnar SJ, Bendale  
AR, Zothantluanga JH, Chetia D, Walode SG (2022) Identification 
of bioactive molecules from Triphala (Ayurvedic herbal formula-
tion) as potential inhibitors of SARS-CoV-2 main protease (Mpro) 
through computational investigations. J King Saud Univ - Sci. 
https:// doi. org/ 10. 1016/j. jksus. 2022. 101826

 12. Kennedy DA, Read AF (2020) Monitor for COVID-19 vaccine 
resistance evolution during clinical trials. PLOS Biol 18:e3001000

 13. Singh DD, Parveen A, Yadav DK (2021) SARS-CoV-2: emer-
gence of new variants and effectiveness of vaccines. Front Cell 
Infect Microbiol 11:777212

 14. Dror AA, Eisenbach N, Taiber S, Morozov NG, Mizrachi M, 
Zigron A, Srouji S, Sela E (2020) Vaccine hesitancy: the next 
challenge in the fight against COVID-19. Eur J Epidemiol 
35:775–779

 15. Lucia VC, Kelekar A, Afonso NM (2021) COVID-19 vaccine 
hesitancy among medical students. J Public Health 43:445–449

 16. Kwok KO, Li KK, Wei WI, Tang A, Wong SYS, Lee SS (2021) 
Influenza vaccine uptake, COVID-19 vaccination intention 
and vaccine hesitancy among nurses: a survey. Int J Nurs Stud 
114:103854

1463Structural Chemistry (2022) 33:1445–1465

https://doi.org/10.1007/s11224-022-01959-3
https://covid19.who.int/
https://doi.org/10.1016/j.jksus.2022.101826


1 3

 17. Kirby T (2021) New variant of SARS-CoV-2 in UK causes surge 
of COVID-19. Lancet Respir Med 9:e20-21

 18. Panyod S, Ho CT, Sheen LY (2020) Dietary therapy and herbal 
medicine for COVID-19 prevention: a review and perspective. J 
Tradit Complement Med 10:420–427

 19. Murugesan S, Kottekad S, Crasta I, Sreevathsan S, Usharani D, 
Perumal MK, Mudliar SN (2021) Targeting COVID-19 (SARS-
CoV-2) main protease through active phytocompounds of ayur-
vedic medicinal plants – Emblica officinalis (Amla), Phyllanthus 
niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – 
a molecular docking and simulation study. Comput Biol Med 
136:104683

 20. Nugraha RV, Ridwansyah H, Ghozali M, Khairani AF, Atik N 
(2020) Traditional herbal medicine candidates as complementary 
treatments for COVID-19: a review of their mechanisms, pros and 
cons. Evid Based Complement Alternat Med. https:// doi. org/ 10. 
1155/ 2020/ 25606 45

 21. Guijarro-Real C, Plazas M, Rodríguez-Burruezo A, Prohens J, 
Fita A (2021) Potential in vitro inhibition of selected plant extracts 
against SARS-CoV-2 chymotripsin-like protease (3CLPro) activ-
ity. Foods 10:1503

 22. Zannella C, Giugliano R, Chianese A, Buonocore C, Vitale GA, 
Sanna G, Sarno F, Manzin A, Nebbioso A, Termolino P, Altucci 
L, Galdiero M, de Pascale D, Franci G (2021) Antiviral activity 
of Vitis vinifera leaf extract against SARS-CoV-2 and HSV-1. 
Viruses 13:1263

 23. Rolta R, Salaria D, Sharma P, Sharma B, Kumar V, Rathi B, 
Verma M, Sourirajan A, Baumler DJ, Dev K (2021) Phytocom-
pounds of Rheum emodi, Thymus serpyllum, and Artemisia annua 
inhibit spike protein of SARS-CoV-2 binding to ACE2 receptor: 
in silico approach. Curr Pharmacol Reports 7:135–149

 24. Kar P, Sharma NR, Singh B, Sen A, Roy A (2021) Natural com-
pounds from Clerodendrum spp. as possible therapeutic candi-
dates against SARS-CoV-2: an in silico investigation. J Biomol 
Struct Dyn 39:4774–4785

 25. Ogunyemi OM, Gyebi GA, Elfiky AA, Afolabi SO, Ogunro OB, 
Adegunloye AP, Ibrahim IM (2020) Alkaloids and flavonoids 
from African phytochemicals as potential inhibitors of SARS-
Cov-2 RNA-dependent RNA polymerase: an in silico perspective. 
Antivir Chem Chemother 28:204020662098407

 26. Ministry of Science and Technology (2020) Compendium of anti-
viral medicinal plants. Mukherjee PK, Mao AA, editors. New 
Delhi, India

 27. Kai F, Pei H, Qiong G, Lin H, XiFeng T, LingJie Z (2019) Chemi-
cal constituents of Bridelia retusa and their anti-neuroinflammatory  
activity. Nat Prod Res Dev 31:264–268

 28. Tatiya AU, Saluja AK, Kalaskar MG, Surana SJ, Patil PH (2017) 
Evaluation of analgesic and anti-inflammatory activity of Bridelia 
retusa (Spreng) bark. J Tradit Complement Med 7:441–751

 29. Kumar T, Jain V (2014) Antinociceptive and anti-inflammatory 
activities of Bridelia retusa methanolic fruit extract in experimen-
tal animals. Sci World J 2014:890151

 30. Jayasinghe L, Kumarihamy BMM, Jayarathna KHRN, Udishani 
NWMG, Bandara BMR, Hara N, Fujimoto Y (2003) Antifungal 
constituents of the stem bark of Bridelia retusa. Phytochemistry 
62:637–641

 31. Jadhav N, Kulkarni S, Mane A, Kulkarni R, Palshetker A, Singh 
K, Joshi S, Risbud A, Kulkarni S (2015) Antimicrobial activity 
of plant extracts against sexually transmitted pathogens. Nat Prod 
Res 29:1562–1566

 32. Govea-Salas M, Am R-E, Rodríguez-Herrera R, Sa L-S, Cn 
A-G, Zugasti-Cruz A, Salas-Villalobos TB, Morlett-Chávez 
JA (2016) Gallic acid decreases hepatitis C virus expression 
through its antioxidant capacity. Exp Ther Med 11:619–624

 33. Park SW, Kwon MJ, Yoo JY, Choi HJ, Ahn YJ (2014) Antiviral 
activity and possible mode of action of ellagic acid identified 

in Lagerstroemia speciosa leaves toward human rhinoviruses. 
BMC Complement Altern Med 14:171

 34. Fanhchaksai K, Kodchakorn K, Pothacharoen P, Kongtawelert 
P (2016) Effect of sesamin against cytokine production from 
influenza type A H1N1-induced peripheral blood mononuclear 
cells: computational and experimental studies. Vitr Cell Dev 
Biol - Anim 52:107–119

 35. Zhou B, Li J, Liang X, Pan X, Hao Y, Xie PF, Jiang HM, Yang 
ZF, Zhong NS (2020) β-sitosterol ameliorates influenza A virus-
induced proinflammatory response and acute lung injury in mice 
by disrupting the cross-talk between RIG-I and IFN/STAT sign-
aling. Acta Pharmacol Sin 41:1178–1196

 36. Dallakyan S, Olson AJ (2015) Small-molecule library screening 
by docking with PyRx. Methods Mol Biol 1263:243–250

 37. Sander T, Freyss J, von Korff M, Rufener C (2015) DataWarrior: 
an open-source program for chemistry aware data visualization 
and analysis. J Chem Inf Model 55:460–473

 38. Schrodinger LLC (2020a) Schrödinger Release 2020–1: Maestro 
Desmond interoperability tools; Schrödinger. New York, New 
York, USA; 2020

 39. Schrodinger LLC (2020b) Release 2020–4: Desmond molecular 
dynamics system, D.E. Shaw Research, New York, NY. New 
York, New York, USA; 2020

 40. Bowers KJ, Chow DE, Xu H, Dror RO, Eastwood MP, 
Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti 
FD, Salmon JK, Shan Y, Shaw DE (2006) Scalable algorithms 
for molecular dynamics simulations on commodity clusters. In: 
ACM/IEEE SC 2006 Conference (SC’06) IEEE. https:// doi. org/ 
10. 1109/ SC. 2006. 54

 41. Zubair MS, Maulana S, Widodo A, Pitopang R, Arba M, Hariono  
M (2021) GC-MS, LC-MS/MS, docking and molecular 
dynamics approaches to identify potential SARS-CoV-2 3- 
chymotrypsin-like protease inhibitors from Zingiber officinale 
Roscoe. Molecules 26:5230

 42. Duarte Y, Rojas M, Canan J, Pérez EG, González-Nilo F, 
García-Colunga J (2021) Different classes of antidepressants 
inhibit the rat α7 nicotinic acetylcholine receptor by interact-
ing within the ion channel: a functional and structural study. 
Molecules 26:998

 43. Mahmoud A, Mostafa A, Al-Karmalawy AA, Zidan A, Abulkhair 
HS, Mahmoud SH, Shehata M, Elhefnawi MM, Ali MA (2021) 
Telaprevir is a potential drug for repurposing against SARS-
CoV-2: computational and in vitro studies. Heliyon 7:e07962

 44. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The 
VSGB 2.0 model: a next generation energy model for high resolu-
tion protein structure modeling. Proteins Struct Funct Bioinforma 
79:2794–2812

 45. de Campos LJ, Palermo NY, Conda-Sheridan M (2021) Targeting 
SARS-CoV-2 receptor binding domain with stapled peptides: an 
in silico study. J Phys Chem B 125:6572–6586

 46. Johari J, Kianmehr A, Mustafa MR, Abubakar S, Zandi K (2012) 
Antiviral activity of baicalein and quercetin against the Japanese 
encephalitis virus. Int J Mol Sci 13:16020–16045

 47. Moghaddam E, Teoh BT, Sam SS, Lani R, Hassandarvish P, Chik 
Z, Yueh A, Abubakar S, Zandi K (2014) Baicalin, a metabolite 
of baicalein with antiviral activity against dengue virus. Sci Rep 
4:5452

 48. Pinzi L, Rastelli G (2019) Molecular docking: shifting paradigms 
in drug discovery. Int J Mol Sci 20:4331

 49. Elfiky AA (2020) Ribavirin, remdesivir, sofosbuvir, galidesivir, 
and tenofovir against SARS-CoV-2 RNA dependent RNA poly-
merase (RdRp): a molecular docking study. Life Sci 253:117592

 50. Dahab MA, Hegazy MM, Abbass HS (2020) Hordatines as 
a potential inhibitor of COVID-19 main protease and rna 
polymerase: an in-silico approach. Nat Products Bioprospect 
10:453–462

1464 Structural Chemistry (2022) 33:1445–1465

https://doi.org/10.1155/2020/2560645
https://doi.org/10.1155/2020/2560645
https://doi.org/10.1109/SC.2006.54
https://doi.org/10.1109/SC.2006.54


1 3

 51. Ferreira L, dos Santos R, Oliva G, Andricopulo A (2015) Molecu-
lar docking and structure-based drug design strategies. Molecules 
20:13384–13421

 52. Onakpoya IJ, Heneghan CJ, Aronson JK (2016) Post-marketing 
withdrawal of 462 medicinal products because of adverse drug 
reactions: a systematic review of the world literature. BMC Med 
14:10

 53. López-López E, Naveja JJ, Medina-Franco JL (2019) DataWar-
rior: an evaluation of the open-source drug discovery tool. Expert 
Opin Drug Discov 14:335–341

 54. Morris-Schaffer K, McCoy MJ (2021) A review of the LD 50 and 
its current role in hazard communication. ACS Chem Heal Saf 
28:25–33

 55. Adebayo AH, Ishola TA, Yakubu OF (2021) Acute toxicity and 
antimalarial studies of extract of Allophylus spicatus in animals. 
Toxicol Res 37:345–354

 56. Ishtiaq S, Akram M, Kamran SH, Hanif U, Afridi MSK, Sajid-ur- 
Rehman AA, Asif A, Younus M, Akbar S (2017) Acute and sub-
acute toxicity study of a Pakistani polyherbal formulation. BMC 
Complement Altern Med 17:387

 57. Paul A, Shakya A, Zaman MK (2020) Assessment of acute and 
sub-chronic neurotoxicity of Morus alba L. fruits in rodents. Futur 
J Pharm Sci 6:88

 58. McKerrow JH, Lipinski CA (2017) The rule of five should not 
impede anti-parasitic drug development. Int J Parasitol Drugs 
Drug Resist 7:248–249

 59. Ghose AK, Viswanadhan VN, Wendoloski JJ (1999) A knowl-
edge-based approach in designing combinatorial or medicinal 
chemistry libraries for drug discovery. 1. A qualitative and quan-
titative characterization of known drug databases. J Comb Chem 
1:55–68

 60. Muegge I, Heald SL, Brittelli D (2001) Simple selection criteria 
for drug-like chemical matter. J Med Chem 44:1841–1846

 61. Veber DF, Johnson SR, Cheng H-Y, Smith BR, Ward KW, Kopple 
KD (2002) Molecular properties that influence the oral bioavail-
ability of drug candidates. J Med Chem 45:2615–2623

 62. Egan WJ, Merz KM, Baldwin JJ (2000) Prediction of drug absorp-
tion using multivariate statistics. J Med Chem 43:3867–3877

 63. Zhong H, Mashinson V, Woolman T, Zha M (2013) Understanding 
the molecular properties and metabolism of top prescribed drugs. 
Curr Top Med Chem 13:1290–1307

 64. Pal S, Mehta D, Dasgupta U, Bajaj A (2021) Advances in engi-
neering of low molecular weight hydrogels for chemotherapeutic 
applications. Biomed Mater 16:024102

 65. Daina A, Michielin O, Zoete V (2017) SwissADME: a free web 
tool to evaluate pharmacokinetics, drug-likeness and medicinal 
chemistry friendliness of small molecules. Sci Rep 7:42717

 66. Zanger UM, Schwab M (2013) Cytochrome P450 enzymes in drug 
metabolism: regulation of gene expression, enzyme activities, and 
impact of genetic variation. Pharmacol Ther 138:103–141

 67. Kneller DW, Phillips G, O’Neill HM, Jedrzejczak R, Stols L, Langan  
P, Joachimiak A, Coates L, Kovalevsky A (2020) Structural plas-
ticity of SARS-CoV-2 3CL Mpro active site cavity revealed by 
room temperature X-ray crystallography. Nat Commun 11:3202

 68. Chen D, Oezguen N, Urvil P, Ferguson C, Dann SM, Savidge TC 
(2016) Regulation of protein-ligand binding affinity by hydrogen 
bond pairing. Sci Adv 2:e1501240

 69. Khan MT, Ali A, Wang Q, Irfan M, Khan A, Zeb MT, Zhang YJ, 
Chinnasamy S, Wei DQ (2021) Marine natural compounds as 
potents inhibitors against the main protease of SARS-CoV-2-a 
molecular dynamic study. J Biomol Struct Dyn 39:3627–3736

 70. Junejo JA, Zaman K, Rudrapal M, Celik I, Attah EI (2021) Antidi-
abetic bioactive compounds from Tetrastigma angustifolia (Roxb.) 
Deb and Oxalis debilis Kunth.: validation of ethnomedicinal claim 
by in vitro and in silico studies. South African J Bot 143:164–175

 71. Mishra CB, Pandey P, Sharma RD, Malik MZ, Mongre RK, Lynn 
AM, Prasad R, Jeon R, Prakash A (2021) Identifying the natu-
ral polyphenol catechin as a multi-targeted agent against SARS-
CoV-2 for the plausible therapy of COVID-19: an integrated com-
putational approach. Brief Bioinform 22:1346–1360

 72. Bhowmik D, Sharma RD, Prakash A, Kumar D (2021) Identifica-
tion of nafamostat and VR23 as COVID-19 drug candidates by 
targeting 3CLpro and PLpro. J Mol Struct 1233:130094

 73. Khater S, Kumar P, Dasgupta N, Das G, Ray S, Prakash A (2021) 
Combining SARS-CoV-2 proofreading exonuclease and RNA-
dependent RNA polymerase inhibitors as a strategy to combat 
COVID-19: a high-throughput in silico screening. Front Microbiol 
12:647693

 74. Ji YY, Li YQ (2010) The role of secondary structure in protein 
structure selection. Eur Phys J E 32:103–107

 75. Prajapati J, Patel R, Goswami D, Saraf M, Rawal RM (2021) 
Sterenin M as a potential inhibitor of SARS-CoV-2 main pro-
tease identified from MeFSAT database using molecular docking, 
molecular dynamics simulation and binding free energy calcula-
tion. Comput Biol Med 135:104568

 76. Yadav DK, Kumar S, Saloni MS, Yadav L, Teli M, Sharma P, 
Chaudhary S, Kumar N, Choi EH, Kim HS, Kim MH (2018) 
Molecular insights into the interaction of RONS and thieno[3,2-
c]pyran analogs with SIRT6/COX-2: a molecular dynamics study. 
Sci Rep 8:4777

 77. Ertl P, Rohde B, Selzer P (2000) Fast calculation of molecular 
polar surface area as a sum of fragment-based contributions and 
its application to the prediction of drug transport properties. J Med 
Chem 43:3714–3717

 78. Pattar SV, Adhoni SA, Kamanavalli CM, Kumbar SS (2020) In 
silico molecular docking studies and MM/GBSA analysis of cou-
marin-carbonodithioate hybrid derivatives divulge the anticancer 
potential against breast cancer. Beni-Suef Univ J Basic Appl Sci 
9:36

 79. Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, Hou T 
(2019) End-point binding free energy calculation with MM/PBSA 
and MM/GBSA: strategies and applications in drug design. Chem 
Rev 119:9478–9508

 80. López-Otín C, Bond JS (2008) Proteases: multifunctional enzymes 
in life and disease. J Biol Chem 283:30433–30437

 81. Acquadro S, Civra A, Cagliero C, Marengo A, Rittà M, Francese 
R, Sanna C, Bertea C, Sgorbini B, Lembo D, Donalisio M, 
Rubiolo P (2020) Punica granatum leaf ethanolic extract and 
ellagic acid as inhibitors of Zika virus infection. Planta Med 
86:1363–1374

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

1465Structural Chemistry (2022) 33:1445–1465


	Antiviral phytocompounds “ellagic acid” and “(+)-sesamin” of Bridelia retusa identified as potential inhibitors of SARS-CoV-2 3CL pro using extensive molecular docking, molecular dynamics simulation studies, binding free energy calculations, and bioactivi
	Abstract
	Introduction
	Materials and methods
	Preparation of phytocompound library
	Retrieval of the target protein
	Pre-processing of protein
	Molecular docking studies
	DockFlin
	PyRx
	AutoDock Vina standalone package

	Toxicity study
	Bioavailability study
	Visualization and analysis of ligand interactions
	Molecular dynamic simulation studies
	MM-GBSA binding free energy calculations
	Bioactivity prediction using Bayesian statistical model

	Results and discussion
	Features of SARS-CoV-2 3CL pro
	Molecular docking simulation studies
	Toxicity study
	Physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry
	Visualization and analysis of ligand interactions
	Molecular dynamics simulation studies
	MM-GBSA binding free energy calculations
	Bioactivity prediction using Bayesian statistical model

	Conclusion
	Acknowledgements 
	References


