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Abstract—This paper considers closed-loop quadratic stability
and 2 performance properties of linear control systems subject to
input saturation. More specifically, these properties are examined
within the context of the popular linear antiwindup augmentation
paradigm. Linear antiwindup augmentation refers to designing a
linear filter to augment a linear control system subject to a local
specification, called the “unconstrained closed-loop behavior.”
Building on known results on and LPV synthesis, the fixed
order linear antiwindup synthesis feasibility problem is cast as a
nonconvex matrix optimization problem, which has an attractive
system theoretic interpretation: the lower bound on the achievable

2 performance is the maximum of the open and unconstrained
closed-loop 2 gains. In the special cases of zero-order (static) and
plant-order antiwindup compensation, the feasibility conditions
become (convex) linear matrix inequalities. It is shown that, if
(and only if) the plant is asymptotically stable, plant-order linear
antiwindup compensation is always feasible for large enough 2

gain and that static antiwindup compensation is feasible provided
a quasi-common Lyapunov function, between the open-loop and
unconstrained closed-loop, exists. Using the solutions to the matrix
feasibility problems, the synthesis of the antiwindup augmentation
achieving the desired level of 2 performance is then accomplished
by solving an additional LMI.

Index Terms—Antiwindup analysis, antiwindup synthesis, con-
trol systems, cost optimal control, finite 2 gain, linear matrix
inequalities (LMIs), linear parameter varying (LPV).

I. INTRODUCTION

P
ERHAPS the first problem in nonlinear control is to design
high performance feedback algorithms for linear systems

with input saturation. This task is theoretically challenging and,

Manuscript received July 31, 20001; revised October 11, 2002, January 20,
2003, and April 1, 2003. Recommended by Associate Editor V. Balakrishnan.
The work of G. Grimm and A. R. Teel was supported in part by the Air Force Of-
fice of Scientific Research under Grant F49620-00-1-0106 and by the National
Science Foundation under Grant ECS 9988813. The work of I. Postlethwaite
and M. Turner was supported in part by the UK Engineering and Physical Sci-
ences Research Council. The work of L. Zaccarian was supported in part by
MIUR through Project MISTRAL and ASI under Grant I/R/152/00.

G. Grimm is with Raytheon Company, Space and Airborne Systems, El Se-
gundo, CA 90245 USA.

J. Hatfield is with General Dynamics Land Systems, Goleta, CA 93117 USA
(e-mail: jay.hatfield@gm.com).

I. Postlethwaite is with the Department of Engineering, the University of
Leicester, Leicester LE1 7RH, U.K. (e-mail: ixp@le.ac.uk).

A. R. Teel is with the Electrical and Computer Engineering Depart-
ment, University of California, Santa Barbara 93106-9560 USA (e-mail:
teel@ece.ucsb.edu).

M. C. Turner is with the Control and Instrumentation Research Group, the
Department of Engineering, the University of Leicester, Leicester LE1 7RH,
U.K. (e-mail: mct6@sun.engg.le.ac.uk).

L. Zaccarian is with DISP, University of Roma, Tor Vergata, 00133 Roma,
Italy (e-mail: zack@disp.uniroma2.it).

Digital Object Identifier 10.1109/TAC.2003.816965

since actuator saturation is ubiquitous, it is critical for practical
applications. Over the last decade considerable attention has
been given to controlling linear systems with input saturation
and significant progress has been reported in the literature.

The control objective for linear systems with input saturation
becomes even more difficult to obtain when the behavior of the
feedback algorithm must match a given behavior in the absence
of input saturation. For example, the controller may need to be a
particular PID controller for initial conditions and disturbances
that do not trigger input saturation. A local requirement like this
can arise for many reasons. In flight control, handling qualities
specifications dictate local controller attributes. In vibration at-
tenuation problems, frequency domain specifications constrain
the local design. In general, it is common to encounter control
problems where many years of experience have gone into the
development of a small signal controller and an augmentation
of that controller is desired to handle the effects of input satura-
tion that appear occasionally. Augmentation is necessary when
the predetermined controller is ill suited for the input satura-
tion nonlinearity. Among early control algorithms, those that
were most seriously affected by input saturation were those that
contained integral action, e.g., PI or PID controllers. It was ob-
served that, due to input saturation, the state of the integrator
would “wind up” to excessively large values, leading to slug-
gish performance of the closed-loop control system [18]. It is for
this reason that the phrase “antiwindup augmentation” is used
to describe the problem of synthesizing controllers, subject to
a local specification (called the unconstrained controller), for
linear systems with input saturation.

As first noted in [5], the most typical embodiment of anti-
windup augmentation has the form shown in Fig. 1, where
represents the linear plant and represents the local controller
specification. Due to the complexity of the antiwindup problem,
where strict requirements for the small-signal behavior of the
augmented system are combined with global (large-signal)
stability, early antiwindup schemes were mostly heuristics and
lacked mathematical rigor. (see, e.g., [11] and [2] for surveys of
these early schemes). Only in the last decade has the problem
been addressed in a more formal way with stability guarantees
and clear performance specifications.

In [7], the antiwindup compensator synthesis problem was
approached in a framework relying on optimal control. The
main thrust of this method was to interpret the performance of
the resulting antiwindup compensator during saturation as an

gain minimization problem. The importance and practicality
of the norm was also recognized in [20], where stable plants
were considered and a possible optimization procedure was sug-
gested in terms of the norms of certain transfer functions. In
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Fig. 1. Antiwindup augmentation scheme.

the work of [30], the induced norm was linked directly with
the behavior of the closed-loop system during saturation. Fur-
thermore, various stability and performance tests for the closed
loop system could be formulated as convex feasibility prob-
lems, for which efficient solvers are now available. In [29], a
formal definition of the antiwindup problem was given. An im-
portant aspect of this definition was that recovery of linear per-
formance (a concept also discussed in [6] and the references
therein) was stated in terms of nonlinear gains involving the
unconstrained and the actual response of the system.

In recent years, several control applications started employing
linear matrix inequalities (LMIs) [4] as a tool to exploit the
(sometimes not evident) convexity of certain optimization prob-
lems in order to compute global optima in an extremely simpli-
fied way. Although many valid antiwindup constructions have
been proposed, especially in the last decade that do not rely on
LMIs (see, e.g., [10], [20], [27], [24], [15], and [13]), we will
only focus here on LMI-based antiwindup designs.

While the control problem suggested by Fig. 1 is nonlinear,
one way to tackle it is to treat it as a linear parameter varying
(LPV) problem, where is replaced by and
is a measurable, matrix-valued function taking values in a set
consistent with reproducing the saturation nonlinearity. Within
this approach, special care has to be taken in assuring the
well-posedness of the interconnection around the nonlinearity.
This is not an issue in the general LPV framework because
is only a function of time. However, in the control problem in
Fig. 1, is actually better written as , and might
result undefined if the system’s response is not well
defined. We address and solve this well-posedness problem, in
this paper, by means of a global nonsmooth inverse function
theorem. The great advantage provided by the LPV framework
is that quadratic stability and performance by means of fixed
order antiwindup augmentation can be addressed using the
LMI-based LPV synthesis ideas in [1] and [3] which derive
from a combination of [23] and [8] (see also [12]). These
synthesis ideas were applied to the control of linear systems
with input saturation in [26] and [32], but not to what we have
called the antiwindup augmentation problem since the control
is not designed to match a given local controller.

The goal of this paper is to construct fixed-order dynamic
antiwindup compensators which guarantee a given level of
performance using suitable finite gains of the augmented
system as the performance objective (this was also considered
in [22]). The basis for the study is the LMI-based controller
characterization of [8] and [12], where both full and reduced
order controllers meeting an norm-bound are described
in terms of a nonconvex feasibility problem, which reduce to
a convex feasibility problem when a certain rank constraint

becomes inactive. When viewed in this LMI-based framework,
the antiwindup augmentation design with performance
objective leads to nice system theoretic interpretations: a lower
bound on the gain achievable by the augmented system
is the maximum of the gains of the open-loop plant (with
zero control input) and that of the unconstrained closed-loop
system. Moreover, when the antiwindup compensator order is
zero (static) or equal to the order of the plant (plant-order), the
nonconvex matrix constraints can be reformulated in terms of
(convex) LMI constraints that can be easily solved, optimizing
globally the performance and providing simple and effective
constructions for the antiwindup augmentation. Finally, by
way of these new tools, plant-order augmentation can be
shown to be always feasible (for large enough gain),
while static augmentation is feasible if and only if there exists
a quasi-common quadratic Lyapunov function between the
open-loop plant and the unconstrained closed-loop system.
Moreover, asymptotic stability of the plant is shown to be a
necessary condition for the global performance requirement
of this paper to be attainable.

LMI tools have been brought to bear on the antiwindup
framework in very recent years. One of the earliest papers
where LMIs and antiwindup were combined is [19] where
stability and performance analysis of closed-loop systems
with static antiwindup compensation is formulated as an LMI
problem amounting to the determination of a “simultaneous
quadratic Lyapunov function.” Moreover, [19] formulates
the associated synthesis problem in terms of bilinear matrix
inequalities. In [17], the stability analysis of more general an-
tiwindup closed-loop systems arising from known antiwindup
constructions were formulated in terms of LMIs and a first
attempt to transform these LMI stability analysis tools into
controller synthesis tools was made by the same authors in
[16], where the modified mixed control problem was
brought to bear in the static and dynamic antiwindup synthesis
problem, noting that it was associated with nonlinear matrix
inequalities. Only recently, a complete LMI formulation of the
static antiwindup design problem, (namely, the case where the
system in Fig. 1 is static, i.e., it has no dynamic state)
was given in [22]. The result stops short of a system theoretic
interpretation of the feasibility conditions for static antiwindup.

The main drawback of the static construction in [22] is that in
several situations the LMI constraints are unfeasible. To address
this problem, the same authors proposed an alternative static
antiwindup design in [21], based on the approximate solution
of nonlinear matrix inequalities, to relax the quadratic stability
requirement to piecewise quadratic stability.

The rest of the paper is organized as follows. Section II gives a
precise statement of the problem including a Lyapunov-based
formulation of stability and performance. Section III gives
the main results of this paper. In Section III-B, necessary
and sufficient conditions for the existence of an antiwindup
compensator guaranteeing stability and a given level of perfor-
mance is given. Interesting connections between the existence
of a suitable antiwindup compensator and properties of the
open-loop plant and of the unconstrained closed-loop system
are established based on this conditions. Furthermore, it is
shown how, for some special values of the antiwindup com-
pensator order, these conditions can be easily checked solving
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LMIs based on the unconstrained controller and plant ma-
trices. In these special cases, based on the LMI formulation,
the minimization of the performance level can be carried out
as a simple convex optimization problem that converges to a
global minimum. Section III-A proposes a LMI to ascertain
the performance of a given antiwindup compensator applied
to a given system. In Section III-C, it is shown that, once the
necessary and sufficient conditions have been verified, it is
possible to construct the desired antiwindup compensator by
solving another LMI which efficiently provides a state-space
representation of the dynamics of such an antiwindup com-
pensator. In Section IV, the proposed antiwindup construction
method is applied to a simulation example taken from the
literature and to an experimental system. The remaining Sec-
tion V provides the necessary tools for the proof of the main
contribution of this paper through the statement and proof of
interesting intermediate results.

II. PROBLEM DEFINITION

A. Unconstrained Closed-Loop System

Consider a linear plant given by

(1)

where is the plant state, is the control
input, is the exogenous input (possibly containing
disturbance, reference and measurement noise), is the
plant output available for measurement, is the perfor-
mance output (possibly corresponding to a weighted tracking
error) and ,
and are matrices of suitable dimensions. The plant with

will be referred to as the open-loop plant.
Assume also that, an unconstrained controller has been

designed

(2)

(where is the controller state, is the con-
troller output, and are additional inputs that will be used
for antiwindup augmentation and , and

are matrices of suitable dimensions) in such a way that its
interconnection to the linear plant through the equations

(3)

is well-posed and guarantees internal stability of the arising
closed-loop system. The interconnection of (1) and (2) via (3)
corresponds to the block diagram in Fig. 2 which we will refer to
as the unconstrained closed-loop system. By selecting the state

, where , and
focusing on the effect of the exogenous input on the perfor-
mance output , we can write the dynamics of the unconstrained
closed-loop system as a single linear system with state–space
representation

(4)

where , and are uniquely deter-
mined by the matrices in (1) and (2).

Fig. 2. Unconstrained closed-loop system.

B. Input Saturation and Antiwindup Augmentation

Instead of considering a particular plant input nonlinearity,
we consider a class of input nonlinearities defined in Defini-
tion 2 (which requires the immediately following definition) in
order to state necessary and sufficient conditions for stability
and performance.

Definition 1: Given any symmetric positive–definite matrix
and two matrices , define the

-product of and as

A function is said to belong to the sector

if for all . A function
is said to belong to the incremental sector

if for almost all ,
where denotes the Jacobian of evaluated at .

Definition 2: A function is said to belong
to if the function is locally Lipschitz, belongs to the
incremental sector and .

Remark 1: If belongs to then belongs to the
sector . Also, when , the -product
coincides with the standard product . Furthermore, the
sector property coincides with the sector property
defined in [14, p. 403].

Suppose the control input of the plant is subject to a nonlin-
earity, namely

(5)

where belongs to .
Remark 2: The in (5) could be a decentralized satura-

tion function, namely

where1

for . Such decentralized satura-
tion functions belong to if is a diagonal positive–definite
matrix.

Given an integer , we address the problem of de-
signing an order linear antiwindup compensator

(6)

1For the purpose of this paper, decentralized saturation can denote the larger
set of decentralized functions where sat ( � ) is locally Lipschitz, sat (0) = 0
and (d=(ds)) sat (s) 2 [0; 1] almost everywhere for i = 1; . . . ; n .
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Fig. 3. Antiwindup closed-loop system.

(where is the antiwindup state, (with
) is the antiwindup output, and the matrices

, and are of suitable dimensions) that guarantees
a desirable relationship between the exogenous input and
the performance output for all that belong to . The
interconnection (1), (2), (5), (6) will henceforth be called the
antiwindup closed-loop system and is shown in Fig. 3.

C. Lyapunov Characterization of Stability and Performance

A desirable stability and performance property for the an-
tiwindup closed-loop system will be presented in terms of
Lyapunov analysis tools.

Definition 3: Given the linear plant in (1) and the uncon-
strained controller in (2), a linear antiwindup compensator

(6) of order guarantees well-posedness and quadratic per-

formance of level if the augmented antiwindup closed-loop
system (1), (2), (5), (6) is such that, for all that belong to

1) the interconnection (1), (2), (5), (6) is well-posed;
2) there exists a scalar and a quadratic Lyapunov

function (with and
) such that its time derivative along the

dynamics of (1), (2), (5), (6) satisfies

(7)

Remark 3: Definition 3 entails (sufficient) conditions for in-
ternal stability of the antiwindup closed-loop system and for fi-
nite gain from to for all that belong to . In-
deed, since the interconnection (5) is well-posed [as guaranteed
by item 1)], item 2) guarantees

i) quadratic stability, derived by rewriting (7) with ,
which implies

ii) gain from to smaller than . Indeed, inequality
(7) can be integrated on both sides from 0 to (assuming
zero initial conditions) to obtain

which implies the finite gain from to

Fig. 4. Compact antiwindup closed-loop system.

III. LMI-BASED ANTIWINDUP ANALYSIS AND SYNTHESIS

The main contribution of this paper is presented in three
parts. In Section III-A, we will provide tools for performance
analysis when the antiwindup augmentation (6) is preassigned.
In Section III-B, we provide nonlinear matrix conditions whose
feasibility is necessary and sufficient to guarantee the existence
of an antiwindup compensator that guarantees stability and
performance in the sense of Definition 3. For special cases,
these nonlinear matrix conditions are transformed into a set
of LMIs. Finally, in Section III-C, we will give a procedure to
construct antiwindup compensators that induce the performance
levels guaranteed by suitable solutions to the matrix conditions
in Section III-B.

A. LMI-Based Antiwindup Performance Analysis

Assume that the plant in (1), the controller in (2) and the
linear antiwindup compensator in (6) are given. Then, for
analysis purposes, the level of performance can be determined
by solving an LMI eigenvalue problem2 .

To formulate suitably the corresponding LMIs, we need to
introduce additional notation which corresponds to representing
the antiwindup closed-loop system in a compact way, as in
Fig. 4. In particular define with output

as

(8)

Next, define the overall state variable , where
, as

which allows the linear dynamics of the plant, controller and
antiwindup compensator to be combined and written as

(9)

where the matrices , and
are of appropriate dimensions and are uniquely deter-

mined by the matrices in (1), (2), and (6).
After a suitable change of coordinates the interconnec-

tion between (8) and (9), named the compact antiwindup

closed-loop system and shown in Fig. 4, corresponds to the
antiwindup closed-loop system (1), (2), (5), (6).

Theorem 1: Given the antiwindup closed-loop system (8),
(9) and a scalar , the antiwindup closed-loop system is well-
posed and guarantees quadratic performance of level if and

2The LMI eigenvalue problem (see, e.g., [4, p. 10]) is to minimize a linear
function subject to an LMI constraint (or to determine that the constraint is un-
feasible).
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only if there exists a solution to the following LMI
problem:

(10a)

(10b)

(10c)

(10d)

Proof: See Section V-A.
Remark 4: Convex Performance Analysis: Given a plant,

controller and antiwindup compensator that make up an
antiwindup closed-loop system, the greatest lower bound on
performance can be obtained by solving in the unknowns

the convex LMI eigenvalue problem
subject to (10a)–(10c).

Remark 5: If belongs to and is linearly pa-
rameterized, then extra degrees of freedom can be exploited
when solving the LMIs (10). This is the case for decentralized
saturation functions introduced in Remark 2. Observe that
is linearly parameterized over the family of diagonal positive
definite matrices. Hence, in the decentralized case, (10c) can be
replaced by where are unknown,
thus allowing extra degrees of freedom in the minimization of

.
Although Theorem 1 provides a useful tool for analysis

purposes, it can not easily be used for antiwindup synthesis be-
cause the unknown antiwindup compensator matrices multiply
the unknown , thus making the matrix inequality (10a) non-
linear. In the sequel, suitable procedures are given to construct
antiwindup compensators that guarantee well-posedness and
quadratic performance.

B. Feasibility of the Antiwindup Synthesis Problem

To assist in the system theoretic interpretation of the matrix
inequalities that will follow, recall the well-known LMI formu-
lation of the bounded real lemma for continuous time systems
(for a complete proof see, e.g., [25, p. 82]).

Lemma 1 (Bounded Real Lemma): The following statements
are equivalent.

1) and is Hurwitz.
2) There exists a symmetric positive–definite solution to

the LMI

The following definition will be useful to simplify the nota-
tion throughout this paper.

Definition 4: Given the plant in (1), the controller in (2),
an integer and a scalar , define the matrix conditions

as the following set of matrix conditions in
the unknowns :

(11a)

(11b)

(11c)

(11d)

(11e)

(11f)

(11g)

Moreover, is said to be feasible if there exists
a solution that satisfies (11).

The following theorem, representing our main result, pro-
vides necessary and sufficient conditions for the existence of
an antiwindup compensator that guarantees well-posedness and
quadratic performance of level in terms of the matrix condi-
tions .

Theorem 2: Given the plant in (1), the unconstrained con-
troller in (2), an integer and scalar , there exists
a linear antiwindup compensator of order that guarantees
well-posedness and quadratic performance of level if and only
if is feasible.

Proof: See Section V.
Remark 6: The Greatest Lower Bound on Achievable

Performance: The goal of optimal antiwindup design is to
construct an antiwindup compensator that guarantees a per-
formance level as small as possible. Based on Theorem 2, the
greatest lower bound on achievable performance such that

is feasible can, in principle, be determined
by solving in the unknowns the nonconvex optimiza-
tion problem subject to (11a)–(11f).

Remark 7 Lower Bounds on Performance Level: Using
Lemma 1, (11a) and (11b) have a system theoretic interpre-
tation. In particular, observe that (11a) constrains to be no
less than the norm of the plant with , input and
output or equivalently, no less than the gain from to
associated with the open-loop plant. Similarly, (11b) constrains

to be no less than the gain of the unconstrained closed-loop
system (4). While these two LMIs provide lower bounds for
the gain achievable by the antiwindup closed-loop system,
(11e) and (11f) establish a nonlinear coupling between the two
conditions.

Based on the previous remark, it is evident that for condi-
tion (11a) to be feasible the plant (1) needs to be asymptotically
stable. Since Theorem 2 also establishes the necessity of (11) for
antiwindup feasibility, asymptotic stability of the plant is shown
there to be necessary if one wants to guarantee the global proper-
ties of Definition 3. One of the reasons that it is necessary for
to be Hurwitz is that we are asking for global quadratic stability
in the absence of inputs. Even if we didn’t insist on quadratic
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stability, with appropriate detectability and stabilizability con-
ditions from to , it is a straightforward consequence of the
classical small gain theorem that finite gain stabilizability
by bounded controls implies that is Hurwitz. In the more
general case of non asymptotically stable linear plants (which
is not addressed in this paper), the global properties of Defini-
tion 3 should be relaxed to be able to guarantee useful results.

In the next section, we will show that the nonlinear condition
(11f) can be transformed into a linear one, in some special cases.

1) LMI Formulations of the Feasibility Condition: An ap-
pealing property of Theorem 2 is that all but one of the
conditions in are linear with respect to the
unknowns , the exception being (11f)—the rank con-
dition. Paralleling the necessary and sufficient conditions for
reduced order control synthesis (see, e.g., [8, eq. (26)],
when considering the full order case , the
rank condition is trivially satisfied and the optimization of the
performance level and the determination of the corresponding
solution reduces to a convex LMI eigenvalue problem,
for which numeric algorithms are readily available (see, e.g.,
[9]).

For the full-order case, the rank condition is guaran-
teed satisfied and the optimal performance level such
that is feasible can be determined
by solving in the unknowns the LMI eigenvalue
problem subject to (11a)–(11e). However,
when considering antiwindup compensation of reduced-order

, the rank condition needs to be satisfied
and the conditions become nonlinear. By
exploiting the special structure of the antiwindup design
problem, in the following Propositions 1 and 2 we will show
how to replace the nonlinear rank condition with equivalent
linear conditions, for the special reduced order cases
and , respectively. In these two special cases, all
the matrix inequalities are linear in the unknowns, and the
minimization problem for becomes a convex LMI eigenvalue
problem.

Proposition 1 : Given the plant in (1), the
controller in (2) and a scalar is feasible if
and only if there exists a solution to the following LMI
conditions:

(12a)

(12b)

(12c)

(12d)

Proof: If , (11f) is satisfied if and only if ;
thus (11e) is satisfied and (11d) is redundant. Hence, the proof
follows by rewriting the remaining inequalities in (11) with

.
Proposition 2 : Given the plant in (1),

the controller in (2), an integer and a scalar

is feasible if and only if there exists a
solution to the following LMI problem:

(13a)

(13b)

(13c)

(13d)

(13e)

(13f)

Proof [Feasibility of (13) Feasibility of (11)]: Given a
solution to (13), take and .
Then and trivially satisfy the rank constraint (11f) since,
by (13e), , then . Hence, is positive
definite and satisfies Conditions (11) with .

[Feasibility of (11) Feasibility of (13)]. Suppose (11) is
satisfied by a solution . Then (11e) guarantees

. Then there exists a symmetric positive–definite matrix
, such that with , (13a) is satisfied. ([To

show this, take such that satisfies
(13a). Moreover,

, as desired]. Finally, (13) is satisfied by
.

Based on Theorem 2 and Propositions 1 and 2, the following
theorem gives suitable conditions for the feasibility of the con-
ditions in Definition 4.

Theorem 3: The following properties hold.
1) There exists a scalar such that is feasible

if and only if there exists a matrix that is a solution
to the LMI problem

(14)

2) There exists a scalar such that is fea-
sible if and only if is Hurwitz.

3) If is feasible and , then
is feasible.

4) If is feasible and , then
is feasible.

Proof:

Item 1) If is feasible then by Proposi-
tion 1 there exists a matrix that satisfies (12a) and
(12b) with . Since each block on the main diag-
onal of both (12a) and (12b) is negative definite, then
the top left block diagonal entries which correspond to
the inequalities (14), are negative definite as well.

Assume there exists a symmetric positive definite
matrix that satisfies (14). Since (14) corresponds to
the top left block diagonal entries of Conditions (12a)
and (12b), then there exists a large enough such
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that (12a) and (12b) are satisfied. The result follows
from Proposition 1 picking .
Item 2) First, note that there exists a matrix

such that
if and only if is Hurwitz. Moreover, since the
unconstrained closed-loop system is exponentially
stable, is Hurwitz and there exists a matrix

such that . Since
, there exists a sufficiently small such

that . Take . Then there exists
a large enough such that satisfies
(13). The proof is completed by applying Proposition
2 picking .
Item 3) The result is a direct consequence of Defini-
tion 4 since if the rank condition (11f) holds for

then it also holds for .
Item 4) The result is a direct consequence of Proposi-
tion 2 since Conditions (13) are independent of .

An important implication of Theorem 3 is that not only does
the antiwindup construction always admit a solution choosing

, but also given the optimal performance achiev-
able by a solution of any order , then by item 4 of the
theorem, this same performance is achievable by an antiwindup
compensator of order . Hence, the restriction that the anti-
windup compensator order is does not restrict the minimum
achievable performance level.

Moreover, item 1) of Theorem 3 implies that, in many
situations, static antiwindup compensation does not provide
a feasible solution to this antiwindup problem, regardless of
the performance level . Indeed, condition (14) corresponds to
requiring the existence of a quasi-common quadratic Lyapunov
function between the open-loop plant and the unconstrained
closed-loop system. In particular, if the unconstrained controller
is static , it exactly requires a common quadratic
Lyapunov function. In the general case of a dynamic uncon-
strained controller, it is a generalization of this requirement
based on the fact that the size of the unconstrained closed-loop
system is larger than the size of the open-loop plant.

Remark 8: Greatest Lower Bound on Achievable Perfor-

mance via Convex Optimization: Remark 6 provides a method
to determine the greatest lower bound on performance by
solving a nonconvex optimization problem. In the light of
Propositions 1 and 2, the greatest lower bound on performance
can be determined by solving a convex optimization problem
when considering static or at least plant-order antiwindup com-
pensation. In particular, the greatest lower bound on achievable
performance, , using a static antiwindup compensator can
be determined by solving, in the unknowns , the convex
LMI eigenvalue problem: subject to (12a)–(12c).
Similarly, the greatest lower bound on achievable performance,

, using an antiwindup compensator of order greater than or
equal to the order of the plant can be determined by solving, in
the unknowns , the convex LMI eigenvalue problem:

subject to (13a)–(13e).

C. LMI-Based Antiwindup Synthesis

Although the results in Section III-B provide natural condi-
tions for the existence of an antiwindup compensator achieving

a certain performance level for the closed-loop system in
Fig. 3, they do not provide tools for the construction of such a
compensator. In this section, based on a solution to

arising from Theorem 2 or Proposition 1 or
2, we give a procedure to construct a state-space representation
of an antiwindup compensator that guarantees well-posedness
and quadratic performance of level . The effectiveness of the
procedure is then formally stated in Theorem 4.

To suitably describe the procedure for the construction of the
antiwindup compensator, we will first introduce an equivalent
representation for the antiwindup closed-loop system (1), (2),
(5), (6) represented in Fig. 3. By stacking the plant and the con-
troller states into a single state vector

, with , the antiwindup closed-loop system
can be written as shown in Fig. 5. The dynamics of the sub-
system in Fig. 5 is given by

(15)

where the matrices
,

and are of appropriate dimensions and only depend on
the matrices of the plant (1) and of the controller (2).

Based on the linear system (15), we can formalize a procedure
for the construction of the antiwindup compensator.

1) Procedure 1 (Construction of the Antiwindup Compen-

sator):

Step 1) Solve the feasibility conditions.
Given the plant , the controller , an in-

teger and a scalar , determine a
solution that satisfies the conditions

.
Step 2) Construct the matrix .

Using the solution from Step 1, define
the matrix as a solution of the fol-
lowing equation:

(16)

Since and are invertible and Conditions
(11e) and (11f) of Definition 4 are satisfied, then

is positive semidefinite and of rank
, so there always exists a matrix satisfying

(16). Define the matrix as

(17)

Finally, define the matrix
as

(18)

Step 3) Construct other required matrices.
Construct the matrices
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Fig. 5. Equivalent representation of the antiwindup closed-loop system.

, and as
follows:

(19a)

(19b)

(19c)

Step 4) Construct and solve the antiwindup compensator

LMI.
Stack the matrices of the antiwindup compensator

(6) in a single matrix as
follows:

(20)

Choose any and define .
Based on the matrices determined in Steps 2)
and 3) of this procedure, construct the matrices

, and
as shown in (21a)–(21c) at the

bottom of the page. Finally, compute the matrix associated
with the desired antiwindup compensator by solving the LMI

(22)

Theorem 4: Given the plant , the controller , an integer
, a scalar and a solution to ,

the LMI (22) constructed according to Procedure 1 is guaranteed
to be solvable for . Furthermore, the solution defines the
matrices of a linear antiwindup compensator (6) of order
that guarantees well-posedness and quadratic performance of
level .

Proof: See Section V.
Remark 9: To overcome implementation problems, it might

be desirable for the antiwindup compensator arising from Pro-
cedure 1 to be strictly proper. At least for the case when the con-
troller (2) is strictly proper (namely, and ),
this is possible without increasing the performance level but
increasing the dimension of the antiwindup compensator (6) by
adding states. Indeed, the conditions of Theorem 2 hold for
a given if and only if they hold for some , with

sufficiently small. Then, following a singular perturbation
approach (see, e.g., [14, Sec. 9.4]), it can be shown that there
exists a sufficiently small constant such that the same
antiwindup compensator augmented with the filter

located at its input (namely, choosing ) still guar-
antees well-posedness and quadratic performance of level .
Indeed, defining the new state variable , a
singular perturbation argument allows us to prove a relation
similar to (7) for the new antiwindup closed-loop system. In
particular, taking any a new (Lipschitz) Lyapunov
function can be shown to satisfy
(7) for a smaller but the same original value for (this is
possible by the preliminary insertion of the margin ).

Remark 10: When the saturation function is decentralized
(consequently, by Remark 5, can be selected as a diagonal
positive definite unknown), the static antiwindup construction
in Procedure 1 (with ) corresponds to the optimal static
antiwindup construction proposed in [22], where the matrix
is an unknown diagonal positive–definite matrix (therein
is referred to as the “stability multiplier”) and the parameter

, instead of being determined in Step 2), is undetermined
and considered as an extra unknown variable in the inequality
(22). Indeed, due to the simpler structure of the problem when

(causing ), inequality (22) turns out to be
linear in the unknowns , and , hence being solvable
through a single-step solution, where can be once again min-
imized in a convex way. Although the stability multiplier was
employed in [22] to improve the antiwindup performance, an
interesting implication of Theorem 2 is that since the conditions

(21a)

(21b)

(21c)
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are independent of , then the minimum
achievable performance level does not depend on the stability
multiplier.

IV. APPLICATION EXAMPLES

In this section, the antiwindup construction proposed in
Section III-C is applied to two linear windup-prone control
systems. The first one is a simulation example that illustrates
the effectiveness of the construction in the nontrivial case
of a multiple-input–multiple-output system. The second one
is an experimental application that shows the success of
our algorithms when applied to practical control problems.
In particular, the application that we have chosen exhibits
a difficult windup problem for which static antiwindup is
not even capable of guaranteeing quadratic stability (this is
verified by checking the conditions in Theorem 3) and the more
sophisticated plant-order dynamic antiwindup compensation
scheme is necessary.

Example 1 (The Longitudinal Dynamics of an F8 Aircraft

[13], [19]): Consider a fourth-order linear model of the lon-
gitudinal dynamics of the F8 aircraft and the eighth order linear
unconstrained controller introduced in [13]. The two inputs to
the plant are the elevator angle and the flaperon angle, each
one limited between degrees and the two outputs of the
plant are the pitch angle and the flight path angle. The con-
troller input is the difference between the plant output and the
reference input. The authors of [13] observe a substantial per-
formance loss when the plant input is subject to saturation and
propose a reference governor scheme for antiwindup purposes.
We will compare their result to the antiwindup compensators
designed using the methods in this paper.

The methods in this paper depend on the realization of the
unconstrained controller. Using the matrices ,
and defined in [13], choose the realization of the controller
according to

and and are zero matrices of appropriate dimensions.
By selecting the performance output where denotes
the reference input, a static antiwindup compensator can be
constructed using Procedure 1 with which guarantees
performance level and the resulting antiwindup com-
pensator consists of the gain is as shown in the equation at the
bottom of the page. Similarly, a plant-order antiwindup compen-
sator can be constructed using the same performance output and
Procedure 1 with , resulting in an antiwindup com-
pensator with guaranteed performance level . To save
space, the constructed matrices are not written here. The anti-
windup closed-loop system response, and the other responses

Fig. 6. Example 1. Comparison of the unconstrained response (bold solid) and
of the saturated response (dotted) to the static (dash-dotted) and dynamic (thin
solid) antiwindup designs with z = y � w and to the scheme of Kapasouris et

al. (dashed).

discussed thus far, are shown in Fig. 6, where the bold solid
line is the unconstrained trajectory, the dotted line is the satu-
rated trajectory, the dashed line is the antiwindup response with
the method of [13], the dash-dotted line is our static antiwindup
response, and the thin solid line is our plant-order antiwindup
response. Both of the antiwindup closed-loop system responses
have significant overshoot and are, perhaps, undesirable.

Next, we will show that the antiwindup trajectories can be sig-
nificantly improved by selecting a different performance output.
We observe the most substantial degradation in performance of
the saturated closed-loop trajectories is the large overshoot and
settling time of the pitch angle. For this reason, we select the
performance objective to be composed of the pitch angle error
and the angular acceleration due to the plant state on the pitch
angle. In particular, we will define the performance output via
the matrices

A static antiwindup compensator can now be constructed using
Procedure 1 with which guarantees performance level

and the resulting antiwindup compensator consists
of the gain as shown in the the equation at the bottom of the
page. Similarly, a plant-order antiwindup compensator can be
constructed using the same pitch angle performance output and
Procedure 1 with , resulting in an antiwindup com-
pensator with guaranteed performance level . To save
space, the constructed matrices are not written here. The an-
tiwindup closed-loop system response, and some of the other
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Fig. 7. Example 1. Comparison of the unconstrained response (bold solid)
and of the saturated response (dotted) to the static (dash-dotted) and dynamic
(thin solid) antiwindup designs with pitch angle performance output and to the
scheme of Kapasouris et al. (dashed).

responses discussed previously, are shown in Fig. 7 where the
bold solid line is the unconstrained trajectory, the dotted line
is the saturated trajectory, the dashed line is the antiwindup
response with the method of [13], the dash-dotted line is our
static antiwindup response, and the thin solid line is our plant-
order antiwindup response. The trajectories of this antiwindup
closed-loop system designed using the pitch angle performance
output, particularly with plant-order antiwindup, are highly de-
sirable and are a marked improvement over the scheme pro-
posed in [13].

Example 2 (An Experimental Example): The cart-spring-
pendulum system shown in Figs. 8 and 9 (which is available
at the Control and Computation Laboratory at the University
of California, Santa Barbara) consists of a cart restricted to
motion on a straight and level track which is attached via a
spring to a fixed wall. A pendulum is suspended from the cart
by a hinge so as to be constrained to the vertical plane defined
by the track. The cart is equipped with a DC motor that exerts a
torque to a small toothed wheel which, in turn, applies a force
on the cart. The system will be disturbed by a sharp tap on the
pendulum that comes from a human hand. For the purpose of
deriving a model, the experimental system will be considered
to be composed of a massless spring attached to a frictionless
cart from which a slender rod freely hangs.

The output of the system is the position of the cart, in me-
ters, relative to the spring’s equilibrium point and the angular
position of the pendulum, in radians, relative to the vertical;
both positions are measured with optical encoders. The phys-
ical inputs of the system are the voltage applied to the ar-
mature of the dc motor, in Volts, and a disturbance force , in
Newtons. The force from the motor , in Newtons, is modeled
as . The operating range of the control input
is constrained by the range of the D/A converter, Volts
(which, incidentally, nearly covers the entire operating range of

Fig. 8. Damped mass-spring-pendulum system in Example 2.

the DC motor, Volts). The disturbance is a force in the
plane of motion orthogonal to the pendulum of length and
acts at a distance of from the cart-pendulum hinge. A
nonlinear model of the system can be derived by applying stan-
dard Euler–Lagrange techniques. Moreover, defining the plant
state as , a linearized model around the origin
is given by (1) and
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Fig. 9. Example 2. Response to the larger pendulum tap. Simulated
unconstrained response (bold solid); simulated saturated response
(dash-dotted); experimental saturated response (thin solid).

where is Hurwitz.
Suppose the system is allowed to come to rest before it is

disturbed and we are interested in the response of the system due
to two test pendulum taps, one small3 and one five times larger.
Suppose further the objective is to return the pendulum and cart
quickly and gently to their equilibrium after the smaller taps and
gracefully handle the larger taps to the pendulum. Following an
LQG construction, an observer based controller of the form (2)
is designed where

,
and , and are zero matrices of appropriate
dimensions.

For the simulations reported here, we have used the lin-
earized model of the plant. Indeed, the resulting trajectories are
almost the same as the corresponding ones with the nonlinear
Euler–Lagrange model, thus confirming the appropriateness of
the linear approximation for our operating conditions. For the
smaller pendulum tap, the plant input does not saturate and the
unconstrained response is deemed desirable, both in simulation
and in experiment. The settling time for the pendulum is ap-
proximately 1.5 s and for the cart, it is 3 s. The larger pendulum

3For simulation purposes, the smaller pendulum tap is modeled a constant
force of 1.588 Newton with duration 0.01 s.

taps, however, give rise to undesirable closed-loop behavior,
i.e., the settling time is severely deteriorated. In Fig. 9, the
bold solid curve represents the simulated (ideal) unconstrained
response, the dash–dotted curve represents the simulation of
the saturated response and the thin solid curve represents the
corresponding experiment.4 The noticeable mismatch between
the thin solid and the dash-dotted curves is cause by unmodeled
effects of the experimental device: mainly backlash and stiction
affecting the movement of the cart on the track. Besides these
unmodeled phenomena (which cause significant differences,
especially on the tails of the responses), the fourth order model
represents sufficiently well the dynamics of our experimental
system.

Based on the antiwindup construction proposed in Proce-
dure 1, the undesired behavior of Fig. 9 can be mitigated by
augmenting the experimental control system according to the
diagram in Fig. 3. To determine an optimal selection of the an-
tiwindup compensator matrices we first choose a performance
output . By inspecting Fig. 9, we see that for the larger pen-
dulum taps, the pendulum swings wildly causing the cart to chase
after the pendulum, almost in vain. To reduce quickly the mag-
nitude of , we choose the matrices related to the performance
output as follows: .
A first antiwindup design attempt is carried out by selecting

to explore feasibility of static antiwindup compensation.
Unfortunately, for this system, the associated LMIs (12) in
Proposition 1 are unfeasible.5 As a further step, we move to
dynamic antiwindup compensation of order , which,
based on the asymptotic stability of the plant, is guaranteed
to be feasible by Theorem 3. To construct this compensator,
Procedure 1 is applied with and the following
compensation matrices are obtained, which guarantee a per-
formance level of :

4Although a continuous time controller has been designed, it is implemented
in discrete time. We allow Quanser Consulting Inc. software, WinCon 3.1, to
convert our continuous time controller to discrete time using the Runge–Kutta
fixed-step solver with sampling time 0.0005 s.

5Unfeasibility was determined due the inability of the MATLAB LMI
Control Toolbox to find a feasible solution to the LMIs (12).
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Fig. 10. Example 2. Response to the larger pendulum tap. Simulated
unconstrained response (bold solid); simulated response with antiwindup
(dash-dotted); experimental response with antiwindup (thin solid).

The thin solid curve in Fig. 10 represents the experimental
response of the closed-loop system with dynamic antiwindup
compensation to the same disturbance that generates the unde-
sirable response represented in Fig. 9. Similarly to Fig. 9, the
dash–dotted curve represents a simulation of the closed-loop
with the linear plant model, while the bold solid curve repre-
sents a simulation of the unconstrained closed-loop system’s
response. A comparison between the thin solid responses in
Figs. 10 and 9 illustrates that the insertion of the antiwindup
compensator greatly improves the experimental response to the
larger pendulum taps, while structurally preserving the desirable
performance of the (previously designed) unconstrained con-
troller for the smaller pendulum taps. It should be recognized
that the tails of the simulated responses are quite different from
the experimental ones because of the unmodeled effects com-
mented above. Nevertheless, the plant model is mostly accurate
in the operating conditions where the plant input is close to the
saturation limits. These are the operating conditions of interest
for the antiwindup action, hence a more accurate model of the
plant does not seem to be necessary for the antiwindup design.

V. PROOF OF THE MAIN RESULT

A. Proof of Theorem 1

To prove Theorem 1, the following lemmas will be useful.
The proofs of Lemmas 2 and 3 can be carried as in [33].

Lemma 2: Consider a locally Lipschitz function
and assume that the Jacobian of satisfies

where the set is compact, convex, and each matrix in
is nonsingular. Then there exists a (unique) globally Lipschitz
function such that for all .
Equivalently, is a homeomorphism with globally Lipschitz
inverse.

Lemma 3: Given two square matrices and ,
if then is nonsingular for all
such that the linear map belongs to the sector .

Lemma 4: Given any symmetric positive-definite matrix ,
the function belongs to if and only if the function

belongs to .
Proof (Sufficiency): Assume belongs to .

Clearly, is globally Lipschitz. Moreover, since
for all , then

for all , namely belongs to sector . Moreover,
since whenever exists it follows
that for almost all . Thus

belongs to . The necessity can be proven by swapping
the functions and in the previous proof.

The following facts will also be useful for the proof of
Theorem 1.

Fact 1: By noting that and are linear functions of ,
and , writing the upcoming (23) in matrix inequality form and
taking its Schur complement [4, p. 7], it can be shown that given

, and , where its derivative along the
dynamics of the system (8), (9) is

, then

(23)

if and only if the equation shown at the bottom of the page holds.

Fact 2: By employing the -procedure [4, p. 24], it is shown
that given any symmetric positive definite matrix and (as in
Fact 1) , if

1) there exists a scalar such that

then
2)

(25a)

for all such that

(25b)
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In addition, if there exists at least one selection
such that

(26)

then item 2) implies item 1).
Fact 3: There exists a selection that satisfies

(26).
Proof: If there exist such that

, then pick with sufficiently small to
satisfy (26). Conversely, if for all , then
the controller is identically zero. In this trivial case,
for all times. Namely, since the saturation never activates, the
antiwindup problem is nonexistent. From a more system theo-
retic viewpoint, in this case the optimal performance is the

gain of the open-loop plant, and an antiwindup compensator
that achieves this performance level is the identically zero anti-
windup compensator.

Proof of Theorem 1:

Necessity Assume that for a given plant, controller and
antiwindup compensator of order , well-posedness and
quadratic performance of level are guaranteed in the sense of
Definition 3. Lemma 4 guarantees belongs to , and
therefore . Hence, by inequality (7), there
exists a quadratic Lyapunov function where

such that item 2 in Fact 2 is satisfied with
and . Combined with Fact 3, Fact 2 implies

that there exists a constant that satisfies (24). Finally, by
Fact 1, (27), shown at the bottom of the page, holds. Moreover,
since all block diagonal terms in (27) must be nonzero, then

. Defining and and then
premultiplying and postmultiplying (27) by the symmetric
block diagonal matrix , it follows that there
exists and that satisfy (10a), as
desired.
Sufficiency If there exist , and that satisfy (10),
define and and premultiply and
postmultiply (10a) by the symmetric block diagonal matrix

. The resulting inequality guarantees (27)
because . Then, Fact 1 and Fact 2 guarantee that the
function satisfies item 2 in Fact 2 with .
Since and belongs to , inequality (25b)
is always satisfied by the trajectories of the closed-loop system
(1), (2), (5), (6). Hence, since the inequality in (25a) is strict,
there exists a small enough such that inequality (7) in
item 2 of Definition 3 is guaranteed.

To show well-posedness in item 1) of Definition 3, rewrite the
interconnection of (8) and the middle equation of (9) as

where is globally Lipschitz. Since, by Lemma 4, the func-
tion belongs to , then almost everywhere,
is such that . This can be rewritten as

(28)

where almost everywhere. Then, for almost all ,
the Jacobian of satisfies

where the set is compact by the boundedness of and
because the inequality in (28) is nonstrict. The set is also
convex because, by Schur complement, inequality (28) can be
written as an LMI in . Furthermore, since the diagonal entries
of (10a) are negative definite, then
and, by Lemma 3, each matrix in the set is nonsingular.
Then, by Lemma 2 there exists a (unique) globally Lipschitz
function such that . Finally, the
Lipschitz property of the right-hand side of (9) guarantees the
existence and uniqueness of solutions, thus proving well-posed-
ness of the interconnection between (8) and (9).

B. Proof of Theorems 2 and 4

A key step in the proof of Theorems 2 and 4 is the connection
between the matrix conditions in Definition
4, the LMIs for analysis (10) in Theorem 1, and the LMI (22) in
the final step of Procedure 1. The LMIs (10a) and (22) coincide
but are in different unknowns; the LMI (10a) is in the unknown

and the LMI (22) is in the unknown . Indeed, since the
system (9) represented by the diagram in Fig. 4 coincides with
the system (6), (15) represented in Fig. 5, the matrices in (9)
can be expressed in terms of the matrices in (6), (15). Within
this equivalence, it is easy to check that the matrices ,
and in (9) coincide with those defined in (19c) and the
remaining matrices in (9) satisfy

(29)

The following theorem establishes the equivalence between
the feasibility of the matrix conditions in
Definition 4 and the feasibility of the matrix constraints (10)
and (22).

Theorem 5:

1) Given the plant in (1), controller in (2), integer
and scalar , there exist matrices and scalars

(27)
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satisfying (10) (with the definitions (19), (29)) if and only
if the matrix conditions are feasible.

2) Given a feasible solution to ,
the matrix constructed in (16), (17), (18) guarantees
that the LMI (22) in the unknowns is solvable
and the arising solution also satisfies (10)
[with the definitions (19) and (29)].

Proof: See Section V-B.
Proof of Theorem 2: The composition of Theorem 1 and

item 1 in Theorem 5 imply Theorem 2.
Proof of Theorem 4: Step 1) of Procedure 1 is assumed to

be solvable. Steps 2) and 3) are constructive. For Step 4), the
matrices (21) can always be constructed based on the matrices
computed at the preceding steps. Moreover, by item 2) in The-
orem 5, the matrix constructed in Step 2 guarantees that the
LMI (22) is solvable for and any feasible solution
to the LMI (22) is such that satisfies (10). Hence,
by Theorem 1, the antiwindup closed-loop system (8), (9) cor-
responding to is well-posed and guarantees quadratic perfor-
mance of level .

The following lemmas, proven in [8], [12] and [23], respec-
tively, will be useful for the proof of Theorem 5.

Lemma 5 (Projection Lemma [8, Lemma 3.1]): Given a sym-
metric matrix and two matrices of column
dimension , consider the problem of finding some matrix
of compatible dimensions such that

(30)

Denote by any matrices whose columns form bases of
the null space of and , respectively. Then (30) is solvable
for if and only if

(31a)

(31b)

Lemma 6 [23]: Let be symmetric positive
definite matrices. Then the two conditions

hold if and only if there exist and ,
with such that

where denotes matrix entries that we do not care about.
Proof of Theorem 5: We first prove the necessity part of

item 1. According to the definitions (19), (20), (21), and (29),
(10a) coincides with (22) as shown in (33) at the bottom of
the page. We will apply Lemma 5 to inequality (33) [which
coincides with (10a)] to show that there exists a feasible
solution to (10) if and only if the conditions

in Definition 1 are feasible. In particular,
we will show that (31a) is equivalent to (11a) and that (31b) is
equivalent to (11b), that the coupling between (11a) and (11b)
through can be rewritten as (11e), (11f).

Condition (11a): According to (19b), (21b) and the
explicit expressions for the matrices in (15), can be
written as (34), shown at the bottom of the page, where

and
are well defined (namely the matrices in parentheses are
invertible) by the well-posedness of the unconstrained inter-
connection. According to this special structure, a matrix that
spans the null space of is

(35)

Indeed, by the assumption of well-posedness of the uncon-
strained closed-loop system, is full rank, hence, according
to the (34), the dimension of the null space of is necessarily

. Moreover, the rank of is and
it can be verified by computation that .

(33)

(34)
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Assume that, according to (18), the matrix is partitioned as

where

Then, inequality (31a) can be computed explicitly based on (35)
and (21a) with (19a), (19c). After some computations it follows
that coincides with the inequality in (11a), as
desired.

Condition (11b): According to (21c), the matrix can be
factored as follows:

where and
. Since is invertible

(indeed, and by assumption), we can write

where spans the null space of and, according to the
definitions and (36) shown at the bottom
of the page holds. Based on (19b), we can write explicitly the
entries of as

Hence, a matrix
that spans the null

space of is

(37)

Using the partition of the matrix

we can compute explicitly the inequality (31b) based on the
definitions (36) and (37) and substituting (19a) and (19c)
into the entries of . After some computations it follows
that coincides with the inequality in (11b), as
desired.

Conditions (11e) and (11f): Since , and ,
then from the partitions of and we have

which can be rewritten as follows:

(38)

By virtue of Lemma 6 expressions (38) are equivalent to

(39a)

(39b)

Premultiplying and postmultiplying the matrices in (39b) by
and , respectively and performing a Cholesky factorization

(see, e.g., [28, p. 195],) on (39a), we get Conditions (11e) and
(11f), thus completing the proof of the necessity part of item
1). To prove the sufficiency in item 1), the aforementioned rea-
soning can be reversed. In particular, conditions (11e) and (11f)
imply (39), which by Lemma 6 imply the existence of sat-
isfying (38). Finally, (11a) and (11b) hold with , hence, by
Lemma 5, inequality (30) holds too. This, in turn, implies that
(10) is solvable.

Finally, we prove item 2) of the theorem. Since (22) coincides
with (10) with the selection for (16)–(18), then provided the
matrix satisfies expression (38), the proof of the sufficiency
of item 1) can be followed verbatim to show that (22) is solvable
with (16)–(18). To show that the construction (16)–(18) for
satisfies (38), note that by the formulae for the inversion of block
matrices [31, p. 23], the upper left block of needs to satisfy

which, when premultiplied and postmultiplied by and substi-
tuting the selection (17) for , becomes

which, by (16), is always satisfied.

VI. CONCLUSION

The problem of synthesizing fixed-order antiwindup com-
pensators which meet an performance bound has been ad-
dressed. The main results have demonstrated how a Lyapunov
formulation of this problem can be expressed as a nonconvex
optimization problem which closely resembles the LMI for-
mulation of controller synthesis. For certain antiwindup
compensator state dimensions, the optimization problem is ac-
tually convex and hence can be solved using standard methods,
which allow the construction of an optimal compensator that
achieves a maximum performance level globally, via convex
optimization.

(36)
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