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Abstract—TCP/IP protocol suite carries most application data 

in Internet. TCP flow retrieval has more security meanings than 

the IP packet payload. Hence, monitoring the TCP flow has more 

strength than only monitoring the IP packet payload in the 

AntiWorm system. The main idea of this paper is to use the 

flexibility and high performance of Network Processors to scan 

TCP flow for locating worm’s binary codes, and cut off their 

propagation. A stateful TCP flow inspection engine is 

implemented based on IXP Network Processor, which can 

monitor about 512K flows. The performance issues about IXP 

Network Processors are evaluated and collected, and an analysis 

is made for further optimizing the system performance. The 

system is also demonstrated and proved by using the Internet 

traces and real assaults of Worms. Software Package 

TCPScanner 1.0 is also given as a software release of the research. 

Index Terms—Network Security, Worms, Network Processors, 

TCP/IP Protocol suite, Parallel Bloom Filter, Deep Packet 

Inspection, Stateful TCP inspection. 

I. INTRODUCTION

A. TCP/IP/Ethernet 

Ethernet is a popular packet-switched LAN technology 

invented at Xerox PARC in the early 1970s. Xerox Corporation, 

Intel Corporation, and Digital Equipment Corporation 

standardized the Ethernet in 1978. Gigabit Ethernet builds on 

top of the Ethernet protocol, but increases speed tenfold over 

Fast Ethernet to 1 gigabit per second (Gbps). Gigabit Ethernet 

was standardized in June 1998, and is widely used in 

high-speed LAN and MAN for connectivity.  

TCP/IP is probably the most useful protocol suite in Internet. 

It forms the base technology for a global internet that connects 

Hosts, Routers and Switches. Statistics show that the TCP/IP 

traffic accounts for 86.5% in the total Internet traffic, UDP/IP 
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traffic accounts for 12.8%, and the miscellaneous 0.7%. 

TCP/IP guarantees the reliable, in-order delivery of byte stream. 

TCP supports a flow of byte streams in each direction and also 

includes a flow-control mechanism for each direction. 

Many security issues are also concerned with the TCP/IP, 

such as Browser security [10], Worms[11], Bots[12], Spyware, 

Spam mails, etc. Hence, it is important to audit the TCP traffic 

to identify the possible threat for protection purpose.  

B. Worms

A Worm is a kind of malicious code, which can be 

self-reproduced and propagates over a network. The life cycle 

of a worm is as follows: (Phase 1) Target discovery: the worm 

in the infected host tries to locate a victim host; (Phase 2) 

Carrier: First, make the new host prepares to receive the worm 

code. Then, transfer the worm code (in plain text (unencrypted) 

mode or in encryption way) to the new host; (Phase 3) 

Activation: change the new host’s registry, and make it to 

reference the worm code. Then the process repeats.  

The following symptoms of active worms can be used for the 

detection of Worms. 

In the victim Target discovery Stage, a simple strategy the 

worm used is scanning, including sequential and random 

scanning, e.g. CodeRed. Scanning is a highly anomalous 

behavior, so it can be effectively detected by devices.  

  In the Carrier stage, a worm can either actively transfer itself 

from host to host, or it can be carried along as part of normal 

communication, e.g. Worm Blaster, a.k.a. RPC DCOM worm, 

exploits the victim’s RPC (Remote Procedure Call) flaw and 

make the victim connect back to the infecting machine using 

TFTP (Trivial File Transmission Protocol) to download the 

worm code. Figure 1 shows the payload of a packet of RPC 
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DCOM worm v2.2, where the WORM executable is illustrated 

in details. 

Some AntiVirus Tools, such as ClamAV[13] also use 

segments of virus’s executable code as a signature to identify 

Worms.  

C. Intel IXP2400 Network Processors 

The Network Processor Unit (NPU) [2-8] enables network 

researchers and developers to import the latest network services 

while maintaining high throughput and low latency. In this 

paper, Intel IXP Network Processors IXP2400 is used and will 

be introduced as follows [14-21]. 

IXP2400 integrates the following function blocks: 8 

Multi-Threaded MicroEngines (2 Clusters), XScale Core, 4K 

32-bit word Scratchpad Memory, 2 QDR SRAM Interface 

controllers, 1 DDR DRAM Interface controller, Hardware 

Hash Unit, Media and Switch Fabric(MSF) Interface, Half 

Duplex OC-48/2.5 Gbps Ethernet Interface, and other 

Peripherals Components. 

A ME consists of the following resources: executable data 

path (ALU), 16-entry CAM, CRC unit, 4K × 40-bit instruction 

MicroStore, local CSR, CMD FICO, 640 32-bit Local Memory, 

256 GPRs (Bank A and Bank B), 128 SRAM Read (Write) 

Transfer registers, 128 SRAM Read (Write) Transfer registers, 

Eight threads per ME (no overhead for context switching), 128 

Next Neighbor registers etc. 

Software frameworks can be used in programming the 

Network Processor. This programming focuses primarily on 

writing data plane components utilizing MEv2 MicroEngines. 

Logical networking functions named MicroBlocks are used in 

the fast path processing. Each MicroBlock is a macro 

(Assembly Language) or MicroEngine C function written using 

underlying low-level libraries.  

The paper is structured as follows: Section 2 introduces the 

design of AntiWorm TCP content processing System using 

Parallel Bloom filters. Section 3 shows the implementation of 

the system in detail. In Section 4, experiments are carried out 

for demonstrating the working of AntiWorm system and the 

experiment results are shown. Section 5 introduces the software 

package of the research. Section 6 presents the further work. 

Finally, Section 7 concludes the whole paper. 

II. SYSTEM DESIGN

A. The Principle 

The main idea of this paper is to use the flexibility and high 

performance of Network Processors to detect and scan TCP 

flow to locate worm codes, and cut off their propagation. In this 

paper, an AntiWorm system based on TCP/IP Content 

Processing is implemented based on IXP2400. Parallel Bloom 

Filters are implemented in TCP/IP content processing engine, 

but other signatures based search functions can also be 

integrated. The TCP/IP content processing engine is stateful, 

and can realize some more complex Intrusion Detection 

Functions. 
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The system is deployed in one side (ingress or egress) of 

network, but both sides can also both be deployed and 

cooperated for a more effective purpose. The logical function 

blocks in the system are shown in Figure 2, while the physical 

function block in IXP2400 are shown in Figure 3.  

B. The Flow Procedure of a packet 

A brief introduction of the journey of a packet will be helpful 

in understanding the system.  

A TCP/IP packet arrives from one physical port. It is 

received by RX Module, and then passed to the Classifier 

Module complying with some Blocking Rules. (Note the 

blocking function is optional, can be bypassed directly).  

Classifier Module looks up all entries in flow state table and 

decide whether to add the flow state into Flow table or not. The 

flow state table is organized in hash table, and the collisions are 

resolved by using linked-list. If the TCP/IP packet belongs to a 

new flow, then a new entry will be created and added into the 

flow state table. If not, the flow state of the TCP flow which the 

packet belongs to will be retrieved and sent to the 

corresponding SRAM ring along with the buffer handle of the 

packet etc. The flow state and application data are kept in a 

record called Flow Descriptor. Flow Descriptors are stored in 

DRAM for economical reason.  

An optional function of Classifier Module is Traffic Monitor. 

It collects information such as traffic volume of a certain source 

IP, or a certain destination port. An unusual large flow from a 

non-server host or to an unknown port is supposed to be a sign 

of worm activity. To achieve a tradeoff between monitor 

accuracy and performance, a multistage filters technique 

proposed by Cristian Estan and George Varghese [30, 31] is 

used to account the 1% largest flows. The amount of ICMP 

destination unreachable message is also counted, while a large 

amount possibly means an active random-scanning worm [41]. 
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With Traffic Monitor enabled, we could scan TCP context only 

when there is a sign of worm outbreak, so relief the context 

processing engines. 

TCP content processing engines drain the packets from the 

respective SRAM ring and perform Bloom Filters action. If 

suspicious, the packet is exactly compared with the signatures 

one by one. An optional function is draining the specified TCP 

flow into XScale buffer, where a ClamAV agent is responsible 

for scanning the total flow the TCP for some Worms. After 

handling a packet, the Flow Descriptor in DRAM is updated. 

Then it is turn for IPv4 Forwarder Module, which maintains 

the route table and forwards the packet into transmitting queue. 

Finally the TX Module transmits the packet out of the system. 

C. Hash Table Index  

A Hash table is used to index memory that stores each flow’s 

state. Gracefully handling hash table collisions is difficult for 

real-time systems. To ensure proper monitoring of all flows, the 

state store manager can chain a linked list of flow state records 

off of the appropriate hash entry. 

D. Bloom Filters 

To quick identify worms’ signatures in TCP byte stream 

flow, Bloom Filter technique [22-25] is used in TCP/IP Content 

Processing Engine. Countable Bloom Filters is implemented in 

practical system for scalable reasons. 

Definition 1. (Bloom Filter). A Bloom Filter is used to 

represent a set S s  of  elements from a 

universe . It consists of an array of  bits, initially all set to 

0. A Bloom Filter uses k  independent random hash functions 

 with range {0 . These hash functions map 

each element 

1 2, , , ns s n

U m

1, , kh h , , 1}m

s S , the bit at adderss  is set to 1 for 
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(Eq. 1) 

Definition 2. (Counting Bloom Filter). A Counting Bloom 

Filter is a Bloom Filter enhanced with a vector of counters 

corresponding to each bit in the bit vector (BV) for scalability 

reason. Whenever a counting Bloom Filter adds or deletes a 

member, it increments or decrements the counters 

corresponding bit in the bit vector. Only when a counter 

changes from one to zero, it clears the corresponding bit in BV. 

Therefore, these counters change only during the addition and 

deletion of strings in the Bloom Filter. 

E. Flow state based content scanning 

The Bloom Filters based TCP content scanning engines 

processes TCP byte streams from the TCP Classifier Module. 

The content scanning engines can match a signature that spans 

across multiple packets in the same flow. When a packet of a 

certain flow reaches the content scanning engine, the content 

scanning engine must restore the Flow Descriptor for that flow 

before starting the matching operation on that packet. When it 

has finished processing the packet, the content scanning engine 

must save the flow’s new Flow Descriptor.  

Packets are transferred to the content scanning engine along 

with a data structure shown in Table 1. The content-scanning 

engine firstly loads the flow state of that flow after receiving a 

packet from the corresponding SRAM rings. If the content 

scanning engine finds no matches in the packet, then the packet 

can pass through the module. If a match is discovered, then it 

notifies the flow blocking module to block the flow, terminates 

the connection, or lets the data pass through. It can also send 

out alert messages in response to content matches to XScale.  

Each content-scanning engine processes data one byte at a 

time. Having four MEs (32 threads) for content-scanning 

engines in parallel and processing 32 flows concurrently, as 

Figure 3 shows. The system dispatches incoming packets to one 

of the content scanning engines based on a hash of the flow ID 

by the TCP Classifier Module. Dispatching packets in this way 

can eliminate the possibility of hazards that two 

content-scanning engines were simultaneously processing 

packets from the same flow. 

III. IMPLEMENTATIONS

A. System Requirements 

TCP Flow State Stores: 

(1) The amount of TCP flows monitored is about 512K (229);

(2) Flow state store is 64Bytes each in size; 

(3) The packets in TCP/IP stream are received in order. 

Beside, the packets which are retransmitted are ignored.  

Bloom Filters:  

(1) The size of Signature Library is about 128; 

(2) The false-positive probability of the Bloom Filter should 

be less than 2-8;

(3) The size of signature is fixed and 16 bytes long. 
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B. ME Allocation 

In current design, as an integrated system, RX Module takes 

one ME, a Classifier Module occupies one ME, IP Forwarder 

Module occupies one ME, and TX Module takes one ME, the 

remaining 4 MEs are used as TCP Flow Content Processing 

Engines. See Figure 5. 

C. Flow State Table 

A resequencing container (AISR, Asynchronous Insert 

Synchronous Removing) is needed to place in front end of the 

system. Hence the assumption is asserted that the packet is 

coming in order. The flow state table is organized in the form of 

hash table, see Figure 4. A new flow state store is created and 

added into hash table in the following two cases: one is the 

arrival of the TCP SYN packet, the other is the arriving packet 

can not match any flow state entry in existence. The old flow 

state store is also flushed in the following two cases: one is the 

reception of the TCP FIN packet, the other is a flow state is too 

old, which is indexed in the timestamp marked in the flow state. 

The XScale is responsible for clearing the idle TCP Flow 

Descriptor at a fixed interval. A process is woken up in the 

specified interval, frees the idle flow state store according to the 

timestamp marked in the last flow state update and current 

timestamp. 

In a common-case scenario in which there’s no more than 

one entry per hash bucket, each packet requires a total of one 

read and one write operations to the DRAM: a 16-word read to 

retrieve flow state, and a 16-word write to update flow states.  

Table 1 illustrates the TCP Flow State Record (Flow 

Descriptor), which reflects the design considerations 

aforementioned. 

D. Data Structure  

1) Data Structure in Scratchpad Ring 

Scratchpad ring is used to store the intermediate results of 

Packet handling in context pipeline. 

2)  Data Structure in Creating SRAM Ring 

SRAM controller provides a queue-array element to access a 

queue or a ring. When used as a ring, a SRAM ring is very 

similar to a Scratchpad ring, in a way that the data being stored 

in Scratchpad memory, the data is stored in a contiguous block 

of SRAM. Also, SRAM rings can be configured into sizes of 

512, 1K, 2K, 4K, …, 64K long words to support a larger FIFO. 

When used to implement a ring, a queue-array element contains 

the head and tail pointers, the size of the ring, and the current 

number of elements (count) on the ring.  

3) Data Structure in SRAM Queue 

SRAM controllers for the Intel IXP2400 and IXP2800 

network Processors support a data structure called Q-array, 

which provides hardware-supported basic queue management. 

For applications requiring a few small FIFOs, Scratchpad rings 

are sufficient. However, Scratchpad rings are not sufficient for 

applications requiring more than 16 FIFOs. In such case, the 

IXP2XXX processor’s solution is to use SRAM-based FIFOs. 

The IXP2XXX hardware can support as many FIFOs as can fit 

within SRAM memory and provides access to these FIFOs 

through a 64-element cache (per SRAM controller).  

4) Flow State Records (or Flow Descriptor)  

Table 1 shows the most important data structure in the 

system, Flow State Record for a given flow. The total size is 

64Bytes which a ME can retrieves all data in a single memory 

operation. The Classifier Module maintains one of these 

records for each flow that the content scanning engine need to 

reference.

Of the 64 bytes of data stored for each flow, 32 bytes is used 

to maintain flow state. The additional 32 bytes of state store for 

each flow can hold the application-specific data for each flow 

context.  

E. Software Framework 

1) Dispatch Loop 

The dispatch loop combines MicroBlocks on a MicroEngine 

and implements the data flow between them. The dispatch loop 

also caches commonly used variables in registers or local 

memory. These variables can be accessed by MicroBlocks 

using a set of macros or microC functions. The dispatch loop 

also provides source and sink blocks to send and receive 

packets to the Intel XScale core and to send packets to a 

different MicroBlock group.  

Table 1. The TCP Flow State Record (or Flow Descriptor) 

(LSB-MSB)
LW Bits Size Field Description 

0 31:0 32 Hash Value The hash value of five-tuple 

1 31:0 32 Next Flow Pointer Address of the next Flow state in DRAM 

2 31:0 32 Source IP address Source IP address 

3 31:0 32 Destination IP 

address

Destination IP address 

4 31:0 32 TCP Source Port Source port

5 31:0 32 TCP Dest Port Destination port

6 31:0 32 Protocol Protocol(TCP, UDP etc.) 

7 31:0 32 Sequence Number TCP packet sequence number 

8 31:0 32 Payload offset Source and Destination Port 

9 31:0 32 CODE BITS Some Flags for Packet handling 

10 31:0 32 Time Stamp The time mark for the arrival 

packet(update)

11 31:0 32 Remaining length Index the last remaining byte length 

12 31:0 32 1st word The first word of the last packet in flow 

13 31:0 32 2nd word The second word of the last packet in flow

14 31:0 32 3rd word The third word of the last packet in flow 

15 31:0 32 4th word The fourth word of the last packet in flow 

A dispatch loop is specific to the application being targeted. 

The intent is for the mircoblocks to be as reusable as possible. 

The dispatch loop and the internal implementation of its 

associated helper macros or functions may be optimized for a 

specific application. 

2) RX Microblock 

RX MicroBlocks interface with the MSF and reassemble 

incoming m-packets (RBUFS) into complete packets for 

further processing by down stream packet processing code. For 

each packet, the packet data is written to DRAM, the packet 

descriptor (meta-data) is written to SRAM and a handle to the 

packet is written to a Scratchpad ring for use by the packet 

processing stage. 

3) Classifier Module 

Classifier Module is assigned to one ME for scalable reason. 

The minimal function of classifier module is described as 

follows: (Phase 0) read the packet information (buf_handle) 

from Scratchpad ring enqueued by the upstream RX Module; 

(Phase 1) extract the five-tuple of the TCP/IP flow packet; 

(Phase 2) hash the extracted five-tuple of the TCP flow packet; 

(Phase 3) search the entries (or maybe create a new entry) in 
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the TCP Flow State Table, retrieve the Flow Descriptor’s 

address; (Phase 4) write the packet handle information into the 

working SRAM ring, dispatch the incoming TCP packet to a 

SRAM ring.  

The Classifier computes the hash value of five-tuple and 

initiates a Flow Descriptor retrieval operation by reading flow 

state store. The Classifier dispatches incoming packets to one 

of the TCP processing engines based on the hash value. 

Dispatching packets in this way eliminates the possibility of 

hazards that two content-scanning engines are simultaneously 

processing packets from the same flow.  

For the purpose of load balancing and packet order, the 

Classifier ME operates in the Thread Ordered Model and the 

Hash table searching is marked as critical section for mutual 

exclusion. The SRAM ring usage is for load balancing in the 

stricter packet order maintenance. See Figure 6 for more 

details. 

4) TCP content processing (Bloom Filter Module) 

Currently, the content processing engine based on Bloom 

Filter is implemented. The main function of the Bloom Filter 

Module is described as follows: read the TCP packet info 

(buf_handle) and TCP Flow Descriptor pointer, scan the packet 

in the joint consideration of the state stores of the last packet 

and whole of the current proceeding packet.

The aim of TCP content-processing is to recover TCP byte 

stream and scan them by Bloom Filter. Therefore, if there are 

two consecutive packets of same stream, the second one can not 

enter into the Bloom Filter until the first one passes through the 

Bloom Filter entirely. Otherwise, it can not merge the data of 

two packets and a mistake occurs. 

Thus, it is incorrect to simply put all the packets into one 

unique ring in order. That may cause two consecutive packets 

of the same stream are fetched by two paralleled Bloom Filter 

threads concurrently, which is prohibited. 

In order to avoid such troubles and guarantee all the packets in 

the same flow are transferred to one thread, a separate ring is 

assigned to each thread running Bloom Filter Module. The hash 

value of the five-tuple is used to choose the ring where the 

packet is transferred.

The Bloom Filter thread fetches packets of TCP stream from 

corresponding ring in order. If the packet payload length is less 

than the length of signatures (i.e. 16 bytes), it means that the 

payload can not hold one signature. The Local Memory is used 

to cache the combination of the previous packet’s tail of the 

same TCP flow with current packet’s payload. If the combined 

data’s length is less than 16 bytes, then the data are simply 

written back to Flow Descriptor which can be used by next 

packet, none operations are applied in this case. Otherwise, the 

combined data should be scanned by Bloom Filter to check 

whether signature is concealed and then be written back to 

Flow Descriptor. If a signature is broken into 2 parts contained 

in the two packets, the Bloom Filter will alarm in such 

condition. If the packet’s payload is longer than 16 bytes, 

normal scanning action is taken. At last the packet’s tail data 

are written into Flow Descriptor. 

In any step mentioned above, if any matches, the 

corresponding TCP flow should be handed over to upper layer 

processing. One possible solution is that the TCP flow byte 

stream is drained and transferred to XScale core. The 

AntiWorm agent of ClamAV running in XScale takes charge of 

inspecting the flow carefully. Another operation includes 

simple drop the packet from the TCP flow. 

5) TX Module 

The Packet Transmit block runs on a single MicroEngine and 

receives transmitting requests from the queue manager. Since 

the transmit requests are packet based, the MicroBlock needs to 

segment the payload into mpackets, copy them into TBUFs and 

validate them for the MSF to transmit. Each port has its own 

Scratchpad queue to store the packet enqueued.  

IV. EXPERIMENTS

A. Simulation Environment  

1) Features 

Two independent QDR SRAM controllers, each controller 

can address up to 64MB. 

(1) Two independent QDR SRAM controllers, each 4MB, 

total 8M.  

(2) 64MB DDR SDRAM.  

The simulation experiments are carried out on Intel 

Developer WorkBench V4.1, which is a cycle and data accurate 
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simulator. In this experiment, we use both Foreign Model and 

Network Traffic Simulation Plug-in on WorkBench, see Figure 

7. The Foreign Model is used to generate 128 signatures and 

writes them to the Local Memory of the MicroEngines with 

Bloom Filter Module. The Network Traffic Simulation Plug-in 

is used to simulate a Gigabit Packet Generator, which generate 

packets and send them to the media bus of IXP 2400.  

  At the end of simulation initialization, a function of Foreign 

Model is called by the script. In this function, 128 signatures 

are generated randomly and written to the local memories of the 

MicroEngines with Bloom Filter Module. At the same time, 

these signatures are written to a log file, which can be used by 

the Network Traffic Simulation Plug-in. 

When the simulation starts, the Network Traffic Simulation 

Plug-in module begins to send packets to the media bus of IXP 

2400 continually. Each byte of these packets’ payload is 

randomly generated and the length of the payload can also be 

changed. In order to compare the performance of packet 

forwarding rate, signatures are purposely inserted into the 

payload of packets, which should be captured by Bloom Filter. 

Which signature to choose is random, and the insert position in 

the packet is also random. By changing the length of the 

payload and the hit rate, the throughput in different settings is 

evaluated.

2) Results 

a) Internet Trace 

The real traces from (National Laboratory for Applied 

Network Research (NLANR), http://www.nlanr.net/) are used 

to provide realistic background traffic for simulations. 10 

thousands of TCP flow headers from a 30 minutes trace are 

extracted and injected into the experiments. TCP flow byte 

streams are randomly generated and filled with padding.

128 Signatures generated randomly are randomly inserted in 

the payload of TCP flows. i.e., the signature may be distributed 

between many fragmented packets, or in an intact packet. For 

privacy problem, the trace data are only used in the technique 

issues.

b) Throughput

The TCP flow scanner’ throughput (or Packet forwarding 

rate) is measured in the case that the packet is input with full 

rate. The throughput statistic is collected on the WorkBench 4.1. 

Figure 8 shows the maximum packet forwarding rate of the 

system with the payload size and hit ratio varying. In these 

experiments, the packets are simulated with length of 16, 64 

and 128 Bytes, and the probability carrying the signatures is 0%, 

20%, 40%, 60%, 80%, 100%.

As the system needs to scan the entire payload by shifting byte 

one by one, the packet forwarding rate is related to the size of 

the payload. When the size of payload increased, the 

throughput comes down slowly.  

In the simulation experiment, the exact matching is also 

executed on ME. Once a string is matched and proved true by 

using exact matching, the Bloom Filter just stops and alarms 

without any more filter operations. Therefore, it takes less 

cycles when handling packets with signatures especially with 

long packets with high hit ratio. It means the throughput of the 

system will not be impaired when a worm breaks out and the 

network is jammed with worm’s packets.  

c) Delay

Packet handling delay is accurately measured in the unit of 

cycles. The handling delay of each packet is recoded with 

payload varying from 64 to 1024. The packets are generated 

without signatures (i.e., hit ratio is 0%). It is the worse case in 

packet delay because the Bloom Filter must scan the whole 

payload. Figure 9 shows the relation between packet handling 

delay and packet payload length. 

d) Network Processor Internal Statistics 

The internal statistics of IXP 2400 is collected and plotted, 

where packet payload size is 16bytes, 64bytes and 128bytes. 

The statistics consists of TX ME utilization rate, Classifier ME 

utilization rate, Bloom Filters ME utilization rate, RX ME 

utilization rate, two SRAM Channel Utilization Rates, and 

DRAM Utilization Rate. Figures 10-13 show the internal 

statistics of IXP2400. 
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From these figures, it can be concluded that the performance 

bottleneck of the system is the Bloom Filters operation. The 

SRAM and DRAM are not overloaded because each packet 

only needs two read and one write operations. 

B. Real Experiments 

The real test environment is shown in Figure 14, which 

includes ENP-2611develope platform, Traffic Generator, 

several hosts and servers. ENP-2611-256 includes: IXP2400, 

600Mhz, 256MB DDR SDRAM, 8MB QDR SRAM.  

(1) Two independent QDR SRAM controllers, each 4MB, 

total 8M;  

(2) 256MB DDR SDRAM;  

(3) 16MB strataFlash memory to store boot code.  

IXIA Traffic Generator generates TCP/IP/Ethernet packets; 

signatures are injected intentionally in the payload of the test 

packet. Another case is the signature is broken into several 

parts and carried by several consecutive packets in the same 

TCP flows. In both cases  the signatures are discovered and 

recorded in the Local Memory of IXP 2400.  

V. SOFTWARE PACKAGE

For better performance, the system modules are programmed 

in MicroCode (Assembly). The initialization and management 

procedures on XScale are written in C language. For test 

purpose, a traffic generator program is implemented to produce 

real traffic by integrating the real internet trace. 

All codes have been packed into one software package, 

named TCPScanner 1.0, which integrates all the listed function 

blocks, and a signature library contains about one hundred 

signatures of Worms. This software package will be released as 

shared resource for research purpose in Network Processor 

field.

Com3

VI. FURTHER WORK

A. Packet reordering

Resequencing the out-of-order packets is very important in 

the system. But it has not been implemented in current versions. 

IXP provides the AISR for reordering the packets, but it may 

cost several memory spaces and handling overhead.

B. Flow cache 

According to some statistics [26], among the large amount of 

active flows, few flows are large enough and arrive frequently; 

hence a flow state cache may be useful in accelerating lookup 

speed in the flow state depositary. 

We will combine the ENP2611 and the main board of a PC 

together. In such case, the data will be offloaded to the Hard 

Disk directly for further inspection (scanned by other AV 

software, such as Symantec etc.)  

C. Polymorphic worms 

A polymorphic worm is one whose payload is transformed 

regularly, so no single signature identifies it. It is really a 

trouble for signature-based AntiWorm system to identify such 

worms. It is interesting to point out that [36-37] introduces 

signature-generated method for detecting new worm and 

finding the invariants of polymorphic worm.  

VII. CONCLUSIONS

An AntiWorm system based on stateful TCP flow inspection 

scheme is implemented on Intel IXP2400 Network Processor, 

which can monitor about 512K flows. With the fast 

packet-handling and highly programmable capability provided 

by NPU, parallel searching engines based on Bloom Filters are 

implemented. The main idea is to find and locate the worm by 

detecting the signatures of worms in each active TCP flow byte 

stream. NPU-Based implementation can scan every packet with 

high performance and can live update the worm’s signature 

flexibly to keep pace with fast evolution of worms. 
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The principles and implementation details of the system are 

also introduced and discussed. The performance issues about 

IXP Network Processors are evaluated and the statistics are 

collected. and an analysis is made for further optimizing the 

system performance. The system is also demonstrated and 

proved workable by using the Internet traces. An isolated test 

network scenario is constructed, and the real assaults of Worms 

are simulated by benignly executing the Worm sample codes. 

Software Package TCPScanner 1.0 is also given as a software 

release of the research. 
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