
1

AntiWorm NPU-based Parallel Bloom Filters for

TCP/IP Content Processing in Giga-Ethernet LAN

Zhen Chen, Chuang Lin, senior member, IEEE, Jia Ni, Dong-Hua Ruan, Bo Zheng, Yi-Xin Jiang,

Xue-Hai Peng, Yang Wang, An-an Luo, Bing Zhu, Yao Yue, Feng-Yuan Ren

Abstract—TCP/IP protocol suite carries most application data

in Internet. TCP flow retrieval has more security meanings than

the IP packet payload. Hence, monitoring the TCP flow has more

strength than only monitoring the IP packet payload in the

AntiWorm system. The main idea of this paper is to use the

flexibility and high performance of Network Processors to scan

TCP flow for locating worm’s binary codes, and cut off their

propagation. A stateful TCP flow inspection engine is

implemented based on IXP Network Processor, which can

monitor about 512K flows. The performance issues about IXP

Network Processors are evaluated and collected, and an analysis

is made for further optimizing the system performance. The

system is also demonstrated and proved by using the Internet

traces and real assaults of Worms. Software Package

TCPScanner 1.0 is also given as a software release of the research.

Index Terms—Network Security, Worms, Network Processors,

TCP/IP Protocol suite, Parallel Bloom Filter, Deep Packet

Inspection, Stateful TCP inspection.

I. INTRODUCTION

A. TCP/IP/Ethernet

Ethernet is a popular packet-switched LAN technology

invented at Xerox PARC in the early 1970s. Xerox Corporation,

Intel Corporation, and Digital Equipment Corporation

standardized the Ethernet in 1978. Gigabit Ethernet builds on

top of the Ethernet protocol, but increases speed tenfold over

Fast Ethernet to 1 gigabit per second (Gbps). Gigabit Ethernet

was standardized in June 1998, and is widely used in

high-speed LAN and MAN for connectivity.

TCP/IP is probably the most useful protocol suite in Internet.

It forms the base technology for a global internet that connects

Hosts, Routers and Switches. Statistics show that the TCP/IP

traffic accounts for 86.5% in the total Internet traffic, UDP/IP

This work is funded by IXA University Program of Intel Research Council

(No. 0411A66) and partially supported by Intel China Research Council and

Postdoctoral Science Foundation of China (No.023130017). This work is also

supported by the National Grand Fundamental Research 973 Program of China

(No. 2003CB314804), the National Natural Science Foundation of China (No.

90412012 60429202, 60273009, 60372019, 60432030 and 90104002),

NSFC and RGC (No. 60218003).

The authors are with the Institute of Network technology, Department of

Computer Science and Technology, Tsinghua University, Beijing, China.

Corresponding author: Zhen Chen, Phone: 86-10-62772487, Fax:

86-10-62771138, E-mail: zhenchen@csnet1.cs.tsinghua.edu.cn.

traffic accounts for 12.8%, and the miscellaneous 0.7%.

TCP/IP guarantees the reliable, in-order delivery of byte stream.

TCP supports a flow of byte streams in each direction and also

includes a flow-control mechanism for each direction.

Many security issues are also concerned with the TCP/IP,

such as Browser security [10], Worms[11], Bots[12], Spyware,

Spam mails, etc. Hence, it is important to audit the TCP traffic

to identify the possible threat for protection purpose.

B. Worms

A Worm is a kind of malicious code, which can be

self-reproduced and propagates over a network. The life cycle

of a worm is as follows: (Phase 1) Target discovery: the worm

in the infected host tries to locate a victim host; (Phase 2)

Carrier: First, make the new host prepares to receive the worm

code. Then, transfer the worm code (in plain text (unencrypted)

mode or in encryption way) to the new host; (Phase 3)

Activation: change the new host’s registry, and make it to

reference the worm code. Then the process repeats.

The following symptoms of active worms can be used for the

detection of Worms.

In the victim Target discovery Stage, a simple strategy the

worm used is scanning, including sequential and random

scanning, e.g. CodeRed. Scanning is a highly anomalous

behavior, so it can be effectively detected by devices.

 In the Carrier stage, a worm can either actively transfer itself

from host to host, or it can be carried along as part of normal

communication, e.g. Worm Blaster, a.k.a. RPC DCOM worm,

exploits the victim’s RPC (Remote Procedure Call) flaw and

make the victim connect back to the infecting machine using

TFTP (Trivial File Transmission Protocol) to download the

worm code. Figure 1 shows the payload of a packet of RPC

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

2

DCOM worm v2.2, where the WORM executable is illustrated

in details.

Some AntiVirus Tools, such as ClamAV[13] also use

segments of virus’s executable code as a signature to identify

Worms.

C. Intel IXP2400 Network Processors

The Network Processor Unit (NPU) [2-8] enables network

researchers and developers to import the latest network services

while maintaining high throughput and low latency. In this

paper, Intel IXP Network Processors IXP2400 is used and will

be introduced as follows [14-21].

IXP2400 integrates the following function blocks: 8

Multi-Threaded MicroEngines (2 Clusters), XScale Core, 4K

32-bit word Scratchpad Memory, 2 QDR SRAM Interface

controllers, 1 DDR DRAM Interface controller, Hardware

Hash Unit, Media and Switch Fabric(MSF) Interface, Half

Duplex OC-48/2.5 Gbps Ethernet Interface, and other

Peripherals Components.

A ME consists of the following resources: executable data

path (ALU), 16-entry CAM, CRC unit, 4K × 40-bit instruction

MicroStore, local CSR, CMD FICO, 640 32-bit Local Memory,

256 GPRs (Bank A and Bank B), 128 SRAM Read (Write)

Transfer registers, 128 SRAM Read (Write) Transfer registers,

Eight threads per ME (no overhead for context switching), 128

Next Neighbor registers etc.

Software frameworks can be used in programming the

Network Processor. This programming focuses primarily on

writing data plane components utilizing MEv2 MicroEngines.

Logical networking functions named MicroBlocks are used in

the fast path processing. Each MicroBlock is a macro

(Assembly Language) or MicroEngine C function written using

underlying low-level libraries.

The paper is structured as follows: Section 2 introduces the

design of AntiWorm TCP content processing System using

Parallel Bloom filters. Section 3 shows the implementation of

the system in detail. In Section 4, experiments are carried out

for demonstrating the working of AntiWorm system and the

experiment results are shown. Section 5 introduces the software

package of the research. Section 6 presents the further work.

Finally, Section 7 concludes the whole paper.

II. SYSTEM DESIGN

A. The Principle

The main idea of this paper is to use the flexibility and high

performance of Network Processors to detect and scan TCP

flow to locate worm codes, and cut off their propagation. In this

paper, an AntiWorm system based on TCP/IP Content

Processing is implemented based on IXP2400. Parallel Bloom

Filters are implemented in TCP/IP content processing engine,

but other signatures based search functions can also be

integrated. The TCP/IP content processing engine is stateful,

and can realize some more complex Intrusion Detection

Functions.

Blocking Flow

Table

Blocking Rules

Table

IP

Forwarding

Table

Signature

Library

TCP Content

Processing

Flow State

Depository

IP forwarding

In

Figure 2. Logical Function Blocks in TCP/IP Content Processing System

TCP/IP

Header

Processing

Flow

Table

Out

The system is deployed in one side (ingress or egress) of

network, but both sides can also both be deployed and

cooperated for a more effective purpose. The logical function

blocks in the system are shown in Figure 2, while the physical

function block in IXP2400 are shown in Figure 3.

B. The Flow Procedure of a packet

A brief introduction of the journey of a packet will be helpful

in understanding the system.

A TCP/IP packet arrives from one physical port. It is

received by RX Module, and then passed to the Classifier

Module complying with some Blocking Rules. (Note the

blocking function is optional, can be bypassed directly).

Classifier Module looks up all entries in flow state table and

decide whether to add the flow state into Flow table or not. The

flow state table is organized in hash table, and the collisions are

resolved by using linked-list. If the TCP/IP packet belongs to a

new flow, then a new entry will be created and added into the

flow state table. If not, the flow state of the TCP flow which the

packet belongs to will be retrieved and sent to the

corresponding SRAM ring along with the buffer handle of the

packet etc. The flow state and application data are kept in a

record called Flow Descriptor. Flow Descriptors are stored in

DRAM for economical reason.

An optional function of Classifier Module is Traffic Monitor.

It collects information such as traffic volume of a certain source

IP, or a certain destination port. An unusual large flow from a

non-server host or to an unknown port is supposed to be a sign

of worm activity. To achieve a tradeoff between monitor

accuracy and performance, a multistage filters technique

proposed by Cristian Estan and George Varghese [30, 31] is

used to account the 1% largest flows. The amount of ICMP

destination unreachable message is also counted, while a large

amount possibly means an active random-scanning worm [41].

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

3

With Traffic Monitor enabled, we could scan TCP context only

when there is a sign of worm outbreak, so relief the context

processing engines.

TCP content processing engines drain the packets from the

respective SRAM ring and perform Bloom Filters action. If

suspicious, the packet is exactly compared with the signatures

one by one. An optional function is draining the specified TCP

flow into XScale buffer, where a ClamAV agent is responsible

for scanning the total flow the TCP for some Worms. After

handling a packet, the Flow Descriptor in DRAM is updated.

Then it is turn for IPv4 Forwarder Module, which maintains

the route table and forwards the packet into transmitting queue.

Finally the TX Module transmits the packet out of the system.

C. Hash Table Index

A Hash table is used to index memory that stores each flow’s

state. Gracefully handling hash table collisions is difficult for

real-time systems. To ensure proper monitoring of all flows, the

state store manager can chain a linked list of flow state records

off of the appropriate hash entry.

D. Bloom Filters

To quick identify worms’ signatures in TCP byte stream

flow, Bloom Filter technique [22-25] is used in TCP/IP Content

Processing Engine. Countable Bloom Filters is implemented in

practical system for scalable reasons.

Definition 1. (Bloom Filter). A Bloom Filter is used to

represent a set S s of elements from a

universe . It consists of an array of bits, initially all set to

0. A Bloom Filter uses k independent random hash functions

 with range {0 . These hash functions map

each element

1 2, , , ns s n

U m

1, , kh h , , 1}m

s S , the bit at adderss is set to 1 for

. A Bloom Filter may yield a false positive, where it

suggests that an element

()ih s

1 i k

x is in even though it is not, but it

will not generate a false negative event.

S

Given the assumption that hash functions are perfectly

random, let , the false positive probability f is given /kn mp e

/1
1 1 1 (1)

k
kn

k
kn m kf e p

m
(Eq. 1)

Definition 2. (Counting Bloom Filter). A Counting Bloom

Filter is a Bloom Filter enhanced with a vector of counters

corresponding to each bit in the bit vector (BV) for scalability

reason. Whenever a counting Bloom Filter adds or deletes a

member, it increments or decrements the counters

corresponding bit in the bit vector. Only when a counter

changes from one to zero, it clears the corresponding bit in BV.

Therefore, these counters change only during the addition and

deletion of strings in the Bloom Filter.

E. Flow state based content scanning

The Bloom Filters based TCP content scanning engines

processes TCP byte streams from the TCP Classifier Module.

The content scanning engines can match a signature that spans

across multiple packets in the same flow. When a packet of a

certain flow reaches the content scanning engine, the content

scanning engine must restore the Flow Descriptor for that flow

before starting the matching operation on that packet. When it

has finished processing the packet, the content scanning engine

must save the flow’s new Flow Descriptor.

Packets are transferred to the content scanning engine along

with a data structure shown in Table 1. The content-scanning

engine firstly loads the flow state of that flow after receiving a

packet from the corresponding SRAM rings. If the content

scanning engine finds no matches in the packet, then the packet

can pass through the module. If a match is discovered, then it

notifies the flow blocking module to block the flow, terminates

the connection, or lets the data pass through. It can also send

out alert messages in response to content matches to XScale.

Each content-scanning engine processes data one byte at a

time. Having four MEs (32 threads) for content-scanning

engines in parallel and processing 32 flows concurrently, as

Figure 3 shows. The system dispatches incoming packets to one

of the content scanning engines based on a hash of the flow ID

by the TCP Classifier Module. Dispatching packets in this way

can eliminate the possibility of hazards that two

content-scanning engines were simultaneously processing

packets from the same flow.

III. IMPLEMENTATIONS

A. System Requirements

TCP Flow State Stores:

(1) The amount of TCP flows monitored is about 512K (229);

(2) Flow state store is 64Bytes each in size;

(3) The packets in TCP/IP stream are received in order.

Beside, the packets which are retransmitted are ignored.

Bloom Filters:

(1) The size of Signature Library is about 128;

(2) The false-positive probability of the Bloom Filter should

be less than 2-8;

(3) The size of signature is fixed and 16 bytes long.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

4

B. ME Allocation

In current design, as an integrated system, RX Module takes

one ME, a Classifier Module occupies one ME, IP Forwarder

Module occupies one ME, and TX Module takes one ME, the

remaining 4 MEs are used as TCP Flow Content Processing

Engines. See Figure 5.

C. Flow State Table

A resequencing container (AISR, Asynchronous Insert

Synchronous Removing) is needed to place in front end of the

system. Hence the assumption is asserted that the packet is

coming in order. The flow state table is organized in the form of

hash table, see Figure 4. A new flow state store is created and

added into hash table in the following two cases: one is the

arrival of the TCP SYN packet, the other is the arriving packet

can not match any flow state entry in existence. The old flow

state store is also flushed in the following two cases: one is the

reception of the TCP FIN packet, the other is a flow state is too

old, which is indexed in the timestamp marked in the flow state.

The XScale is responsible for clearing the idle TCP Flow

Descriptor at a fixed interval. A process is woken up in the

specified interval, frees the idle flow state store according to the

timestamp marked in the last flow state update and current

timestamp.

In a common-case scenario in which there’s no more than

one entry per hash bucket, each packet requires a total of one

read and one write operations to the DRAM: a 16-word read to

retrieve flow state, and a 16-word write to update flow states.

Table 1 illustrates the TCP Flow State Record (Flow

Descriptor), which reflects the design considerations

aforementioned.

D. Data Structure

1) Data Structure in Scratchpad Ring

Scratchpad ring is used to store the intermediate results of

Packet handling in context pipeline.

2) Data Structure in Creating SRAM Ring

SRAM controller provides a queue-array element to access a

queue or a ring. When used as a ring, a SRAM ring is very

similar to a Scratchpad ring, in a way that the data being stored

in Scratchpad memory, the data is stored in a contiguous block

of SRAM. Also, SRAM rings can be configured into sizes of

512, 1K, 2K, 4K, …, 64K long words to support a larger FIFO.

When used to implement a ring, a queue-array element contains

the head and tail pointers, the size of the ring, and the current

number of elements (count) on the ring.

3) Data Structure in SRAM Queue

SRAM controllers for the Intel IXP2400 and IXP2800

network Processors support a data structure called Q-array,

which provides hardware-supported basic queue management.

For applications requiring a few small FIFOs, Scratchpad rings

are sufficient. However, Scratchpad rings are not sufficient for

applications requiring more than 16 FIFOs. In such case, the

IXP2XXX processor’s solution is to use SRAM-based FIFOs.

The IXP2XXX hardware can support as many FIFOs as can fit

within SRAM memory and provides access to these FIFOs

through a 64-element cache (per SRAM controller).

4) Flow State Records (or Flow Descriptor)

Table 1 shows the most important data structure in the

system, Flow State Record for a given flow. The total size is

64Bytes which a ME can retrieves all data in a single memory

operation. The Classifier Module maintains one of these

records for each flow that the content scanning engine need to

reference.

Of the 64 bytes of data stored for each flow, 32 bytes is used

to maintain flow state. The additional 32 bytes of state store for

each flow can hold the application-specific data for each flow

context.

E. Software Framework

1) Dispatch Loop

The dispatch loop combines MicroBlocks on a MicroEngine

and implements the data flow between them. The dispatch loop

also caches commonly used variables in registers or local

memory. These variables can be accessed by MicroBlocks

using a set of macros or microC functions. The dispatch loop

also provides source and sink blocks to send and receive

packets to the Intel XScale core and to send packets to a

different MicroBlock group.

Table 1. The TCP Flow State Record (or Flow Descriptor)

(LSB-MSB)
LW Bits Size Field Description

0 31:0 32 Hash Value The hash value of five-tuple

1 31:0 32 Next Flow Pointer Address of the next Flow state in DRAM

2 31:0 32 Source IP address Source IP address

3 31:0 32 Destination IP

address

Destination IP address

4 31:0 32 TCP Source Port Source port

5 31:0 32 TCP Dest Port Destination port

6 31:0 32 Protocol Protocol(TCP, UDP etc.)

7 31:0 32 Sequence Number TCP packet sequence number

8 31:0 32 Payload offset Source and Destination Port

9 31:0 32 CODE BITS Some Flags for Packet handling

10 31:0 32 Time Stamp The time mark for the arrival

packet(update)

11 31:0 32 Remaining length Index the last remaining byte length

12 31:0 32 1st word The first word of the last packet in flow

13 31:0 32 2nd word The second word of the last packet in flow

14 31:0 32 3rd word The third word of the last packet in flow

15 31:0 32 4th word The fourth word of the last packet in flow

A dispatch loop is specific to the application being targeted.

The intent is for the mircoblocks to be as reusable as possible.

The dispatch loop and the internal implementation of its

associated helper macros or functions may be optimized for a

specific application.

2) RX Microblock

RX MicroBlocks interface with the MSF and reassemble

incoming m-packets (RBUFS) into complete packets for

further processing by down stream packet processing code. For

each packet, the packet data is written to DRAM, the packet

descriptor (meta-data) is written to SRAM and a handle to the

packet is written to a Scratchpad ring for use by the packet

processing stage.

3) Classifier Module

Classifier Module is assigned to one ME for scalable reason.

The minimal function of classifier module is described as

follows: (Phase 0) read the packet information (buf_handle)

from Scratchpad ring enqueued by the upstream RX Module;

(Phase 1) extract the five-tuple of the TCP/IP flow packet;

(Phase 2) hash the extracted five-tuple of the TCP flow packet;

(Phase 3) search the entries (or maybe create a new entry) in

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

5

the TCP Flow State Table, retrieve the Flow Descriptor’s

address; (Phase 4) write the packet handle information into the

working SRAM ring, dispatch the incoming TCP packet to a

SRAM ring.

The Classifier computes the hash value of five-tuple and

initiates a Flow Descriptor retrieval operation by reading flow

state store. The Classifier dispatches incoming packets to one

of the TCP processing engines based on the hash value.

Dispatching packets in this way eliminates the possibility of

hazards that two content-scanning engines are simultaneously

processing packets from the same flow.

For the purpose of load balancing and packet order, the

Classifier ME operates in the Thread Ordered Model and the

Hash table searching is marked as critical section for mutual

exclusion. The SRAM ring usage is for load balancing in the

stricter packet order maintenance. See Figure 6 for more

details.

4) TCP content processing (Bloom Filter Module)

Currently, the content processing engine based on Bloom

Filter is implemented. The main function of the Bloom Filter

Module is described as follows: read the TCP packet info

(buf_handle) and TCP Flow Descriptor pointer, scan the packet

in the joint consideration of the state stores of the last packet

and whole of the current proceeding packet.

The aim of TCP content-processing is to recover TCP byte

stream and scan them by Bloom Filter. Therefore, if there are

two consecutive packets of same stream, the second one can not

enter into the Bloom Filter until the first one passes through the

Bloom Filter entirely. Otherwise, it can not merge the data of

two packets and a mistake occurs.

Thus, it is incorrect to simply put all the packets into one

unique ring in order. That may cause two consecutive packets

of the same stream are fetched by two paralleled Bloom Filter

threads concurrently, which is prohibited.

In order to avoid such troubles and guarantee all the packets in

the same flow are transferred to one thread, a separate ring is

assigned to each thread running Bloom Filter Module. The hash

value of the five-tuple is used to choose the ring where the

packet is transferred.

The Bloom Filter thread fetches packets of TCP stream from

corresponding ring in order. If the packet payload length is less

than the length of signatures (i.e. 16 bytes), it means that the

payload can not hold one signature. The Local Memory is used

to cache the combination of the previous packet’s tail of the

same TCP flow with current packet’s payload. If the combined

data’s length is less than 16 bytes, then the data are simply

written back to Flow Descriptor which can be used by next

packet, none operations are applied in this case. Otherwise, the

combined data should be scanned by Bloom Filter to check

whether signature is concealed and then be written back to

Flow Descriptor. If a signature is broken into 2 parts contained

in the two packets, the Bloom Filter will alarm in such

condition. If the packet’s payload is longer than 16 bytes,

normal scanning action is taken. At last the packet’s tail data

are written into Flow Descriptor.

In any step mentioned above, if any matches, the

corresponding TCP flow should be handed over to upper layer

processing. One possible solution is that the TCP flow byte

stream is drained and transferred to XScale core. The

AntiWorm agent of ClamAV running in XScale takes charge of

inspecting the flow carefully. Another operation includes

simple drop the packet from the TCP flow.

5) TX Module

The Packet Transmit block runs on a single MicroEngine and

receives transmitting requests from the queue manager. Since

the transmit requests are packet based, the MicroBlock needs to

segment the payload into mpackets, copy them into TBUFs and

validate them for the MSF to transmit. Each port has its own

Scratchpad queue to store the packet enqueued.

IV. EXPERIMENTS

A. Simulation Environment

1) Features

Two independent QDR SRAM controllers, each controller

can address up to 64MB.

(1) Two independent QDR SRAM controllers, each 4MB,

total 8M.

(2) 64MB DDR SDRAM.

The simulation experiments are carried out on Intel

Developer WorkBench V4.1, which is a cycle and data accurate

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

6

simulator. In this experiment, we use both Foreign Model and

Network Traffic Simulation Plug-in on WorkBench, see Figure

7. The Foreign Model is used to generate 128 signatures and

writes them to the Local Memory of the MicroEngines with

Bloom Filter Module. The Network Traffic Simulation Plug-in

is used to simulate a Gigabit Packet Generator, which generate

packets and send them to the media bus of IXP 2400.

 At the end of simulation initialization, a function of Foreign

Model is called by the script. In this function, 128 signatures

are generated randomly and written to the local memories of the

MicroEngines with Bloom Filter Module. At the same time,

these signatures are written to a log file, which can be used by

the Network Traffic Simulation Plug-in.

When the simulation starts, the Network Traffic Simulation

Plug-in module begins to send packets to the media bus of IXP

2400 continually. Each byte of these packets’ payload is

randomly generated and the length of the payload can also be

changed. In order to compare the performance of packet

forwarding rate, signatures are purposely inserted into the

payload of packets, which should be captured by Bloom Filter.

Which signature to choose is random, and the insert position in

the packet is also random. By changing the length of the

payload and the hit rate, the throughput in different settings is

evaluated.

2) Results

a) Internet Trace

The real traces from (National Laboratory for Applied

Network Research (NLANR), http://www.nlanr.net/) are used

to provide realistic background traffic for simulations. 10

thousands of TCP flow headers from a 30 minutes trace are

extracted and injected into the experiments. TCP flow byte

streams are randomly generated and filled with padding.

128 Signatures generated randomly are randomly inserted in

the payload of TCP flows. i.e., the signature may be distributed

between many fragmented packets, or in an intact packet. For

privacy problem, the trace data are only used in the technique

issues.

b) Throughput

The TCP flow scanner’ throughput (or Packet forwarding

rate) is measured in the case that the packet is input with full

rate. The throughput statistic is collected on the WorkBench 4.1.

Figure 8 shows the maximum packet forwarding rate of the

system with the payload size and hit ratio varying. In these

experiments, the packets are simulated with length of 16, 64

and 128 Bytes, and the probability carrying the signatures is 0%,

20%, 40%, 60%, 80%, 100%.

As the system needs to scan the entire payload by shifting byte

one by one, the packet forwarding rate is related to the size of

the payload. When the size of payload increased, the

throughput comes down slowly.

In the simulation experiment, the exact matching is also

executed on ME. Once a string is matched and proved true by

using exact matching, the Bloom Filter just stops and alarms

without any more filter operations. Therefore, it takes less

cycles when handling packets with signatures especially with

long packets with high hit ratio. It means the throughput of the

system will not be impaired when a worm breaks out and the

network is jammed with worm’s packets.

c) Delay

Packet handling delay is accurately measured in the unit of

cycles. The handling delay of each packet is recoded with

payload varying from 64 to 1024. The packets are generated

without signatures (i.e., hit ratio is 0%). It is the worse case in

packet delay because the Bloom Filter must scan the whole

payload. Figure 9 shows the relation between packet handling

delay and packet payload length.

d) Network Processor Internal Statistics

The internal statistics of IXP 2400 is collected and plotted,

where packet payload size is 16bytes, 64bytes and 128bytes.

The statistics consists of TX ME utilization rate, Classifier ME

utilization rate, Bloom Filters ME utilization rate, RX ME

utilization rate, two SRAM Channel Utilization Rates, and

DRAM Utilization Rate. Figures 10-13 show the internal

statistics of IXP2400.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

7

From these figures, it can be concluded that the performance

bottleneck of the system is the Bloom Filters operation. The

SRAM and DRAM are not overloaded because each packet

only needs two read and one write operations.

B. Real Experiments

The real test environment is shown in Figure 14, which

includes ENP-2611develope platform, Traffic Generator,

several hosts and servers. ENP-2611-256 includes: IXP2400,

600Mhz, 256MB DDR SDRAM, 8MB QDR SRAM.

(1) Two independent QDR SRAM controllers, each 4MB,

total 8M;

(2) 256MB DDR SDRAM;

(3) 16MB strataFlash memory to store boot code.

IXIA Traffic Generator generates TCP/IP/Ethernet packets;

signatures are injected intentionally in the payload of the test

packet. Another case is the signature is broken into several

parts and carried by several consecutive packets in the same

TCP flows. In both cases the signatures are discovered and

recorded in the Local Memory of IXP 2400.

V. SOFTWARE PACKAGE

For better performance, the system modules are programmed

in MicroCode (Assembly). The initialization and management

procedures on XScale are written in C language. For test

purpose, a traffic generator program is implemented to produce

real traffic by integrating the real internet trace.

All codes have been packed into one software package,

named TCPScanner 1.0, which integrates all the listed function

blocks, and a signature library contains about one hundred

signatures of Worms. This software package will be released as

shared resource for research purpose in Network Processor

field.

Com3

VI. FURTHER WORK

A. Packet reordering

Resequencing the out-of-order packets is very important in

the system. But it has not been implemented in current versions.

IXP provides the AISR for reordering the packets, but it may

cost several memory spaces and handling overhead.

B. Flow cache

According to some statistics [26], among the large amount of

active flows, few flows are large enough and arrive frequently;

hence a flow state cache may be useful in accelerating lookup

speed in the flow state depositary.

We will combine the ENP2611 and the main board of a PC

together. In such case, the data will be offloaded to the Hard

Disk directly for further inspection (scanned by other AV

software, such as Symantec etc.)

C. Polymorphic worms

A polymorphic worm is one whose payload is transformed

regularly, so no single signature identifies it. It is really a

trouble for signature-based AntiWorm system to identify such

worms. It is interesting to point out that [36-37] introduces

signature-generated method for detecting new worm and

finding the invariants of polymorphic worm.

VII. CONCLUSIONS

An AntiWorm system based on stateful TCP flow inspection

scheme is implemented on Intel IXP2400 Network Processor,

which can monitor about 512K flows. With the fast

packet-handling and highly programmable capability provided

by NPU, parallel searching engines based on Bloom Filters are

implemented. The main idea is to find and locate the worm by

detecting the signatures of worms in each active TCP flow byte

stream. NPU-Based implementation can scan every packet with

high performance and can live update the worm’s signature

flexibly to keep pace with fast evolution of worms.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

8

The principles and implementation details of the system are

also introduced and discussed. The performance issues about

IXP Network Processors are evaluated and the statistics are

collected. and an analysis is made for further optimizing the

system performance. The system is also demonstrated and

proved workable by using the Internet traces. An isolated test

network scenario is constructed, and the real assaults of Worms

are simulated by benignly executing the Worm sample codes.

Software Package TCPScanner 1.0 is also given as a software

release of the research.

ACKNOWLEDGMENT

We thanks for Intel Corporation for donating our Intel IXP

2400 developer platform and provides technique supports. We

are grateful to Jeffery Cao in Intel China University Program

for his support and also thank Brad Burres in Intel

Communications Group for his insight suggestions.

REFERENCES

[1] Larry L. Peterson and Bruce S. Davie, “Computer Networks: A system

Approach,” second edition, Morgan Kaufmann Inc., 2000.

[2] Douglas E. Comer, “Network System Design: Using Network

Processors,” Pearson Education Inc., 2004.

[3] Wajdi Feghali, Brad Burres, Gilbert Wolrich, Douglas Carrigan,

“Security: Adding Protection to the Network via the Network Processor,”

Intel Technology Journal, Volume 06, Issue 03, Published August 15,

2002.

[4] Ram Bhamidipati, Ahmad Zaidi, Siva Makineni, Kah K. Low, Robert

Chen, Kin-Yip Liu, Jack Dahlgren, "Challenges and Methodologies for

Implementing High-Performance Network Processors," Intel Technology

Journal, Volume 06, Issue 03, Published August 15, 2002.

[5] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, Larry Huston, Uday

Naik, "Network Processor Performance Analysis Methodology," Intel

Technology Journal, Volume 06, Issue 03, Published August 15, 2002.

[6] Uday Naik, Alex Shoykhet, Larry Huston, Donald Hooper, Raj Yavatkar,

Duke Tallam, Travis Schluessler, Prashant Chandra, Adrian Georgescu,

"IXA Portability Framework: Preserving Software Investment in Network

Processor Applications," Intel Technology Journal, Volume 06, Issue 03,

Published August 15, 2002.

[7] Bill Carlson, Intel Internet Exchange Architecture and Applications: A

Practical Guide to Intel Network Processors, Intel Press, 2003.

[8] Erik J. Johnson and Aaron R. Kunze, IXP2400/2800 Programming: The

Complete MicroEngine Coding Guide, Intel Press, 2003.

[9] Peder Jungck and Simon S.Y. Shim, “Issues in High-Speed Internet

Security,” IEEE computer magazine, Vol. 37, No. 7, pp. 36-42, July 2004.

[10] Web Browser Security, see http://bcheck.scanit.be/bcheck/, or

http://www.greymagic.com/.

[11] Darrell M. Kienzle, Matthew C. Elder, “Recent worms: a survey and

trends,” Proceedings of the 2003 ACM workshop on Rapid Malcode,

Pages: 1–10, October 2003.

[12] David Geer, "Malicious Bots Threaten Network Security," IEEE

Computer magazine, Vol.38, No.1, pp.18-20, January 2005.

[13] Signatures of worm, “Creating signatures for ClamAV,” see

http://www.clamav.net/doc

[14] Bill Carlson, Intel Internet Exchange Architecture and Applications: A

Practical Guide to Intel Network Processors, Intel Press, 2003.

[15] Erik J. Johnson and Aaron R. Kunze, IXP2400/2800 Programming: The

Complete MicroEngine Coding Guide, Intel Press, 2003.

[16] Intel Corporation, IXP2400/IXP2800 Network Processor Programmer’s

Reference Manuals, May 2004.

[17] Intel Corporation, IXP2400/IXP2800 Network Processor Datasheet.

[18] Intel Corporation, IXP2400/IXP2800 Network Processor Hardware

Reference Manual, November 2003.

[19] Intel Corporation, IXP2400/IXP2800 Network Processor Development

Tools User’s Guide, July 2004.

[20] Intel Corporation, IXP2400 and IXP2800 Network Processors Packet

Generator Reference Manual, July 2004.

[21] Intel Corporation, Intel Internet Exchange Architecture Software

Building Blocks Developer’s Manual, November 2003.

[22] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable

Errors,” Comm. ACM, vol. 13, no. 7, May 1970, pp. 422-426.

[23] Michael Mitzenmacher, “Compressed Bloom Filters,” IEEE/ACM

Transaction on networking, vol. 10, no. 5, october 2002.

[24] Sarang Dharmapurikar, Praveen Krishnamurthy, T.S. Sproull and J. W.

Lockwood, “Deep packet inspection using parallel bloom filters,” IEEE

Micro, Volume 24, Issue 1, Pages:52 – 61, Jan.-Feb. 2004.

[25] D. V. Schuehler, J. Moscola and J. W. Lockwood, “Architecture for a

hardware-based, TCP/IP content-processing system,” IEEE Micro,

Volume 24, Issue 1, Pages: 62 – 69, Jan.-Feb. 2004.

[26] Bharath Madhusudan, John W. Lockwood, A Hardware-Accelerated

System for Real-Time Worm Detection, IEEE Micro, Vol. 25, No. 1, pp.

60-69, January/February 2005.

[27] J.W. Lockwood et al., “Application of Hardware Accelerated Extensible

Network Nodes for Internet Worm and Virus Protection,” Active

Networks: IFIP TC6 5th International Workshop, IWAN 2003,

Kyoto,Japan, December 10-12, 2003, Lecture Notes in Computer Science

2982, Springer-Verlag, 2003, pp. 44-57.

[28] J.W. Lockwood, “An Open Platform for Development of Network

Processing Modules in Reprogrammable Hardware,” Proc. IEC

DesignCon 01, Int’l Eng. Consortium, 2001, pp. WB-19.

[29] F. Braun, J. Lockwood, and M. Waldvogel, “Protocol Wrappers for

Layered Network Packet Processing in Reconfigurable Hardware,” IEEE

Micro, vol. 22, no. 1, Jan. 2002, pp. 66-74.

[30] Cristian Estan, George Varghese, New Directions in Traffic Measurement

and Accounting, ACM SIGCOMM 2002.

[31] C. Estan and G. Varghese, “New Directions in Traffic Measurement and

Accounting,” Proc. 2002 Conf. Applications, Technologies,

Architectures, and Protocols for Computer Comm., ACM Press, 2002, pp.

323-336.

[32] C. Estan, G. Varghese, and M. Fisk, “Bitmap Algorithms for Counting

Active Flows on High-Speed Links,” Proc. 3rd ACM SIGCOMM Conf.

Internet Measurement, ACM Press, 2003, pp. 153-166.

[33] A. Kumar et al., “Data Streaming Algorithms for Efficient and Accurate

Estimation of Flow Size Distribution,” Proc. Joint Int’l Conf.

Measurement and Modeling of Computer Systems, ACM Press, 2004, pp.

177-188.

[34] N. G. Duffield, C. Lund, M. Thorup, Estimating flow distributions from

sampled flow statistics, ACM SIGCOMM 2003.

[35] N. Brownlee, C. Mills and G. Ruth, Traffic flow measurement:

Architecture, RFC 2722.

[36] James Newsome, Brad Karp, Dawn Song, “Polygraph: Automatic

Signature Generation for Polymorphic Worms,” IEEE Symposium on

Security and Privacy, May 2005.

[37] James Newsome and Dawn Song, “Dynamic Taint Analysis: Automatic

Detection, Analysis, and Signature Generation of Exploit Attacks on

Commodity Software,” Network and Distributed Systems Security

Symposium, Feb 2005.

[38] D. Moore et al., “Internet Quarantine: Requirements for Containing

Self-Propagating Code,” Proc. IEEE Infocom2003, IEEE Press, 2003, pp.

1901-1910.

[39] S. Singh et al., The EarlyBird System for the Real-Time Detection of

Unknown Worms, tech. report CS2003-0761, Dept. of Computer Science,

Univ. of Calif., San Diego, Aug. 2003.

[40] J. Moscola et al., “Implementation of a Streaming Content

Search-and-Replace Module for an Internet Firewall,” Proc. 11th

Symposium on High-Performance Interconnects, IEEE CS Press, 2003,

pp. 122-129.

[41] George Bakos and Drs. Vincent H. Berk, Early Detection of Internet

Worm Activity Using ICMP Destination Unreachable Messages, In

Proceedings of the SPIE Aerosense, 2002.

[42] G. Gonnet and E. Brewer, Handbook of Algorithms and Data Structures,

Addison- Wesley, 1991.

Proceedings of the IEEE Conference on Local Computer Networks 30th Anniversary (LCN’05)
0-7695-2421-4/05 $20.00 © 2005 IEEE

