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Abstract

Stroke is enlisted as one of the leading causes of death and serious disability affecting mil-

lions of human lives across the world with high possibilities of becoming an epidemic in the

next few decades. Timely detection and prompt decision making pertinent to this disease,

plays a major role which can reduce chances of brain death, paralysis and other resultant

outcomes. Machine learning algorithms have been a popular choice for the diagnosis, anal-

ysis and predication of this disease but there exists issues related to data quality as they are

collected cross-institutional resources. The present study focuses on improving the quality

of stroke data implementing a rigorous pre-processing technique. The present study uses a

multimodal stroke dataset available in the publicly available Kaggle repository. The miss-

ing values in this dataset are replaced with attribute means and LabelEncoder technique is

applied to achieve homogeneity. However the dataset considered was observed to be imbal-

anced which reflect that the results may not represent the actual accuracy and would be

biased. In order to overcome this imbalance, resampling technique was used. In case of

oversampling, some data points in the minority class are replicated to increase the cardinal-

ity value and rebalance the dataset. transformed and oversampled data is further normalized

using Standardscalar technique. Antlion optimization (ALO) algorithm is implemented on

the deep neural network (DNN) model to select optimal hyperparameters in minimal time

consumption. The proposed model consumed only 38.13% of the training time which was

also a positive aspect. The experimental results proved the superiority of proposed model.
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1 Introduction

The statistical report of WHO (World Health Organization) has identified stroke to be one

of the predominant causes of disability in the world wherein an estimated 17 million people

succumb to death, being a victim of heart disease and strokes. The primary reasons for

individuals getting affected by heart diseases, almost giving it the status of an epidemic

are physical inactivity, unhealthy and irregular lifestyle and tobacco smoking. In United

States it is the enlisted within the top five reasons of death across advanced aged male and

females every year. Naturally, there is a proportional increase in the medical expenses of an

estimated 23 billion dollars as per the reports of 2014 [2]. Hence it is extremely important

to find suitable and accurate technical solutions to predict the possibilities of this near fatal

disease contributing towards control of per-capita cost of medicine and therapeutics.

The present treatments and medical interventions for investigation of ischemic strokes

focus on reperfusion of ischemic tissues using intravenous medications and vascular

techniques to remove the obstructions in the blood flow [16]. The detection are primar-

ily dependent on neuroimaging and magnetic resonance imaging [39]. Machine learning

algorithms have been implemented for early diagnosis personalized treatments, remote

monitoring of patients [7] and prompt decision making in acute ischemic strokes and other

diseases [19, 36] where time plays an extremely important factor. Cardiac strokes and its

relevant areas of research are vast and machine learning algorithms have played significant

roles in various spectrum of this disease. As an example, machine learning models have

been used in conclusive diagnosis from medical images, estimation of the onset of heart

attacks, analysis of cerebral edema, predictions of complications and post treatment results

[3, 4, 35, 37, 43]. Also it becomes crucial to highlight that most of the stroke patients face

motor deficits after their incidents and machine learning algorithms have also been imple-

mented to predict the possibilities of such outcomes based on analysis of structural medical

resonance images (MRI) of the brain and heart. Machine learning and IoT based applica-

tions [14, 22, 30] have become extremely predominant in all sectors of human life wherein

devices are becoming smart, secure and available in hand held mobile devices. It is obvious

that such implementations will become a necessity in the healthcare sector as well.

It is known that prevention is better than cure. The ideal approach thus would be to detect

possibilities of stroke early enough, to prevent patients becoming a victim in the first place.

This accelerated detection would reduce chances of brain damage and paralysis thereby

enabling patients to regain complete mobility and agility to lead a normal life. Although

the results of machine learning [9, 13, 27, 42] implementations are promising but there

are associated challenges. Firstly, there exist limitations related to sample sizes and qual-

ity of data in the datasets [6]. Also, these data are collected from various Institutions and

collation of inter-institutional data lead to data imbalances [15, 17, 25, 38]. Hence, the pri-

mary motivation for this study was to identify and incorporate the best data pre-processing

methodologies and then use the processed data for training of the machine learning model.

Deep Neural Networks (DNN) usually require huge amount of time for training. A major

amount of time is wasted by machine learning (ML) practitioners and researchers in finding

the optimal parameters for DNN [5]. The identification of the best algorithm for selection

of optimal hyperparameters in deep neural network acted as the second challenge due to

the fact that the existing algorithm used excessive computational time to perform the same

job. The identification of the best algorithm acted as a motivational factor to select optimal

hyperparameters in the deep neural network ensuring minimal time consumption. The com-

putational complexities involved in solving real-world problems are also quite high which

are always not within the scope of conventional methods wherein majority of them are based



on mathematical optimization algorithms. These algorithms depend on various assumptions

related to the problem to fit in to a particular method and hence lag flexibility to model the

problem close enough to reality. Thus conventional algorithms include limitations which fail

to be suitable for a broader spectrum of real-time problem solving.Optimization techniques

and algorithms inspired by nature play significant role is solving such practical problems

and have been used with the same objective in the present study as well.

Based on the above mentioned motivational factors, the present study focuses on:

1. Eradication of imbalances and heterogeneity in the multimodal stroke dataset collected

from the publicly available Kaggle repository using re-sampling method.

2. Replacement of missing values in the dataset by attribute mean and application of

LabelEncoder technique in Python for achieving homogeneity

3. re-sampling of the transformed data to eliminate imbalances followed by application of

StandardScalar technique for normalization

4. Implementation of Antlion optimization algorithm in the DNN model to ensure

optimized choice of hyper-parameters in limited consumption of time.

The success of a deep learning model is highly dependent on the data being used and also

the algorithm being implemented. The advantages of the proposed revolve around these

two factors primarily. Firstly, the model includes an extremely meticulous pre-processing

method which fills all missing values, performs data transformation, re-samples and finally

normalizes the data. Secondly the model uses the Antlion optimizer which simulates the

hunting characteristics of natural ants. The optimizer includes the basic nature of ants in

hunting the prey, involving five steps - random walk, building of traps, trapping of ants in

the traps, catching of the prey and finally rebuilding the traps once again. The algorithm is

capable of solving constraint problems having diversified search spaces due to its optimized

design. It is a gradient free algorithm which visualizes problems as a blackbox and therefore

has applicability in solving real-time problems. Considering all these advantages, the output

of this framework is expected to yield more accurate prediction results in comparison to the

existing machine learning (ML) models for early detection of stroke and heart diseases.

Rest of the manuscript is organized asfollows. Related work is presented in Section 2.

The preliminaries, background algorithms and the proposed methodology are discussed in

Section 3. The experimental results are presented in Section 4. The manuscript is concluded

in Section 5.

2 Literature survey

To highlight the dire necessity of solving the problem as mentioned in the paper, an explicit

literature review was conducted by exploring related studies in predicting heart disease

using machine learning algorithms and state-of-the-art techniques in the area of imbalanced

data learning.

In the area of predicting heart-diseases using machine learning algorithms, immense

work is going on and few of the potential studies include the work of [18] where the authors

have proposed an integrated machine learning-based feature selection and risk prediction

algorithms for Cardiovascular stroke prediction. The feature selection algorithm is based on

conservation mean. On the other hand, the stroke prediction algorithm is based on Margin-

based Censored Regression and SVM. For the evaluation and comparison of the proposed

stroke prediction approach with other existing approaches (i.e., Cox proportional hazards

model) 5-year CHS (Cardiovascular Health Study) cardiovascular disease dataset is used.



The experimental results show that the proposed approach predicted the stroke with 77%

accuracy. However, the proposed approach is evaluated only using the CHS dataset, so

possibilities of achieving the same performance with lower computational cost using other

available healthcare datasets, still need to be verified.

P. Chantamit-o-pas et al. [10] analyzed and compared Support Vector Machine, Naive

Bayes and the deep learning (DL) technique for stroke prediction. The data of heart patients

is taken from the UCI Machine learning repository; with 899 records and 76 attributes; is

used by these techniques to identify risk factors and to predict the disease. Ten attributes

related to a stroke risk factor were selected for training the models. The comparison revealed

that DL outperformed Naive Bayes and SVM algorithms for stroke prediction.

P. Chantamit-o-pas et al [11]. have investigated two deep learning algorithms - Long

Short-Term Memory (LSTM) and Recurrent Neural Network (RNN) for stroke prediction

on healthcare records. The study applied DL algorithms on Electronic Healthcare Records

(EHR) of patients with cerebrovascular disease for predicting stroke. The algorithm LSTM-

RNN is implemented and then the ability of LSTM-RNN is evaluated to recognize patterns

in multi-label classification of cerebrovascular symptoms or stroke. The results proved the

efficiency of LSTM-RNN when copared to other state-of-the-art algorithms.

G. Manogaran et al [23]. have proposed a DL-based method called Multiple Kernel

Learning with Adaptive Neuro-Fuzzy Inference System (MKL with ANFIS) for diagnosing

heart disease The proposed method has two steps; In the first step, the parameters were cho-

sen by MKL method. In the second step, the heart disease and healthy patients are classified

by feeding the data from MKL method to the ANFIS classifier. The authors have used the

KEGG Metabolic Reaction Network dataset for evaluating the performance of the proposed

model. The results have demonstrated that the proposed model has achieved better results

when compared to that of existing methods.

G. Thippa Reddy et al [29]. have proposed a technique for predicting heart disease called

the Rule-Based Fuzzy Logic (RBFL) prediction algorithm. The proposed technique works

in two steps; in the first step, feature reduction is performed using Locality Preserving Pro-

jection (LPP) algorithm to recognize the related attributes that will reduce the number of

features and remove unnecessary or noisy information. In the second step, first, the fuzzy

rules are produced from the Firefly Bat (FFBAT) algorithm and then these rules are applied

to classify the heart disease. The authors have performed experiments to evaluate their pro-

posed technique by using the publicly available UCI datasets, i.e., Cleveland, Hungarian,

Switzerland datasets. The results have shown that the proposed RBFL prediction algorithm

outperformed the existing approaches by attaining the accuracy of 76.51%.

Similarly, the state-of-the-art approaches in addressing issues relevant to imbalanced

data learning include the work of [33],where the authors have proposed a hybrid model to

improve the performance of the ensemble of the classifier for imbalanced data. There are

two phases in the proposed model. In phase one, the re-sampling of imbalanced data is

done by applying the Synthetic Minority Over-sampling Technique (SMOTE) for solving

the over-sampling issue and Random under-sampling technique for under-flow. Finally, the

pre-processed data is fed to an ensemble of classifiers using the Weka tool. Eight imbal-

anced datasets were chosen for experimental purposes with imbalance ratios from 2 to 80.

The proposed model has shown significant performance compared to ensemble classifiers

that were trained using different datasets. Similarly, in [44], the authors proposed a regular-

ized ensemble framework based on deep learning to tackle the issue of imbalanced datasets.

The proposed method basically uses undersampling based approach to recover balance

among classes and is evaluated on 11 synthetic and real-world datasets (with moderate-high

imbalance ratio). The proposed approach has achieved the maximum improvement of about



24.7% compared to benchmark studies. The authors in [47] proposed the algorithm CWsRF

(class weights voting) based on random forest to address the imbalance dataset problem in

the medical domain. The algorithm consist of three phases i.e. building RF model, building

CWsV (where different weights per class and votes are calculated) and classifying votes.

For evaluation purposes, five datasets were used mostly related to physiological signals and

breast cancer. The authors in [20] presented the notion of swarm fusion to address the imbal-

ance dataset problem. Two swarm optimization algorithms were used in this work where the

focus of former one is to rectify exceeding majority data instances and the later one corrects

the shortage of minority data instances. The proposed approach was evaluated on 30 public

datasets and outperformed the benchmark studies by 13-69%.

In one of the latest research studies [45] , the authors have explored the deep belief net-

work (DBN), one of the popular machine learning technique used in classification tasks.

As DBN yields inferior output when it comes to imbalanced data classification, the authors

used adaptive differential evolution optimization algorithm to improve the DBN network

performance. The proposed approach was evaluated on 58 datasets and successfully gen-

erated promising results. It is thus evident from all of the above-mentioned studies that

imbalance data learning is still an emerging research challenge. The consolidated review of

the existing studies is presented in Table 1.

3 Preliminaries and proposed architecture

In this section the Antlion Optimization algorithm and the proposed architecture are discussed.

3.1 Antlion optimization

Several nature inspired algorithms like genetic algorithm, cuckoo search, firefly, BAT, etc.

and soft computing techniques have been extensively used for several tasks in machine

learning process like dimensionality reduction, choosing the optimal parameters in training

the classifers, predction algorithms, etc. [8, 26, 31, 34]. Due to advent of Internet of Things,

smart cities, advanced medical devices, treatment through remote monitoring[1], etc., huge

amount of data is being generated these days [40, 41]. In order to reduce the comlexity of the

machine learning and deep learning algorithms there exists a need for dimensionality reduc-

tion techniques which choose optimal dimensions for training the algorithms [28]. Antlion

Optimization (ALO) algorithm is one of the recently developed nature-inspired algorithm,

which is based on the characteristics of ants and antlions, resembling their hunting tech-

nique [12]. The antlions simply sit under soil pits waiting to catch their prey using a small

cone shaped trap as naturally gifted by the nature. The process of catching prey in ants con-

stitute of five stages - firstly the walking of ants following random pattern. Then, building

of efficient traps and thereby catching the ants in the traps. This is followed by captiva-

tion of preys, consuming, discarding of leftovers and rebuilding of the traps which again

commences the next hunting process. The hunting process of antlion is as fallows:

The (1) showcases the ant’s random walk.

R(W) = [0, cums(2s(w1) − 1, ...cums(2sW) − 1)] (1)

where cums measures its cumulative sum, the step of a random walk is w, the total iteration

is W , and the stochastic function is s(w), as shown in the (2).

s(w) =

{

1 if random value > 0.5

0 if random value ≤ 0.5
(2)



Ta
b
le
1

C
o
n
so

li
d
at

ed
R

ev
ie

w
o
f

th
e

E
x
is

ti
n
g

S
tu

d
ie

s

R
ef

er
en

ce
D

at
as

et
M

et
h
o
d
o
lo

g
y

E
v
al

u
at

io
n

M
et

ri
cs

R
es

ea
rc

h
C

h
al

le
n
g
es

[1
8
]

C
ar

d
io

v
as

cu
la

r
H

ea
lt

h
S

tu
d
y

(C
H

S
)

d
at

as
et

A
u
to

m
at

ic
fe

at
u
re

se
le

ct
io

n
u
si

n
g

co
n
se

rv
at

iv
e

m
ea

n
,

S
u
p
p
o
rt

V
ec

to
r

M
ac

h
in

es
(S

V
M

s)
,

M
ar

g
in

-b
as

ed

ce
n
so

re
d

re
g
re

ss
io

n
al

g
o
ri

th
m

A
U

C
an

d
R

O
C

C
o
n
si

d
er

in
g

o
th

er
E

v
al

u
at

io
n

m
et

-

ri
cs

,
A

p
p

li
ca

ti
o

n
o
n

la
rg

er
d
at

as
et

[1
0
]

H
ea

rt
D

is
ea

se
d
at

as
et

fr
o

m
U

C
I

m
ac

h
in

e
le

ar
n
in

g
re

p
o
si

to
ry

B
ac

k
p
ro

p
ag

at
io

n
le

ar
n
in

g
n
et

-

w
o
rk

(B
P

N
),

D
ee

p
L

ea
rn

in
g
,
N

ai
v
e

B
ay

es
,
S

V
M

M
ea

n
V

al
u
e,

S
ta

n
d
ar

d

D
ev

ia
ti

o
n

C
o
m

p
ar

is
o
n

w
it

h
st

at
e

o
f

th
e

ar
t

te
ch

n
iq

u
es

[1
1
]

E
le

ct
ro

n
ic

H
ea

lt
h

R
ec

o
rd

,
M

ed
ic

al

S
er

v
ic

es
,

T
h
e

M
in

is
tr

y
o
f

P
u
b
li

c

H
ea

lt
h

o
f

T
h
ai

la
n
d

R
ec

u
rr

en
t

N
eu

ra
l

N
et

w
o

rk
(R

N
N

)

w
it

h
L

o
n
g

S
h
o
rt

T
er

m
M

em
o
ry

(L
S

T
M

)

A
cc

u
ra

cy
,
R

ec
al

l,
F

1
S

co
re

C
o
n
si

d
er

at
io

n
o
f

ri
sk

fa
ct

o
rs

an
d

re
al

-t
im

e
la

b
d

at
as

et
s

[ 4
6
]

M
ed

ic
al

Im
ag

e
D

at
as

et
s

R
ev

ie
w

o
f

M
ac

h
in

e
L

ea
rn

in
g

T
ec

h
-

n
iq

u
es

in
Im

ag
e

D
at

as
et

s

[2
3
]

H
ea

rt
D

is
ea

se
D

at
as

et
fr

o
m

p
ri

v
at

e
so

u
rc

e
M

u
lt

ip
le

K
er

n
el

L
ea

rn
in

g
(M

K
L

)

an
d

A
d
ap

ti
v
e

N
eu

ro
-F

u
zz

y
In

fe
r-

en
ce

S
y
st

em
(A

N
F

IS
)

S
p
ec

if
ic

it
y,

S
en

si
ti

v
it

y,

M
S

E

H
y
b
ri

d
C

la
ss

if
ic

at
io

n
m

o
d
el

co
u
ld

b
e

im
p
le

m
en

te
d

an
d

ev
al

u
at

ed

[ 2
9
]

H
ea

rt
D

is
ea

se
D

at
as

et
fr

o
m

U
C

I

m
ac

h
in

e
le

ar
n
in

g
re

p
o
si

to
ry

R
B

F
L

P
re

d
ic

ti
o
n

A
lg

o
ri

th
m

A
cc

u
ra

cy
U

se
o
f

re
al

ti
m

e
d
at

as
et

s
an

d
h
y
p
er

-

p
ar

am
et

er
o

p
ti

m
iz

er
s

[ 3
3
]

E
ig

h
t

im
b
al

an
ce

d
d
at

as
et

fr
o
m

K
E

E
L

re
p
o
si

to
ry

R
e-

sa
m

p
li

n
g
,

S
M

O
T

E
,

B
ag

g
in

g

C
la

ss
if

ie
r

an
d

S
ta

ck
in

g
C

la
ss

if
ie

r

A
U

C
,

S
en

si
ti

v
it

y,

S
p
ec

if
ic

it
y

V
ar

io
u
s

o
th

er
fo

rm
s

o
f

p
re

-p
ro

ce
ss

in
g

n
o
t

co
n
si

d
er

ed

[4
4
]

C
ap

su
le

en
d
o
sc

o
p
y

v
id

eo
o
f

b
o
w

l

ca
n
ce

r
sy

m
p
to

m
s

an
d

sy
n
th

et
ic

d
at

as
et

s

E
n

se
m

b
le

fr
am

ew
o
rk

o
f

D
ee

p

L
ea

rn
in

g

A
cc

u
ra

cy
A

p
p
li

ca
b
il

it
y

o
n

la
rg

er
d
at

as
et

s

[ 4
7
]

F
o
u
r

d
at

as
et

s
fr

o
m

U
C

I
M

ac
h
in

e

L
ea

rn
in

g
R

ep
o
si

to
ry

,
O

n
e

d
at

as
et

fr
o
m

Z
h
ej

ia
n
g

C
W

sR
F

-
C

la
ss

W
ei

g
h
ts

R
an

d
o
m

F
o
re

st
A

lg
o
ri

th
m

A
cc

u
ra

cy
,
A

U
C

Im
p
le

m
en

ta
ti

o
n
s

o
n

m
u
lt

i-
cl

as
si

fi
ca

ti
o
n

p
ro

b
le

m
s

an
d

en
se

m
b
le

le
ar

n
in

g
u
si

n
g

o
th

er
al

g
o
ri

th
m

s
co

u
ld

b
e

co
n
si

d
er

ed

[ 2
0
]

3
0

P
u
b
li

c
D

at
as

et
s

M
u
lt

i-
o
b
je

ct
iv

e
S

w
ar

m
F

u
si

o
n

A
lg

o
ri

th
m

A
cc

u
ra

cy
Im

p
le

m
en

ta
ti

o
n

o
n

la
rg

er
re

al
-t

im
e

d
at

as
et

s



During the computation process, the position of the ants is represented in the form of a

matrix defined in (3).

MA =

⎡

⎢

⎢

⎣

A11 A12 ... A1n

A21 A22 ... A1n

... ... ... ...

Am1 Am2 ... Amn

⎤

⎥

⎥

⎦

(3)

where MA represents the ant position, Ax,y represents xth ant at yth dimension, m represents

total number of ants in a search space, and n represents total number of variables.

Ants update their position by taking a random walk. To check if the ants are moving

within the search space min-max normalization is applied, which is shown in the (4).

Aw
x =

(Aw
x − mrx ) ∗ (nx − kw

x )

nw
x − mrx

+ kx (4)

where mrx is denoted as minimum random walk of the xth ant, kw
x represents the minimum

random walk of the xth ant at wth iteration, and nw
x denotes the maximum random walk of

the xth ant at wth iteration.

3.2 Sliding ants towards antlion

A roulette wheel is being used to model the hunting behavior of the antlions. During this

process, the best antlion is chosen on the basis of its fitness value. The antlions simply sit

under soil pits waiting to catch their prey using a small cone shaped trap. The sliding of ants

towards antlion is shown in the (5), (6)

kw
=

kw

I
(5)

nw
=

nw

I
(6)

where kw indicates the minimum random walk of all ants at wth iteration, nw represents the

maximum random walk of all ants at wth iteration, and I is denoted as the ratio which is

shown in (7)

I = 10z w

W
(7)

where w is denoted as the current iteration, W denotes the maximum number of iterations,

z is a constant.

3.3 Trapping in antlion’s traps

The random walk of the ant changes dynamically through the selected antlion trap. The

change of the random path of the ants to the location of the antlion is represented using (8)

and (9).

kw
x = ALw

y + kw (8)

nw
x = ALw

y + nw (9)

where k and n are vectors around a selected antlion. ALw
y represents the position of the

selected yth antlion at wth iteration.



3.4 Hooking the prey

This is the final phase of the hunting process, during which the antlion kills the prey and

consumes. Update the position of the antlion with the ant if the fitness function of the ant is

greater than the antlion using (10).

ALw
y = Aw

x

{

if FF(Aw
x ) > FF(ALw

y ) (10)

Aw
x denotes the position of xth ant at wth iteration.

3.5 Elitism

The best solution achieved during optimization is considered to be an elite solution. The

random walking of the ant is affected by the movement of the antlion and the best antlion

(elite). The position of the ant is therefore taken as the average random walk of the antlion

and elite represented in (11).

Aw
x =

P w
A + P w

E

2
(11)

where P w
A denotes the random walk of ant around the selected antlion at wth iteration, P w

E

denotes the random walk of ant around the elite antlion at wth iteration, and Aw
x denotes the

position of xth ant at wth iteration.

3.6 Proposed architecture

The proposed architecture is presented in Fig. 1. The proposed methodology kicks off by

loading the multimodal stroke dataset collected from the publicly available data repository

of Kaggle collected from a private source [32]. The inclusion of the multimodal attributes



In
p

u
t 

L
a

y
er

O
u

tp
u

t 
L

a
y

er

Hidden 

Layer 1

Hidden 

Layer 2

Filling missing values 

Transform the data 

using Label Encoder

Treat the 

imbalanceness using 

Resampling  

Normalize the data 

using Standardscaler

Kaggle 

Dataset  

Pre-processing

Deep Neural Networks

Classification

Antlion Optimizer

Fig. 1 Proposed Architecture

helps to predict and make considerable progress in understanding the research problem. It

is obvious that the dataset is quite raw to be directly used for the training of machine learn-

ing algorithms. In this case, a rigorous pre-processing has to be performed to fill in the gaps

pertaining to missing values, imbalances, heterogeneity in the existing raw dataset. As the

first step,the missing values in the dataset are replaced by attribute mean. The next step

involves transformation of the data values for all the attributes to numeric form using Labe-

lEncoder technique available in Python is used. The transformed data is then subjected to

re-sampling method to combat the imbalances existing in the dataset. Finally in the pre-

processing stage, Standardscalar is used to normalize the data to a range of 0 to 1. This

pre-processed data is fed to the deep neural network (DNN) model for further analysis. The

objective of achieving accurate predictions from the DNN model depends on the choice

of optimal hyper-parameters namely - selection of accurate number of layers in the DNN,

selection of the optimized number of neurons for each layer in the DNN, use of appropriate

activation function for optimization of the layers, use of appropriate optimization algorithm

for the network, number of epochs and finding the most optimized learning rate. In the pro-

posed study Antlion optimization algorithm is used to choose the optimal hyper-parameters.

The Antlion algorithm efficiently explores the search domain using random selection of

agents and the concept of arbitrary walking found typically in an ant colony. These unique

feature of the algorithm help in achieving optimal hyperparameters ensuring reduced time

complexity and better prediction results.

The steps involved in the proposed model are given below:

1. Load the Stoke Dataset with modalities from Kaggle

2. Pre-processing

(a) Fill the missing values by Attribute Mean

(b) Transform the data by LabelEncoder

(c) Treat the imbalances in dataset using re-sampling method



(d) Normalize the data using Standardscaler

3. Use Antlion optimization algorithm for selecting optimal hyperparameters for Deep

Neural Networks.

(a) Initialize the population of both ant and antlion.

(b) During optimization the fitness values of each ant are saved in the form of (12).

MFA =

⎡

⎢

⎢

⎣

F([A11 A12 ... A1n])

F ([A21 A22 ... A1n])

... ... ... ...

F([Am1 Am2 ... Amn])

⎤

⎥

⎥

⎦

(12)

where MFA represents the fitness of each ant and F is the objective function. (13),

(14) represents the position and fitness of the antlions.

MAL =

⎡

⎢

⎢

⎣

AL11 AL12 ... AL1n

AL21 AL22 ... AL2n

... ... ... ...

ALm1 ALm2 ... ALmn

⎤

⎥

⎥

⎦

(13)

MFAL =

⎡

⎢

⎢

⎣

F([AL11 AL12 ... AL1n])

F ([AL21 AL22 ... AL2n])

... ... ... ...

F([ALm1 ALm2 ... ALmn])

⎤

⎥

⎥

⎦

(14)

(c) Create a random walk of ant using (1) and normalize the random walk with in the

search space using (4).

(d) The sliding of ants towards antlion is shown in the (5), (6).

(e) Trapping ant in antlion’s traps: The change of the random path of the ants to the

location of the antlion is represented using (8) and (9).

(f) Update the position of ant towards antlion and elite using (11) and catch the prey

(g) Update the position of the antlion with the ant if the fitness function of the ant is

greater than the antlion using (10).

(h) Calculate the Fitness Function using

Minimize : FF =
Me

M
(15)

Me:Number of misclassified samples

M:Total number of testing samples

4. Train the pre-processed data using Deep Neural Networks.

5. Evaluate the performance of the DNN model using Precision, Recall, F1-Score,

Accuracy, Specificity, Sensitivity measures

6. Compare the proposed model with DNN, Naı̈ive Bayes, Decision Tree, Random Forest,

SVM and XGBoost Machine Learning Algorithms.

The next section discusses the experimentation results of the proposed work. Also the

proposed model is compared with other models to prove the efficiency of the proposed

model.



4 Results and discussion

The experimentation is carried out in a personal laptop with Windows 10 Operating System

having a RAM of 8GB, Hard Disk of 500 GB and Python 3.7 is used as the programming

language for implementation. The dataset used in this work is a “Multimodal Healthcare

Dataset Stroke Data [32]” collected from the renowned Kaggle Repository.

The dataset has 43400 records and 12 multimodal attributes of patients namely, ID, Gen-

der, Hypertension, Whether the paptient suffers from heart disease or not, if the patient is

ever married, type of work done by the patient, residence type, average glucose level, body

mass index, smoking status, and stroke (if the patient has ever hot a stroke or not).

4.1 Measures used for evaluating themodel

The following are the measures used to evaluate the proposed model.

1. Accuracy: Accuracy refers to the ability of the classifier to predict the class label or

attribute accurately for new data values. It derived by computing the ratio of correct

predictions to the total number of predictions made for the input values.

Accuracy =
Number of correct predictions

total number of predictions made
(16)

2. Precision: In machine learning and data mining, False Positives are instances wherein

the model inaccurately labels a negative case as a positive one. The value of precision

is derived by computing the ratio of True Positives to the total number of True Positives

and False Positives.

Precision =
T rue positives

T rue positives + False Negatives
(17)

3. Recall: The recall value helps us to calculate the total number of actual Positive cases

that the model identifies and labels as True Positive. The value of recall is derived by

computing the ration of true positive to the total number of True Positive and False

Negative

Recall =
T rue positives

T rue positives + False Negatives
(18)

4. F1 Score: The F1 score is used to measure the accuracy of the test conducted and is

derived by computing the harmonic mean of the precision and recall values.

F1 = 2 ∗
1

1
Precision

+ 1
Recall

(19)

5. Sensitivity: Sensitivity denotes the proportion of actual positives that are predicted as

True Positives. It is derived the computing the ratio of False Positive to the total number

of False Positive and True Negative.

Sensitivity =
False Positive

False Positive + T rue Negative
(20)

6. Specificity: Specificity denotes the proportion of actual negatives that are predicted as

True Negatives. It is derived by computing the ratio of True Positives to the total number

of False Negative and True Positive.

Specif icity =
T rue Positive

False Negative + T rue Positive
(21)



4.2 Preprocessing

The first attribute in the stroke dataset, i.e., ID of the patient does not have any sig-

nificant effect on the possibility of a patient having suffered with stroke or not. and is

thus eliminated. The resultant dataset now has 11 attributes to be considered for further

processing.

Several instances in the dataset have missing values which result in negative effect on

the classification accuracy. These missing values in the dataset have thus been replaced

with attribute mean. The dataset considered also has severe imbalances and some of the

attributes have categorical values. It is a known fact that Machine learning algorithms fail

to process categorical data. Hence the caregorical attributes in the stroke dataset need to be

transformed to numerical values. For this purpose, a LabelEncoder is used to convert all the

attributes into to numerical form and the imbalance is treated using re-sampling.

As can be observed from Fig. 2, number of instances having the value of class label

(stroke) as “0” are 42617 and the number of instances with class label “1” are mere 783.

If machine learning algorithms are implemented on this imbalanced dataset, biased results

are likely to be generated invariably. re-sampling technique has two variants. In the first

variant, number of attributes which have higher presence of particular values are reduced

to match with the instances of values having lesser presence. This technique is called

“Under-sampling”. The other technique is “Over-sampling” wherein the instances with

lesser presence of particular values will be randomly duplicated to match the other instances.

In the present work, over-sampling method is used. Using over-sampling, instances with

values of class label “1” have been increased to match with that of instances with values of

class label “0”. After re-sampling, the number of instances with values of class label “1” and

class label “0” both become balanced with 42617 instances each. The results of re-sampling

are depicted in Fig. 3.

The resultant balanced dataset is then normalized using Standardscaler method available

in Python. This method converts all the values in the dataset to a range of 0 to 1. The

purpose of normalization is to make every attribute important by giving each attribute an

equal weightage.The next subsection discusses the results of experimentation on this pre-

processed data.

Fig. 2 Distribution of instances of class label (Imbalanced Data)



Fig. 3 Distribution of instances of class label (Balanced Data using re-sampling)

4.3 Performance evaluation of the proposedmodel

In this section the experimentation results are discussed. At the outset, the stroke dataset

without oversampling is classified by Deep Neural Networks (DNN). Then the dataset after

re-sampling is experimented using Deep Neural Networks. Antlion optimization algoritm is

used in this study to choose the optimal hyperparameters namely the activation functions at

each layer, optimal number of layers in the DNN model, number of neurons to be used in

each layer, optimization function for the DNN, learning rate of the DNN network and the

number of epochs to train the DNN network. The results achieved by DNN integrated with

Antlion Optimization (ALO) algorithn with and without re-sampling are depicted in Fig. 4.

It is observed from the Fig. 4 that the Specificity of DNN-ALO applied on imbalanced

dataset is almost negligible due to the lower number of records with values of class label

Fig. 4 Performance evaluation of DNN + Antlion based Models



Fig. 5 Training Vs Testing Accuracy of the Proposed Model

“1”. When the dataset is resampled and balanced, the Specificity of DNN-ALO enhances

to 100 percent. The figure also highlights the fact that DNN-ALO on balanced data yields

better results considering other performance metrics.

The training and testing accuracy, error rates of DNN on resampled dataset are depicted

in Figs. 5 and 6. These figures reveal that the training and testing accuracy of the proposed

model gradually increases after each epoch in contrast to the error rate which gradually

decrease after each epoch.

The dataset without re-sampling and with re-sampling are then experimented with other

popular machine learning (ML) algorithms like DNN, Naı̈ve Bayes, Decision Tree, Random

Forest, SVM and XGBoost classifiers. The results of these experimentation are depicted

in Figs. 7, 8, 9, 10, 11, 12. The Figs. 7–12 depict the capability of re-sampling to almost

Fig. 6 Training Vs. Testing Error Rate of the Proposed Model



Fig. 7 Performance evaluation of DNN based Models

eliminate biased results thereby improving specificity of these machine learning (ML) algo-

rithms. From Fig. 13 it clear that the proposed model has better convergent rate when

compared to the existing models Artificial Bee Colony (ABC), Genetic Algorithm (GA),

Particle Swam Optimization (PSO), Gravitational Search Algorithm (GSA). Figure 14 rep-

resent the comparative analysis of time consumption (in seconds) for experiments conducted

using GridSearch and Antlion Optimizer (ALO) algorithm for selecting optimal hyperpa-

rameters. It is evident from the piechart that Antlion optimizer algorithm selects the best

hyperparameters in considerably minimal amount of time in comparison to GridSearch

algorithm. The ability of the Antlion algorithm to efficiently explore the search domain

Fig. 8 Performance evaluation of Naı̈ve Baiyes based Models



Fig. 9 Performance evaluation of Decision Tree based Models

using random selection of agents incorporating the concept of arbitrary walking,found typ-

ically in an ant colony, have contributed towards reduction in the time complexity. The

proposed model is a nonlinear method that performs arbitrary operations, since from a

stochastic viewpoint it is not feasible to perform a complex analysis. However, an under-

standing of this complexity can be obtained through Big O notation. The computational

capacity is calculated using O(n ∗ T raining T ime) to find the optimal solution for the

proposed model which is shown in Fig. 15.

The comparative analysis of the performance of proposed model with other models is

depicted in Table 2. We compared our work with the latest work on stroke prediction [21],

Fig. 10 Performance evaluation of Random Forest based Models



Fig. 11 Performance evaluation of SVM based Models

in which the authors used automated hyperparameter optimization (AutoHPO) using DNN

and achieved 33.1% false positive rate, 71.6% accuracy and 67.4% sensitivity. The experi-

mental result analysis shows that the proposed model outperforms [21]. Table 3 explains a

comparative analysis of the proposed model vs. DNN with the meta - heuristic optimization

models. The proposed Antlion algorithm selects the best hyper-parameters in a consider-

ably minimal amount of time compared to other meta-heuristic algorithms. The ability of

the Antlion algorithm to efficiently explore the search domain using random selection of

agents incorporating the concept of arbitrary walking, typically found in an ant colony, has

contributed to increasing the performance of the system.

Fig. 12 Performance evaluation of XGBoost based Models



Fig. 13 Convergence Analysis

In order to further analyse the impact of the various factors and attributes contributing

towards occurrence of strokes, statistical significance tests - Paired Samples T-Test, Non

parametric Chi-Square tests were conducted on the dataset. The results of the Paired sam-

ples T-Test revealed all the ten attributes to have significant effect on occurrence of stroke

with significance value less than 0.05. The non-parametric Chi-square test revealed almost

similar results wherein nine out of ten attributes contributed significantly towards occur-

rence of stroke and only one attribute - residence type did not have any significance (0.591)

on the output. The results of the statistical tables are depicted in Table 4 and Table 5.

From the above discussion, the contribution of the proposed work is summarized below:

1. Re-sampling method is successfully used for balancing the imbalanced stroke dataset

with multiple modalities.

2. Rigorous pre-processing is done to eliminate unnecessary attributes, filling missing

values, transformation and normalization of the raw data.

Fig. 14 Training Time Comparison in Seconds



Fig. 15 Asymptotic Analysis of the Proposed Model

Table 2 Comparative Analysis of Proposed Model with other Models

Machine Learning Models Precision Recall F1-Score Accuracy Sensitivity Specificity

Proposed DNN + Antlion

re-sampling

99.5 99.5 99.5 99.8 99 100

DNN + Antlion 98 98.5 98.5 99 100 0

DNN + Gridsearch Resample 99 99 99 99.2 98 100

DNN 97 98 98 98.5 100 0

NB Resample 84 83 83 83.3 78.1 88.3

NB 97 97 97 96.9 98.3 11.2

DT Resample 97 97 97 97.3 97.08 98

DT 97 96 97 96.3 97.6 6.7

RF Resample 98 98 98 98.3 98.4 99

RF 97 98 98 98.3 99.8 0

SVM Resample 88 87 87 87 83.1 91.6

SVM 97 98 98 98.4 100 0

XGB Resample 94 94 94 94.3 91.2 96.2

XGB 97 98 98 98.4 100 0

Table 3 Comparative Analysis of the Proposed Model vs. DNN with the Meta - Heuristic Optimization

Models

DNN+Metaheuristic Precision Recall F1-Score Accuracy Sensitivity Specificity

Proposed DNN + Antlion

re-sampling

99.5 99.5 99.5 99.8 99 100

DNN+ABC re-sampling 99.2 99.1 99 99.2 98.7 99.6

DNN+GA re-sampling 99 98.9 98.9 98 98.3 99.1

DNN+PSO re-sampling 99.1 99 98.9 99.1 98.5 99.56

DNN+GSA re-sampling 98.7 98 98.5 98.5 98.2 99
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3. The existing hyperparameter optmization algorithm have their associated challenges

pertinent to excessive time consumption. Antlion optimzation (ALO) algorithm is used

in the present study for selecting optimal hyperparameters in Deep Neural Networks

model in minimal time.

4. The performance of the DNN-Antlion in classification of the balanced dataset is com-

pared with the results of DNN -Antlion applied on imbalanced datasets. This has

successfully established the fact that balancing of data is the key in building a successful

classification model to achieve accurate results.

5. A detailed comparative analysis is done to evaluate performance of the proposed model

against other prevalent classification models.

The next section concludes the current work and also discusses about the future

extensions of the current work.

5 Conclusions and future work

The present study has focused on development of a rigorous data pre-processing technique

that eliminates most of the challenges pertinent to data quality in the existing multimodal

stroke dataset collected from the publicly available Kaggle repository. The multimodal data

in the dataset helps to increase the prediction accuracy and contributes towards enhanced

learning performance. To summarize, the pre-processing is initiated with replacement of

the missing values in the dataset with attribute means. The data is then transformed using

LabelEncoder and imbalances are treated using re-sampling method followed by normal-

ization using Standardscalar. Antlion optimization algorithm is applied on the dataset which

is finally fed into the optimally hyperparameterized DNN model generating extremely

accurate results in minimal time.The performance of the model when evaluated against tra-

ditional machine learning (ML) methodologies prominently justifies its superiority. The

future directions could be creation of an extremely robust large cross institutional dataset

which would further optimize the classification and prediction results generated from the

machine learning (ML) models.
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