
Under review as a conference paper at ICLR 2019

ANTMAN: SPARSE LOW-RANK COMPRESSION TO
ACCELERATE RNN INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Wide adoption of complex RNN based models is hindered by their inference per-
formance, cost and memory requirements. To address this issue, we develop
AntMan, combining structured sparsity with low-rank decomposition synergis-
tically, to reduce model computation, size and execution time of RNNs while at-
taining desired accuracy. AntMan extends knowledge distillation based training to
learn the compressed models efficiently. Our evaluation shows that AntMan offers
up to 100x computation reduction with less than 1pt accuracy drop for language
and machine reading comprehension models. Our evaluation also shows that for
a given accuracy target, AntMan produces 5x smaller models than the state-of-
art. Lastly, we show that AntMan offers super-linear speed gains compared to
theoretical speedup, demonstrating its practical value on commodity hardware.

1 INTRODUCTION

Remarkable advances in deep learning (DL) have produced great models across a wide variety of
tasks such as computer vision, machine reading, speech generation and image recognition (Goodfel-
low et al., 2016). However, wide adoption of these models is still limited by their inference perfor-
mance, cost and memory requirements. On the client side, all pervasive devices like smart-phones,
tablets and laptops have limited memory and computational resources to handle large complex DL
models. On the server side, intensive computation can render the models too slow to meet respon-
siveness requirements and too expensive to scale, preventing their deployment in production.

Model Compression is a flourishing area that aims to reduce the computational and memory com-
plexity of DL models to address the aforementioned problems without significantly affecting accu-
racy. Compressing Convolution Neural Networks (CNNs) have already been widely explored in the
past few years (Cheng et al., 2017), while our work focuses on Recurrent Neural Networks (RNNs),
which are broadly used among various natural language processing tasks (Mikolov et al., 2010; Seo
et al., 2016; Zaremba et al., 2014). It is well known that large RNN models are computation and
memory intensive (Zhang et al.). In particular, their computation increases linearly with sequence
length, and their recurrent unit has to be computed sequentially, one step at a time with limited par-
allelism, both of which makes long execution time a crucial issue for RNN inference computation.
Compressing RNNs, however, is challenging, because a recurrent unit is shared across all the time
steps in sequence, compressing the unit will aggressively affect all the steps.

Inducing sparsity is one of the prominent approaches used for RNN compression. Narang et al.
(2017a) proposed a pruning approach that deletes up to 90% connections in RNNs. The obtained
sparse matrices, however, have an irregular/non-structured pattern of non-zero weights, which is
unfriendly for efficient computation in modern hardware systems (Lebedev & Lempitsky, 2016;
Wen et al., 2016). To address this issue, Narang et al. (2017b) proposed inducing block-sparsity
in RNNs via pruning or group lasso regularization. Similarly, Wen et al. (2017) introduces ISS,
intrinsic structured sparsity for LSTMs (Hochreiter & Schmidhuber, 1997), a type of RNN , such
that a sparse LSTM can be transformed into a dense one but with smaller size. ISS conveniently
turns sparsity into efficient execution, but as its sparse structure is quite coarse-grained, it is hard to
push out high sparsity without degrading accuracy, especially in RNNs where the hidden dimension
is smaller than input dimension (elaborated in Section 5.1).

Our work explores a new line of structured sparsity on RNNs, using predefined compact structures
as opposed to pruning and regularization based approaches. We take inspiration from predefined
compact CNN structures such as group convolutions (Zhang et al., 2017; Krizhevsky et al., 2012)

1



Under review as a conference paper at ICLR 2019

and depth-wise separable convolutions (Chollet, 2017). Specifically, we replace matrix-vector multi-
plications (MVs), the dominant part of RNN computations, with localized group projections (LGP).
LGP divides the input and output vectors into groups where the elements of the output group is
computed as a linear combination of those from the corresponding input group. In addition, to em-
power the information flow across multiple groups along the steps of RNN computation, we use a
permutation matrix or a dense-square matrix to combine outputs across groups, helping the compact
structure to retain accuracy.

Furthermore, we combine LGP with low-rank matrix decomposition in order to further reduce the
computations. This is possible as low rank and sparsity are complimentary to each other. Low-rank
decomposition such as SVD approximates a low-rank multiplication Ax as PQx, where P and Q
are dense. By imposing LGP-based sparsity on P and Q, we reduce the computation further. For a
given rank reduction factor of r, we reduce the computation cost and model size byO(r2), compared
to O(r) by using low-rank decomposition methods like SVD (Golub & Reinsch, 1970) alone.

We call our compression approach AntMan — ‘shrink in scale’ by synergistically combining struc-
tured sparsity and low-rank decomposition, but ‘increase in strength’ by enabling the flow across
structured groups along RNN sequence to retain accuracy.

To train RNN models with AntMan, we use teacher-student training paradigm (Bucilu et al., 2006)
by combining the label loss with teacher-MSE-loss and teacher-KL-divergence-loss. To improve the
training efficiency, we develop a new technique to decide proper coefficients to obtain high accuracy
efficiently with minimal trials.

We evaluate AntMan on multiple RNN based models for machine reading comprehension and lan-
guage modeling. For a well-known MRC model (Seo et al., 2016), we reduce the computational
complexity and model size of LSTMs (a particular type of RNN) by up to 25x with less than 1pt
drop in F1 score. For PTB (Zaremba et al., 2014) language model, we achieve a computational
reduction of 50x with no drop in perplexity, and 100x with just a single point drop in perplexity. We
also construct language models for PTB with perplexities ranging from 64 to 70, but with 3x to 5x
fewer overall model weights (5x to 25x reduction in RNN weights) than the state-of-art.

Last but not least, we develop efficient implementations of inference kernels on CPUs to serve mod-
els compressed by AntMan. We show that unlike computation with unstructured sparsity, AntMan
offers significant performance improvement for large RNN models even with modest levels of spar-
sity. Our evaluations show that a 2x to 10x theoretical reduction in computation can result in up to 2x
to 30x actual speedup, respectively, for moderate to large RNNs, demonstrating attractive practical
value of AntMan on commodity hardware.

2 RELATED WORK

Compressing RNNs via Sparsity: Described in Section 1 and empirically compared in Section 5.1.

Compressing RNNs via Low-Rank Approximations: Prabhavalkar et al. (2016); Lu et al. (2016)
use SVD to compress LSTM models by 3-4x for acoustic modeling and speech recognition tasks
with negligible loss in accuracy. AntMan achieves significantly higher compression rate than SVD
based methods for the same rank reduction. Ye et al. (2017) uses Block Tensor Decomposition
to compress LSTMs for vision tasks. Their work is specifically designed to exploit redundan-
cies present in the image vector (input to the LSTMs) obtained from upstream CNN layers, while
AntMan is designed to compress general RNNs, where the inputs do not exhibit such redundancies
in many cases.

Teacher-Student training paradigm: Knowledge Distillation (KD) technique developed by Hinton
et al. (2015) is a popular approach to compress deep and wide networks into sparser ones, where
the compressed model mimics the function learned by the complex model. KD usually optimizes a
weighted average of two different objective functions. The first objective function can be one of the
following three: cross entropy, or mean square error, or Kullerback Leiber divergence, all computed
with respect to the soft targets, and the second objective function is the cross entropy with the correct
labels. Several similar approaches (Romero et al., 2014; Luo et al., 2016; Chen et al., 2015; Balan
et al., 2015; Zagoruyko & Komodakis, 2016) extend the idea of KD.

In contrast, AntMan optimally combines three objective functions, MSE loss, KL divergence loss
and the cross entropy of the true labels, powered by an efficient method of deciding their coefficients.

2



Under review as a conference paper at ICLR 2019

Figure 1: Three different AntMan modules to compress Ax.

3 ANTMAN DESIGN AND IMPLEMENTATION

AntMan compresses RNN computation by combining benefits of structured sparsity and low rank
decomposition. It consists of three components: i) localized group projections that sparsify matrix
multiplications using block diagonal matrices, ii) group mixing that exchanges information across
different local groups along the sequence of RNN computation, and iii) low rank approximation that
uses SVD like decomposition to reduce the rank of the projection. By composing them, we construct
a few variations of AntMan compression modules that exhibit varying degree of compression rate
and accuracy impact. We also analyze the cost complexity of AntMan modules and discuss efficient
implementation on commodity hardware such as CPUs using off-the-shelf BLAS libraries.

3.1 LOCALIZED GROUP PROJECTIONS

AntMan reduces the computation and size of RNNs by replacing dense matrix-vector product (MV)
with sparse but structured MV. It divides the input and output vectors into g local groups such that
the elements of an output group is a weighted linear sum of the elements in the corresponding input
group. Since output elements of one group only depend on the input elements of the corresponding
group, we call it localized group projections (LGP). Mathematically, we replace the matrix vector
product Ax with Dgx, where Dg is a block-diagonal matrix with g blocks.

In an RNN cell computation, the hidden-state vector at time-step t − 1 is an input to the MV used
to compute the hidden-state vector at time-step t. Therefore, using LGP to replace MV in RNN
restricts the information flow within a single local group across multiple time steps of the RNN.
This restriction reduces the expressibility of the RNN, potentially degrading accuracy. AntMan uses
‘group mixing’ to address this issue.

3.2 GROUP MIXING

To facilitate the information flow across multiple localized groups along RNN sequence computa-
tion, AntMan multiplies the output (or input) vector of LGP with a square matrix, which we call
mixing matrix. We develop two types of mixing with varying memory and computational complex-
ity — shuffle mix and dense mix — inspired by the shuffling layer (Zhang et al., 2017) used with
group convolutions, or 1x1 convolutions used with depth-separable convolutions (Chollet, 2017).

Shuffle mix: The shuffle-mix matrix is a permutation matrix, which evenly distributes the elements
of the same group across the entire output vector across different groups. Figure 1a shows the effect
of shuffle mix following LGP. Mathematically, shuffle mix is equivalent to a transpose operation.
If the output vector v resulting from the block diagonal MV has m elements, we can represent the
vector as a matrix O of size [g,m/g], where each row represents an output group computed from
the corresponding input group. Shuffle mix simply transforms v to OT of shape [m/g, g].

Dense mix: This technique uses a dense square matrix for group mixing when the matrix in the
MV is non-square. Mathematically, given Ax, where size of A is m x n, we can decompose it into
MDgx, when m < n, or DgMx, when n < m, and M is a dense-mixing matrix of size m x m, or
n x n, respectively. Figure 1b shows an example of dense mix preceding LGP.

Dense mix has added cost of the dense matrix vector multiply compared to shuffle mix (quadratic vs
linear). However, unlike shuffle mix that simply permutes the elements of the output vector, dense
mix takes a weighted linear combination, making it more general. It helps retain accuracy at the
expense of additional computation. When combined with low-rank decomposition discussed next,

3



Under review as a conference paper at ICLR 2019

dense mix provides high compression while maintaining accuracy, which we elaborate further in
evaluation (Table 4).

3.3 LOW-RANK DECOMPOSITION

Low-rank decomposition such as SVD approximates a low-rank matrix-vector product Ax as PQx,
where A, P and Q are dense with shapes m x n, m x n

r and n
r x n, respectively, and n

r is the reduced
rank. We combine it with LGP by adding LGP-based sparsity on P and Q, further reducing com-
putation. This combination is likely to obtain more compression than using either of the techniques
alone because structured sparsity and low-rank decomposition operate in a complimentary fashion.
In particular, low rank reduces the computation by factorizing A into smaller matrices P and Q,
while LGP reduces computation by sparsifying these matrices without changing their dimensions.

3.4 COMPOSING COMPONENTS INTO ANTMAN COMPRESSION MODULES

Composed from the three components, LGP, group mixing and low-rank decomposition, we con-
struct variations of AntMan compression modules to address varying efficiency and accuracy de-
mand across DL models. Figure 1 shows three of such compression modules: (a) LGP-shuffle —
LGP with shuffle mix; (b) LGP-dense — LGP with dense mix; (c) LowRank-LGP — low rank with
LGP-dense.

We elaborate the compression modules by taking Figure 1(c), LowRank-LGP, as an example.
LowRank-LGP combines structured sparsity with low rank decomposition. First, it decomposes
an MV into an SVD-like form, i.e., Ax ← PQx, where A is a matrix of size m x n, P and Q
are decomposed matrices of size m x n

r and n
r x n, and n

r represents the reduced rank. Next, we
replace P and Q using LGP-Dense, i.e., Ax ← Dgout

MoutMinDginx , where Dgin and Dgout
are

block-diagonal matrices of size m x n
r and n

r x n, and gin and gout are the number of diagonal
blocks. Min and Mout are both square matrices of size n

r x n
r . It can be further simplified into

Ax ← DgoutMrDginx, where Mr = MoutMin. This module, combining all three components
of AntMan, exhibits the potential of achieving significantly higher cost reduction than using SVD
alone, which we quantify shortly.

3.5 COMPUTATION AND MODEL SIZE REDUCTION

Name Form of Computation Computation / Model Size Cost Reduction
Matrix-Vector Ax mn 1

SVD PrQrx mn
r + nn

r
mr

m+n
LGP-Shuffle SDgx mn

g g
LGP-Dense MDgx or DgMx mn

g +min(m,n)2 mn
mn
g +min(m,n)2

LowRank-LGP DgoutMrDginx mn
rgout

+ nn
rgin

+ n2

r2
mr2goutgin

mginr+ngoutr+ngoutgin

Table 1: Comparison of model computation and size reduction.

Table 1 discusses the reduction in computation and model size over the original Ax, where A is a
matrix of size m x n. The third column reports the total number of multiply-add operations, which
is also the size of weight matrix in the case of MV. The final column represents the reduction in
computation (that is equal to the reduction in model size) compared to the original MV.

We highlight two key messages: (1) LGP-Dense reduces the total cost by ≈ max(m,n)
min(m,n) when g �

max(m,n)
min(m,n) , i.e., the larger difference between m and n, the more reduction it gets. (2) When gout
and gin are large enough, LowRank-LGP can enable significantly higher cost reduction over SVD,
while maintaining the same reduced rank. To see this, let’s assume m = n, and gout = gin = g.
In this case, the cost reduction from SVD is r/2, while the cost reduction from LowRank-LGP is
r2g
2r+g . Now, if g ≥ r, then the cost reduction is at least r2/3, and it goes up to r2 when g � r.
Therefore, the reduction in computational cost scales as O(r) for SVD, while it scales as O(r2) for
LowRank-LGP assuming g ≥ r.

4



Under review as a conference paper at ICLR 2019

As a concrete example, consider a MV of size 1000x400, where the number of parameters and
the number of multiply-add (MADD) operations in 400K. Using LGP-Shuffle with g = 10, we
can reduce both the number of parameters and MADD operations to 40K. Using LGP-Dense with
g = 10, we can reduce them to 200K (40K from LGP + 160K from dense mix). Using LowRank-
LGP with g = 10 and r = 4, we can reduce the parameters and MADD operations to 1000∗400

4∗10 +
400∗400

4∗4 + 400∗400
4∗10 , which is 24K.

3.6 EFFICIENT IMPLEMENTATION

We develop efficient implementation of AntMan modules (LGP-Shuffle, LGP-Dense, LowRank-
LGP) on CPUs to empower their usage in practice. The implementation consists of three building
blocks: i) Regular matrix-vector multiply for dense mix, ii) shuffle-mix multiply and iii) block-
diagonal MVs. BLAS libraries such as Intel MKL already provides efficient implementation of
matrix-vector multiplication. Shuffle mix is implemented efficiently as a matrix transpose operation
as described in Section 3.1. The block-diagonal MV is viewed as multiple smaller MVs, each cor-
responding to one of the blocks in the block-diagonal matrix. With multicores, each of these blocks
can be computed in parallel using OpenMP for parallelization and Intel MKL for MV computation.
In summary, AntMan modules can be implemented efficiently on commodity hardware, such as
CPUs, conveniently applicable to various devices on cloud and on edge.

4 TRAINING ANTMAN USING KNOWLEDGE DISTILLATION

We observe that while training AntMan models directly on target labels alone does not generalize
well on test data, using knowledge distillation or teacher-student training helps greatly on retaining
accuracy. We use the original uncompressed model as the teacher, and train the compressed model
(student) to imitate the output distribution of the teacher, in addition to training on the target labels.
We describe how we apply and extend teacher-student training.

Loss function: We define the loss function of the compressed model as a weighted combination of
three losses — the raw loss from the target labels, and the MSE and the KL divergence losses of the
student’s output distribution with respect to the teacher’s corresponding output distribution:

Losstotal = Ctarget × Losstarget(So, Ttarget) + Cmse ×Mse(So, To) + Ckl × KL(So, To) (1)
where Ctarget, Cmse, Ckl are the coefficient values corresponding to the target loss, MSE loss and
KL divergence loss, respectively. So, To are the output distributions of student and teacher model,
respectively, whereas Ttarget is the target distribution.

Deciding loss coefficients: The final performance of the compressed model significantly depends on
the values of the loss coefficients, Ctarget, Cmse and Ckl. Searching for appropriate values for these
coefficients via grid or random search is time and resource consuming. We develop an efficient
method to decide them with the following intuition. The direction of the gradient updates to the
model is dictated by the relative magnitudes of the individual losses. If one is significantly smaller
than the other, then it would have minimal impact on the direction of the updates during training.
Therefore, we want to scale each of the three losses such that the overall magnitude of each of the
three terms in Eqn. 1 is roughly the same. To this end, we initially train the compressed model
separately using each of the three losses and record the loss values once the model converges. Then
we use these values as reference to identify loss coefficients such that each of the three terms is
roughly the same. We use these coefficients to train the compressed model to optimize accuracy.

Effectiveness: We demonstrate the effectiveness of our approach by training a 10x compressed
language model constructed by replacing the LSTMs in Zaremba et al. (2014) with LGP-Shuffle
with g = 10. For this compressed model, the validation loss values at convergence when training
separately with the three individual losses were: target = 4.110, MSE = 0.133 and KL = 0.004.

Table 3 shows the test perplexity values (lower the better) obtained by training the compressed model
with varying Cmse and CKL, while fixing Ctarget = 1. Note that the lowest perplexity is achieved
by setting coefficient values of Ctarget = 1, Cmse = 30 and CKL = 1000. At these values, each
term in Eqn. 1 is roughly equal to 4, demonstrating the effectiveness of our method.

Table 3 also shows the benefits of combining three losses. Note that when Cmse = 0, the best
achievable perplexity is 121.97. Similarly, when CKL = 0, the best achievable perplexity is 75.61.
However, combining all three gives the lowest perplexity of 74.69.

5



Under review as a conference paper at ICLR 2019

Model Comp
Red.

Test weights#
LSTMs

Zaremba-14 1x 77.551 36.00M
ISS 7x 76.030 4.83M
ISS 10x 78.650 3.66M
LGP-Shuffle 10x 74.693 3.60M
LGP-Shuffle 50x 77.384 0.72M
LGP-Shuffle 100x 78.666 0.36M

Table 2: Computation reduction of mod-
els on PTB data and test perplexity values.

XXXXXXXCmse

Ckl 0 1 100 1000 10000

0 172.25 135.87 131.47 121.97 127.66
1 91.65 91.60 90.98 90.81 91.67
30 75.61 81.43 75.47 74.69 75.39
100 76.91 84.00 76.65 76.72 76.84
500 78.73 86.29 78.88 78.63 78.87

Table 3: Different choices of coefficients vs test per-
plexities for student model with 10x computation re-
duction on the PTB dataset.

5 EXPERIMENTS

We evaluate AntMan on three aspects. (1) We use AntMan to obtain order(s) of magnitude com-
putation reduction for language modeling and machine reading comprehension tasks while getting
similar accuracy. (2) We use AntMan to construct models with several times fewer parameters than
the state-of-art models with the same accuracy targets. (3) Not limited by theoretical speedup, we
measure real speedup of AntMan on CPUs and observe super-linear computational efficiency on
large RNNs, demonstrating attractive practical value of AntMan on commodity hardware.

5.1 COMPUTATION REDUCTION

We evaluate the effectiveness of AntMan on reducing model computation: (1) on Zaremba et al.
(2014) model for word level completion task, we obtain 50x reduction without sacrificing any ac-
curacy; (2) on Seo et al. (2016) model for machine reading compression task, we obtain up to 25x
reduction with less than 1pt drop on F1 score.

5.1.1 WORD LEVEL COMPLETION

Word level completion task predicts the next word given a partial input sequence.

Dataset and Model: We use Penn Tree Bank(PTB) dataset (Marcus et al., 1993) that consists of
929k training words, 73k validation words and 82k test words. As the teacher model, we chose the
model in Zaremba et al. (2014) consisting of 2 layered LSTMs each with hidden dimension of 1500.
For the student model, we replace all the MVs in the LSTMs with LGP-Shuffle, and use g = 10 to
g = 100 groups. We do not use any low-rank decomposition for this model.

Results: Table 2 shows the perplexity values of the compressed models for different levels of com-
putation reductions. Matching the perplexity of the original model, AntMan (g = 50) achieves 50x
computation reduction. With g = 10, AntMan achieves 10x computation reduction while 3pt better
perplexity. With g = 100, AntMan achieves 100x computation reduction with only 1pt loss in per-
plexity. In addition, comparing with the state-of-art compressed model in Wen et al. (2017) using
ISS, AntMan reduces computations further by 5-10x under comparable test perplexities.

5.1.2 MACHINE READING COMPREHENSION (MRC)

MRC tasks have gained significant popularity in last few years within NLP and computer vision
communities. The models answer a query about a given context paragraph, evaluated based on
exact match (EM) and F1 score (higher the better).

Dataset: We use Stanford Question Answering Dataset (SQuAD) (Rajpurkar et al., 2016), which
consists of a large set of Wikipedia articles and more than 100,000 questions. The answer to every
question is always a small excerpt of the article. Teacher Model: We chose our teacher model as the
BiDirectional Attention Flow Model (BiDAF) (Seo et al., 2016), which is a hierarchical multi-stage
model with 6 layers. We focus on compressing the layers having RNNs, which are also the most
computationally expensive ones. Specifically, the modeling layer uses 2 layers of bi-directional
LSTMs, denoted by ModFwd1, ModBwd1, ModFwd2, ModBwd2, while the output layer has a
single bi-directional LSTM, denoted by OutFwd, OutBwd.

Compressed Models: We created three compressed models using AntMan with different levels
of compression to replace the LSTMs in the BiDAF model: i) LGP-Shuffle (gim = 10, ghm = 4),

6



Under review as a conference paper at ICLR 2019

Description EM F1 ModFwd1 ModBwd1 ModFwd2 ModBwd2 OutFwd OutBwd weight#

Expert 67.9 77.3 1x 1x 1x 1x 1x 1x 2.69M

ISS 65.29 75.47 1.95x 2.26x 6.14x 4.34x 5.87x 8.85x 1.03M

LGP-Shuffle 65.41 75.87 9.09x 9.09x 6.66x 6.66x 9.09x 9.09x 0.78M

LowRank-LGP 1 66.06 76.73 12.5x 12.5x 9.09x 9.09x 16.66x 16.66x 0.69M

LowRank-LGP 2 65.86 76.6 20.42x 20.42x 17.7x 17.7x 25.39x 25.39x 0.56M

Table 4: Comparision of computation reduction between AntMan and ISS for BiDAF

ii) LowRank-LGP 1 (gim = 10, ghm = 5, rim = 4, rhm = 2), and iii) LowRank-LGP 2 (gim =
5, ghm = 5, rim = 8, rhm = 4). Here, gim and ghm refers to the number of groups, and rim and
rhm refers to the low-rank reduction factors for input and hidden MVs of the LSTMs, respectively.
The computation reduction for each LSTM is shown in Table 4.

Results: Table 4 shows that both LGP-Shuffle and LowRank-LGP achieve significant computation
reduction over the original; their reduction is much higher than the existing work ISS (Wen et al.,
2017) with better EM and F1 scores. ISS compresses an RNN by reducing hidden dimension. The
amount of computation per LSTM step for ISS is proportional to (i + h/r) ∗ (h/r), where i is the
input dimension, h is the hidden dimension, and 1/r is fraction of hidden dimension removed by
ISS. When i � h, the compression is proportional to r. In BiDAF, i � h in the first modeling
layers (800 vs 100). Therefore, compression in these layers is proportional to the reduction in the
hidden dimension. However, h = 100 is already very small. By reducing it further, ISS experiences
near 2pt drop in F1 score with less than 2.5x compression on the first modeling layers.

LGP-Shuffle uses structured sparsity to compress both the input and hidden MVs without reduc-
ing hidden dimension. For a comparable EM and F1 scores to ISS, LGP-shuffle achieves signifi-
cantly higher reduction on the first modeling layers, while doing modestly better on all other layers.
LowRank-LGP improves further upon LGP-Shuffle, increasing accuracy by leveraging dense mix
to enrich the connection among multiple localized groups, and reducing computation by combining
low-rank decomposition. It achieves significantly higher computation reduction across all layers
than both ISS and LGP-Shuffle, while achieving nearly 1pt higher F1 scores.

5.2 OPTIMIZED MODEL SIZE FOR DIFFERENT ACCURACY TARGETS

Different applications have various accuracy requirements while the devices they are running on
also impose different constraints on the model size. For given accuracy targets, smaller models are
desired; and for given model sizes, higher accuracy is desired. We show that AntMan improves
the Pareto curve of model size against accuracy, providing more compressed models with the same
accuracy targets of several recent models at word level completion task.

Teacher Model: We use the state-of-art language model as of Sept, 2018, AWD-LSTM (Merity
et al., 2017), consisting of 3-layer LSTMs with 1150 hidden units and an embedding size of 400.

Compressed Models: Our compressed models replace all the MVs in the LSTMs of AWD-LSTM
with AntMan (LGP-Shuffle with g = 5 to g = 50 groups).

Results: Figure 2 compares AntMan with other models. LGP-Shuffle (g = 5) achieves perplexity
of 63 with 5x fewer LSTM parameters and 3x fewer total parameters than NAS-Cell (Zoph & Le,
2016), the state-of-art model obtaining this range of accuracy. LGP-Shuffle (g = 10) achieves
perplexity of 66 with 10x fewer LSTM parameters and 4x fewer total parameters than Var-RHN
(Zilly et al., 2016), and LGP-Shuffle (g = 50) achieves perplexity of 74 with 50x fewer LSTM
parameters and 5x fewer total parameters than Var-LSTM-avg1 (Inan et al., 2016). These results
notably improve the Pareto curve of the task by reducing model sizes against different accuracy
targets.1

1We did not aim to reproduce the state-of-art perplexity (57.3px at 24M parameters) of AWD-LSTM model.
AWD-LSTM uses various regularization techniques, each with its own set of hyper-parameters, requiring ex-
tensive hyper-parameter tuning to reach its state-of-art perplexity. The AntMan results presented in Figure 2
was achieved without any regularization. Trying to match AWD-LSTM perplexity using AntMan with regular-
ization could be an exercise in large scale hyper-parameter tuning, which is beyond the scope of this paper.

7



Under review as a conference paper at ICLR 2019

Figure 2: Comparing the number of model param-
eters vs perplexity of AntMan based models with
various other language models published in the
last four years, extracted from Table1 in (Merity
et al., 2017). The AntMan based models (LGP-
Shuffle) are shown as purple triangles.

Input
&
Hidden
Dim

Memory
(MB)

Actual vs Theoretical Speedup
LGP-Shuffle LowRank-LGP
2x 10x 2.66x 8x

100 0.32 1.10x 1.16x 1.10x 0.08x
400 5.12 1.89x 6.39x 2.32x 4.70x
800 20.48 2.00x 8.66x 2.78x 6.50x
1200 46.08 4.80x 24.02x 6.50x 20.00x
1600 81.92 5.40x 30.20x 7.42x 23.80x

Table 5: Measured speedup on CPU using
LGP-Shuffle and LowRank-LGP compared to
the theoretical speedup for various input and
hidden dimension. For LGP-Shuffle, we use
g = 2 and g = 10 to get a theoretical speedup
of 2x and 10x. For LowRank-LGP, we use
g = 2 and r = 2, and g = 10, and r = 2
to get a speedup of 2.66x and 8x, respectively.

5.3 THEORETICAL VS ACTUAL SPEEDUP

By using efficient implementation of AntMan described in Section 3.6, we turn the theoretical
speedup (computation reduction) to actual speedup (execution time reduction) in practice. Fur-
thermore, we show that the actual speedup can be significantly higher than the theoretical speedup
for large problem sizes. The result of our evaluation is shown in Table 5.

Problem Configuration: We measure the execution time of LSTMs with and without AntMan
varying input and hidden dimensions from 100 to 1600. We use a batch size of 1, which is common
in serving scenarios, and a sequence length of 100.

LSTM Implementation: We use an efficient implementation as discussed in Elsen: Fuse 4 input
MVs across all time steps into a single large matrix multiplication, and fuse 4 hidden MVs within
each time step.

Platform: The experiments are run on a single core of Intel CPU E5-2650 v4 @ 2.20GHz. We use
just a single core for two reasons: i) to emulate the limited resource availability in many use cases
such as laptops and smart phones, ii) performance of multi-core RNN is highly implementation
dependent (Zhang et al.) even for regular RNNs and therefore is difficult to make apple-to-apple
comparison. We use Intel MKL library for GEMM implementation.

Discussion: Table 5 shows that, for very small problem size, AntMan offers no speedup regardless of
the reduction in the computation. This is expected as GEMM performance gets worse as the problem
size decreases (Zhang et al.; Rajbhandari et al., 2017). However, as the problem size is already
very small, memory reduction or performance improvement is less crucial for such problems. For
medium sized problems, AntMan offers good actual speedup compared to the theoretical speedup.
Notice that unlike unstructured sparsity, where significant levels of sparsity is necessary to see actual
performance improvement, with AntMan, even a modest 50% sparsity or 2x computation reduction
results in significant performance gain at problem size 400 and 800. Furthermore, for large problem
sizes the actual speedup is significantly larger than the theoretical speedup. At problem size of 1200
and 1600, the weight matrices in the LSTM are too large to fit in L3 cache (30 MB in this case),
thus spilling into memory. These LSTMs have much lower efficiency as the memory bandwidth of a
CPU is much lower than the L3 cache bandwidth. By reducing the memory footprint, AntMan-based
LSTM fits in L3 cache, leading to an actual speed up that is considerably higher than the theoretical
speedup. These results demonstrate attractive practical value of AntMan on commodity hardware.

6 CONCLUSION

We develop AntMan, combining structured sparsity and low-rank decomposition, to reduce the com-
putation, size and execution time of RNN models by order(s) of magnitude while achieving similar
accuracy. We hope its compression efficiency and effectiveness would help unblock and enable
many great RNN-based models deployed in practice.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Anoop Korattikara Balan, Vivek Rathod, Kevin P Murphy, and Max Welling. Bayesian dark knowl-
edge. In Advances in Neural Information Processing Systems, pp. 3438–3446, 2015.

Cristian Bucilu, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings
of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.
535–541. ACM, 2006.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint,
pp. 1610–02357, 2017.

Erich Elsen. Optimizing rnn perforamnce. URL https://svail.github.io/rnn_perf/.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions.
Numerische mathematik, 14(5):403–420, 1970.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Hakan Inan, Khashayar Khosravi, and Richard Socher. Tying word vectors and word classifiers: A
loss framework for language modeling. arXiv preprint arXiv:1611.01462, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Vadim Lebedev and Victor Lempitsky. Fast convnets using group-wise brain damage. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2554–2564, 2016.

Zhiyun Lu, Vikas Sindhwani, and Tara N Sainath. Learning compact recurrent neural networks.
arXiv preprint arXiv:1604.02594, 2016.

Ping Luo, Zhenyao Zhu, Ziwei Liu, Xiaogang Wang, Xiaoou Tang, et al. Face model compression
by distilling knowledge from neurons. In AAAI, pp. 3560–3566, 2016.

Mitchell P Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Eleventh Annual Conference of the International Speech
Communication Association, 2010.

Sharan Narang, Erich Elsen, Gregory Diamos, and Shubho Sengupta. Exploring sparsity in recurrent
neural networks. arXiv preprint arXiv:1704.05119, 2017a.

Sharan Narang, Eric Undersander, and Gregory Diamos. Block-sparse recurrent neural networks.
arXiv preprint arXiv:1711.02782, 2017b.

Rohit Prabhavalkar, Ouais Alsharif, Antoine Bruguier, and Ian McGraw. On the compression of
recurrent neural networks with an application to lvcsr acoustic modeling for embedded speech
recognition. arXiv preprint arXiv:1603.08042, 2016.

9

https://svail.github.io/rnn_perf/


Under review as a conference paper at ICLR 2019

Samyam Rajbhandari, Yuxiong He, Olatunji Ruwase, Michael Carbin, and Trishul Chilimbi. Op-
timizing cnns on multicores for scalability, performance and goodput. ACM SIGOPS Operating
Systems Review, 51(2):267–280, 2017.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. arXiv preprint arXiv:1611.01603, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. In Advances in Neural Information Processing Systems, pp. 2074–2082,
2016.

Wei Wen, Yuxiong He, Samyam Rajbhandari, Wenhan Wang, Fang Liu, Bin Hu, Yiran Chen, and
Hai Li. Learning intrinsic sparse structures within long short-term memory. arXiv preprint
arXiv:1709.05027, 2017.

Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu.
Learning compact recurrent neural networks with block-term tensor decomposition. CoRR,
abs/1712.05134, 2017.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the perfor-
mance of convolutional neural networks via attention transfer. arXiv preprint arXiv:1612.03928,
2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

Minjia Zhang, Samyam Rajbhandari, Wenhan Wang, and Yuxiong He. Deepcpu: serving rnn-based
deep learning models 10x faster.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient
convolutional neural network for mobile devices. CoRR, abs/1707.01083, 2017. URL http:
//arxiv.org/abs/1707.01083.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan Koutnı́k, and Jürgen Schmidhuber. Recurrent
highway networks. arXiv preprint arXiv:1607.03474, 2016.

Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578, 2016.

10

http://arxiv.org/abs/1707.01083
http://arxiv.org/abs/1707.01083


Under review as a conference paper at ICLR 2019

Compute
Reduction

Small
RNN

SVD
RNN

AntMan

10x 80.06 78.63 74.6
50x 99.96 81.4 77.4
100x 129.3 88.59 78.6

Table 6: Computation reduction of models on
PTB data and test perplexity values.

Theoretical
Compression

Actual Performance Gain
Pruning AntMan

10x 4x 30x

Table 7: Theoretical vs Actual Performance
gain on PTB using unstructured Pruning vs
AntMan

APPENDIX

A. CHOICE OF BASELINE

We considered several compression techniques to identify strong baselines to compare with AntMan.
Eventually, we chose ISS as the main baseline in the paper, because for RNNs ISS satisfies two im-
portant criteria that we believe are most critical for model compression techniques, i) Good theoreti-
cal reduction in compute and memory achievable without sacrificing accuracy, ii) Good computation
efficiency of the compressed model to fully exploit the theoretical reduction in computation. Most
compression techniques do not satisfy both..

We discuss and compare AntMan with several compression techniques as below.

Quantization: 16 and 8-bit quantization (original 32-bit) can be supported fairly easily on commod-
ity hardware, resulting in a maximum compression of 4x. Even more aggressive quantization (e.g.,
2-7 bit) hardly provides additional computational benefit because commodity hardware does not
support those in their instruction set, while 1-bit quantization does not offer comparable accuracy.

In comparison, we demonstrate that AntMan achieves up to 100x reduction in computation without
loss in accuracy. Moreover, quantization can be applied to AntMan to further reduce the computa-
tion, and vice versa, as quantization and AntMan are complementary techniques.

Pruning: Pruning can be used to generate both unstructured and structured sparsity. The former
is not computationally efficient while the latter requires specialized implementation for efficient
execution.

While we did not present pruning results in the paper, we did try out techniques on both PTB and
BiDAF models to generate random sparsity as well as blocked sparsity. In both cases, we were
able to get more that 10x reduction in computation even in the absence of Knowledge distillation.
Therefore pruning provides excellent computation reduction.

However, as discussed in the paper, those theoretical computational reductions cannot be efficiently
converted into practical performance gains: Unstructured sparsity resulting from pruning suffers
from poor computation efficiency; a 10x theoretical reduction leads to less than 4x improvement in
performance while AntMan achieves 30x performance gain with 10x reduction for PTB like models.
(Table 7)

It is possible to achieve structured sparsity such as block sparsity through pruning. However, struc-
tured sparsity requires implementing specialized kernels to take advantage of the computation reduc-
tion. Its efficiency greatly depends on the implementation, and in general is far from the theoretical
computation reduction.

On the contrary both ISS and AntMan achieve good computation reduction, and can be efficiently
executed using readily available BLAS libraries such as Intel MKL resulting in super linear speedups
as shown in the paper.

Direct Design: We compared AntMan with smaller RNN models (with smaller hidden dimension)
trained using the larger teacher model. Our results show that for the same level of compression
AntMan achieves much higher accuracy. (Table 6)

SVD RNN:We constructed compressed models by replacing matrix-multiplication with SVD of
various rank, and trained the SVD based models using knowledge distillation. Once again, we find

11



Under review as a conference paper at ICLR 2019

that for the same level of compression, AntMan achieves much higher accuracy than SVD. (Table 6)

Block Tensor Decomposition (BTD) : BTD is designed to compress RNNs whose inputs are pro-
duced by convolution based models, and contain certain redundancies. AntMan, on the other hand,
is generic to all RNN based models. Also, BTD is designed to compress only the input vector and
not the hidden vectors. This hinders the performance of BTD over a range of RNNs, where the
hidden vectors are also large.

B. ISS VS ANTMAN WITHOUT KNOWLEDGE DISTILLATION

Description EM F1 ModFwd1 ModBwd1 ModFwd2 ModBwd2 OutFwd OutBwd weight#

Expert 67.9 77.3 1x 1x 1x 1x 1x 1x 2.69M

ISS 65.29 75.47 1.95x 2.26x 6.14x 4.34x 5.87x 8.85x 1.03M

LowRank-LGP 66.07 76.11 8.6x 8.6x 7.5x 7.5x 11.2x 11.2x 0.60M

Table 8: Comparison of computation reduction between AntMan and ISS for BiDAF without Knowl-
edge Distillation

Here, we compare the performance of AntMan with ISS, without using any knowledge distillation.
Please note that knowledge distillation is part of the training process for AntMan, but it is not for
ISS. Nevertheless, it is interesting to see how AntMan performs in the absence of a teacher.

When trained without knowledge distillation, our experiments show that AntMan and ISS have
complimentary strengths. On the PTB dataset, with a 10x compute reduction, AntMan does not
generalize well without a teacher, while ISS incurs less than 1pt loss in perplexity compared to the
original model. This is demonstrated by the first row and column in Table 3, and the third row in
Table 2. On the contrary, for the BiDAF, AntMan incurs less than 1pt reduction in F1 score for
nearly 10x compute reduction2, while ISS incurs nearly 2pt reduction in F1 score with less than 5x
compute reduction on average. This is shown in Table 8.

AntMan can successfully compress BiDAF, while ISS fails because ISS compresses an LSTM by
effectively reducing its hidden dimension, while AntMan preserves the hidden dimension size. The
LSTMs in the BiDAF model have large input dimensions making them computationally expensive,
but they have very small hidden dimensions. Therefore, reducing the already small hidden dimen-
sion results in significant loss of accuracy. On the contrary, the PTB model has large input as well
as hidden dimensions, allowing ISS to work effectively.

C. ADDITIONAL EXPERIMENT DETAILS

Optimizers All the models in the evaluation section were trained using ADAM optimizer.

Hyperparameters For both PTB and SQUAD, all the hyper-parameters for training the respective
models were set as default from their standard and recommended implementations on github (PTB
3, BiDAF4).

2LowRank LGP with gim = 5, ghm = 5, rim = 4, rhm = 2
3https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
4https://github.com/allenai/bi-att-flow

12


	Introduction
	Related Work
	AntMan Design and Implementation
	Localized Group Projections
	Group Mixing
	Low-rank Decomposition
	Composing Components into AntMan Compression Modules
	Computation and Model Size Reduction
	Efficient Implementation

	Training AntMan Using Knowledge Distillation
	Experiments
	Computation Reduction
	Word level completion
	Machine Reading Comprehension (MRC)

	Optimized model size for different accuracy targets
	Theoretical vs Actual Speedup

	Conclusion

