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ABSTRACT 
The ability to perform long, accurate molecular dynamics 

(MD) simulations involving proteins and other biological macro-
molecules could in principle provide answers to some of the most 
important currently outstanding questions in the fields of biology, 
chemistry and medicine.  A wide range of biologically interesting 
phenomena, however, occur over time scales on the order of a 
millisecond—about three orders of magnitude beyond the dura-
tion of the longest current MD simulations. 

In this paper, we describe a massively parallel machine 
called Anton, which should be capable of executing millisecond-
scale classical MD simulations of such biomolecular systems.  
The machine, which is scheduled for completion by the end of 
2008, is based on 512 identical MD-specific ASICs that interact 
in a tightly coupled manner using a specialized high-speed com-
munication network.  Anton has been designed to use both novel 
parallel algorithms and special-purpose logic to dramatically ac-
celerate those calculations that dominate the time required for a 
typical MD simulation.  The remainder of the simulation algo-
rithm is executed by a programmable portion of each chip that 
achieves a substantial degree of parallelism while preserving the 
flexibility necessary to accommodate anticipated advances in 
physical models and simulation methods. 

Categories and Subject Descriptors: J.3 [Computer Applica-

tions]: Life and Medical Sciences – Biology and genetics; Health; 

C.1.4 [Computer Systems Organization]: Processor Architectures 
– parallel architectures; C.3 [Computer Systems Organization]: 
Special-purpose and Application-based Systems – microproces-
sor/microcomputer applications 

General Terms: Algorithms; Performance; Design. 

Keywords: Molecular dynamics; Special-purpose machine; Bio-
molecular system simulation; Computational biology; Protein 
structure; Protein folding; Computational drug design; 
Bioinformatics. 

1. INTRODUCTION  
Molecular dynamics (MD) simulations can be used to model 

the motions of molecular systems, including proteins, cell 
membranes and DNA, at an atomic level of detail.  A sufficiently 
long and accurate MD simulation could allow scientists and drug 
designers to visualize for the first time many critically important 
biochemical phenomena that cannot currently be observed in 
laboratory experiments, including the “folding” of proteins into 
their native three-dimensional structures, the structural changes 
that underlie protein function, and the interactions between two 
proteins or between a protein and a candidate drug molecule [8, 
14, 18, 26].  Such simulations could answer some of the most 
important open questions in the fields of biology and chemistry, 
and have the potential to make substantial contributions to the 
process of drug development. 

Many of the most important biological processes occur over 
time scales on the order of a millisecond.  MD simulations on this 
time scale, however, lie several orders of magnitude beyond the 
reach of current technology; only a few MD runs have thus far 
reached even a microsecond of simulated time, and the vast 
majority have been limited to the nanosecond time scale [9, 27].  
Millisecond-scale simulations of a biomolecular system 
containing tens of thousands of atoms will in practice require that 
the forces exerted by all atoms on all other atoms be calculated in 
just a few microseconds—a process that must be repeated on the 
order of 1012 times.  Such simulations will require the use of a 
huge number of arithmetic processing elements, and because of 
the global nature of the inter-atomic force calculations, will 
involve a great deal of inter-processor communication, which 
must be carefully managed in order to preserve scalability.  These 
stringent requirements far exceed the current capabilities of even 
the most powerful commodity clusters or general-purpose 
scientific supercomputers. 

In this paper, we describe a specialized, massively parallel 
machine, called Anton, that is designed to accelerate MD simula-
tions by several orders of magnitude, bringing millisecond-scale 
simulations within reach for molecular systems involving tens of 
thousands of atoms.  The machine, which is scheduled for com-
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pletion by the end of 2008, will comprise 512 processing nodes in 
its initial configuration, each containing a specialized MD compu-
tation engine implemented as a single ASIC (Section 4).  The 
molecular system to be simulated is decomposed spatially among 
these processing nodes, which are connected through a special-
ized high-performance network to form a three-dimensional torus.  
Anton’s expected performance advantage is attributable to a com-
bination of MD-specific hardware that achieves a very high level 
of arithmetic density and novel parallel algorithms that, among 
other things, enhance scalability by reducing both intra- and inter-
chip communication. 

In designing Anton and its associated software, we have 
attempted to attack a somewhat different problem than the ones 
addressed by several other projects that have deployed significant 
computational resources for MD simulations.  The 
Folding@Home project [21], for example, has obtained a number 
of significant and interesting scientific results by using as many as 
200,000 PCs (made available over the Internet by volunteers) to 
simulate a very large number of separate molecular trajectories, 
each of which is limited to the time scale accessible on a single 
PC.  While a great deal can be learned from a large number of 
independent MD trajectories, many other important problems 
require the examination of a single, very long trajectory—the 
principal task for which Anton is designed.  Other projects, such 
as FASTRUN [13], MDGRAPE [31], and MD Engine [32], have 
produced special-purpose hardware to accelerate the most 
computationally expensive elements of an MD simulation.  Such 
hardware reduces the cost of MD simulations, particularly for 
large molecular systems, but Amdahl’s law and communication 
bottlenecks prevent the efficient use of enough such chips in 
parallel to extend individual simulations beyond microsecond 
time scales. 

Anton is named after Anton van Leeuwenhoek, whose 
contributions to science and medicine we hope to emulate in our 
own work.  In the 17th century, van Leeuwenhoek, often referred 
to as the “father of microscopy,” built high-precision optical 
instruments that allowed him to visualize for the first time an 
entirely new biological world that had previously been unknown 
to the scientists of his day.  Using his primitive microscope, he 
was the first to see bacteria and other microorganisms (helping to 
elucidate the origins of infectious disease), and was the discoverer 
of blood cells and spermatozoa (helping to establish modern 
theories of respiration and reproduction).  We view Anton (the 
machine) as a sort of “computational microscope.”  To the extent 
that we and other researchers are able to increase the length of 
molecular dynamics simulations, just as van Leeuwenhoek 
increased the effective magnification of the optical instruments of 
his day, we would hope to provide contemporary biological and 
biomedical researchers with a tool for understanding organisms 
and their diseases on a still smaller length scale.  

2. STRUCTURE OF MOLECULAR 

DYNAMICS COMPUTATIONS  
An MD computation simulates the motion of a collection of 

atoms (the chemical system) over a period of time according to 
the laws of classical physics.  The chemical system might consist 
of a protein and its surrounding environment (solvent, usually 
water), and might also include other types of molecules, such as 

lipids, carbohydrates, nucleic acids, or drug molecules.  The en-
tire chemical system occupies a small parallelepiped (the global 

cell), typically tens of angstroms on a side, filled with tens or 
hundreds of thousands of atoms.  In the interest of accuracy, we 
represent solvent molecules explicitly, rather than using a contin-
uum approximation.  We also typically assume that the global cell 
tiles an infinite space by repeating in each dimension with a pe-
riod equal to the side length of the global cell in that dimension 
(periodic boundary conditions). 

For brevity, we describe only those details of MD 
calculations required to explain our architecture.  Numerous more 
complete surveys of MD methodology are available [2, 14, 26].  
For expository simplicity, we assume a one-to-one 
correspondence between particles and atoms.  We also assume 
that the global cell is a rectangular parallelepiped, although our 
hardware also supports non-rectangular global cells. 

An MD computation breaks time into a series of discrete 
time steps, each representing a few femtoseconds of simulated 
time.  A time step has two major phases.  Force calculation 
computes the force on each particle due to other particles in the 
system.  Integration uses the net force on each particle to update 
that particle’s position and velocity.  Simulating a millisecond of 
time requires on the order of 1012 time steps. 

2.1 Force Calculation 
Interatomic forces are calculated based on a molecular 

mechanics force field (or simply force field), which models the 
total potential energy of a chemical system as a relatively simple 
function of the atomic spatial coordinates.  The force on a given 
particle is then the gradient of the potential energy function with 
respect to the coordinates of that particle.  Although classical MD 
simulation is inherently an approximation, it is dramatically faster 
than directly solving the full set of quantum mechanical 
equations. Several decades of work have gone into the 
development of biomolecular force fields through fitting models 
to experimental and quantum data. 

Anton is compatible with commonly used biomolecular force 
fields, including CHARMM [21], AMBER [19], and OPLS-AA 
[17].  All of these express the total system potential energy Etotal 
as the sum of several contributions: 

Etotal = Ebonded + Enonbonded 

 Ebonded = Elength + Eangle + Edihedral 

 Enonbonded = Ees + Evdw. 

The bonded energy term Ebonded applies only to atoms that 
are separated by no more than three covalent bonds.  The bonded 
energy is a sum of three kinds of terms: the length term Elength of a 
bond between two directly bonded atoms; the angle term Eangle 
defined by the positions of three atoms, two of which are bonded 
to a third; and the dihedral (torsion) angle term Edihedral defined by 
four atoms connected by three sequential bonds. 

The nonbonded energy term Enonbonded is the sum of an elec-
trostatic component Ees and a van der Waals component Evdw.  
These are known as nonbonded terms because they include inter-
actions between all pairs of atoms in the simulated system with 
the exception of those separated by a small number of covalent 
bonds.  Biomolecules are sparsely connected, typically having no 
more than four bonds per atom, making the number of bonded 
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interactions linear in the number of atoms.  The number of non-
bonded interactions, on the other hand, scales quadratically with 
the number of atoms, and typically far exceeds the number of 
bonded terms.  Van der Waals forces fall off sufficiently quickly 
with distance that they can typically be neglected for pairs of 
particles separated by more than some cutoff radius, usually cho-
sen between 5 and 15 Å.  Neglecting electrostatic interactions 
beyond a cutoff, however, leads to serious artifacts in explicit 
solvent simulations [7, 23]. Electrostatic forces are thus typically 
computed by one of several efficient, approximate methods that 
account for long-range interactions without requiring the explicit 
interaction of all pairs of particles.   

Anton uses a method we developed for fast electrostatic cal-
culations called k-space Gaussian split Ewald, or k-GSE [28]. 
This algorithm reduces the computational workload of the non-
bonded interactions from O(n2)  to O(n log n) in the number of 
particles, and maps to our specialized hardware more effectively 
than previously described methods for efficient electrostatics 
computation.  In k-GSE, as in other similar long-range electrostat-
ics algorithms such as PME [10] and PPPM [16], electrostatic 
interactions are divided into two contributions.  The first decays 
rapidly with particle separation, and is thus computed directly for 
all particle pairs separated by less than the cutoff radius.  We refer 
to this contribution, together with the range-limited van der Waals 
interactions, as explicit pairwise nonbonded interactions.  The 
second contribution (long-range interactions) decays more 
slowly, but can be expressed as a convolution with a smooth ker-
nel that can be efficiently computed by taking the fast Fourier 
transform (FFT) of the charge distribution on a regular mesh, 
multiplying by an appropriate function in Fourier space, and tak-
ing an inverse FFT.  Charge must be mapped from particles to 
nearby mesh points before the FFT computation (charge spread-

ing), and forces on particles must be calculated from the convolu-
tion result at nearby mesh points after the inverse FFT computa-
tion (force interpolation).  In contrast with PME and PPPM, k-
GSE performs charge spreading and force interpolation using 
Gaussian interpolation kernels.  The spherical symmetry of these 
Gaussians allows us to use the same hardware for charge spread-
ing and force interpolation as for computing explicit pairwise 
interactions.  (Section 4 describes this hardware in more detail.) 

In most force fields, the force between each pair of particles 
that participate in a length, angle, or dihedral term is either 
eliminated from or underweighted in the nonbonded force 
calculation.  On Anton, this effect can be achieved most 
efficiently by computing nonbonded interactions between all pairs 
of particles, then subtracting compensatory force correction 

terms.  

2.2 Integration 
The integration phase of MD uses the results of force compu-

tation to update atomic positions and velocities, numerically inte-
grating a set of ordinary differential equations corresponding to 
Newton’s laws of motion.  The numerical integrators used in MD 
are nontrivial for several reasons.  First, the integration algorithm 
and the manner in which numerical issues are handled can have a 
significant effect on accuracy.  Second, some simulations require 
the integrator to calculate and adjust global properties like tem-
perature and pressure.  Finally, one can significantly accelerate 
most simulations by incorporating constraints that eliminate the 

fastest vibrational motions.  For example, we typically fix the 
lengths of bonds to all hydrogen atoms and hold water molecules 
rigid. 

2.3 Parallelization  
In Anton, as in most parallel MD codes, the global cell is 

divided into a regular grid of smaller rectangular parallelepipeds, 
which will be referred to here as boxes.  Each processing node 
updates the positions and velocities of particles in one box, 
referred to as the home box of that node and of those particles.  
Conversely, we refer to each particle as having a home node.  

To parallelize explicit pairwise nonbonded interactions, our 
machine uses an algorithm we developed called the NT method 
[29]. The NT method achieves both asymptotic and practical 
reductions in required interprocessor communication bandwidth 
relative to traditional parallelization methods.  In traditional 
spatial decompositions [25],  the interaction between two particles 
is always calculated by the home node of one or both particles.  
The NT method is one of a number of novel methods [5, 6, 11, 15, 
29, 30] that also employ a spatial assignment of particles to nodes, 
but that often compute the interaction between two particles in a 
node on which neither particle resides, and which must thus 
import information related to both particles.  We refer to such 
techniques as neutral territory methods [5, 6]. 

In the NT method, each node requires access to the positions 
of all particles within two regions of space, known as the tower 
and the plate of that node.  Both of these regions include the 
node’s home box, but also include portions of neighboring boxes.  
Each node must thus import position data from certain 
neighboring nodes.  Each node then calculates the interaction 
between each pair of particles, one from its plate and one from its 
tower, that are separated by no more than the cutoff radius (with 
the exception of a limited number of pairs that are excluded to 
avoid duplicate interactions).  Because explicit pairwise 
nonbonded interactions constitute the majority of the computation 
required in an MD simulation, much of the ASIC’s area is 
devoted to hardware pipelines specialized for these interactions.  
We also use the NT method, with minor modifications, to 
parallelize the interaction of particles with grid points in the 
course of charge spreading and force interpolation. 

Several other parts of an MD simulation require 
interprocessor communication.  Force computations require the 
transfer of data for long-range electrostatic calculations (including 
forward and inverse FFTs) and for the evaluation of bonded 
forces.  Additional communication is also required in the course 
of integration for the enforcement of constraints, the evaluation of 
global quantities such as pressure and temperature, and the 
transfer of particles from one node to another as they move 
between boxes over the course of a simulation (atom migration). 

3. WHY SPECIALIZED HARDWARE?  
A natural question is whether a specialized machine for mo-

lecular simulation can gain a significant performance advantage 
over general-purpose hardware.  After all, history is littered with 
the corpses of specialized machines, spanning a huge gamut from 
Lisp machines [20] to database accelerators [3].  Performance and 
transistor count gains predicted by Moore’s law, together with the 
economies of scale behind the development of commodity proces-
sors, have driven a history of general-purpose microprocessors 
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outpacing special-purpose solutions.  Any plan to build special-
ized hardware must account for the expected exponential growth 
in the capabilities of general-purpose hardware. 

We concluded that special-purpose hardware is warranted in 
this case because it leads to a much greater improvement in 
absolute performance than the expected speedup predicted by 
Moore’s law over our development time period, and because we 
are currently at the cusp of simulating time scales of great 
biological significance.  We expect Anton to run simulations over 
1000 times faster than was possible when we began this project.  
Assuming that transistor densities continue to double every 18 
months and that these increases translate into proportionally faster 
processors and communication links, one would expect 
approximately a ten-fold improvement in commodity solutions 
over the five-year development time of our machine (from 
conceptualization to bringup).  We therefore expect that a 
specialized solution will be able to access biologically critical 
millisecond time scales significantly sooner than commodity 
hardware. 

Specialization permits us to tailor the system specifically to 
MD rather than attempting to speed up general-purpose parallel 
computing.  That is, we need not speed up all high-performance 
codes; we need only speed up MD.  This means that “tuning to 
the application” is not illegal or questionable as it is for general-
purpose machines.  Quite the opposite is true—as long as we 
perform the correct MD calculations, application-specific 
optimizations and hardware structures are valid and encouraged. 

To simulate a millisecond within a couple of months, we 
must complete a time step every few microseconds, or every few 
thousand clock ticks.  The sequential dependence of successive 
time steps in an MD simulation makes speculation across time 
steps extremely difficult.  Fortunately, specialization offers 
unique opportunities to accelerate an individual time step using a 
combination of architectural features that reduce both 
computational latency and communication latency.   

For example, we reduced computational latency by 
designing: 

• Dedicated, specialized hardware datapaths and control logic 
to evaluate the pairwise explicit nonbonded interactions and 
to perform charge spreading and force interpolation.  In 
addition to packing much more computational logic on a 
chip than is typical of general-purpose architectures, these 
pipelines use customized precision for each operation, 
increasing the speed of the datapath logic and decreasing the 
silicon area required per arithmetic unit. 

• Specialized, yet programmable, processors to compute 
bonded interactions and the FFT and to perform integration.  
The instruction set architecture (ISA) of these processors is 
tailored to the geometric calculations involved in bonded 
force calculation and constrained integration, and to the 
communication patterns involved in MD.  Their 
programmability provides flexibility to accommodate 
various force fields and integration algorithms. 

• Dedicated support in the memory system to accumulate 
forces for each particle without using the programmable 
processors. 

Anton performs nearly all its calculations in fixed-point 
arithmetic, which provides greater speed and accuracy in MD 
calculations than floating-point logic occupying the same silicon 
area.  

We reduced communication latency by designing: 

• A low-latency, high-bandwidth network, both within an 
ASIC and between ASICs, that includes specialized routing 
support for common MD communication patterns such as 
multicast and compressed transfers of sparse data structures. 

• A system of hardware features that enable choreographed 
“push”-based communication.  Producers send results to 
consumers without the consumers having to request the data 
beforehand, and the consumers have counters that allow 
them to detect when all required data have arrived. 

• Synchronization support at various points in the ASIC that 
allow each point to begin computation when all necessary 
data have arrived, without the need to receive a “start” 
indication from a central coordinator. 

• A set of autonomous direct memory access (DMA) engines 
that offload communication tasks from the computational 
units, allowing greater overlap of communication and 
computation. 

• Admission control features that prioritize packets carrying 
certain algorithm-specific data types. 

We balance our design very differently from a general-
purpose supercomputer architecture.  Relative to other high-
performance computing applications, MD uses much 
communication and computation but surprisingly little memory.  
Consider an MD simulation of 25,000 particles.  If each particle 
requires 64 bytes of storage, then the entire architectural state is 
just 1.6 MB.  Divided among the 512 nodes of a typical machine, 
this is only 3.2 KB per node, which would fit handily into the L1 
cache of any modern processor.  We exploit this property by 
using only SRAMs and small L1 caches on our ASIC, with all 
code and data fitting on-chip in normal operation.  Rather than 
spending silicon area on large caches and aggressive memory 
hierarchies, we instead dedicate it to communication and 
computation. 

Table 1.  Profile of a single-processor run using the 

GROMACS MD package [33].   

Phase Task 
% execution 

time 

Explicit pairwise 
nonbonded interactions 

60 

FFT, inverse FFT, & 
Fourier space multiplication 

17 

Charge spreading and force 
interpolation 

13 

Bonded force terms 1 

Force 
Calculation 

Correction force terms 4 

Position & velocity updates 2 

Constraints 2 Integration 

Pressure computation 1 
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It is serendipitous that the most computationally intensive 
parts of MD—in particular, the electrostatic interactions—are also 
the most well-established and unlikely to change as force field 
models evolve, making them particularly amenable to hardware 
acceleration.  Dramatically accelerating MD simulation, however, 
requires that we accelerate more than just an “inner loop.”   
Table 1 shows that explicit pairwise nonbonded computations 
account for 60% of the computational time for a particular MD 
simulation on a single general-purpose processor.  Long-range 
interactions, including charge spreading, force interpolation, and 
FFT computation, account for another 30% of the time, bringing 
the total fraction of time spent on nonbonded computations to 
90%.  Amdahl’s law states that no matter how much we accelerate 
the nonbonded computations, the remaining computations, left 
unaccelerated, would limit our maximum speedup to a factor of 
10.  Hence, we dedicated a significant fraction of silicon area to 
accelerating tasks such as bonded force computation, constraint 
computation, velocity and position updates, and atom migration, 
incorporating programmability as appropriate to accommodate a 
wide variety of force fields and integration methods. 

Because the hardware used to perform integration is 
programmable, Anton also supports other simulation 
methodologies based on molecular mechanics force fields, such as 
Brownian dynamics and Monte Carlo simulation [14]. 

4. SYSTEM ARCHITECTURE  
The building block of the system is a node, depicted in Fig-

ure 1.  Each node comprises an MD-specific ASIC, attached 
DRAM, and six ports to the system-wide interconnection net-
work.  The nodes, which are logically identical, are connected in a 
three-dimensional torus topology (which maps naturally to the 
periodic boundary conditions described in Section 2).  The initial 
version of Anton will be a 512-node torus with eight nodes in 
each dimension, as illustrated in Figure 2, but our architecture 
also supports larger and smaller toroidal configurations.  For 
physical packaging, four nodes make up a node board, 32 node 
boards fit in a 19-inch rack, and four racks form a 512-node ma-
chine.  A 512-node machine can handle chemical systems up to 
200,000 particles using on-chip memory.  For larger chemical 
systems, we split each box into virtual sub-boxes, and each node 
processes sub-boxes serially, paging sub-box state to the node’s 
local DRAM; we refer to this as DRAM mode. 

The remainder of this section details the architecture and de-
sign of the MD-specific ASIC, which has four major subsystems.  
The high-throughput interaction subsystem (HTIS) calculates 
explicit pairwise nonbonded interactions and performs charge 
spreading and force interpolation.  The HTIS applies massive 
parallelism to these operations, which constitute the bulk of the 
calculation in MD.  The memory subsystem drives the node’s 
local DRAM and accumulates force terms.  The flexible subsys-

tem controls the ASIC and handles all other computations, includ-
ing the bonded force calculations, the FFT, and integration.  The 
communication subsystem provides both inter-chip and intra-chip 
communication.  Between chips, each torus link provides 5.3 
GB/s full-duplex communication with a hop latency around 50 ns.  
Within a chip, two 256-bit communication rings link all subsys-
tems and the six inter-chip torus ports.  The ASICs are clocked at 
a modest 400 MHz, with the exception of one double-clocked 
component in the HTIS (discussed in Section 4.1).   

Figure 1.  Processing node detail.  The high-throughput 
interaction subsystem performs nonbonded MD interaction 
calculations.  The flexible subsystem performs the remaining MD 
calculations, coordinates MD time step activity, and manages 
housekeeping tasks.  Also shown are the intra-chip 
communication rings, the six connections to the inter-chip torus 
communication network, the host interface, and the two off-chip 
DRAM controllers. 

  
Figure 2.  Three-dimensional torus interconnect topology.  
Circles represent processing nodes.  Lines with arrows represent 
the links among the processing nodes.  The XYZ notation for 
each processing node specifies the node’s X, Y, and Z 
coordinates within the torus. 
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4.1 High-Throughput Interaction Subsystem 

(HTIS) 
The HTIS considers interactions between all points in one set 

(the tower) and all points in another set (the plate), computing 
nonzero interactions for pairs that are separated by less than a 
given cutoff radius and that satisfy certain other criteria, as pre-
scribed by the NT parallelization method (see Section 2.3).  For 
the explicit pairwise nonbonded calculations, both the tower and 
the plate consist of particles, and the HTIS computes and tabu-
lates the forces that pairs of particles exert on one another.1  For 
charge spreading, the HTIS interacts a tower of particles with a 
plate of grid points to determine how much of each particle’s 
charge should be mapped to each neighboring grid point.  For 
force interpolation, the HTIS also interacts a tower of particles 
with a plate of grid points, but uses the convolution value at each 
grid point to calculate the long-range force on each tower particle.  
Because we use the k-GSE method for long-range electrostatics, 
all three of these computations involve repeated evaluation of 
functions of distance between two points, permitting the same 
hardware pipelines to be used in all three cases.  For expository 
simplicity, our description focuses on the operation of the HTIS 
as it computes the explicit pairwise nonbonded forces.  The HTIS 
performs these calculations using an in-order, systolic architecture 
that accumulates forces on each particle as data streams through. 

Figure 3 depicts the internal structure of the HTIS, which 
contains two major sub-blocks: an Interaction Control Block 

                                                                 
1 In addition to forces acting on particles, both energy and electro-
static potential are also of interest.  The HTIS can be configured 
to compute force, energy, or electrostatic potential.  We focus on 
force calculations for the present discussion; the computations of 
energy and electrostatic potential are similar. 

(ICB) and an array of 32 Pairwise Point Interaction Modules 
(PPIMs).  The ICB comprises two communication ring interfaces, 
a large buffer area, and an embedded processor core.  The ICB 
processor controls the flow of data through the HTIS and, through 
programmable ISA extensions, acts as a buffering, prefetching, 
synchronization, and writeback controller for the HTIS.  The ICB 
either expects plate and tower particles to arrive via push commu-
nication or (in DRAM mode) reads plate and tower particles into 
its buffers.  Then the ICB loads the tower particles into the PPIM 
array and streams the plate particles through that array, past the 
tower particles.  Each force exiting the array is written to the 
memory system.  After all plate particles have been processed, the 
ICB instructs the PPIM array to stream out the tower particle 
forces as well.  The number of PPIMs was chosen on the basis of 
detailed system-level simulations with the goal of maximizing 
overall system performance, appropriately balancing the die area 
of the HTIS against that of the flexible subsystem. 

The centerpiece of each PPIM is a force calculation pipeline 
that computes the force between a pair of particles; this is a 26-
stage pipeline (at 800 MHz) of adders, multipliers, function 
evaluation units, and other specialized datapath elements.  Inside 
this pipeline, we use customized numerical precisions: functional 
unit width varies across the different pipeline stages but still 
produces a sufficiently accurate 32-bit fixed-point result. 

The various PPIM datapath widths were chosen to minimize 
die area and execution time while meeting a root mean squared 
force error criterion (see Section 5.3) for representative chemical 
systems, as determined in empirical studies with actual simulation 
data.  These choices were then validated by running simulations 
for millions of time steps to ensure that precision limitations and 
rounding do not adversely affect simulation quality. 

Feeding the force calculation pipeline are eight dedicated 
matchmaking units that collectively check each arriving plate 

 

Figure 3.  High-throughput interaction subsystem (HTIS) 

detail.  The HTIS comprises an array of 32 Pairwise Point Inter-
action Modules (PPIMs) and an embedded control processor to 
coordinate the distribution of particle pairs to the PPIM array. 

 

Figure 4.  PPIM detail.  This figure gives a sense of the numeri-
cal calculation units in PPIM.  The top portion of the figure shows 
the matchmaking units and particle memories.  The lower portion 
of the figure shows the general structure of the force, potential, 
and energy calculation pipelines. 
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particle against all the tower particles stored in the PPIM to de-
termine whether the plate particle is within a programmable cutoff 
radius from each of the tower particles.  Each tower/plate particle 
pair that falls within the cutoff radius and satisfies certain other 
criteria goes to the PPIM’s force calculation pipeline.  As plate 
particles stream by, forces on tower particles are accumulated 
within the PPIM, while the accumulated force on each plate parti-
cle is streamed along with that particle.  The PPIM, illustrated in 
Figure 4, runs at 800 MHz, while the rest of the ASIC runs at 400 
MHz. 

Because the HTIS streams plate particles past stored tower 
particles, it is simple to scale the PPIM array to any number of 
PPIMs.  On the input side, wiring replicates particle records so 
that the same stream of plate particles flows through each row of 
the array.  On the output side, force combiners merge streams of 
forces, adding up forces for each plate particle.   

The PPIMs are the most hard-wired component of our 
architecture, reflecting the fact that they handle the most 
computationally intensive parts of the MD calculation.  That said, 
even the PPIMs include programmability where we anticipate 
potential future changes to force fields.  For instance, the 
functional forms for van der Waals and electrostatic interactions 
are specified using SRAM lookup tables, whose contents are 
determined at runtime. 

4.2 Flexible Subsystem 
The flexible subsystem handles a variety of tasks, some in-

volving calculation and others involving system management and 
maintenance functions.  It initiates each force computation phase 
by multicasting particle positions to the HTIS and flexible subsys-
tems of multiple ASICs.  It handles those parts of force computa-
tion not performed in the HTIS, including calculation of bonded 
force terms, the FFT, and the force correction terms.  It performs 
all integration tasks, including constraint calculations, position 
and velocity updates, computation of global temperature and pres-
sure, and atom migration.  Lastly, it performs all maintenance 
activities, including boot, diagnostics, self-test, loading MD simu-
lations, switching contexts, logging, checkpointing, and error 
reporting.2 

Figure 5 shows the components of the flexible subsystem.  
Four identical processing slices form the core of the flexible 
subsystem.  Each slice comprises a general-purpose core with its 
caches; a remote access unit (RAU) that performs autonomous 
data transfers; and two geometry cores (GCs), which are 
programmable cores whose ISA has been tailored to MD 
calculations.  Other components of the flexible subsystem include 
a correction pipeline, which computes force correction terms; a 
racetrack, which serves as a local, internal interconnect for the 
flexible subsystem components; and a ring interface unit, which 
allows the flexible subsystem components to transfer packets to 
and from the communication subsystem. 

The general-purpose cores manage the data transfers that 
occur during the time step and perform a few critical synchroniza-
tions.  Each core implements a general-purpose integer and float-
ing-point instruction set as well as some custom instructions to 

                                                                 
2 Many of the maintenance activities are divided between the 
flexible subsystem and an external host computer system.  

communicate at low latency with the other three general-purpose 
cores.  In addition to the usual system interface and cache inter-
faces, each core also connects to a 32 KB scratchpad memory in 
the core’s attached RAU.  This scratchpad memory is used to 
stage MD simulation data for background transfer by the RAU.  
The general-purpose cores also handle all the maintenance tasks.  
These tasks, which are not performance-critical, occur either peri-
odically (e.g., checkpointing every million time steps) or in re-
sponse to explicit notification (e.g., an interrupt). 

The remote access unit (RAU) is a programmable data 
transfer engine.  In addition to a scratchpad memory that the 
associated general-purpose core can read and write, the RAU 
provides an array of transfer descriptors and associated state 
machines.  A transfer descriptor describes a data transfer between 
the scratchpad memory and the rest of the system.  Once the 
general-purpose core has initialized a transfer descriptor and 
marked it active (done with a single store instruction), the RAU 
takes over and performs the transfer itself, freeing the general-
purpose core to perform other tasks.  A transfer descriptor can 
also track push writes into the scratchpad memory, providing a 
fast polling and synchronization mechanism.  The RAU 
implements 128 transfer descriptors, allowing multiple concurrent 
transfers.  This background data transfer capability is crucial for 
performance, as it enables overlapped communication and 
computation. 

The geometry cores (GCs) perform most of the flexible sub-
system’s computation.  Each GC is a dual-issue, statically-
scheduled SIMD processor with pipelined multiply-accumulate 
support.  The GC’s basic data type is a vector of four 32-bit fixed-

 
 

Figure 5.  Flexible subsystem detail.  The flexible subsystem is 
a collection of four identical processing slices (one of which is 
indicated by a box at the left) and a correction pipeline unit.  The 
processing slices communicate with each other and with the cor-
rection pipeline via the racetrack.  The various components 
communicate with the intra-chip communication ring via the ring 
interface unit shown at the top of the figure. 
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point values, and two independent SIMD operations on these 
vectors issue each cycle.  The GC’s instruction set includes ele-
ment-wise vector operations (for example, vector addition); more 
complicated vector operations such as a dot product; and scalar 
operations that read and write arbitrary scalar components of the 
vector registers (essentially accessing the SIMD register file as a 
larger scalar register file).  Such scalar operation support is atypi-
cal of SIMD processors but has proven useful in MD.  For exam-
ple, the bonded calculations (see Section 2.1) make heavy use of 
this feature. 

All fixed point arithmetic in the machine (including that in 
the GCs) can be thought of as operating on numbers in the range 
[ 1,1)- .  Addition is allowed to “wrap” in the natural way for 
twos-complement arithmetic.  With the prescription that 

1 1 1- ·- = - , this range is closed under multiplication, but one 
must define a rule for rounding.  Multiplication can either round 
to nearest with ties going to nearest even, or round toward 
negative infinity.  In the vast majority of cases, the software uses 
round to nearest.  In addition to “normal” multiplication, the GCs 
support a “multiply with shift” operation that allows one to 
compute 2

k
a b· ·  at the maximum available precision.  Another 

instruction counts the leading sign bits.  These instructions can be 
combined to emulate floating point, but in practice, most of the 
quantities handled by the GCs are in well-characterized, bounded 
ranges (e.g., bonds are between 1 and 3 Å in length) so there is no 
need for software to dynamically normalize fixed point values. 

The correction pipeline (CP) uses a structure similar to the 
PPIM force calculation pipeline to compute force correction terms 
that fully or partially cancel out certain nonbonded interactions 
(see Section 2.1).  The correction pipeline also accumulates 
bonded force terms before they are sent to the memory subsystem, 
reducing communication traffic. 

The racetrack is a private, local, unidirectional ring 
interconnect among the flexible subsystem components, 
permitting these components to exchange data with low latency.  
The racetrack supports multicasting of particles to the geometry 
cores for bonded force calculations, communication of bonded 
forces to the correction pipeline, and efficient intra-node 
communication during FFT computation. 

4.3 Communication Subsystem 
The communication subsystem provides high-speed, low-

latency communication both between ASICs and among the sub-
systems within an ASIC.  Most routing is performed using a 
global 48-bit address space, with 16 bits of node identifier and 32 
bits of address per node.  In addition, multicast group addresses 
allow delivery of a single source packet to multiple destinations 
on multiple ASICs; multicast is used for efficient position send-
ing, for neighbor synchronization, and for all-reduce operations.  
The communication subsystem also provides a source routing 
mode for topology discovery and confirmation.  The network 
provides flow control, back-pressuring senders under oversub-
scription, and it provides class-based admission control with rate 
metering.  Routing is dynamic, and a combination of virtual cir-
cuit numbering and adaptive routing, to be described in a future 
paper, ensures deadlock freedom using a small number of virtual 
channels.  The communication subsystem also allows access to an 
external host computer system for input and output of simulation 
data. 

4.4 Memory Subsystem 
The memory subsystem provides access to the ASIC’s 

attached DRAM.  In addition to basic memory read/write access, 
the memory subsystem supports accumulation and 
synchronization.  Special memory write operations numerically 
add incoming write data to the contents of the memory location 
specified in the operation.  These operations implement force, 
energy, potential and spread charge accumulations, reducing the 
computation and communication load on the flexible subsystem.  
Atomic memory operations synchronize the ASIC and the 
external host computer system.   

4.5 Parallel Operation 
Anton is programmed using a combination of C, assembly 

language, and control of hardware engines through memory-
mapped registers (MMRs).  The general-purpose cores and the 
ICB processor have an optimizing C compiler; the geometry cores 
are programmed in assembly language.  Other components, such 
as the correction pipeline, the routing tables of the communication 
subsystem, and the synchronization features of the memory 
subsystem, are configured through MMR accesses. 

The HTIS, flexible, communication, and memory 
subsystems are independent hardware units, and operate in 
parallel.  Force computation consists of three steps.  First, the 
HTIS spreads charges for the long-range calculations while the 
flexible subsystem calculates most of the bonded force and 
correction force terms.  Second, the HTIS calculates explicit 
pairwise nonbonded forces while the flexible subsystem 
calculates the FFT and inverse FFT.  Third, the HTIS performs 
force interpolation while the flexible subsystem completes the 
remainder of the bonded force and correction force terms.  With 
proper tuning, the explicit pairwise, bonded, and correction force 
terms are “hidden” behind the long-range work.  Throughout all 
three steps, the memory subsystem receives force reduction 
packets and accumulates the net force on each particle.  The HTIS 
is idle during the integration phase, and is disabled to reduce 
power.  The flexible subsystem code, however, partially overlaps 
the accumulation of forces from the previous time step with 
integration and position broadcast for the next time step. 

5. PERFORMANCE AND ACCURACY 

MEASUREMENTS  
In this section, we show that the performance of Anton 

significantly exceeds that of other MD platforms, and that Anton 
is capable of performing simulations of high numerical accuracy. 

5.1 Simulation Environment 
Because we do not yet have working hardware, performance 

estimates for our machine come from our performance simulator.  
We wrote the simulator in C++, using a cycle-driven methodol-
ogy and an infrastructure that allows us to mix and match C++ 
and Verilog RTL components for design, algorithm, and perform-
ance verification purposes.  The cycle fidelity of our performance 
simulator varies across components; models of the communica-
tion subsystem routers as well as the flexible subsystem processor 
cores are cycle-accurate (i.e., the C++ and RTL simulations pro-
duce identical bits at identical times), while the models of the 
HTIS, RAU, and memory subsystem are within 10% of cycle 

8



accurate (i.e., the C++ and RTL simulations produce identical 
bits, but at times that vary within ±10%).  A few analog sections 
of the design, such as the DRAM interface and the physical layer 
of our communication link, do not lend themselves to digital 
simulation; for these pieces we use time estimates generated by 
the hardware designers and expect fidelity within ±20%.  The 
simulator currently comprises about 100,000 lines of C++ code 
and simulates a 512-node version of our machine at about ten 
machine clock cycles every second. 

5.2 Performance Comparison to Other MD 

Platforms 
We compare the performance of various MD platforms in 

terms of simulation rate (nanoseconds of simulated time per day 
of execution) on a particular chemical system.  In this section and 
in 5.3, we use a system with 23,558 atoms in a cubic box measur-
ing 62.2 Å on a side.  This system represents dihydrofolate reduc-
tase (DHFR), a protein targeted by various cancer drugs, sur-
rounded by water.  The same chemical system is used in the Joint 
AMBER-CHARMM MD benchmark [1], and our simulations, 
like those of that benchmark, used the CHARMM force field [21]. 

We compared the simulation rate of DHFR on our machine 
to the rate on the following MD platforms: 
• A state-of-the-art commodity cluster (consisting of Sun Fire 

V20z servers, each with two 2.4 GHz AMD Opteron Model 
250 single-core processors, connected by an Infiniband 
network) running the following software packages: 
o NAMD, widely regarded as the fastest MD software for 

commodity clusters at high levels of parallelism [24]. 
o GROMACS, widely regarded as the fastest MD software 

for single-processor runs [33]. 
o Desmond, an MD software package for commodity clus-

ters that we are developing [4].  Desmond significantly 
outperforms previously described MD codes at high levels 

of parallelism on commodity clusters, taking advantage of 
novel techniques we discovered while designing our ma-
chine. 

• IBM’s massively parallel, general-purpose Blue Gene/L 
machine, running its Blue Matter MD code, which was 
designed for maximal scalability [11, 12, 15]. 

• MDGRAPE-3, the most recent specialized ASIC for MD 
from the MDGRAPE project, running their MOA 
software[31]. 

Both the performance and the accuracy of an MD simulation 
depend on the settings of a number of simulation parameters such 
as the cutoff radius for explicit pairwise nonbonded force calcula-
tions, the choice of method for long-range electrostatics, and the 
length of the time step.  Figure 6 shows measured or estimated 
performance for each MD platform using benchmark parameters 
chosen to be comparable to the parameters used by IBM in a set 
of performance results reported in 2005 for Blue Matter running 
the DHFR system on Blue Gene/L [11].  We also included a set of 
improved performance estimates for Blue Matter interpolated 
from performance results published recently for chemical systems 
other than DHFR [12].  We ran NAMD, GROMACS, and Des-
mond on our cluster using parameters identical to those used by 
IBM.  Anton uses k-GSE rather than PME for long-range electro-
statics, necessitating the choice of a different set of benchmark 
parameters for force computation; to ensure a fair comparison, we 
used the same integration parameters as Blue Matter and selected 
force calculation parameters for k-GSE that lead to more accurate 
computed forces than those used by Blue Matter (as shown in 
Section 5.3).  Parameter settings for all runs are shown in Table 2.   

We estimated MDGRAPE-3’s performance on DHFR using 
the MDGRAPE-3 designers’ theoretical performance model [31].  
This model assumes direct summation for all particle pairs, which 
should show the best sustained performance [31], because 

 

Figure 6.  Performance comparison of MD platforms.  The vertical axis shows performance in ns/day (higher is better); the horizontal 
axis shows the number of processor cores (for the cluster, Blue Gene/L, and GROMACS) or the number of ASICs (for Anton and 
MDGRAPE-3).  Benchmark parameters were chosen to make the resulting simulation rates directly comparable, while production 
parameters were chosen to typify expected operation of Anton and Desmond. 
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MDGRAPE-3 does not include hardware acceleration for efficient 
long-range electrostatics methods.   

We also measured the simulation rate of Anton and Desmond 
with production parameters representative of those we expect to 
use in actual operation.  Force calculation settings are identical 
for benchmark and production parameters, but runs using produc-
tion parameters employed a constrained integrator with longer 
time steps, in which long-range forces are evaluated only every 
other time step.  We show in Section 5.3 that these runs satisfy 
common accuracy criteria, but rigorously comparing the accuracy 
of runs performed using constrained and unconstrained integrators 
is difficult, as these integrators assume slightly different physical 
models. 

We expect a 512-node version of Anton to simulate 14,500 
ns/day (1 ms in 69 days) on the DHFR system using production 
parameters, and 6,600 ns/day using benchmark parameters 
(Figure 6).  This compares to a maximum benchmark parameter 
simulation rate of 14 ns/day for NAMD on our cluster (using 256 
processor cores on 128 cluster nodes3).  In other words, we expect 
Anton to exceed by a factor of nearly 500 the fastest simulation 
rate currently achievable using generally available codes on 
commodity hardware.  

Desmond’s maximum simulation rate on the same cluster is 
173 ns/day with production parameters and 62 ns/day with 
benchmark parameters (in both cases using 512 processor cores 
on 256 cluster nodes).  In other words, we expect Anton to be 80–
100 times faster than Desmond is today.  Desmond’s performance 
advantage over other currently available MD codes is largely 
attributable to techniques we developed while designing Anton; 
the adaptability of these techniques to commodity hardware is an 
additional benefit of our work. 

The fastest published simulation rate for Blue Matter running 
DHFR with benchmark parameters is 13 ns/day, using 4,096 
processor cores (2,048 nodes) of Blue Gene/L [11].  IBM has 
since reported improved performance and scalability for Blue 
Matter; by interpolation of performance results published recently 

                                                                 
3 In our hands, NAMD actually simulated DHFR more slowly on 
512 processor cores than on 256.  We used NAMD version 2.6b1 
for these experiments; more recent versions of NAMD incorpo-
rate performance improvements (J. Phillips, personal communica-
tion).  

for smaller and larger systems [12], we estimated a simulation 
rate for DHFR of 40 ns/day on 8,192 processor cores (4,096 
nodes) of Blue Gene/L and 50 ns/day on 16,384 processor cores 
(8,192 nodes).  An even more recent report says that DHFR runs 
at somewhat more than 60 ns/day on 8,192 processor cores (4,096 
nodes) of Blue Gene/L (R. S. Germain, personal communication).  
We expect a 512-node version of Anton to exceed this simulation 
rate by approximately a factor of 100. 

The performance of other MD platforms will undoubtedly 
improve by 2008, when Anton is scheduled for completion and 
use in biological research, but Anton’s performance advantage 
over current MD platforms significantly exceeds the speedup 
predicted by Moore’s law over that period. 

5.3 Accuracy 
Unfortunately, no single metric adequately captures the 

accuracy of an MD simulation.  This section applies two common 
accuracy measures to simulations by Anton. 

To quantify the error in force computation, we measured the 
relative rms force error, defined as the root mean squared error in 
the force on all particles divided by the root mean squared force 
[28].  Determination of force error is possible because, for a given 
force field and a given set of particle coordinates, we can closely 
approximate the “true” force specified by the force field on each 
particle by evaluating the force field equations very accurately.  
We then compare these “true” forces to those computed by our 
machine with a given set of force calculation parameters, using a 
numerical emulator that exactly duplicates Anton’s limited-
precision, fixed-point arithmetic.  The relative rms force error for 
our machine using either its benchmark parameters or its produc-
tion parameters (which lead to identical computed forces), as 
measured on the DHFR system, is 1.5x10-4.  For comparison, the 
force calculation benchmark parameters specified by the Joint 
AMBER-CHARMM benchmark and used in the Blue Matter 
performance measurements reported in Section 5.2 give a higher 
relative rms force error of 3.0x10-4 even when all computation is 
performed in double-precision floating-point arithmetic.  A rela-
tive rms force error below 10-3 is generally considered sufficiently 
accurate for biomolecular MD simulations [35, 36]. 

To measure the overall accuracy of our production runs, we 
also measured energy drift.  An exact MD simulation would con-
serve energy exactly.  Errors in the simulation generally lead to 

Table 2.  Parameters used in timing runs on dihydrofolate reductase (DHFR) on various platforms.  Benchmark parameters were 
chosen to make the resulting simulation rates directly comparable, while production parameters were chosen to typify expected operation 
of Anton and Desmond.  Parameters that differ from those in the first row appear in bold face.  All PME runs used fourth-order splines, 
while all k-GSE runs used 180 grid points of support for charge spreading and force interpolation.  

Platform Time Step Constraints Cutoff 
Long-range 
Method 

Long-range 
Frequency 

FFT  Mesh 

Blue Matter on BG/L (benchmark, 2005) 
Blue Matter on BG/L (benchmark, 2006, interpolated) 
Desmond on cluster (benchmark) 
GROMACS on single processor (benchmark) 
NAMD on cluster (benchmark) 

1fs No 9Å PME 1 step 64x64x64 

MOA on MDGRAPE-3 (benchmark, interpolated) 1fs No None None NA NA 

Anton (benchmark) 1fs No 13Å k-GSE 1 step 32x32x32 

Desmond on cluster (production) 2.5fs Yes 9Å PME 2 steps 64x64x64 

Anton (production) 2.5fs Yes 13Å k-GSE 2 steps 32x32x32 
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an increase in the overall energy of the simulated system with 
time, a phenomenon known as energy drift.  We used the numeri-
cal emulator of our machine to integrate the DHFR system with 
production parameters over 5 ns of simulated time (2 million time 
steps).  While the total energy exhibited short-term fluctuations of 
a few kcal/mol (about 0.001% of the total system energy of 
350,000 kcal/mol), there was no detectable long-term trend in 
total energy.  MD studies are generally considered more than 
adequate even with a significantly higher energy drift [34].  It is 
worth noting, however, that Blue Matter has achieved an ex-
tremely low level of energy drift [12], which will probably not be 
matched by Anton.  

5.4 Scaling with Chemical System Size 
Within the range where chemical systems fit in on-chip 

memory, we expect performance to scale roughly linearly with 
the number of atoms, albeit with occasional jumps as different 
operating parameters change to optimize performance while 
maintaining accuracy.  Figure 7 shows the scaling of performance 
with chemical system size.  The largest discontinuity in simula-
tion rate occurs at a system volume of approximately 500,000 Å3 
when we change from a 32×32×32 FFT grid to a 64×64×64 FFT 
grid, reflecting the fact that our code supports only power-of-two-
length FFTs.  This lengthens the long-range calculation because 
the number of grid points increases by a factor of 8.  Overall, the 
results are consistent with supercomputer scaleup studies—as we 
increase chemical system size, our efficiency improves, because 
we are better able to overlap communication with computation 
and because our pipelines operate closer to peak efficiency. 

6. CONCLUSION 
We have designed, and are currently in the process of im-

plementing, a specialized, massively parallel machine, called 
Anton, for the high-speed execution of molecular dynamics simu-
lations.  We expect that Anton will be capable of simulating the 
dynamic, atomic-level behavior of proteins and other biological 
macromolecules in an explicitly represented solvent environment 
for periods on the order of a millisecond—about three orders of 
magnitude beyond the reach of current molecular dynamics simu-
lations.  The machine is being implemented using specialized 
ASICs, each of which performs a very large number of applica-
tion-specific calculations during each clock cycle.  Novel archi-
tectural and algorithmic techniques are used to minimize intra- 
and inter-chip communication, providing an unusually high de-
gree of scalability. 

While it contains programmable elements that could in prin-
ciple support the parallel execution of algorithms for a wide range 
of other applications, Anton was not designed to function as a 
general-purpose scientific supercomputer, and would not in prac-
tice be well suited for such a role.  Rather, we envision Anton 
serving as a “computational microscope,” allowing researchers to 
observe for the first time a wide range of biologically important 
structures and processes that have thus far proven inaccessible to 
both computational modeling and laboratory experiments.  To the 
extent that we are successful in achieving our research objectives, 
we would hope that Anton might make significant contributions 
to both the advancement of basic scientific knowledge and the 
development of safe, effective, precisely targeted drugs capable of 
relieving suffering and saving human lives. 
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