
Anton, a Special-Purpose Machine
for Molecular Dynamics Simulation

David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H. Larson,
John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C. Chao,

Michael P. Eastwood, Joseph Gagliardo, J.P. Grossman, C. Richard Ho, Douglas J. Ierardi,
István Kolossváry, John L. Klepeis, Timothy Layman, Christine McLeavey, Mark A. Moraes,

Rolf Mueller, Edward C. Priest, Yibing Shan, Jochen Spengler, Michael Theobald, Brian Towles,
and Stanley C. Wang

D. E. Shaw Research, LLC, New York, NY 10036, USA

ABSTRACT
The ability to perform long, accurate molecular dynamics

(MD) simulations involving proteins and other biological macro-
molecules could in principle provide answers to some of the most
important currently outstanding questions in the fields of biology,
chemistry and medicine. A wide range of biologically interesting
phenomena, however, occur over time scales on the order of a
millisecond—about three orders of magnitude beyond the dura-
tion of the longest current MD simulations.

In this paper, we describe a massively parallel machine
called Anton, which should be capable of executing millisecond-
scale classical MD simulations of such biomolecular systems.
The machine, which is scheduled for completion by the end of
2008, is based on 512 identical MD-specific ASICs that interact
in a tightly coupled manner using a specialized high-speed com-
munication network. Anton has been designed to use both novel
parallel algorithms and special-purpose logic to dramatically ac-
celerate those calculations that dominate the time required for a
typical MD simulation. The remainder of the simulation algo-
rithm is executed by a programmable portion of each chip that
achieves a substantial degree of parallelism while preserving the
flexibility necessary to accommodate anticipated advances in
physical models and simulation methods.

Categories and Subject Descriptors: J.3 [Computer Applica-

tions]: Life and Medical Sciences – Biology and genetics; Health;

C.1.4 [Computer Systems Organization]: Processor Architectures
– parallel architectures; C.3 [Computer Systems Organization]:
Special-purpose and Application-based Systems – microproces-
sor/microcomputer applications

General Terms: Algorithms; Performance; Design.

Keywords: Molecular dynamics; Special-purpose machine; Bio-
molecular system simulation; Computational biology; Protein
structure; Protein folding; Computational drug design;
Bioinformatics.

1. INTRODUCTION
Molecular dynamics (MD) simulations can be used to model

the motions of molecular systems, including proteins, cell
membranes and DNA, at an atomic level of detail. A sufficiently
long and accurate MD simulation could allow scientists and drug
designers to visualize for the first time many critically important
biochemical phenomena that cannot currently be observed in
laboratory experiments, including the “folding” of proteins into
their native three-dimensional structures, the structural changes
that underlie protein function, and the interactions between two
proteins or between a protein and a candidate drug molecule [8,
14, 18, 26]. Such simulations could answer some of the most
important open questions in the fields of biology and chemistry,
and have the potential to make substantial contributions to the
process of drug development.

Many of the most important biological processes occur over
time scales on the order of a millisecond. MD simulations on this
time scale, however, lie several orders of magnitude beyond the
reach of current technology; only a few MD runs have thus far
reached even a microsecond of simulated time, and the vast
majority have been limited to the nanosecond time scale [9, 27].
Millisecond-scale simulations of a biomolecular system
containing tens of thousands of atoms will in practice require that
the forces exerted by all atoms on all other atoms be calculated in
just a few microseconds—a process that must be repeated on the
order of 1012 times. Such simulations will require the use of a
huge number of arithmetic processing elements, and because of
the global nature of the inter-atomic force calculations, will
involve a great deal of inter-processor communication, which
must be carefully managed in order to preserve scalability. These
stringent requirements far exceed the current capabilities of even
the most powerful commodity clusters or general-purpose
scientific supercomputers.

In this paper, we describe a specialized, massively parallel
machine, called Anton, that is designed to accelerate MD simula-
tions by several orders of magnitude, bringing millisecond-scale
simulations within reach for molecular systems involving tens of
thousands of atoms. The machine, which is scheduled for com-

David E. Shaw is also with the Center for Computational Biology and
Bioinformatics, Columbia University, New York, NY 10032. E-mail
correspondence: david@deshaw.com.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006...$5.00.

1

pletion by the end of 2008, will comprise 512 processing nodes in
its initial configuration, each containing a specialized MD compu-
tation engine implemented as a single ASIC (Section 4). The
molecular system to be simulated is decomposed spatially among
these processing nodes, which are connected through a special-
ized high-performance network to form a three-dimensional torus.
Anton’s expected performance advantage is attributable to a com-
bination of MD-specific hardware that achieves a very high level
of arithmetic density and novel parallel algorithms that, among
other things, enhance scalability by reducing both intra- and inter-
chip communication.

In designing Anton and its associated software, we have
attempted to attack a somewhat different problem than the ones
addressed by several other projects that have deployed significant
computational resources for MD simulations. The
Folding@Home project [21], for example, has obtained a number
of significant and interesting scientific results by using as many as
200,000 PCs (made available over the Internet by volunteers) to
simulate a very large number of separate molecular trajectories,
each of which is limited to the time scale accessible on a single
PC. While a great deal can be learned from a large number of
independent MD trajectories, many other important problems
require the examination of a single, very long trajectory—the
principal task for which Anton is designed. Other projects, such
as FASTRUN [13], MDGRAPE [31], and MD Engine [32], have
produced special-purpose hardware to accelerate the most
computationally expensive elements of an MD simulation. Such
hardware reduces the cost of MD simulations, particularly for
large molecular systems, but Amdahl’s law and communication
bottlenecks prevent the efficient use of enough such chips in
parallel to extend individual simulations beyond microsecond
time scales.

Anton is named after Anton van Leeuwenhoek, whose
contributions to science and medicine we hope to emulate in our
own work. In the 17th century, van Leeuwenhoek, often referred
to as the “father of microscopy,” built high-precision optical
instruments that allowed him to visualize for the first time an
entirely new biological world that had previously been unknown
to the scientists of his day. Using his primitive microscope, he
was the first to see bacteria and other microorganisms (helping to
elucidate the origins of infectious disease), and was the discoverer
of blood cells and spermatozoa (helping to establish modern
theories of respiration and reproduction). We view Anton (the
machine) as a sort of “computational microscope.” To the extent
that we and other researchers are able to increase the length of
molecular dynamics simulations, just as van Leeuwenhoek
increased the effective magnification of the optical instruments of
his day, we would hope to provide contemporary biological and
biomedical researchers with a tool for understanding organisms
and their diseases on a still smaller length scale.

2. STRUCTURE OF MOLECULAR

DYNAMICS COMPUTATIONS
An MD computation simulates the motion of a collection of

atoms (the chemical system) over a period of time according to
the laws of classical physics. The chemical system might consist
of a protein and its surrounding environment (solvent, usually
water), and might also include other types of molecules, such as

lipids, carbohydrates, nucleic acids, or drug molecules. The en-
tire chemical system occupies a small parallelepiped (the global

cell), typically tens of angstroms on a side, filled with tens or
hundreds of thousands of atoms. In the interest of accuracy, we
represent solvent molecules explicitly, rather than using a contin-
uum approximation. We also typically assume that the global cell
tiles an infinite space by repeating in each dimension with a pe-
riod equal to the side length of the global cell in that dimension
(periodic boundary conditions).

For brevity, we describe only those details of MD
calculations required to explain our architecture. Numerous more
complete surveys of MD methodology are available [2, 14, 26].
For expository simplicity, we assume a one-to-one
correspondence between particles and atoms. We also assume
that the global cell is a rectangular parallelepiped, although our
hardware also supports non-rectangular global cells.

An MD computation breaks time into a series of discrete
time steps, each representing a few femtoseconds of simulated
time. A time step has two major phases. Force calculation
computes the force on each particle due to other particles in the
system. Integration uses the net force on each particle to update
that particle’s position and velocity. Simulating a millisecond of
time requires on the order of 1012 time steps.

2.1 Force Calculation
Interatomic forces are calculated based on a molecular

mechanics force field (or simply force field), which models the
total potential energy of a chemical system as a relatively simple
function of the atomic spatial coordinates. The force on a given
particle is then the gradient of the potential energy function with
respect to the coordinates of that particle. Although classical MD
simulation is inherently an approximation, it is dramatically faster
than directly solving the full set of quantum mechanical
equations. Several decades of work have gone into the
development of biomolecular force fields through fitting models
to experimental and quantum data.

Anton is compatible with commonly used biomolecular force
fields, including CHARMM [21], AMBER [19], and OPLS-AA
[17]. All of these express the total system potential energy Etotal
as the sum of several contributions:

Etotal = Ebonded + Enonbonded

 Ebonded = Elength + Eangle + Edihedral

 Enonbonded = Ees + Evdw.

The bonded energy term Ebonded applies only to atoms that
are separated by no more than three covalent bonds. The bonded
energy is a sum of three kinds of terms: the length term Elength of a
bond between two directly bonded atoms; the angle term Eangle
defined by the positions of three atoms, two of which are bonded
to a third; and the dihedral (torsion) angle term Edihedral defined by
four atoms connected by three sequential bonds.

The nonbonded energy term Enonbonded is the sum of an elec-
trostatic component Ees and a van der Waals component Evdw.
These are known as nonbonded terms because they include inter-
actions between all pairs of atoms in the simulated system with
the exception of those separated by a small number of covalent
bonds. Biomolecules are sparsely connected, typically having no
more than four bonds per atom, making the number of bonded

2

interactions linear in the number of atoms. The number of non-
bonded interactions, on the other hand, scales quadratically with
the number of atoms, and typically far exceeds the number of
bonded terms. Van der Waals forces fall off sufficiently quickly
with distance that they can typically be neglected for pairs of
particles separated by more than some cutoff radius, usually cho-
sen between 5 and 15 Å. Neglecting electrostatic interactions
beyond a cutoff, however, leads to serious artifacts in explicit
solvent simulations [7, 23]. Electrostatic forces are thus typically
computed by one of several efficient, approximate methods that
account for long-range interactions without requiring the explicit
interaction of all pairs of particles.

Anton uses a method we developed for fast electrostatic cal-
culations called k-space Gaussian split Ewald, or k-GSE [28].
This algorithm reduces the computational workload of the non-
bonded interactions from O(n2) to O(n log n) in the number of
particles, and maps to our specialized hardware more effectively
than previously described methods for efficient electrostatics
computation. In k-GSE, as in other similar long-range electrostat-
ics algorithms such as PME [10] and PPPM [16], electrostatic
interactions are divided into two contributions. The first decays
rapidly with particle separation, and is thus computed directly for
all particle pairs separated by less than the cutoff radius. We refer
to this contribution, together with the range-limited van der Waals
interactions, as explicit pairwise nonbonded interactions. The
second contribution (long-range interactions) decays more
slowly, but can be expressed as a convolution with a smooth ker-
nel that can be efficiently computed by taking the fast Fourier
transform (FFT) of the charge distribution on a regular mesh,
multiplying by an appropriate function in Fourier space, and tak-
ing an inverse FFT. Charge must be mapped from particles to
nearby mesh points before the FFT computation (charge spread-

ing), and forces on particles must be calculated from the convolu-
tion result at nearby mesh points after the inverse FFT computa-
tion (force interpolation). In contrast with PME and PPPM, k-
GSE performs charge spreading and force interpolation using
Gaussian interpolation kernels. The spherical symmetry of these
Gaussians allows us to use the same hardware for charge spread-
ing and force interpolation as for computing explicit pairwise
interactions. (Section 4 describes this hardware in more detail.)

In most force fields, the force between each pair of particles
that participate in a length, angle, or dihedral term is either
eliminated from or underweighted in the nonbonded force
calculation. On Anton, this effect can be achieved most
efficiently by computing nonbonded interactions between all pairs
of particles, then subtracting compensatory force correction

terms.

2.2 Integration
The integration phase of MD uses the results of force compu-

tation to update atomic positions and velocities, numerically inte-
grating a set of ordinary differential equations corresponding to
Newton’s laws of motion. The numerical integrators used in MD
are nontrivial for several reasons. First, the integration algorithm
and the manner in which numerical issues are handled can have a
significant effect on accuracy. Second, some simulations require
the integrator to calculate and adjust global properties like tem-
perature and pressure. Finally, one can significantly accelerate
most simulations by incorporating constraints that eliminate the

fastest vibrational motions. For example, we typically fix the
lengths of bonds to all hydrogen atoms and hold water molecules
rigid.

2.3 Parallelization
In Anton, as in most parallel MD codes, the global cell is

divided into a regular grid of smaller rectangular parallelepipeds,
which will be referred to here as boxes. Each processing node
updates the positions and velocities of particles in one box,
referred to as the home box of that node and of those particles.
Conversely, we refer to each particle as having a home node.

To parallelize explicit pairwise nonbonded interactions, our
machine uses an algorithm we developed called the NT method
[29]. The NT method achieves both asymptotic and practical
reductions in required interprocessor communication bandwidth
relative to traditional parallelization methods. In traditional
spatial decompositions [25], the interaction between two particles
is always calculated by the home node of one or both particles.
The NT method is one of a number of novel methods [5, 6, 11, 15,
29, 30] that also employ a spatial assignment of particles to nodes,
but that often compute the interaction between two particles in a
node on which neither particle resides, and which must thus
import information related to both particles. We refer to such
techniques as neutral territory methods [5, 6].

In the NT method, each node requires access to the positions
of all particles within two regions of space, known as the tower
and the plate of that node. Both of these regions include the
node’s home box, but also include portions of neighboring boxes.
Each node must thus import position data from certain
neighboring nodes. Each node then calculates the interaction
between each pair of particles, one from its plate and one from its
tower, that are separated by no more than the cutoff radius (with
the exception of a limited number of pairs that are excluded to
avoid duplicate interactions). Because explicit pairwise
nonbonded interactions constitute the majority of the computation
required in an MD simulation, much of the ASIC’s area is
devoted to hardware pipelines specialized for these interactions.
We also use the NT method, with minor modifications, to
parallelize the interaction of particles with grid points in the
course of charge spreading and force interpolation.

Several other parts of an MD simulation require
interprocessor communication. Force computations require the
transfer of data for long-range electrostatic calculations (including
forward and inverse FFTs) and for the evaluation of bonded
forces. Additional communication is also required in the course
of integration for the enforcement of constraints, the evaluation of
global quantities such as pressure and temperature, and the
transfer of particles from one node to another as they move
between boxes over the course of a simulation (atom migration).

3. WHY SPECIALIZED HARDWARE?
A natural question is whether a specialized machine for mo-

lecular simulation can gain a significant performance advantage
over general-purpose hardware. After all, history is littered with
the corpses of specialized machines, spanning a huge gamut from
Lisp machines [20] to database accelerators [3]. Performance and
transistor count gains predicted by Moore’s law, together with the
economies of scale behind the development of commodity proces-
sors, have driven a history of general-purpose microprocessors

3

outpacing special-purpose solutions. Any plan to build special-
ized hardware must account for the expected exponential growth
in the capabilities of general-purpose hardware.

We concluded that special-purpose hardware is warranted in
this case because it leads to a much greater improvement in
absolute performance than the expected speedup predicted by
Moore’s law over our development time period, and because we
are currently at the cusp of simulating time scales of great
biological significance. We expect Anton to run simulations over
1000 times faster than was possible when we began this project.
Assuming that transistor densities continue to double every 18
months and that these increases translate into proportionally faster
processors and communication links, one would expect
approximately a ten-fold improvement in commodity solutions
over the five-year development time of our machine (from
conceptualization to bringup). We therefore expect that a
specialized solution will be able to access biologically critical
millisecond time scales significantly sooner than commodity
hardware.

Specialization permits us to tailor the system specifically to
MD rather than attempting to speed up general-purpose parallel
computing. That is, we need not speed up all high-performance
codes; we need only speed up MD. This means that “tuning to
the application” is not illegal or questionable as it is for general-
purpose machines. Quite the opposite is true—as long as we
perform the correct MD calculations, application-specific
optimizations and hardware structures are valid and encouraged.

To simulate a millisecond within a couple of months, we
must complete a time step every few microseconds, or every few
thousand clock ticks. The sequential dependence of successive
time steps in an MD simulation makes speculation across time
steps extremely difficult. Fortunately, specialization offers
unique opportunities to accelerate an individual time step using a
combination of architectural features that reduce both
computational latency and communication latency.

For example, we reduced computational latency by
designing:

• Dedicated, specialized hardware datapaths and control logic
to evaluate the pairwise explicit nonbonded interactions and
to perform charge spreading and force interpolation. In
addition to packing much more computational logic on a
chip than is typical of general-purpose architectures, these
pipelines use customized precision for each operation,
increasing the speed of the datapath logic and decreasing the
silicon area required per arithmetic unit.

• Specialized, yet programmable, processors to compute
bonded interactions and the FFT and to perform integration.
The instruction set architecture (ISA) of these processors is
tailored to the geometric calculations involved in bonded
force calculation and constrained integration, and to the
communication patterns involved in MD. Their
programmability provides flexibility to accommodate
various force fields and integration algorithms.

• Dedicated support in the memory system to accumulate
forces for each particle without using the programmable
processors.

Anton performs nearly all its calculations in fixed-point
arithmetic, which provides greater speed and accuracy in MD
calculations than floating-point logic occupying the same silicon
area.

We reduced communication latency by designing:

• A low-latency, high-bandwidth network, both within an
ASIC and between ASICs, that includes specialized routing
support for common MD communication patterns such as
multicast and compressed transfers of sparse data structures.

• A system of hardware features that enable choreographed
“push”-based communication. Producers send results to
consumers without the consumers having to request the data
beforehand, and the consumers have counters that allow
them to detect when all required data have arrived.

• Synchronization support at various points in the ASIC that
allow each point to begin computation when all necessary
data have arrived, without the need to receive a “start”
indication from a central coordinator.

• A set of autonomous direct memory access (DMA) engines
that offload communication tasks from the computational
units, allowing greater overlap of communication and
computation.

• Admission control features that prioritize packets carrying
certain algorithm-specific data types.

We balance our design very differently from a general-
purpose supercomputer architecture. Relative to other high-
performance computing applications, MD uses much
communication and computation but surprisingly little memory.
Consider an MD simulation of 25,000 particles. If each particle
requires 64 bytes of storage, then the entire architectural state is
just 1.6 MB. Divided among the 512 nodes of a typical machine,
this is only 3.2 KB per node, which would fit handily into the L1
cache of any modern processor. We exploit this property by
using only SRAMs and small L1 caches on our ASIC, with all
code and data fitting on-chip in normal operation. Rather than
spending silicon area on large caches and aggressive memory
hierarchies, we instead dedicate it to communication and
computation.

Table 1. Profile of a single-processor run using the

GROMACS MD package [33].

Phase Task
% execution

time

Explicit pairwise
nonbonded interactions

60

FFT, inverse FFT, &
Fourier space multiplication

17

Charge spreading and force
interpolation

13

Bonded force terms 1

Force
Calculation

Correction force terms 4

Position & velocity updates 2

Constraints 2 Integration

Pressure computation 1

4

It is serendipitous that the most computationally intensive
parts of MD—in particular, the electrostatic interactions—are also
the most well-established and unlikely to change as force field
models evolve, making them particularly amenable to hardware
acceleration. Dramatically accelerating MD simulation, however,
requires that we accelerate more than just an “inner loop.”
Table 1 shows that explicit pairwise nonbonded computations
account for 60% of the computational time for a particular MD
simulation on a single general-purpose processor. Long-range
interactions, including charge spreading, force interpolation, and
FFT computation, account for another 30% of the time, bringing
the total fraction of time spent on nonbonded computations to
90%. Amdahl’s law states that no matter how much we accelerate
the nonbonded computations, the remaining computations, left
unaccelerated, would limit our maximum speedup to a factor of
10. Hence, we dedicated a significant fraction of silicon area to
accelerating tasks such as bonded force computation, constraint
computation, velocity and position updates, and atom migration,
incorporating programmability as appropriate to accommodate a
wide variety of force fields and integration methods.

Because the hardware used to perform integration is
programmable, Anton also supports other simulation
methodologies based on molecular mechanics force fields, such as
Brownian dynamics and Monte Carlo simulation [14].

4. SYSTEM ARCHITECTURE
The building block of the system is a node, depicted in Fig-

ure 1. Each node comprises an MD-specific ASIC, attached
DRAM, and six ports to the system-wide interconnection net-
work. The nodes, which are logically identical, are connected in a
three-dimensional torus topology (which maps naturally to the
periodic boundary conditions described in Section 2). The initial
version of Anton will be a 512-node torus with eight nodes in
each dimension, as illustrated in Figure 2, but our architecture
also supports larger and smaller toroidal configurations. For
physical packaging, four nodes make up a node board, 32 node
boards fit in a 19-inch rack, and four racks form a 512-node ma-
chine. A 512-node machine can handle chemical systems up to
200,000 particles using on-chip memory. For larger chemical
systems, we split each box into virtual sub-boxes, and each node
processes sub-boxes serially, paging sub-box state to the node’s
local DRAM; we refer to this as DRAM mode.

The remainder of this section details the architecture and de-
sign of the MD-specific ASIC, which has four major subsystems.
The high-throughput interaction subsystem (HTIS) calculates
explicit pairwise nonbonded interactions and performs charge
spreading and force interpolation. The HTIS applies massive
parallelism to these operations, which constitute the bulk of the
calculation in MD. The memory subsystem drives the node’s
local DRAM and accumulates force terms. The flexible subsys-

tem controls the ASIC and handles all other computations, includ-
ing the bonded force calculations, the FFT, and integration. The
communication subsystem provides both inter-chip and intra-chip
communication. Between chips, each torus link provides 5.3
GB/s full-duplex communication with a hop latency around 50 ns.
Within a chip, two 256-bit communication rings link all subsys-
tems and the six inter-chip torus ports. The ASICs are clocked at
a modest 400 MHz, with the exception of one double-clocked
component in the HTIS (discussed in Section 4.1).

Figure 1. Processing node detail. The high-throughput
interaction subsystem performs nonbonded MD interaction
calculations. The flexible subsystem performs the remaining MD
calculations, coordinates MD time step activity, and manages
housekeeping tasks. Also shown are the intra-chip
communication rings, the six connections to the inter-chip torus
communication network, the host interface, and the two off-chip
DRAM controllers.

Figure 2. Three-dimensional torus interconnect topology.
Circles represent processing nodes. Lines with arrows represent
the links among the processing nodes. The XYZ notation for
each processing node specifies the node’s X, Y, and Z
coordinates within the torus.

5

4.1 High-Throughput Interaction Subsystem

(HTIS)
The HTIS considers interactions between all points in one set

(the tower) and all points in another set (the plate), computing
nonzero interactions for pairs that are separated by less than a
given cutoff radius and that satisfy certain other criteria, as pre-
scribed by the NT parallelization method (see Section 2.3). For
the explicit pairwise nonbonded calculations, both the tower and
the plate consist of particles, and the HTIS computes and tabu-
lates the forces that pairs of particles exert on one another.1 For
charge spreading, the HTIS interacts a tower of particles with a
plate of grid points to determine how much of each particle’s
charge should be mapped to each neighboring grid point. For
force interpolation, the HTIS also interacts a tower of particles
with a plate of grid points, but uses the convolution value at each
grid point to calculate the long-range force on each tower particle.
Because we use the k-GSE method for long-range electrostatics,
all three of these computations involve repeated evaluation of
functions of distance between two points, permitting the same
hardware pipelines to be used in all three cases. For expository
simplicity, our description focuses on the operation of the HTIS
as it computes the explicit pairwise nonbonded forces. The HTIS
performs these calculations using an in-order, systolic architecture
that accumulates forces on each particle as data streams through.

Figure 3 depicts the internal structure of the HTIS, which
contains two major sub-blocks: an Interaction Control Block

1 In addition to forces acting on particles, both energy and electro-
static potential are also of interest. The HTIS can be configured
to compute force, energy, or electrostatic potential. We focus on
force calculations for the present discussion; the computations of
energy and electrostatic potential are similar.

(ICB) and an array of 32 Pairwise Point Interaction Modules
(PPIMs). The ICB comprises two communication ring interfaces,
a large buffer area, and an embedded processor core. The ICB
processor controls the flow of data through the HTIS and, through
programmable ISA extensions, acts as a buffering, prefetching,
synchronization, and writeback controller for the HTIS. The ICB
either expects plate and tower particles to arrive via push commu-
nication or (in DRAM mode) reads plate and tower particles into
its buffers. Then the ICB loads the tower particles into the PPIM
array and streams the plate particles through that array, past the
tower particles. Each force exiting the array is written to the
memory system. After all plate particles have been processed, the
ICB instructs the PPIM array to stream out the tower particle
forces as well. The number of PPIMs was chosen on the basis of
detailed system-level simulations with the goal of maximizing
overall system performance, appropriately balancing the die area
of the HTIS against that of the flexible subsystem.

The centerpiece of each PPIM is a force calculation pipeline
that computes the force between a pair of particles; this is a 26-
stage pipeline (at 800 MHz) of adders, multipliers, function
evaluation units, and other specialized datapath elements. Inside
this pipeline, we use customized numerical precisions: functional
unit width varies across the different pipeline stages but still
produces a sufficiently accurate 32-bit fixed-point result.

The various PPIM datapath widths were chosen to minimize
die area and execution time while meeting a root mean squared
force error criterion (see Section 5.3) for representative chemical
systems, as determined in empirical studies with actual simulation
data. These choices were then validated by running simulations
for millions of time steps to ensure that precision limitations and
rounding do not adversely affect simulation quality.

Feeding the force calculation pipeline are eight dedicated
matchmaking units that collectively check each arriving plate

Figure 3. High-throughput interaction subsystem (HTIS)

detail. The HTIS comprises an array of 32 Pairwise Point Inter-
action Modules (PPIMs) and an embedded control processor to
coordinate the distribution of particle pairs to the PPIM array.

Figure 4. PPIM detail. This figure gives a sense of the numeri-
cal calculation units in PPIM. The top portion of the figure shows
the matchmaking units and particle memories. The lower portion
of the figure shows the general structure of the force, potential,
and energy calculation pipelines.

6

particle against all the tower particles stored in the PPIM to de-
termine whether the plate particle is within a programmable cutoff
radius from each of the tower particles. Each tower/plate particle
pair that falls within the cutoff radius and satisfies certain other
criteria goes to the PPIM’s force calculation pipeline. As plate
particles stream by, forces on tower particles are accumulated
within the PPIM, while the accumulated force on each plate parti-
cle is streamed along with that particle. The PPIM, illustrated in
Figure 4, runs at 800 MHz, while the rest of the ASIC runs at 400
MHz.

Because the HTIS streams plate particles past stored tower
particles, it is simple to scale the PPIM array to any number of
PPIMs. On the input side, wiring replicates particle records so
that the same stream of plate particles flows through each row of
the array. On the output side, force combiners merge streams of
forces, adding up forces for each plate particle.

The PPIMs are the most hard-wired component of our
architecture, reflecting the fact that they handle the most
computationally intensive parts of the MD calculation. That said,
even the PPIMs include programmability where we anticipate
potential future changes to force fields. For instance, the
functional forms for van der Waals and electrostatic interactions
are specified using SRAM lookup tables, whose contents are
determined at runtime.

4.2 Flexible Subsystem
The flexible subsystem handles a variety of tasks, some in-

volving calculation and others involving system management and
maintenance functions. It initiates each force computation phase
by multicasting particle positions to the HTIS and flexible subsys-
tems of multiple ASICs. It handles those parts of force computa-
tion not performed in the HTIS, including calculation of bonded
force terms, the FFT, and the force correction terms. It performs
all integration tasks, including constraint calculations, position
and velocity updates, computation of global temperature and pres-
sure, and atom migration. Lastly, it performs all maintenance
activities, including boot, diagnostics, self-test, loading MD simu-
lations, switching contexts, logging, checkpointing, and error
reporting.2

Figure 5 shows the components of the flexible subsystem.
Four identical processing slices form the core of the flexible
subsystem. Each slice comprises a general-purpose core with its
caches; a remote access unit (RAU) that performs autonomous
data transfers; and two geometry cores (GCs), which are
programmable cores whose ISA has been tailored to MD
calculations. Other components of the flexible subsystem include
a correction pipeline, which computes force correction terms; a
racetrack, which serves as a local, internal interconnect for the
flexible subsystem components; and a ring interface unit, which
allows the flexible subsystem components to transfer packets to
and from the communication subsystem.

The general-purpose cores manage the data transfers that
occur during the time step and perform a few critical synchroniza-
tions. Each core implements a general-purpose integer and float-
ing-point instruction set as well as some custom instructions to

2 Many of the maintenance activities are divided between the
flexible subsystem and an external host computer system.

communicate at low latency with the other three general-purpose
cores. In addition to the usual system interface and cache inter-
faces, each core also connects to a 32 KB scratchpad memory in
the core’s attached RAU. This scratchpad memory is used to
stage MD simulation data for background transfer by the RAU.
The general-purpose cores also handle all the maintenance tasks.
These tasks, which are not performance-critical, occur either peri-
odically (e.g., checkpointing every million time steps) or in re-
sponse to explicit notification (e.g., an interrupt).

The remote access unit (RAU) is a programmable data
transfer engine. In addition to a scratchpad memory that the
associated general-purpose core can read and write, the RAU
provides an array of transfer descriptors and associated state
machines. A transfer descriptor describes a data transfer between
the scratchpad memory and the rest of the system. Once the
general-purpose core has initialized a transfer descriptor and
marked it active (done with a single store instruction), the RAU
takes over and performs the transfer itself, freeing the general-
purpose core to perform other tasks. A transfer descriptor can
also track push writes into the scratchpad memory, providing a
fast polling and synchronization mechanism. The RAU
implements 128 transfer descriptors, allowing multiple concurrent
transfers. This background data transfer capability is crucial for
performance, as it enables overlapped communication and
computation.

The geometry cores (GCs) perform most of the flexible sub-
system’s computation. Each GC is a dual-issue, statically-
scheduled SIMD processor with pipelined multiply-accumulate
support. The GC’s basic data type is a vector of four 32-bit fixed-

Figure 5. Flexible subsystem detail. The flexible subsystem is
a collection of four identical processing slices (one of which is
indicated by a box at the left) and a correction pipeline unit. The
processing slices communicate with each other and with the cor-
rection pipeline via the racetrack. The various components
communicate with the intra-chip communication ring via the ring
interface unit shown at the top of the figure.

7

point values, and two independent SIMD operations on these
vectors issue each cycle. The GC’s instruction set includes ele-
ment-wise vector operations (for example, vector addition); more
complicated vector operations such as a dot product; and scalar
operations that read and write arbitrary scalar components of the
vector registers (essentially accessing the SIMD register file as a
larger scalar register file). Such scalar operation support is atypi-
cal of SIMD processors but has proven useful in MD. For exam-
ple, the bonded calculations (see Section 2.1) make heavy use of
this feature.

All fixed point arithmetic in the machine (including that in
the GCs) can be thought of as operating on numbers in the range
[1,1)- . Addition is allowed to “wrap” in the natural way for
twos-complement arithmetic. With the prescription that

1 1 1- ·- = - , this range is closed under multiplication, but one
must define a rule for rounding. Multiplication can either round
to nearest with ties going to nearest even, or round toward
negative infinity. In the vast majority of cases, the software uses
round to nearest. In addition to “normal” multiplication, the GCs
support a “multiply with shift” operation that allows one to
compute 2

k
a b· · at the maximum available precision. Another

instruction counts the leading sign bits. These instructions can be
combined to emulate floating point, but in practice, most of the
quantities handled by the GCs are in well-characterized, bounded
ranges (e.g., bonds are between 1 and 3 Å in length) so there is no
need for software to dynamically normalize fixed point values.

The correction pipeline (CP) uses a structure similar to the
PPIM force calculation pipeline to compute force correction terms
that fully or partially cancel out certain nonbonded interactions
(see Section 2.1). The correction pipeline also accumulates
bonded force terms before they are sent to the memory subsystem,
reducing communication traffic.

The racetrack is a private, local, unidirectional ring
interconnect among the flexible subsystem components,
permitting these components to exchange data with low latency.
The racetrack supports multicasting of particles to the geometry
cores for bonded force calculations, communication of bonded
forces to the correction pipeline, and efficient intra-node
communication during FFT computation.

4.3 Communication Subsystem
The communication subsystem provides high-speed, low-

latency communication both between ASICs and among the sub-
systems within an ASIC. Most routing is performed using a
global 48-bit address space, with 16 bits of node identifier and 32
bits of address per node. In addition, multicast group addresses
allow delivery of a single source packet to multiple destinations
on multiple ASICs; multicast is used for efficient position send-
ing, for neighbor synchronization, and for all-reduce operations.
The communication subsystem also provides a source routing
mode for topology discovery and confirmation. The network
provides flow control, back-pressuring senders under oversub-
scription, and it provides class-based admission control with rate
metering. Routing is dynamic, and a combination of virtual cir-
cuit numbering and adaptive routing, to be described in a future
paper, ensures deadlock freedom using a small number of virtual
channels. The communication subsystem also allows access to an
external host computer system for input and output of simulation
data.

4.4 Memory Subsystem
The memory subsystem provides access to the ASIC’s

attached DRAM. In addition to basic memory read/write access,
the memory subsystem supports accumulation and
synchronization. Special memory write operations numerically
add incoming write data to the contents of the memory location
specified in the operation. These operations implement force,
energy, potential and spread charge accumulations, reducing the
computation and communication load on the flexible subsystem.
Atomic memory operations synchronize the ASIC and the
external host computer system.

4.5 Parallel Operation
Anton is programmed using a combination of C, assembly

language, and control of hardware engines through memory-
mapped registers (MMRs). The general-purpose cores and the
ICB processor have an optimizing C compiler; the geometry cores
are programmed in assembly language. Other components, such
as the correction pipeline, the routing tables of the communication
subsystem, and the synchronization features of the memory
subsystem, are configured through MMR accesses.

The HTIS, flexible, communication, and memory
subsystems are independent hardware units, and operate in
parallel. Force computation consists of three steps. First, the
HTIS spreads charges for the long-range calculations while the
flexible subsystem calculates most of the bonded force and
correction force terms. Second, the HTIS calculates explicit
pairwise nonbonded forces while the flexible subsystem
calculates the FFT and inverse FFT. Third, the HTIS performs
force interpolation while the flexible subsystem completes the
remainder of the bonded force and correction force terms. With
proper tuning, the explicit pairwise, bonded, and correction force
terms are “hidden” behind the long-range work. Throughout all
three steps, the memory subsystem receives force reduction
packets and accumulates the net force on each particle. The HTIS
is idle during the integration phase, and is disabled to reduce
power. The flexible subsystem code, however, partially overlaps
the accumulation of forces from the previous time step with
integration and position broadcast for the next time step.

5. PERFORMANCE AND ACCURACY

MEASUREMENTS
In this section, we show that the performance of Anton

significantly exceeds that of other MD platforms, and that Anton
is capable of performing simulations of high numerical accuracy.

5.1 Simulation Environment
Because we do not yet have working hardware, performance

estimates for our machine come from our performance simulator.
We wrote the simulator in C++, using a cycle-driven methodol-
ogy and an infrastructure that allows us to mix and match C++
and Verilog RTL components for design, algorithm, and perform-
ance verification purposes. The cycle fidelity of our performance
simulator varies across components; models of the communica-
tion subsystem routers as well as the flexible subsystem processor
cores are cycle-accurate (i.e., the C++ and RTL simulations pro-
duce identical bits at identical times), while the models of the
HTIS, RAU, and memory subsystem are within 10% of cycle

8

accurate (i.e., the C++ and RTL simulations produce identical
bits, but at times that vary within ±10%). A few analog sections
of the design, such as the DRAM interface and the physical layer
of our communication link, do not lend themselves to digital
simulation; for these pieces we use time estimates generated by
the hardware designers and expect fidelity within ±20%. The
simulator currently comprises about 100,000 lines of C++ code
and simulates a 512-node version of our machine at about ten
machine clock cycles every second.

5.2 Performance Comparison to Other MD

Platforms
We compare the performance of various MD platforms in

terms of simulation rate (nanoseconds of simulated time per day
of execution) on a particular chemical system. In this section and
in 5.3, we use a system with 23,558 atoms in a cubic box measur-
ing 62.2 Å on a side. This system represents dihydrofolate reduc-
tase (DHFR), a protein targeted by various cancer drugs, sur-
rounded by water. The same chemical system is used in the Joint
AMBER-CHARMM MD benchmark [1], and our simulations,
like those of that benchmark, used the CHARMM force field [21].

We compared the simulation rate of DHFR on our machine
to the rate on the following MD platforms:
• A state-of-the-art commodity cluster (consisting of Sun Fire

V20z servers, each with two 2.4 GHz AMD Opteron Model
250 single-core processors, connected by an Infiniband
network) running the following software packages:
o NAMD, widely regarded as the fastest MD software for

commodity clusters at high levels of parallelism [24].
o GROMACS, widely regarded as the fastest MD software

for single-processor runs [33].
o Desmond, an MD software package for commodity clus-

ters that we are developing [4]. Desmond significantly
outperforms previously described MD codes at high levels

of parallelism on commodity clusters, taking advantage of
novel techniques we discovered while designing our ma-
chine.

• IBM’s massively parallel, general-purpose Blue Gene/L
machine, running its Blue Matter MD code, which was
designed for maximal scalability [11, 12, 15].

• MDGRAPE-3, the most recent specialized ASIC for MD
from the MDGRAPE project, running their MOA
software[31].

Both the performance and the accuracy of an MD simulation
depend on the settings of a number of simulation parameters such
as the cutoff radius for explicit pairwise nonbonded force calcula-
tions, the choice of method for long-range electrostatics, and the
length of the time step. Figure 6 shows measured or estimated
performance for each MD platform using benchmark parameters
chosen to be comparable to the parameters used by IBM in a set
of performance results reported in 2005 for Blue Matter running
the DHFR system on Blue Gene/L [11]. We also included a set of
improved performance estimates for Blue Matter interpolated
from performance results published recently for chemical systems
other than DHFR [12]. We ran NAMD, GROMACS, and Des-
mond on our cluster using parameters identical to those used by
IBM. Anton uses k-GSE rather than PME for long-range electro-
statics, necessitating the choice of a different set of benchmark
parameters for force computation; to ensure a fair comparison, we
used the same integration parameters as Blue Matter and selected
force calculation parameters for k-GSE that lead to more accurate
computed forces than those used by Blue Matter (as shown in
Section 5.3). Parameter settings for all runs are shown in Table 2.

We estimated MDGRAPE-3’s performance on DHFR using
the MDGRAPE-3 designers’ theoretical performance model [31].
This model assumes direct summation for all particle pairs, which
should show the best sustained performance [31], because

Figure 6. Performance comparison of MD platforms. The vertical axis shows performance in ns/day (higher is better); the horizontal
axis shows the number of processor cores (for the cluster, Blue Gene/L, and GROMACS) or the number of ASICs (for Anton and
MDGRAPE-3). Benchmark parameters were chosen to make the resulting simulation rates directly comparable, while production
parameters were chosen to typify expected operation of Anton and Desmond.

9

MDGRAPE-3 does not include hardware acceleration for efficient
long-range electrostatics methods.

We also measured the simulation rate of Anton and Desmond
with production parameters representative of those we expect to
use in actual operation. Force calculation settings are identical
for benchmark and production parameters, but runs using produc-
tion parameters employed a constrained integrator with longer
time steps, in which long-range forces are evaluated only every
other time step. We show in Section 5.3 that these runs satisfy
common accuracy criteria, but rigorously comparing the accuracy
of runs performed using constrained and unconstrained integrators
is difficult, as these integrators assume slightly different physical
models.

We expect a 512-node version of Anton to simulate 14,500
ns/day (1 ms in 69 days) on the DHFR system using production
parameters, and 6,600 ns/day using benchmark parameters
(Figure 6). This compares to a maximum benchmark parameter
simulation rate of 14 ns/day for NAMD on our cluster (using 256
processor cores on 128 cluster nodes3). In other words, we expect
Anton to exceed by a factor of nearly 500 the fastest simulation
rate currently achievable using generally available codes on
commodity hardware.

Desmond’s maximum simulation rate on the same cluster is
173 ns/day with production parameters and 62 ns/day with
benchmark parameters (in both cases using 512 processor cores
on 256 cluster nodes). In other words, we expect Anton to be 80–
100 times faster than Desmond is today. Desmond’s performance
advantage over other currently available MD codes is largely
attributable to techniques we developed while designing Anton;
the adaptability of these techniques to commodity hardware is an
additional benefit of our work.

The fastest published simulation rate for Blue Matter running
DHFR with benchmark parameters is 13 ns/day, using 4,096
processor cores (2,048 nodes) of Blue Gene/L [11]. IBM has
since reported improved performance and scalability for Blue
Matter; by interpolation of performance results published recently

3 In our hands, NAMD actually simulated DHFR more slowly on
512 processor cores than on 256. We used NAMD version 2.6b1
for these experiments; more recent versions of NAMD incorpo-
rate performance improvements (J. Phillips, personal communica-
tion).

for smaller and larger systems [12], we estimated a simulation
rate for DHFR of 40 ns/day on 8,192 processor cores (4,096
nodes) of Blue Gene/L and 50 ns/day on 16,384 processor cores
(8,192 nodes). An even more recent report says that DHFR runs
at somewhat more than 60 ns/day on 8,192 processor cores (4,096
nodes) of Blue Gene/L (R. S. Germain, personal communication).
We expect a 512-node version of Anton to exceed this simulation
rate by approximately a factor of 100.

The performance of other MD platforms will undoubtedly
improve by 2008, when Anton is scheduled for completion and
use in biological research, but Anton’s performance advantage
over current MD platforms significantly exceeds the speedup
predicted by Moore’s law over that period.

5.3 Accuracy
Unfortunately, no single metric adequately captures the

accuracy of an MD simulation. This section applies two common
accuracy measures to simulations by Anton.

To quantify the error in force computation, we measured the
relative rms force error, defined as the root mean squared error in
the force on all particles divided by the root mean squared force
[28]. Determination of force error is possible because, for a given
force field and a given set of particle coordinates, we can closely
approximate the “true” force specified by the force field on each
particle by evaluating the force field equations very accurately.
We then compare these “true” forces to those computed by our
machine with a given set of force calculation parameters, using a
numerical emulator that exactly duplicates Anton’s limited-
precision, fixed-point arithmetic. The relative rms force error for
our machine using either its benchmark parameters or its produc-
tion parameters (which lead to identical computed forces), as
measured on the DHFR system, is 1.5x10-4. For comparison, the
force calculation benchmark parameters specified by the Joint
AMBER-CHARMM benchmark and used in the Blue Matter
performance measurements reported in Section 5.2 give a higher
relative rms force error of 3.0x10-4 even when all computation is
performed in double-precision floating-point arithmetic. A rela-
tive rms force error below 10-3 is generally considered sufficiently
accurate for biomolecular MD simulations [35, 36].

To measure the overall accuracy of our production runs, we
also measured energy drift. An exact MD simulation would con-
serve energy exactly. Errors in the simulation generally lead to

Table 2. Parameters used in timing runs on dihydrofolate reductase (DHFR) on various platforms. Benchmark parameters were
chosen to make the resulting simulation rates directly comparable, while production parameters were chosen to typify expected operation
of Anton and Desmond. Parameters that differ from those in the first row appear in bold face. All PME runs used fourth-order splines,
while all k-GSE runs used 180 grid points of support for charge spreading and force interpolation.

Platform Time Step Constraints Cutoff
Long-range
Method

Long-range
Frequency

FFT Mesh

Blue Matter on BG/L (benchmark, 2005)
Blue Matter on BG/L (benchmark, 2006, interpolated)
Desmond on cluster (benchmark)
GROMACS on single processor (benchmark)
NAMD on cluster (benchmark)

1fs No 9Å PME 1 step 64x64x64

MOA on MDGRAPE-3 (benchmark, interpolated) 1fs No None None NA NA

Anton (benchmark) 1fs No 13Å k-GSE 1 step 32x32x32

Desmond on cluster (production) 2.5fs Yes 9Å PME 2 steps 64x64x64

Anton (production) 2.5fs Yes 13Å k-GSE 2 steps 32x32x32

10

an increase in the overall energy of the simulated system with
time, a phenomenon known as energy drift. We used the numeri-
cal emulator of our machine to integrate the DHFR system with
production parameters over 5 ns of simulated time (2 million time
steps). While the total energy exhibited short-term fluctuations of
a few kcal/mol (about 0.001% of the total system energy of
350,000 kcal/mol), there was no detectable long-term trend in
total energy. MD studies are generally considered more than
adequate even with a significantly higher energy drift [34]. It is
worth noting, however, that Blue Matter has achieved an ex-
tremely low level of energy drift [12], which will probably not be
matched by Anton.

5.4 Scaling with Chemical System Size
Within the range where chemical systems fit in on-chip

memory, we expect performance to scale roughly linearly with
the number of atoms, albeit with occasional jumps as different
operating parameters change to optimize performance while
maintaining accuracy. Figure 7 shows the scaling of performance
with chemical system size. The largest discontinuity in simula-
tion rate occurs at a system volume of approximately 500,000 Å3
when we change from a 32×32×32 FFT grid to a 64×64×64 FFT
grid, reflecting the fact that our code supports only power-of-two-
length FFTs. This lengthens the long-range calculation because
the number of grid points increases by a factor of 8. Overall, the
results are consistent with supercomputer scaleup studies—as we
increase chemical system size, our efficiency improves, because
we are better able to overlap communication with computation
and because our pipelines operate closer to peak efficiency.

6. CONCLUSION
We have designed, and are currently in the process of im-

plementing, a specialized, massively parallel machine, called
Anton, for the high-speed execution of molecular dynamics simu-
lations. We expect that Anton will be capable of simulating the
dynamic, atomic-level behavior of proteins and other biological
macromolecules in an explicitly represented solvent environment
for periods on the order of a millisecond—about three orders of
magnitude beyond the reach of current molecular dynamics simu-
lations. The machine is being implemented using specialized
ASICs, each of which performs a very large number of applica-
tion-specific calculations during each clock cycle. Novel archi-
tectural and algorithmic techniques are used to minimize intra-
and inter-chip communication, providing an unusually high de-
gree of scalability.

While it contains programmable elements that could in prin-
ciple support the parallel execution of algorithms for a wide range
of other applications, Anton was not designed to function as a
general-purpose scientific supercomputer, and would not in prac-
tice be well suited for such a role. Rather, we envision Anton
serving as a “computational microscope,” allowing researchers to
observe for the first time a wide range of biologically important
structures and processes that have thus far proven inaccessible to
both computational modeling and laboratory experiments. To the
extent that we are successful in achieving our research objectives,
we would hope that Anton might make significant contributions
to both the advancement of basic scientific knowledge and the
development of safe, effective, precisely targeted drugs capable of
relieving suffering and saving human lives.

7. REFERENCES
[1] MD Benchmarks for Amber, CHARMM and NAMD, See

http://amber.scripps.edu/amber8.bench2.html.

[2] S. A. Adcock and J. A. McCammon, Molecular Dynamics: Sur-
vey of Methods for Simulating the Activity of Proteins, Chem.

Rev., 106: 1589-1615, 2006.

[3] J. Banerjee, D. K. Hsiao, and R. I. Baum, Concepts and Capa-
bilities of a Database Computer, ACM Transactions on Database

Systems, 3(4): 347-384, 1978.

[4] K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B.
A. Gregersen, J. L. Klepeis, I. Kolossvary, M. A. Moraes, F. D.
Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw, Scalable Al-
gorithms for Molecular Dynamics Simulations on Commodity
Clusters, Proc. ACM/IEEE Conf. on Supercomputing (SC06),
Tampa, FL, 2006.

[5] K. J. Bowers, R. O. Dror, and D. E. Shaw, The Midpoint
Method for Parallelization of Particle Simulations, J. Chem.

Phys., 124: 184109, 2006.

[6] K. J. Bowers, R. O. Dror, and D. E. Shaw, Zonal Methods for
the Parallel Execution of Range-Limited N-Body Problems, J.

Comput. Phys., 221(1):303-329, 2007.

[7] C. L. Brooks, B. M. Pettit, and M. Karplus, Structural and Ener-
getic Effects of Truncating Long Ranged Interactions in Ionic
and Polar Fluids, J. Chem. Phys., 83(11): 5897-5908, 1985.

[8] I. Brooks, C.L. and D. A. Case, Simulations of Peptide Con-
formational Dynamics and Thermodynamics, Chem. Rev., 93:
2487-2502, 1993.

Figure 7. Scaling of performance for a 512-node version of

Anton with increasing chemical system size. The graph shows a
stacked bar chart for each chemical system, with the height of each
stack proportional to the simulation time, assuming that long-range
forces are evaluated every other time step. Each stack represents
the time required to execute two consecutive time steps; one is a
“long-range time step” that includes calculation of long-range elec-
trostatics by k-GSE, and the other is a “range-limited time step”
that does not. The chemical systems represent proteins and nucleic
acids of various sizes, surrounded by water.

11

[9] Y. Duan and P. A. Kollman, Pathways to a Protein Folding In-
termediate Observed in a 1-Microsecond Simulation in Aqueous
Solution, Science, 282(5389): 740-744, 1998.

[10] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and
L. G. Pedersen, A Smooth Particle Mesh Ewald Method, J.

Chem. Phys., 103(19): 8577-8593, 1995.

[11] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M.
Giampapa, Y. Zhestkov, M. C. Pitman, F. Suits, A. Grossfield, J.
Pitera, W. Swope, R. Zhou, S. Feller, and R. S. Germain, Blue
Matter: Strong scaling of Molecular Dynamics on Blue Gene/L,
Proc. International Conf. on Computational Science (ICCS

2006), V. Alexandrov, D. van Albada, P. Sloot, and J. Dongarra,
Eds., Springer-Verlag, LNCS, 3992:846-854, 2006.

[12] B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M.
E. Giampapa, M. C. Pitman, and R. S. Germain, Blue Matter:
Approaching the Limits of Concurrency for Classical Molecular
Dynamics, Proc. ACM/IEEE Conf. on Supercomputing (SC06),
Tampa, FL, 2006.

[13] R. D. Fine, G. Dimmler, and C. Levinthal, FASTRUN: A Special
Purpose, Hardwired Computer for Molecular Simulation, Pro-

teins: Struct, Funct, Genet, 11(4): 242-253, 1991 (erratum:
14(3): 421-422, 1992).

[14] D. Frenkel and B. Smit, Understanding Molecular Simulation:

From Algorithms to Applications, Second ed. London: Aca-
demic Press, 2001.

[15] R. S. Germain, B. Fitch, A. Rayshubskiy, M. Eleftheriou, M. C.
Pitman, F. Suits, M. Giampapa, and T. J. C. Ward, Blue Matter
on Blue Gene/L: Massively Parallel Computation for Bio-
molecular Simulation, Proc. 3rd IEEE/ACM/IFIP International

Conf. on Hardware/Software Codesign and System Synthesis

(CODES+ISSS '05), 207–212, New York, NY, 2005.

[16] R. W. Hockney and J. W. Eastwood, Computer Simulation Us-

ing Particles. Bristol: Adam Hilger, 1988.

[17] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, Develop-
ment and Testing of the OPLS All-Atom Force Field on Con-
formational Energetics and Properties of Organic Liquids, J. Am.

Chem. Soc., 118(45): 11225-11236, 1996.

[18] M. Karplus and J. A. McCammon, Molecular Dynamics Simula-
tions of Biomolecules, Nat. Struct. Bio., 9(9): 646 - 652, 2002.

[19] P. A. Kollman, R. W. Dixon, W. D. Cornell, T. Fox, C. Chipot,
and A. Pohorille, The Development/Application of a “Minimal-
ist” Organic/ Biomolecular Mechanic Forcefield Using a Com-
bination of Ab Initio Calculations and Experimental Data, in
Computer Simulation of Biomolecular Systems: Theoretical and

Experimental Applications, W. F. van Gunsteren and P. K.
Weiner, Eds. Dordrecht, Netherlands: ESCOM, 1997, 83-96.

[20] D. K. Layer and C. Richardson, Lisp Systems in the 1990s,
Communications of the ACM, 34(9): 48-57, 1991.

[21] J. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D.
Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Jo-
seph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mat-
tos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, I. Reiher,
W. E., B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub,
M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin, and M. J. Kar-
plus, All-Atom Empirical Potential for Molecular Modeling and
Dynamics Studies of Proteins, J. Phys. Chem. B, 102(18): 3586-
3616, 1998.

[22] P. Mark and L. Nilsson, Structure and Dynamics of Liquid Wa-
ter with Different Long-Range Interaction Truncation and Tem-
perature Control Methods in Molecular Dynamics Simulations,
J. Comput. Chem., 23(13): 1211-1219, 2002.

[23] V. S. Pande, I. Baker, J. Chapman, S. P. Elmer, S. Khaliq, S. M.
Larson, Y. M. Rhee, M. R. Shirts, C. D. Snow, E. J. Sorin, and
B. Zagrovic, Atomistic Protein Folding Simulations on the Sub-
millisecond Time Scale Using Worldwide Distributed Comput-
ing, Biopolymers, 68(1): 91-109, 2003.

[24] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid,
E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten, Scal-
able Molecular Dynamics with NAMD, J. Comput. Chem.,
26(16): 1781-1802, 2005.

[25] S. Plimpton, Fast Parallel Algorithms for Short-Range Molecu-
lar-Dynamics, J. Comput. Phys., 117(1): 1-19, 1995.

[26] T. Schlick, R. D. Skeel, A. T. Brunger, L. V. Kalé, J. A. Board,
J. Hermans, and K. Schulten, Algorithmic Challenges in Compu-
tational Molecular Biophysics, J. Comput. Phys., 151(1): 9-48,
1999.

[27] M. M. Seibert, A. Patriksson, B. Hess, and D. van der Spoel,
Reproducible Polypeptide Folding and Structure Prediction Us-
ing Molecular Dynamics Simulations, J. Mol. Biol., 354(1): 173-
183, 2005.

[28] Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E.
Shaw, Gaussian Split Ewald: A Fast Ewald Mesh Method for
Molecular Simulation, J. Chem. Phys., 122: 054101, 2005.

[29] D. E. Shaw, A Fast, Scalable Method for the Parallel Evaluation
of Distance-Limited Pairwise Particle Interactions, J. Comput.

Chem., 26(13): 1318-1328, 2005.

[30] M. Snir, A Note on N-Body Computations with Cutoffs, Theor.

Comput. Syst., 37: 295-318, 2004.

[31] M. Taiji, T. Narumi, Y. Ohno, N. Futatsugi, A. Suenaga, N.
Takada, A. Konagaya, Protein Explorer: A Petaflops Special-
Purpose Computer System for Molecular Dynamics Simulations,
Proc. ACM/IEEE Conf. on Supercomputing (SC03), Phoenix,
AZ, 2003.

[32] S. Toyoda, H. Miyagawa, K. Kitamura, T. Amisaki, E. Hashi-
moto, H. Ikeda, A. Kusumi, and N. Miyakawa, Development of
MD Engine: High-Speed Accelerator with Parallel Processor
Design for Molecular Dynamics Simulations, J. Comput. Chem.,
20(2): 185-199, 1999.

[33] D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark,
and H. J. C. Berendsen, GROMACS: Fast, Flexible, and Free, J.

Comput. Chem., 26(16): 1701-1718, 2005.

[34] W. Wang and R. D. Skeel, Fast Evaluation of Polarizable
Forces, J. Chem. Phys., 123(16): 164107, 2005.

[35] R. Zhou and B. J. Berne, A New Molecular Dynamics Method
Combining the Reference System Propagator Algorithm with a
Fast Multipole Method for Simulating Proteins and Other Com-
plex Systems, J. Chem. Phys., 103(21): 9444-9459, 1995.

[36] R. Zhou, E. Harder, H. Xu, and B. J. Berne, Efficient Multiple
Time Step Method for Use with Ewald and Particle Mesh Ewald
for Large Biomolecular Systems, J. Chem. Phys., 115(5): 2348-
2358, 2001.

12

