
 Open access Proceedings Article DOI:10.1109/OPNARC.1998.662048

ANTS: a toolkit for building and dynamically deploying network protocols
— Source link

David Wetherall, John V. Guttag, D.L. Tennenhouse

Institutions: Massachusetts Institute of Technology

Published on: 03 Apr 1998

Topics: Service discovery, Communications protocol, Protocol Independent Multicast, Mobile computing and Multicast

Related papers:

 A survey of active network research

 Towards an active network architecture

 The SwitchWare active network architecture

 PLAN: a packet language for active networks

 Smart Packets for active networks

Share this paper:

View more about this paper here: https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-
2qpfic50r6

https://typeset.io/
https://www.doi.org/10.1109/OPNARC.1998.662048
https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
https://typeset.io/authors/david-wetherall-16plxiyh4x
https://typeset.io/authors/john-v-guttag-4acnvescrc
https://typeset.io/authors/d-l-tennenhouse-3t0l3a24dg
https://typeset.io/institutions/massachusetts-institute-of-technology-1y5l0xk3
https://typeset.io/topics/service-discovery-q8eqpoal
https://typeset.io/topics/communications-protocol-3nvzacqf
https://typeset.io/topics/protocol-independent-multicast-35b4ry4w
https://typeset.io/topics/mobile-computing-3es7kt3z
https://typeset.io/topics/multicast-2beme6v0
https://typeset.io/papers/a-survey-of-active-network-research-17841vbhvq
https://typeset.io/papers/towards-an-active-network-architecture-1jjiyxw3ec
https://typeset.io/papers/the-switchware-active-network-architecture-367ocbtzcq
https://typeset.io/papers/plan-a-packet-language-for-active-networks-19agjp1y9r
https://typeset.io/papers/smart-packets-for-active-networks-guxh8qkg1i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
https://twitter.com/intent/tweet?text=ANTS:%20a%20toolkit%20for%20building%20and%20dynamically%20deploying%20network%20protocols&url=https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6
https://typeset.io/papers/ants-a-toolkit-for-building-and-dynamically-deploying-2qpfic50r6

To appear in IEEE OPENARCH���� San Francisco� CA� April ����

ANTS� A Toolkit for Building and Dynamically

Deploying Network Protocols

David J� Wetherall� John V� Guttag and David L� Tennenhouse�

Software Devices and Systems Group

Laboratory for Computer Science

Massachusetts Institute of Technology

Abstract

We present a novel approach to building and deploying
network protocols� The approach is based on mobile code�
demand loading� and caching techniques� The architec�
ture of our system allows new protocols to be dynamically
deployed at both routers and end systems� without the
need for coordination and without unwanted interaction
between co�existing protocols�

In this paper� we describe our architecture and its real�
ization in a prototype implementation� To demonstrate
how to exploit our architecture� we present two simple
protocols that operate within our prototype to introduce
multicast and mobility services into a network that ini�
tially lacks them�

� Introduction

The performance of modern distributed computing is
heavily dependent upon the network services used to
move information among machines� Curiously� however�
the evolution of these services has beenmuch slower than
the evolution of almost any other part of the environment
on which computing systems are built�

The slow evolution is attributable neither to a lack of
need nor to a lack of innovative ideas� In the case of
IP� for example� changes are underway to better support
multimedia applications� as well as to accommodate a
larger number of potentially mobile hosts ��� 	�
� ����
Unfortunately� though agreement on the need for these
changes was reached many years ago� they are still not
fully deployed�

The problem is that the current process of changing
network protocols is both lengthy and di�cult� It re

quires standardization� since internetworking protocols

�djw�lcs�mit�edu� http���www�sds�lcs�mit�edu�� This work
was supported by DARPA� monitored by the O�ce of Naval Re�
search under contract No� N��		
����C��
��� and by seed funding
from Sun Microsystems Inc�

are the basis of interoperability� This means that years
may elapse between the time the need becomes appar

ent and the time consensus is reached on how to address
that need� Furthermore� once the new protocol has been
accepted� deployment is di�cult� It must be done man

ually and in a backwards compatible fashion� since there
is no automatic mechanism for upgrading functionality
or dealing automatically with multiple protocols�

This paper presents a new approach to network service
innovation that addresses all of these problems� The
essence of our approach is to standardize a commu

nication model �rather than individual communication
protocols� that allows uncoordinated deployment of co

existing protocols� We have developed an active network
���� ��� toolkit� called ants�� in which new protocols are
automatically deployed at both intermediate nodes and
end systems by using mobile code techniques� Our archi

tecture views the network as a �somewhat restricted� dis

tributed programming system� and provides a program

ming language
like model for expressing new protocols in
terms of operations at nodes� Compared with alternative
systems in which new protocols may be formed by select

ing from a library of components� e�g�� the x
kernel ����
ants provides the greater �exibility that accompanies a
programming language and the convenience of dynamic
deployment�

In the next section of this paper� we present the ants
protocol architecture� We then demonstrate how the ar

chitecture can be exploited by presenting simple proto

cols that support multicast and mobility� two directions
in which IP is currently being extended� This is followed
by a discussion of our prototype implementation of the
the ants architecture� We then contrast our systemwith
related work� and o�er conclusions and suggestions for
further work�

�See http���www�sds�lcs�mit�edu�activeware�

�

� ants Protocol Architecture

An ants
based network consists of an interconnected
group of nodes that execute the ants runtime� the nodes
may be connected across the local or wide area and by
point
to
point or shared medium channels� The system
builds on the link layer services of the channels to provide
network layer services to distributed applications�

Unlike IP� the network service provided by ants is not
�xed � it is �exible� Di�erent applications are able to
introduce new protocols into the network by specifying
the routines to be executed at network nodes that for

ward their messages� Applications may customize net

work processing to suit their needs by pushing processing
into the network � either processing that is traditionally
performed at end
systems or novel kinds of processing
that only make sense in the context of active networks�

In designing ants� we set three goals for network proto

col innovation� All describe more �exible forms of inno

vation than are currently achieved in the Internet�

� The nodes of the network must simultaneously sup

port a variety of network protocols providing di�er

ent services�

� The architecture must support the construction of
new protocols by mutual agreement among inter

ested parties� rather than requiring new protocols
to be registered in a centralized manner� We do not
expect all users to construct new protocols directly�
but rather to choose between protocols o�ered by
third party software vendors�

� The architecture must support the dynamic deploy

ment of new protocols� since it is unreasonable to
take portions of the network �o�
line� in order to
con�gure nodes to support new protocols � espe

cially as the scale of the network increases�

Our architecture meets these goals through the use of
three key components�

� The packets found in traditional networks are re

placed by capsules that refer to the processing to be
performed on their behalf�

� Routers and end nodes are replaced by active nodes
that execute capsule processing routines and main

tain their associated state�

� A code distribution mechanism ensures that pro

cessing routines are automatically and dynamically
transfered to those nodes where they are needed�

Protocol

Code Group

Capsule

unit of program-
ming protection

unit of code
transfer

unit of message
forwarding

Figure �� Capsule Composition Hierarchy

protocol/
 capsule

shared
header

rest of
header ... payload

Figure 	� Capsule Format

��� Protocols and Capsules

To make use of programmable network elements� we re

quire a model for combining forwarding routines at in

dividual nodes into a pattern of behavior � a protocol �
that de�nes the processing to occur across the network
as a whole� Further� the model must separate patterns
of behavior from each other�

In ants� we do this using capsules� code groups� and
protocols� The relationships between these entities is
illustrated in Figure ��

� A capsule is a generalized replacement for a packet�
Its most important architectural function is to in

clude a reference to the forwarding routine to be
used to process the capsule at each active node�
Some forwarding routines are �well
known� in that
they are guaranteed to be available at every active
node� These primarily include routines for common
case processing� i�e�� unreliable data transfer with
standard routing� and for bootstrapping network
services� such as the code distribution scheme to be
described shortly� Other routines are �application

speci�c�� Typically� they will not reside at every
node� but must be transfered to a node by the code
distribution scheme before capsules of that type can
be processed for the �rst time�

� A code group is a collection of related capsule types
whose forwarding routines are transferred as a unit
by the code distribution system�

� A protocol is a collection of related code groups that
are treated as a single unit of protection by the ac

	

tive nodes� Thus protocols are the units by which
the network as a whole is customized by applica

tions� Capsules belonging to the same protocol will
typically manipulate shared information within the
network�

Capsule Format

The format of capsules as they are carried across link

layer channels is sketched in Figure 	� Each capsule car

ries an identi�er for its protocol and particular capsule
type within that protocol� The identi�er is based on a
�ngerprint �e�g�� the MD� message digest� of the proto

col code� It is used for demultiplexing to a forwarding
routine in the same sense as the Ethernet type and IP
version and protocol �elds�

That the capsule identi�er is derived from the code de

scription of the protocol of which it is a part is crucial
for two reasons�

� It greatly reduces the danger of protocol spoo�ng�
When a node receives code that purports to cor

respond to a particular capsule type� it can easily
verify for itself �without trusting external parties�
that the code is indeed what it purports to be�

� It allows protocols and capsule types to be allocated
quickly and in a decentralized fashion� since their
identi�er depends only on a �ngerprint of the pro

tocol code� One need only choose a hash function
with a su�ciently large range to make the probabil

ity of a collision extremely low�

The remainder of the capsule format is comprised of a
shared header that contains �elds common to all cap

sules� a type
dependent header that may be updated
as the capsule traverses the network� and a payload�
The important components of the shared header are
source and destination addresses and information about
resource limits to be enforced by nodes�

��� Active Nodes

A key di�culty in designing a programmable network is
to allow nodes to execute user
de�ned programs while
preventing unwanted interactions� Not only must the
network protect itself from runaway protocols� but it
must o�er co
existing protocols a consistent view of the
network and allocate resources among them�

Our approach has been to execute protocols within a
restricted environment that limits their access to shared
resources� Active nodes play this role in our architecture�

They export a set of primitives for use by application

de�ned processing routines� which combine these primi

tives using the control constructs of a programming lan

guage� They also supply the resources shared between
protocols and enforce constraints on how these resources
may be used as protocols are executed� We describe our
node design along these two lines�

Node Primitives

We chose an initial set of primitives based on our experi

ence with a predecessor system �	��� This work suggests
that a relatively small set of primitives is su�cient to
express a number of di�erent and useful forwarding rou

tines� We support the categories of node primitives listed
below� There are also some obvious additions �namely
authentication� �ngerprinting� compression� etc�� that
we have not had the time to experiment with yet�

� environment access� to query the node location�
state of links� routing tables� local time and so forth�

� capsule manipulation� with access to both header
�elds and payload�

� control operations� to allow capsules to create other
capsules and forward� copy or discard themselves�

� node storage� to manipulate a soft
store of
application
de�ned objects that are held for a short
interval�

The set of primitives available at active nodes is im

portant because it determines the kinds of processing
routines that can be deployed by applications� For ex

ample� without the ability to store and access node state�
individual capsule programs would be unable to commu

nicate with each other� Further� the compactness and
execution e�ciency of capsule programs is a�ected by
these primitives� Both are enhanced if the primitives
are a good match for the processing� and degraded oth

erwise� For example� the neighbors at a given node may
be found either by walking the entire routing table look

ing for adjacent nodes� or by asking the question directly
of the node� depending on which topological queries are
supported� The direct query can be represented com

pactly and executed e�ciently as a built
in node primi

tive� while the other program cannot�

Execution Model

Our execution model is based on the assumption that
the primary purpose of the computation done within
an active network is facilitating communication� Con

sequently� our model is optimized to support a general

ized form of packet forwarding rather than more general

computation� More speci�cally� it has the following char

acteristics�

� The forwarding routine of a capsule is set at the
sender and may not change as it traverses the net

work� nor may capsules belonging to one proto

col create capsules belonging to a di�erent protocol
within the network� Given this� one user may not
control the processing of another user�s capsules in
unintended ways�

� Not all nodes of the network need execute a partic

ular forwarding routine� Some nodes may elect not
to� depending on their available resources and secu

rity policies� in which case they perform �default�
IP
like forwarding on these capsules instead� Ad

ditionally� forwarding routines may self
select nodes
at which it is useful to perform their specialized pro

cessing depending on the location of the node and
its capabilities�

� Since forwarding routines may be de�ned by un

trusted users� they are limited in their capabili

ties� In particular� like traditional forwarding rou

tines� they are expected to run to completion lo

cally and within a short time� and their memory
and bandwidth consumption is bounded by a TTL

like scheme�

� The data that a capsule may access while in the
network is determined by the protocol to which it
belongs� By default� only capsules belonging to the
same protocol may share state� Further� once cre

ated� a protocol is closed in that new types of cap

sule that purport to belong to it in order to manip

ulate its data in a di�erent manner are disallowed�

When a capsule arrives at a node� its associated pro

cessing routine is run to completion �unless it exceeds
its resource limit�� The routine processes the payload of
the capsule and initiates any further actions� e�g�� for

warding� that are necessary� Unlike more general mo

bile agent systems� the node provides no support for mi

grating computations at arbitrary points during execu

tion� Instead� processing routines may update capsule
�elds and enter application
de�ned information into the
shared node soft
store� Together� these mechanisms al

low the construction of computations that evolve their
behavior as they traverse the network�

During capsule processing� active nodes are responsi

ble for the integrity of the network and handle any
errors that arise� Since capsule processing resembles
a distributed programming system in which there are
many legitimate users with small tasks� authentication
and other traditional security schemes are likely to be
too heavyweight to be used for common
case forwarding

capsule

request

response

capsule

1

2

3

4
code
group

previous loading

nodenode

code
group

Figure
� Demand Loading of Code Groups

programs� Instead� we rely on the safety mechanisms
of mobile code technologies �e�g�� sandboxing and Java
bytecode veri�cation� to execute untrusted routines ef

�ciently in a contained manner� Conversely� the occa

sional use of primitives that manipulate shared logical
resources� e�g�� updates to the default routing tables�
must be authenticated�

This model is not yet su�cient� however� to ensure that
the network is robust� nor that its resources are allo

cated in an intended manner� For these purposes� we
incorporate additional mechanisms to limit the physical
resources consumed by capsule programs� both at indi

vidual nodes and across many nodes�

We associate with each capsule a resource limit that
functions as a generalized TTL �Time
To
Live� �eld�
This limit is carried with the capsule and decremented by
nodes as resources are consumed� only nodes may alter
this �eld� and nodes discard capsules when their limit
reaches zero� In order to reason about total resource
bounds� care must be taken to transfer resources when
one capsule creates another inside the network� the re

sources allocated to each created capsule must be strictly
less than those of the creating capsule�

It is straightforward to charge for resources as they are
consumed� Processing time and link bandwidth are allo

cated by time and capsule quanta� respectively� node
memory is allocated by cached objects� since caching
converts memory into a renewable resource� We hope�
however� that it will prove feasible to enforce static lim

its at nodes with a scheme similar to ��� or by using
proof
carrying code techniques ��	��

�

��� Code Distribution

The third component of our architecture is a code dis

tribution system� Given a programmable infrastructure�
a mechanism is needed for propagating program de�ni

tions to where they are needed� A good scheme must
be e�cient� adapt to changes in node connectivity� and
limit its activity so that the network remains robust�

Many di�erent mechanisms are possible� At one ex

treme� programs may be carried within every capsule�
This scheme is only suited to transferring extremely
short programs when bandwidth is not at a premium�
At the other extreme� programs may be pre
loaded into
all nodes that may require them by using an out
of
band
or management channel prior to using a new protocol�
This scheme is not suited to our goals of rapid and de

centralized deployment�

Instead� our approach has been to couple the transfer
of code with the transfer of data as an in
band func

tion� We believe this has several advantages� It lim

its the distribution of code to where it is needed� while
adapting to node and connectivity failures� It improves
startup performance and facilitates short
lived protocols
by overlapping code distribution with its execution� It
further suits our research goals by allowing customized
processing to be expressed at a �ne granularity� i�e�� per
capsule rather than per application session�

We have designed a scheme that loads code on demand
and caches it to improve performance in the expected
common case of �ows� i�e�� sequences of capsules that fol

low the same path and require the same processing� At
end
systems� applications may begin to use a new proto

col at any time by registering the code de�nition at their
local node� Capsules of the new type may then be in

jected into the network and received from it� As capsules
travel through nodes of the network� a lightweight pro

tocol is used to transfer the capsule programs incremen

tally from one node to the next� where they are cached
for future use� For this purpose� capsules must be orga

nized into code groups according to their dependencies�
If one type of capsule refers to another type� their de�

nitions are grouped for joint transfer�

A sequence of events that illustrates the operation of
this demand loading protocol is listed below and shown
in Figure
�

�� Capsules identify their type and the protocol to
which they belong as they travel� This information
is immutable for a given instance of a capsule�

	� When a capsule arrives at a node� a cache of proto

col code is checked� If the required code is not all
present� a load request for the missing portion based

on the capsule type and protocol is sent to the �pre

vious� node� i�e�� the node from which the capsule
arrived� The capsule execution is suspended� await

ing the code� for a �nite time�

� When a node receives a load request that it can
answer� it does so immediately� It sends load re

sponses that contain the portion of protocol code
that is implicated�

�� When a node receives a load response� it incorpo

rates the code into its cache� If the required code
is now all present� it wakes sleeping capsules� If
the required responses are not forthcoming� sleep

ing capsules are discarded without further action�

This scheme has some important properties� First� the
reliance of a node on the �previous� node is designed to
draw code from a source node along the network paths
where it is needed� As many capsules are transferred�
a region is grown� within which the same processing is
invoked repeatedly and code transfer is no longer nec

essary� If network paths change� then code transfer will
resume in order to adapt to the new connectivity�

Second� the connectionless nature of the scheme is de

signed to provide rapid loading without concern for reli

ability� There are two reasons a load request might fail�

�� The requested code might not be available at the
node to which the load request is directed� or

	� Network congestionmight cause the loss of capsules�

Requests for code are caused by the arrival of a capsule�
Since these requests are always directed at the node that
sent the capsule to the requesting node� it is highly prob

able that the code is in the code cache of the node receiv

ing the request� The main source of failure is� therefore�
likely to be network congestion� This is the reason that
we have not elected to use a higher
level connection� e�g��
TCP� for code delivery� In the unlikely event that a load
request fails� the capsule that provoked the request is
lost� In this case� protocol
speci�c higher
level process

ing at the end
systems is used to provide whatever level
of reliability is appropriate�

� Programming with ants

To demonstrate how we intend our architecture to be
used� we describe two simple protocols that introduce
multicast and mobility services into an ants network
that initially lacks them� We chose these examples be

cause they represent two areas of widespread interest in
which the Internet community is currently dealing with
the di�culties of innovating protocols�

�

source

 dest
(home)

 dest
(away)

foreign

home

agent

agent

=soft-state

Register

Mobile Data

Figure �� Mobile Capsule Paths
�� on entry�
�� home � home agent
�� next � node at which to register
�� forward � address to be registered

�� go to foreign and then home agent
if �n�address�� �� next� �
n�routefornode�this	 next�

return

�

�� insert a forwarding address
n�put�src	 new W�N�forward�	 IDLE�

�� after doing foreign	 do home
if �n�address�� �� home� �
forward � next
 next � home

n�routefornode�this	 next�

�

Figure �� Mobile Register Capsule

The presented protocols were written and tested using
the Java
based prototype implementation of ants de

scribed in Section �� In developing the protocols� it
was not our intent to present new and better solutions
to these particular problems� Our goal was merely to
demonstrate how our approachmay be used to write pro

tocols that address these kinds of problems in a number
of di�erent ways� depending on application requirements
rather than relying on a �one size �ts all� solution� That
is� we wish to show that ants facilitates protocol con

struction and deployment� not that the particular prob

lems of mobility and multicast are straightforward�

��� Mobile Hosts

We introduce support for mobile hosts into an ants net

work with a Mobile protocol composed of two cooper

ating capsule types� One type of capsule is sent by the

�� look up forwarding record
W�N f � �W�N�n�get�dst�

�� if found	 update our route
if �f �� null� next � f�node

�� and continue on our way
if �n�address�� �� next�

n�routefornode�this	 next�

if �n�address�� �� dst�

n�delivertoapp�this	 dpt�

Figure �� Mobile Data Capsule

mobile host to register forwarding information while it
is roaming� The second is used by other hosts to send
messages to the mobile host� To be consistent with mo

bility schemes� we use the notion of home and foreign
agents� The home agent is used to intercept messages at
the base location of the mobile host� The foreign agent
is used as a �care of� address to reach the mobile host
while it is away from its base� The paths of these two
types of capsule is shown in Figure � and their code in
Figures � and ��

Mobile hosts that are roaming periodically send
Register capsules to their home agent via a local for

eign agent� The program carried by this capsule updates
forwarding addresses cached at the home and foreign
agents� In each� an updated forwarding pointer is en

tered into the node cache� the home agent forwards to
the foreign agent� and the foreign agent to the current
mobile location� At the home agent� Register capsules
are silently discarded� having established their forward

ing pointers within the network� As the mobile moves�
old forwarding pointers will either be supplanted by fresh
information or evicted from the cache after a brief inter

val�

To communicate with the mobile host� other hosts send
Mobile Data capsules that make use of this forwarding
information� This capsule program is directed by default
routing towards the base location of the mobile� If the
mobile is at home� the capsule will reach it and be deliv

ered� If the mobile is roaming� the capsule will discover
a forwarding pointer as it traverses the home agent� and
follow it to the foreign agent� There� it will �nd a fur

ther pointer to the current mobile location and so be
delivered�

Despite the simplicity of this scheme� it provides the es

sential feature of mobility� hosts may be reached as they
move without introducing another layer of addressing�
There are also some interesting comparisons with Mo

bile IP ����� First� it is not necessary to con�ne mobile
forwarding information to the edges of the network� To
facilitate shortcut routing� mobile updatesmay enter for

�

�� on entry�
�� group � multicast group
�� sender � multicast sender
�� reverse � last visited node

�� look up forwarding record
W�JAN m � �W�JAN�n�get�group	 sender�

�� or make a new one if necessary
if �m �� null� �
m � new W�JAN��

n�put�group	 sender	 m	 IDLE�

�

�� are we at an intermediate node

add� if �reverse �� �� �
if �m�nodes �� null� �

�� start a new list
m�nodes � new W�N���

m�nodes��� � reverse

� else �

�� does it contain our info

for �int i � �
 i � m�nodes�length
 i���

if �m�nodes�i� �� reverse� break add

�� if not	 add it
int len � m�nodes�length

W�N�� nn � new W�N�len���

System�arraycopy�m�nodes	�	nn	�	len�

nn�len� � reverse
 m�nodes � nn

�
�

�� need to refresh upstream entry

long time � n�time��

if �time � m�time � RATE� return

m�time � time

�� if so	 update route and continue
if �n�address�� �� sender� �
reverse � n�address��

n�routefornode�this	 sender�

�

Figure �� Multicast Subscribe Capsule

warding pointers at any node� and messages from other
nodes will follow them like a trail of crumbs once their
paths cross� Second� because our approach is based on
innovation rather than backwards
compatibility� a di�er

ent protocol is used to reach stationary and potentially
mobile hosts� This poses no bootstrapping problem how

ever� it is straightforward to select which protocol to use
in the �rst place with a directory service� e�g�� in the
same manner that the selection of IPv� versus IPv� is
being incorporated into the DNS ��� for the IPv� transi

tion�

member

member

Multicast

=soft-state

sender
Subscribe

Subscribe

Data

Figure �� Multicast Capsule Paths

�� look up forwarding record
W�JAN m � �W�JAN�n�get�group	 sender�

�� must find it to continue
if �m �� null� �
if �m�nodes �� null� �

�� send a copy every way
for �int i � �
 i � m�nodes�length
 i���

n�routefornode�this	 m�nodes�i��

� else

�� or deliver to application
n�delivertoapp�this	 dpt�

�

Figure �� Multicast Data Capsule

��� Multicast

We introduce a basic Multicast protocol� resembling
IP multicast ���� composed of two cooperating capsule
types�� One type of capsule is sent to subscribe to a
group� and the other carries the multicast message itself�

Applications that wish to receive messages sent to a
given group by a particular sender periodically send
Subscribe capsules towards the sender� The program
carried by this capsule installs �or refreshes� forwarding
pointers that are cached in each router it traverses� for

warding information sent by di�erent nodes is merged to
form a distribution tree� To multicast to the group� the
sender node sends a Multicast Data capsule that sim

ply routes itself along the distribution tree� The paths
of these capsules are shown in Figure � and the code in
Figures � and ��

The Subscribe program begins by looking up the for

�Readers familiar with IP multicast will note that our multicast
provides a somewhat di�erent service� This is discussed after the
scheme is presented�

�

warding record for the group in the node cache� creating
a fresh record if none is found� To separate this forward

ing record from other multicast session information in
the cache� the record is stored under a key that is the
combination of the group and sender addresses� Once
the forwarding record is located� a �reverse� pointer in
the direction of the subscriber is merged into the for

warding record� Leaf subscriber nodes are indicated by
empty forwarding lists�

The forwarding method of the Multicast Data capsule
makes use of the forwarding records it �nds at nodes�
sending a copy of itself along every indicated �reverse�
path found in the record at each node� If no forwarding
information can be found� the capsule is discarded� At
end
systems� where there is an empty forwarding record�
the capsule delivers itself to an application�

Together� these capsule programs implement an unre

liable multicast protocol with the central property of
network
based multicast� e�cient use of bandwidth�
The service di�ers from IP multicast in two signi�cant
respects� First� the scheme is localized to the nodes using
the protocol� and does not require that multicast
capable
routers be separately identi�ed or organize themselves
into a tree� Second� it provides a di�erent multicast
primitive� since members subscribe to the combination
of a group and sender� This choice is typical of the �ex

ibility that ants o�ers protocol developers� If multiple
senders are needed� then multiple distribution trees may
be formed by having members subscribe to each of the
senders� Alternatively� the sender may be considered the
root of a core
based tree ���� with messages routed up the
tree towards the root and down other branches�

� Prototype Implementation

We have been experimenting with a prototype imple

mentation of the ants architecture�� The implemen

tation was designed primarily to allow us to evaluate
the suitability of our approach to creating and deploy

ing protocols� We have used it to test and debug the
Mobile and Multicast protocols discussed in this pa

per� as well as a number of other protocols developed
in our group� e�g��a high performance reliable multicast
developed by Lehman ����� a TCP SYN
�ooding defense
protocol developed by Van ����� and an auction service
developed by Legedza� Recently� ants nodes have also
been deployed at di�erent sites as one of several tech

nologies within the DARPA
sponsored ABONE� an ex

perimental active network in which nodes communicate
by tunneling through the Internet using UDP�

�Our toolkit is publicly available as a source distribution at
http���www�sds�lcs�mit�edu�activeware�

Class Key Methods

Node address� get� put�
routefornode� delivertoapp

Channel send� receive� node
Application send� receive �upcall�� node
Capsule evaluate� length�

encode� decode

Table �� Key Classes and Methods

The current implementation is written in Java and runs
as a user
level process under Linux� The code distribu

tion protocol transfers processing routines in Java class

�le format� We chose Java because of its support for
safety and mobility �through bytecodes and their veri�

cation� and the likely emergence of higher performance
compilers and runtimes� Its �exibility as a high
level
language and support of dynamic linking�loading� multi

threading� and standard libraries has allowed us to evolve
our design while maintaining a small code base �������
lines��

The major components of the ants architecture are im

plemented using the classes listed in Table �� When each
ants runtime is started� its root thread instantiates a
single Node object� one Channel object for each local
network interface� and one Application object for each
local distributed application� Applications may then
communicate by exchanging capsules� sending them via
the local node� which transmits them as packets using
the link layer services of the local channels� Conversely�
when packets are received from the link layer� the chan

nel attempts to convert them to instances of the ap

propriate Capsule subclass� If the required code is not
present at the node� then the packet is retained by the
node while the code is fetched using the code distribution
protocol� Once a capsule instance is created� the thread
calls its evaluate method� passing the node instance as
a parameter� As it is evaluated� the capsule code has
access to the private soft state of the associated protocol
as well as the public state �e�g�� routing tables� of the
node�

Node Class

The Node class represents the runtime of a single network
node� including its code and soft
storage caches and code
distribution protocol� It provides a set of node primitives
that can be invoked by capsule programs� These prim

itives allow access to the state at the node and enforce
various security constraints�

Table � lists some key methods� including routefornode�
which forwards a copy of a capsule towards a given des

�

tination� and get and put� which are used to manipu

late that part of the node soft
store that can be directly
accessed by the executing protocol� The soft
store is
managed in a least
recently
used order� and additionally
removes entries with coarse
grain timeouts� This pre

vents the network from retaining stale state� e�g�� old
session identi�ers� and further allows us to stress test
protocols by shortening the value of the timeout� The
code cache is also managed in a least
recently
used or

der� and does not require timeouts because the protocol
naming scheme obviates versioning problems�

Channel Class

The Channel class provides the interface to the link
layer� connecting nodes via point
to
point or shared
medium channels� At present� either Ethernet or UDP
�tunnels� may be used to transfer capsules� These
choices allow small networks to be constructed by run

ning one node per machine and connecting the nodes
with Ethernet channels� Larger networks are emulated
by running many nodes per machine and connecting the
nodes with UDP channels�

Capsule Class

The Capsule class is a virtual class that can be special

ized to create the capsule types that comprise protocols�
During capsule processing at nodes� each packet received
from the link layer is manipulated as an instance of its
corresponding Capsule subclass� In our prototype im

plementation� if an error occurs� execution of the capsule
is terminated and the state associated with that execu

tion of the capsule is released� It would be straight

forward to extend this recovery process with an error
message scheme analogous to ICMP�

In addition to providing the base class for new proto

cols� our current implementation provides several built

in subclasses� The class DataCapsule allows applica

tions to transfer data using default �i�e�� shortest path�
routes� The system classes DLRequestCapsule and
DLResponseCapsule are used by the code distribution
protocol� They provide the bootstrapping capability
needed to install other protocols�

Application Class

Programs that use the ants service are constructed by
specializing the Application class� This is a container
for end
system processing that provides a small API for
registering protocols� injecting capsules into the network
and receiving capsules from the network� It runs within

Runtime Latency Throughput
�us� �capsules�sec�

JDK����	 ���� ����
JDK����� ��� ����
JDK����� � JIT ��� ����
C user
level relay 		� �
��

Table 	� Node Baseline Performance

Capsule Size Latency With Load
�bytes� �us� �us�

Data ��	� ��� ����
Mobile 	��� �	� ����
Update 	�	� ��� ����
Multicast 		�� ��� ����
Subscribe 	��� ��� ����

Table
� Capsule Program Measurements

the same address space as the node to which it is di

rectly attached� At nodes internal to the network� it can
be used to implement SNMP
like node management ap

plications� At end
systems� it provides a bridge to the
end user�

Measurement and Evaluation

Though our prototype implementation was not built for
performance� we did run a small number of performance
tests� The goal of these was to gain some insight into the
performance impact of various architectural decisions�
All tests reported in this section were performed on a
Sun Ultrasparc � ����MHz� running Solaris 	�� and con

nected with ��� Mbps Ethernet�

Table 	 shows the baseline performance of our node run

time� We measured the throughput of a single node in
capsules per second by using an external tra�c genera

tion system written in C� We measured the latency in
microseconds across a single node by using a passive
tcpdump
based monitor that recorded cycle
counts on
packet arrival within a modi�ed Linux kernel� In both
cases� we used minimal length capsules running a mini

mal forwarding program � this is our equivalent of a �null
RPC� that is intended to show the costs of our architec

ture and its implementation� The progression down the
table shows how the performance varies with Java VM
runtime� given identical code� hardware� and operating
system� At the bottom of the table� measurements for a
C packet relay running at user level place the other mea

surements in context by reporting on the raw hardware
and operating system performance�

�

We �nd that the base performance of our node is reason

able for a high
level prototype� especially given the cur

rent early state of Java development tools and runtimes�
At over ���� capsules�second� the system is usable for
experimenting with distributed applications� There has
been signi�cant improvement with successive genera

tions of Java runtimes� though our system falls well
short of the raw machine performance� We anticipate
further improvements from� Java development environ

ments that combine statically compiled native code with
dynamically loaded bytecodes� next generation �just
in

time� compilers that perform adaptive inlining� and of
course the pro�le
driven tuning that we have not yet un

dertaken�

Two additional experiments would assist in calibrat

ing our node performance� First� throughput measure

ments in bytes�second would expose the costs of our data
paths� We believe that this comparison would be favor

able since� like IP� our implementation does not require
payloads to be copied� Second� measurements of IP pro

cessing would determine how much of the raw hardware
performance can be obtained for a well understood for

warding model�

To describe the costs of executing user
de�ned process

ing routines� Table
 lists measurements for the capsules
de�ned in our example protocols� We provide three mea

surements� program size� latency when the code is al

ready loaded� and latency when the code must be loaded
for the �rst time� Latency is measured as described pre

viously and using the best runtime of Table 	� Repeated
code loading is simulated by using an arti�cially small
code cache and causing swapping to occur� however� the
cost of bytecode veri�cation is not included since we are
unable to cause classes to be removed from our Java run

time�

The measurements suggest that the overhead of user

de�ned processing routines can be low� Despite the fact
that the size of capsule programs is considerably larger
than is necessary because our implementation uses the
Java class�le format directly� the example routines are
short� and can be transferred without consuming much
bandwidth� Additionally� the latency over simple for

warding is small and the latency attributable to demand
loading seems quite reasonable in that it is comparable
to that associated with establishing a connection on con

ventional networks�

� Related Work

We believe our approach is novel in its application of
mobile code� demand loading� and caching techniques

within the network layer�

The most similar recent work we are aware of is the mes

senger paradigm ��� and work on �exible protocol stacks
that preceded it ����� Like our system� this work allows
new protocols to be deployed� The intent� however� is to
investigate the structuring of communicating systems�
including distributed operating systems and intelligent
agents� As such� it lacks the network layer specializa

tions� e�g�� demand loading� that we have developed�

Some modern protocol architectures have been con�g

urable� as opposed to programmable� The x
kernel ���
provides a collection of micro
protocols from which pro

tocols �e�g�� RPC� can be synthesized� Con�gurable
systems can further increase their �exibility by defer

ring the selection of components until runtime� and so
the x
kernel supports the dynamic composition of micro

protocols on a per packet basis� Although con�gurable
systems are capable of expressing a range of protocols�
their means of composition� e�g�� layering� is less �exible
than that of a programming language�

The earliest programmable network based on mobile
code that we are aware of is Softnet �		�� an experimen

tal packet radio network constructed in the early ����s�
Its goal was similar to our own� to allow users to de

�ne their own high level services� As with our approach�
packets were considered to be programs of a language�
FORTH� and interpreted at nodes on arrival� Softnet is
an intriguing example of a real programmable network
that inspired a user community and workshops� but un

fortunately fell into disuse with little documented about
its successes and failures� We speculate that this was be

cause of di�culties with safety and e�ciency� problems
that may now be more tractable� given the recent ad

vances in mobile code and operating system technology�

End
to
end code shipping to improve performance has
been studied in the context of RPC ���� �
�� Our ap

proach o�ers a greater scope for customization by in

cluding intermediate nodes as well as end
systems�

Our work is complementary to several other active net

work e�orts� The use of general
purpose Java byte

codes and VM has allowed us to evolve our architecture
quickly� but at the cost of less control over resource us

age and lower absolute performance� Research at the
University of Arizona on Liquid Software ��� and Scout
���� enable a �ner granularity of local resource manage

ment as well as competitive performance through the
construction of a specialized node operating system� Re

search at the University of Pennsylvania on PLAN and
BBN on Sprocket enables stronger resource management
and security guarantees across the nodes of a network
through the use of language design techniques� Finally�

��

research on active signaling at USC ISI and NetScript
at Columbia University �	�� explore alternative models
of active networks in which new services are introduced
for control rather than data transfer purposes� or by net

work management agents rather than all users�

� Conclusions

In this paper� we have presented an architecture that
supports the construction and dynamic deployment of
network protocols� In contrast to a standardization

based process� our approach�

� Allows new protocols to be automatically� dynam

ically� and rapidly deployed to exactly those nodes
in the network they are needed� and�

� Requires no advanced consensus about the kinds or
de�nitions of the protocols�

We achieved these results by treating the network as a
distributed programming system and through the ap

plication of mobile code� demand loading and caching
techniques�

Our Java
based prototype allowed us to experiment with
the ants network programming model and test its code
distribution system� In addition to the simplistic exam

ples presented here� we have used ants to implement
several more complex protocols� including a high perfor

mance reliable multicast�

Our early experience with ants strongly suggests that
this use of mobile code technologies has considerable
promise� It can provide the means for automatically up

grading network protocols� This� in turn� can remove
barriers to innovation� stimulate experimentation� and
hasten the arrival of new functionality� It is interest

ing to speculate how many other protocols would be de

ployed were it not for the barriers to innovation that we
are addressing�

Acknowledgments

We thank the members of our research group for much
useful feedback as the design of our system progressed�
In particular� we wish to acknowledge David Murphy for
his work on a separate node implementation and his con

tributions to an earlier version of this paper� Jonathan
Santos for his assistance with the design and develop

ment of the current ants implementation� and Ulana
Legedza and Li Lehman for proofreading�

References

��� A� Ballardie et al� Core based Trees� In SIG�
COMM���� ���
�

�	� R� Braden et al� Resource ReSerVation Protocol
�RSVP� � Version � Functional Speci�cation� In

ternet Draft� Nov �����

�
� S� Deering and R� Hinden� Internet Protocol� Ver

sion � �IPv�� Speci�cation� Request For Comments
���
� Dec �����

��� S� E� Deering� Host Extensions for IP multicasting�
Request For Comments ���	� Aug �����

��� P� Deutsch and C� A� Grant� A Flexible Measure

ment Tool for Software Systems� In Information
Processing� �����

��� G� Di Marzo et al� The Messenger Paradigm and
its Impact on Distributed Systems� InWorkshop on
Intelligent Computer Communication� �����

��� R� Gilligan and E� Nordmark� Transition Mecha

nisms for IPv� Hosts and Routers� Request For
Comments ��

� April �����

��� J� Hartman et al� Liquid Software� A New
Paradigm for Networked Systems� Technical Re

port TR��
��� Dept� of Computer Science� Univ� of
Arizona� �����

��� N� C� Hutchinson and L� L� Peterson� The x
Kernel�
An Architecture for Implementing Network Proto

cols� IEEE Transactions on Software Engineering�
������������ Jan �����

���� L� Lehman� S� Garland� and D� Tennenhouse� Ac

tive Reliable Multicast� In INFOCOM ���� �����

���� D� Mosberger and L� L� Peterson� Making Paths Ex

plicit in the Scout Operating System� In �nd Symp�
on Operating System Design and Implementation�
�����

��	� G� Necula and P� Lee� Safe Kernel ExtensionsWith

out Run
Time Checking� In �nd Symp� on Operat�
ing System Design and Implementation� �����

��
� C� Partridge� Late�Binding RPC	 A Paradigm for
Distributed Computation in a Gigabit Environment�
PhD thesis� Harvard University� ���	�

���� C� Perkins� Ed� IP Mobility Support� Request For
Comments 	��	� Oct �����

���� J� W� Stamos and D� K� Gi�ord� Remote Eval

uation� ACM Transactions on Programming Lan�
guages and Systems� �	�����
������ Oct �����

��

���� D� Tennenhouse et al� A Survey of Active Network
Research� IEEE Communications Magazine� pages
������ Jan �����

���� D� L� Tennenhouse and D� Wetherall� Towards an
Active Network Architecture� In Multimedia Com�
puting and Networking �
� �����

���� C� Tschudin� Flexible Protocol Stacks� In SIG�
COMM���� �����

���� V� C� Van� A Defense Against Address Spoo�ng Us

ing Active Networks� M�Eng Thesis� Massachusetts
Institute of Technology� June �����

�	�� D� J� Wetherall and D� L� Tennenhouse� The AC

TIVE IP Option� In �th SIGOPS European Work�
shop� �����

�	�� Y� Yemini and S� da Silva� Towards Pro

grammable Networks� In FIP
IEEE Intl� Work�
shop on Distributed Systems Operations and Man�
agement� �����

�		� J� Zander and R� Forchheimer� Softnet
 An Ap

proach to High
Level Packet Communication� In
ARRL �nd Computer Networking Conference� ���
�

�	

