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Recently, nature-inspired techniques have become valuable tomany intelligent systems in di�erent �elds of technology and science.
Among these techniques, Ant Systems (AS) have become a valuable technique for intelligent systems in di�erent �elds. AS is a
computational system inspired by the foraging behavior of ants and intended to solve practical optimization problems. In this paper,
we introduce the AntStar algorithm, which is swarm intelligence based. AntStar enhances the optimization and performance of an
AS by integrating the AS and A∗ algorithm. Applying the AntStar algorithm to the single-source shortest-path problem has been
done to ensure the eciency of the proposed AntStar algorithm.
e experimental result of the proposed algorithm illustrated the
robustness and accuracy of the AntStar algorithm.

1. Introduction

Natural swarms have inspired swarm intelligence. Many
algorithms and techniques based on swarm intelligence have
been developed to solve optimization problems, such as the
Ant System (AS) [1, 2], particle swarm optimization (PSO)
[3], arti�cial bee colony (ABC) [4, 5], Fire�y Algorithm (FA)
[6], and Intelligent Water Drops (IWD) [7, 8]. Dorigo et al.
introduced the AS in the 1990s [1, 2]. AS is an optimization
algorithm inspired by the foraging behavior of natural ant
colonies. In nature, during foraging, ants manage to establish
the shortest paths from their nests to food sources by
depositing pheromones on the ground as they move. AS uses
this same idea. Kennedy introduced PSO,which is inspired by
the swarmof bird and�sh schools [3] andwhich simulates the
behaviors of bird �ocking. ABC was introduced by Karaboga
in 2005 [4, 5]. ABC tries to simulate the natural food foraging
behavior of real honeybees, as broken into three groups:
employed bees, scouts, and onlookers. In ABC, employed
bees go to food sources to determine the amount of nectar
present there. Next, ABC calculates the probability value of
the food sources. 
e onlooker selects the preferred sources.

e scouts are sent to search areas to discover new food
sources. 
e Fire�y Algorithm, introduced by Yang in 2009,

was inspired by the �ashing (�ight) behavior of insects [6].
Shah-Hosseini proposed the IWD algorithm in 2007 [7, 8],
trying to simulate natural river systems and the interaction
between water drops and their environment. During move-
ment, IWD velocity is increased nonlinearly, proportional to
the inverse of the soil between the two locations. Soil in IWD
is increased by removing some soil from the path between
the two locations. 
is increase is inversely proportional to
the time that IWD needs to pass from its current location
to the next location. 
is time, in turn, is proportional to
the velocity of the IWD and inversely proportional to the
distance between the two locations. Many swarm intelligence
systems have been used for path-planning problems. 
e
advantages of such systems include the possibility to add
expert knowledge to the search operation and the ability to
work with several candidate solutions simultaneously rather
than only exploring a single alternative. Głąbowski et al. used
Ant Colony Optimization (ACO) to solve the shortest-path
problem [9]. Hsiao et al. used ACO to search for the best path
of a map [10]. Tan et al. used ACO for real-time planning of
the globally optimal path for mobile robots [11]. Montiel et
al. solved the path-planning problem of mobile robots using
the Bacterial Potential Field (BPF) approach [12]. Contreras-
Cruz et al. solved themobile robot path-planning problem by
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combining an arti�cial bee colony algorithm as a local search
procedure with an evolutionary programming algorithm that
re�nes the feasible path found by the set of local procedures
[13]. Mo and Xu combined biogeography-based optimization
(BBO), PSO, and an Approximate Voronoi Boundary Net-
work (AVBN) to plan the global path of mobile robots in a
static environment [14].Many swarm intelligence algorithms,
such as AS, ACO, ABC, and FA, have been used to solve
path-planning problems in the �eld of robotics [15]. In this
paper, we propose AntStar, a technique based on swarm
intelligence. AntStar enhances the performance of AS by
inserting an evaluation function, the A∗ [16] algorithm, into
the transition probability function of AS. 
is guides the
random movements of ants in order that they perform an
admissible search from the �rst iteration. 
erefore, AntStar
reaches a suboptimal solution early.


is paper is organized as follows. In Section 2, back-
ground is presented. 
e AntStar algorithm is explained in
Section 3. Section 4 explains the application of the AntStar
algorithm. 
e application of AntStar to a single-source,
shortest-path problem is presented in Section 5; Section 6
explains the experiments with and performance of AntStar.
Applying the AS to a single-source, shortest-path problem
is presented in Section 7 in order to compare AntStar with
AS in Section 8. Section 9 presents the discussion, and the
conclusion is given in Section 10.

2. Background


e proposed AntStar algorithm integrates AS and the A∗

algorithm. 
erefore, this section discusses, as follows, the
Natural Ant System, the Arti�cial Ant System, and the A∗

algorithm.

2.1. Natural Ant System. In nature, ants work in colonies
that di�er in size. 
e main work of ants is to forage for
food. Many researchers have studied ant behavior [1, 17–19].
Understanding the foraging behavior of natural ant colonies
was one of the main problems studied by ethologists. Ants
have trail-laying and trail-following behavior when foraging
[20]. During foraging, ants manage to establish the shortest
paths from their nests to food sources and then return.
is is
done by laying communications media (chemical substances
called pheromones) in varying quantities on the ground,
used for communication between individuals. Each ant lays
information (pheromones) regarding their paths and decides
where to go according to these pheromone trails.
e foraging
behavior of the natural ant can be described as follows:

(1) At �rst, ants move randomly and lay down pherom-
one on the ground.

(2) If a food source is discovered, the ants return to the
nest and lay down a pheromone trail.

(3) If a pheromone is discovered during movement, the
probability of following the pheromone trail will
increase.

(4) If an ant reaches the nest, it goes again to search for a
food source.


e collective behavior of ants is autocatalytic: the more the
ants follow a trail, the more the trail becomes attractive to
follow [21]. 
is operation can be characterized as positive
feedback, where the probability of choosing a path increases
with the number of ants that have before chosen the same
path [21]. Consider Figure 1(a) [21]. 
e ants walk from nest
A to food source E. 
e path the ants followed when free of
obstacles is in Figure 1(a). Unexpectedly, an obstacle appears
in the path, breaking it o�, as in Figure 1(b). 
us, the ants
at place B (ants walking from nest A to food source E) or at
place D (ants walking from food source E to nest A in the
opposite direction) must decide whether to go le� or right.

is decision is in�uenced by the degree of pheromones le�
by the preceding ants.

As we can see, more pheromone on a route provides
an ant with stronger motivation and higher probability to
choose that route. At the beginning, the �rst ant at place B (or
D) in Figure 1(b) moves randomly, laying down pheromones
without caring about the lack of previous pheromones. An ant
that uses the route BCDwill reachDbefore the �rst ant on the
route BHD (Figure 1(c)), since BCD is shorter than BHD. As
a result, more ants returning from the food source E to nest
A via D will select DCB, because it has stronger, less-decayed
pheromones than DHB. 
is in turn causes the amount of
pheromones on BCD (the shorter path) to grow faster than
on the DHB (longer one).

2.2. Arti�cial Ant System. 
e arti�cial AS simulates the
foraging behavior of real ant colonies as follows.

Consider an ant colony looking for food like solving a
problem. Consider� ants as� solutions. In each tour, each
ant looks for food and returns to the nest, representing one
solution. An arti�cial AS is derived from the Natural Ant
System in this way, with these major di�erences [21]:

(1) Arti�cial ants are designed with memory capacity.

(2) Arti�cial ants are not completely blind like real ants.

(3) Working time is discrete.

AS uses a swarm of computer agents (a swarm of ants),
each agent simulating a real ant. During the movement
(search) of each agent, the ants manage to establish the
shortest paths from their nest to the food source (source
to destination) using the transition probability and trail
intensity.
e transition probability of an arti�cial ant (agent)
from node � to node � for the �th ant is given by (1) below [1]
and in Figure 2:

���� (�) =
	��� (�) ∗ 
���

∑�∈allowed� 	��� (�) ∗ 
���
, (1)

where 
 is a heuristic value on edge (�, �), 	��(�) is the intensity
of trail on edge (�, �) at time �, and � and  are parameters that
control the importance of the pheromone versus a heuristic.

e trail intensity equation of edge (�, �) is [1]
	�� (� + �) = � ∗ 	�� (�) + Δ	�� if ANT-cycle is used (2a)
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Figure 1: An example of Natural Ant System [6].

or

	�� (� + 1) = � ∗ 	�� (�) + Δ	�� otherwise (2b)

Δ	�� =
	∑
�=1
Δ	��� (2c)

Δ	���

= {{{

�
�� if the �th ant used the edge (�, �) in the current tour

0 Otherwise,

(2d)

where � is an evaporation coecient of the trail between time
� and (� + �) and Δ	�� is the laying quantity of pheromone
on edge (�, �) by the �th ant over the period of time (�, � +
�). Moreover, � is a constant, and �� is the tour length of
the �th ant. 
is updating evaporation of the pheromone
allows an indirect form of communication called stigmergy.
Dorigo et al. [1, 21] tested the arti�cial AS with the well-
known travelling salesman problem (TSP) [22]. Given a
graph (�, �), a set of cities�, and a set of edges �, the TSP is
de�ned as the problem of �nding a path with minimal length
that visits each city once. 
e distance between cities (�, �) is
given by the Euclidean distance

��� = √(�� − ��)2 + (�� − ��)2. (3)

Let �(�) be the number of ants in town � at time �, with � = 1
to�, where� is number of towns. is the total number of
ants.

j� = 5

� = 3

� = 4

k1

k2

k3

i

� = 1

� = 1

� = 1

Figure 2: Transition probability of an arti�cial ant.

As we said before, each ant is considered an agent with
these properties as follows:

(A) An agent selects a town tomove to using a probability

function����(�) (see (1)), which depends on the amount

of trail on the edge 	�� and the town distance 
��.
(B) Going to visited towns is disallowed using a tabu list.

(C) A�er each tour, an agent lays a substance called a trail
on each edge of its trip 	��(� + �) using (2a), (2b), (2c),
and (2d).

2.3. A∗ Algorithm. A∗ algorithm is an extension of the
Dijkstra algorithm [23] described in 1968 byHart et al. [16]. It
is a searching algorithm incorporating heuristic information
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about the problemdomain into a formalmathematical theory
of graph searching to �nd a good enough (perhaps not the
best) path from point to point. 
e admissible searching
property is used by A∗ to expand the fewest nodes in the
searching operation of the optimal path. A∗ evaluates all
accessible nodes using the evaluation function!(�) to decide
which one should be expanded next [16]. 
e evaluation
function !(�) is de�ned as

! (�) = " (�) + ℎ (�) , (4)

where "(�) is the past path-cost function (actual cost) of an
optimal path from source $ to current node � and where ℎ(�)
is the future path-cost function (heuristic cost) of an optimal
path from current node � to the destination [16]. Tomaintain
the admissibility of A∗, the estimates of ℎ(�) must not be
higher than the lowest possible cost [16].


e A∗ algorithm uses two lists (OPEN and CLOSED)
to maintain the operation. 
e OPEN list saves all available
nodes that were not yet accessed. 
e CLOSED list saves all
visited nodes. 
e OPEN list is sorted according to !(�),
and A∗ uses the OPEN list to select the next node to visit
with the minimum cost to access. Gradually, A∗ �nds the
relatively shortest path from the source to the destination. Let
us consider a connected subgraph % with start node $ and
& ⊑ % as goal nodes.
e A∗ algorithm is summarized below.

Search algorithm A∗ [16] is as follows:

(1) Insert start node $ to the open list

Open List (1) = $. (5)

(2) Calculate the evaluation function:

! ($) = " ($) + ℎ ($) . (6)

(3) Select the node � with the minimum (!(�)) from the
Open List().

(4) If (� ∈ &),
insert � to the closed list Closed List(),

terminate the algorithm.

(5) Else

insert � to the Closed List();

calculate evaluation function for each successor
and insert them to open list;

go to Step (2).

3. Proposed AntStar Algorithm

AntStar is a proposed algorithm that enhances the optimiza-
tion and the performance of AS by integrating theASwith the
A∗ algorithm, gaining advantages from both. AntStar inserts
the evaluation function of A∗ into the transition probability
function of AS. 
erefore, AntStar is able to improve on
the performance of the AS by combining the collective
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f(2) = 5 + 4 = 9
g(2) = 1 + 4 = 5
h(2) = 4

f(3) = 6 + 3 = 9
g(3) = 1 + 5 = 6
h(3) = 3

Figure 3: Transition probability of AntStar.

behavior and self-organization of AS with the evaluation
function of the A∗ algorithm. So, at the beginning (the
�rst iteration) of the AntStar algorithm, no pheromones are
available in the search area. However, the evaluation function
of AntStar guides the randommovements of ants to perform
an admissible search from the �rst iteration, while in AS each
ant moves randomly with their only guide of the heuristic
function of AS. Actually, this integration gives AntStar the
following properties:

(1) Multiagents.
ey take advantage of multiagents from
the AS.

(2) Stochastic Best-First-Search. It takes advantage of the
best-�rst-search from A∗ using the A∗ evaluation
function !(�). In addition, AntStar inherits the prob-
abilistic advantage of solving computational problems
from the AS.

(3) Collective Behavior and Self-Organization. 
ey take
advantage of swarm intelligence from the AS.


e AntStar algorithm works as follows.
During the movement (search) of each arti�cial ant

(agent) in AntStar, the agentsmanage to establish the shortest
paths from their nest to the food source (source to desti-
nation) using the transition probability and trail intensity
equation. AntStar builds its solution by repeatedly applying
a stochastic, best-�rst-search rule using the transition proba-
bility rule. Agents prefer to move to nodes that are connected
by a short edge and that have a larger amount of pheromone.

e transition probability of an agent at node � to node � for
the �th ant is obtained by integrating the evaluation function
of A∗ and the transition probability, as in (7) below and in
Figure 3:

���� (�) =
	��� (�) ∗ ! (�)���

∑�∈allowed� 	��� (�) ∗ ! (�)���
, (7)

where

! (�) = " (�) + ℎ (�) , (8)

where "(�) is the past path-cost function (actual cost) of
an optimal path from source $ to current node � at time �,
ℎ(�) is the future path-cost function (heuristic cost) of an
optimal path from current node � to the destination, and
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	��(�) is the intensity of the trail on edge (�, �) at time �. 	��(�)
provides evidence of how many ants have chosen that same
edge in the past. � and  are parameters that control the
importance of the pheromone versus the heuristic. Once all
agents have completed their tours and reached their targets,
the pheromones are updated on all edges according to the trail
intensity given by (2a), (2b), (2c), and (2d) above [1].

4. Applications of the AntStar Algorithm

AntStar is a swarm intelligence algorithm applicable to any
problems that can be addressed by such algorithms (e.g.,
AS, ACO, ABC, PSO, and IWD) or by the A∗ algorithm,
including the single-source, shortest-path problem [24], trav-
elling salesman problem (TSP) [22], �-Queen Puzzle [25],
orMultiple Knapsack Problem (MKP) [26]. Any problem the
state spaces ofwhich can be represented as graphsmay bene�t
from the AntStar algorithm.

In fact, AntStar can be adapted to other kinds of problems.
In the single-source, shortest path and TSP, AntStar uses the
distances between vertices (cities) in the evaluation function
!(�) of the transition probability (7). On the other hand, in
the �-Queen Puzzle, AntStar’s evaluation function !(�) of
the transition probability represents not the distance between
two vertices, but rather the positions on the chessboardwhere
queens will kill each other if placed. In theMKP, AntStar uses
the bene�t and the capacity values in the evaluation function
!(�) of the transition probability (7); the allowed set - will
be the remaining feasible items. 
e AntStar algorithm is
adapted to awide range of problems through the proper usage
of the evaluation function.

As detailed in Section 5, we experimented with AntStar
in the single-source, shortest-path problem. In the TSP
problem, which is represented by a graph %(/, �) with |/|
nodes and |�| edges [22], the AntStar algorithm is applied by
considering the cities as the nodes of the graph, with the links
between cities as edges. Each link has a distance value, and
each city has a speci�c location. Using this information, the
AntStar algorithm can be directly applied to theTSPproblem.

Another example application is the �-Queen Puzzle
[25]. Khan et al. [27] and Shah-Hosseini [7] introduced
ACO and IWD as methods to solve the �-Queen Puzzle
with a decreased search space. 
e AntStar algorithm, IWD,
and ACO all have the same working principle, making it
possible for AntStar to solve the�-Queen Puzzle in a similar
manner.

In the knapsack problem, there are several items, each
with a weight, a pro�t, and a knapsack [26]. 
e aim is to put
some of the items in the knapsack for sale in order to obtain
maximumpro�t such that the total weight is less than or equal
to a given limit. In the multiple knapsacks (MKP) problem,
there are many items (�) andmultiple knapsacks (2).
e aim
is to put some of the items in the knapsacks for sale in order to
obtain maximum pro�t 3�Max(∑�� ∗ 3�) with the condition
that none of the knapsacks is over�owing. Many algorithms
have been developed to solve the MKP, such as [28], where
the MKP is represented as a graph % with / and & edges:
(/, &).
e vertices/ denote the items, while& represents the
arcs (paths) between the items. Since AntStar and IWD have
the same working principle, it may be deduced that AntStar
is applicable to the MKP problem.

5. Applying AntStar to the Single-Source
Shortest-Path Problem

As mentioned above, AntStar is a search algorithm that
integrates the A∗ algorithm with AS. In this section, we
apply the AntStar algorithm to the single-source shortest-
path problem. In graph theory, a connected graph % = (/, �)
is a directed graph with / vertices, � edges, and weight
function4: � -≫ 6. Each path has a weight that is the sum of
the weights of each edge in the path 7 = (V0, V1, . . . , V�) [24]:

4 (7) = �∑
�=1
4 (V�−1, V�) . (9)


e shortest-path weight from 8 to V is de�ned by

9 (8, V) = {{{
min {4 (7) : 8 
<→ V} if there is a path between 8 and V

∞ otherwise.
(10)


e shortest path between vertex 8 and vertex V is de�ned as
any path 7 with the weight

4 (7) = 9 (8, V) . (11)


e application of the AntStar algorithm to a single-source
shortest-path problem is described by the �owchart in
Figure 4.

Algorithm 1 details the steps of the AntStar algorithm
with the shortest-path problem.

6. Experimentation Processes

Various scenarios were devised to test the performance of the
proposed AntStar algorithm on the shortest-path problem.

ese experimental results determined the robustness, accu-
racy, adaptability, and eciency of the proposed algorithm.

e proposed algorithm was tested successfully many times
in the search space with di�erent con�gurations that were
as big as 100 square meters (10m × 10m). We divided the
search space into 100 nodes, each one square meter in size,
so the length of each edge within each node is one meter, as
illustrated in Figure 5.
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(1) Initialize:
Set � fl 0
Set NCfl 0 {NC is the cycles counter}
For every edge (�, �) set an initial value 	��(�) = A (A = 0.1) for
trail intensity and Δ	�� = 0

(2) Place the2 ants on the source node
(3) Set $ fl 1 {s is the tabu list index}

For � fl 1 to2 do
Place the starting town of each ant in tabu�($)

(4) Repeat until each ant reaches the target or in local minima
Set $ fl $ + 1
For � fl 1 to2 do

// at time � the �th ant is in town �
Calculate the evaluation function of each neighbor �
!(�) = "(�) + ℎ(�)

Choose the town j to move to, with probability

����(�) =
	���(�) ∗ !(�)���

∑�∈allowed� 	���(�) ∗ !(�)���
Move the �th ant to the selected town
Insert town � in tabu�($)

(5) For � fl 1 to2 do
Compute the length ��
Update the shortest tour found
For every edge (�, �)

For � fl 1 tom do

Δ	��� = {{{

�
�� if the �th ant used the edge (�, �) in the curent tour
0 Otherwise

(6) For every edge (�, �)
Compute 	��(� + �) = � ∗ 	��(�) + Δ	��

(7) Set � fl � + �
Set NCfl NC + 1
For every edge (�, �)

Set Δ	�� = 0
(8) If (NC < NCMAX) and (not stagnation behavior) then

Empty all tabu lists
Go to step (2)

Else
Print shortest tour
Stop

Algorithm 1: AntStar algorithm with shortest-path problem.

Table 1: Beta setting.

 0 1 2 5 10 20

� 1 1 1 1 1 1

Shortest path 17.071 13.656 13.071 12.485 12.485 12.485

6.1. Selection of Parameters. Parameter values indirectly a�ect
the performance of AS, as well as the proposed AntStar. In
this section, wewill discuss the e�ectiveness and sensitivity of
tuning the parameters � and  of the probability equation (7).
We tested several values for each parameter. First, we �xed �
of AntStar based on many studies [1, 2, 21] and then tested
AntStar with several values of  (Table 1).

Table 2: Alpha setting.

 5 5 5 5 5 5

� 0 0.5 1 2 5 10

Shortest path 12.485 12.485 12.485 13.071 13.071 13.071

As shown in Table 1, the length of the path decreases until
 = 5, a�er which the length becomes �xed. Similarly, then,
we �xed  = 5 and tested AntStar with several values for �
(Table 2).

As shown in Table 2, the length of the path is �xed
(optimal) up to � = 1, a�er which the length becomes �xed
at a higher value (13.071). 
erefore, in our investigation in
Sections 6.2 and 7, we set  = 5 and � = 1.
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Figure 4: AntStar algorithm with shortest-path problem.
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6.2. Experiments Results. 
e parameters of AntStar were set
based on our experiments andmany studies [1, 2, 21] as � = 1,
 = 5, 7 = 0.5, and A = 0.1.We used 10 ants and 10 iterations
to test the AntStar algorithm on the shortest-path problem.
As we mentioned, the movement of each ant from node �
to node � depends on the transition probability function
(see (7)), which is in�uenced by actual cost, heuristic cost,
and pheromone trail values. Two scenarios using AntStar are
discussed in this section.
e source node of the �rst scenario
is at 1m, 8m, with target node at 10m, 10m.
e source node
of the second scenario is at 5m, 5m, with target node at 7m,
5m. 
e probability values of movement for one ant in the
�rst scenario are illustrated in Figure 6. Figure 6(a) illustrates

the probability values of �rst movement. As can be seen,
there are three di�erent probability values for movement;
the ant decides to move toward the node with the highest
value (0.424). As we will see, it is not necessary to move
toward the node with the highest value. Figure 6(b) illustrates
the probability values for the second movement. As can be
seen, there are four di�erent probability values formovement;
again, the ant decides to move toward the node with the
highest value (0.3689). As can be seen in Figures 6(c) and
6(d), the ant decided not to move toward the node with the
highest value probability due to stochastic movement, which
helps AntStar to explore the search space. Work continues in
this manner until the ant reaches the target.

A snapshot of the results of di�erent paths in the
experiment of the �rst scenario with AntStar is displayed
in Figure 7. Figure 7 illustrates the output paths of the �rst
scenario using the AntStar algorithm on the shortest-path
problem. As we can see, it displays four di�erent paths, each
of di�erent length: (1) 16.49m; (2) 13.07m; (3) 13.07m; and
(4) 12.485m, which is the best. 
ose paths are the best paths
of the �rst four iterations of the algorithm. 
e shortest path
found using the AntStar algorithm in this scenario is plotted
in Figure 8.

As AntStar executed with 10 ants and 10 iterations, at each
iteration 10 di�erent paths were generated, one path per ant.

e best path of each iteration is a candidate for the best
path. 
erefore, Figure 7 showed only the best path of each
iteration. Figure 9 illustrates the length of the shortest path of
each iteration in this scenario.



8 Scienti�c Programming

000

0000000.35

00000

00000000.42.21

00000

00000000

000000

000000

0000000000

0000000000

(a) Probability values of �rst movement

000

00000000

00000.23Start

00000000.360.19

00000.2

00000000

000000

000000

0000000000

0000000000

(b) Probability values of second movement

0000

00000000

000.35.21Start

000000.420

00000

00000000

000000

000000

0000000000

0000000000

(c) Probability values of third movement

0000

0000.15.14.090

000.13Start

00000.25.220.1

00000.2

00000000

000000

000000

0000000000

0000000000

(d) Probability values of fourth movement

0000

00000000

000.41Start

00000.590.1

00000.2

00000000

000000

000000

0000000000

0000000000

(e) Probability values of ��h movement

0000

00000000

000.41Start

000.14.130.1

00.220.2

00.25.220000

000000

000000

0000000000

0000000000

(f) Probability values of another movement

Figure 6: Movement of one ant with the probability values at each movement (�rst scenario).
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Figure 7: A snapshot of multiple paths of the AntStar algorithm
applied to the shortest-path problem (�rst scenario).
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Figure 9: 
e shortest path of each iteration (�rst scenario).
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At the beginning, no pheromones are available in the
search area.
erefore, upon the �rst iteration ofAntStar, each
ant moves randomly, constrained by the evaluation function
!(�) (7). As we can see in Figures 7 and 9, on the �rst iteration
the best path was of length 16.49m. 
e best path of the
second and third iterations was enhanced to length 13.07m.
We executed the A∗ algorithm using the same search space,
con�guration, start point, and target point to determine the
shortest path of the searching space. 
erefore, we know the
shortest path of this con�guration. On the fourth iteration,
AntStar found the best path in the search space, of length
12.485m. 
is quick enhancement was due to the collective
behavior, self-organization, and evaluation function of the
AntStar algorithm. Over the rest of the iterations, there was
no change in the length of the found path, as we can see in
Figure 9. 
e time of �nding the best path of each iteration
is illustrated in Figure 10. 
e output paths of the second
scenario using the AntStar algorithm on the shortest-path
problem are illustrated in Figure 11. As we can see, three
di�erent paths are displayed, each of di�erent length: (1) 16m;
(2) 13.2m; and (3) 10.24m, the shortest path. 
ose paths are
the best paths of all the iterations of the algorithm. Let us
recall that AntStar executes with 10 ants and 10 iterations, so,
at each iteration, 10 di�erent paths are generated, one path per
ant. Figure 12 illustrates the length of the shortest path of each
iteration in this scenario. 
e time of �nding the best path of
each iteration is illustrated in Figure 13.
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Figure 11: A snapshot of multiple paths of the AntStar algorithm
applied to the shortest-path problem (second scenario).
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e shortest path of each iteration (second scenario).
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7. AS Applied to the Shortest-Path Problem

In this section, we apply the AS algorithm to the shortest-
path problem for the same 100-square meter (10m × 10m)
search space and con�guration as we used with AntStar
and setting the parameters of the AS the same as AntStar,
� = 1,  = 5, 7 = 0.5, and A = 0.1. We used 10 ants
and 10 iterations to test the AS system on the shortest-path
problem. A snapshot of the results captured from some of
these experiments is displayed in Figure 14, illustrating the
output paths of the AS system applied to the shortest-path
problem over 10 iterations. As we can see, it displays many
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Figure 14: A snapshot of multiple paths of the AS system applied to
the shortest-path problem.
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Figure 15: 
e shortest path of each iteration using AS.

di�erent paths, each of di�erent length: (1) 17m; (2) 16m;
and (3) 14m, the best in this experiment. 
ose paths are the
best from the 10 iterations of the AS. Figure 15 illustrates the
lengths of the best 10 paths of each iteration. 
e time cost of
each iteration is illustrated in Figure 16.

8. Comparison

In this section, we compare the proposedAntStar systemwith
AS and ACO as applied to the shortest-path problem using
the same search space and con�guration. 
e comparison is
from an experimental point of view, so it includes traveled
distance in meters, used path, and execution time. Plots
of the results of the used path and traveled distance using
the AntStar algorithm and AS are shown in Figure 17. We
executed the AntStar algorithm and AS with the same start
point (1m, 8m) and target point (10m, 10m). As can be
seen, the travel distance of AntStar is 12.485m for the given
search space and con�guration, while AS and ACO produced
another path and travel distance (14m and 13.31m, resp.).
We executed the A∗ algorithm using the same search space,
con�guration, start point, and target point to determine the
shortest path. 
erefore, we know the shortest path of this
con�guration.

AntStar, AS, and ACO are competitive in �nding the
path operation, but in terms of execution time and traveled
distance the AntStar prevailed in the competition. Let us
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Figure 16: Time of each iteration using AS.
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Figure 17: Shortest paths using the AntStar, ACO, and the AS
algorithms.

recall that AntStar, AS, and ACO have been executed for ten
iterations each with ten ants. 
e best (minimum) time was
that of AntStar (1.85 sec), while the best time of AS is 3.7
and that of ACO is 1.9. 
e best average time was that of
AntStar (2.241 sec) while the average time of ASwas 3.932 and
that of ACO was 3.03. 
e best-traveled distance was that of
AntStar (12.485m), while the best-traveled distance of ASwas
14m and that of ACO was 13.31m. 
e best average traveled
distance was that of AntStar (13.05m), while the best average
traveled distance of AS was 17.3 and that of ACO was 14.36.
Actually, AntStar, AS, and ACO had a di�erent execution
time, di�erent traveled distance, and path for each iteration as
illustrated in Figures 18 and 19. Detailed performance indexes
are listed in Table 3.

9. Discussion

From the obtained experimental results of the AntStar and
AS applied to the shortest-path problem, we focus on three
performance indexes: the traveled distance, the used path,
and, �nally, the time to reach the target.

Used Path and Traveled Distance. As illustrated in Figure 17
and in Table 3, AntStar, AS, and ACO all succeeded in reach-
ing the target from the initial point. In terms of execution
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Table 3: Detailed performance indexes of AntStar and AS.

Measurement AntStar AS ACO J0 = 0.5

Traveled distance of 10 iterations (meter)

Min 12.485 14 13.31

Max 16.49 23 18.14

Mean 13.05 17.3 14.36

Std. 1.61 3.683 1.77

Execution time of 10 iterations (seconds)

Min 1.85 3.7 1.9

Max 2.7 4.3 4.69

Mean 2.241 3.932 3.03

Std. 0.262 0.150 1.02

Used path in 10 iterations Figure 17 Shortest Not good Not good
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Figure 18: Comparison between the shortest paths for each iteration
using AntStar, AS, and ACO.
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Figure 19: Comparison of elapsed times for each iteration using
AntStar, AS, and ACO.

time and traveled distance, however, AntStar prevailed in the
competition. Let us recall that AntStar, AS, and ACOwere all
executed for ten iterations, each with ten ants. 
e minimum
traveled distance was AntStar’s (12.485m), compared to 14m
for AS and 13.31m for ACO. As can be seen in Figure 18,
upon the �rst iteration, the best path of all ants using AntStar
was 16.49m long, while the best path of AS was 23m long
and that of ACO was 18.14m long. 
e best path on the

second and third iterations using AntStar was enhanced
to a length of 13.07m, while AS on the second and third
iterations had best-path lengths of 22m and that of ACO
was 16.14m. On the fourth iteration, AntStar found the best
path in the search space, which is of length 12.485m, while
AS found its best path (which is not the best for the given
search space) on the seventh iteration and ACO found its
best path on the fourth iteration. 
is quick enhancement of
AntStar was due to the collective behavior, self-organization,
and evaluation function of the AntStar algorithm. So, at
the beginning (on the �rst iteration) of the AntStar, AS,
and ACO, no pheromones were available in the search area,
but the evaluation function of AntStar guides the random
movements of ants to perform an admissible search from
the �rst iteration, while, in AS and ACO, each ant moves
randomly with their only guide of the heuristic function.

Time to Arrive at Target. Travel distance is linearly related
to time for any �xed speed. In all experiments, the ants of
AntStar realized the best time (1.85 sec) to attain the target,
as the probability function, which includes the evaluation
function, was better in terms of guiding the ants and had an
optimal control strategy.

10. Conclusion

In this paper, we proposed the AntStar algorithm, which
enhances the optimization and the performance of AS by
integrating AS with the A∗ algorithm. As we have seen,
applying the AntStar algorithm to the single-source, shortest-
path problem demonstrated its eciency. 
e experimental
results showed the quick enhancement of AntStar, which is
due to the evaluation function, the collective behavior, and
the self-organization of the AntStar algorithm. Further, these
results illustrate the robustness and accuracy of the AntStar
algorithmon the single-source, shortest-path problem,which
encourages us to apply AntStar to other problems, such as the
TSP,�-Queen Puzzle, and MKP.
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