

Cochrane Database of Systematic Reviews

Antioxidants for male subfertility (Review)

Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG

Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. *Cochrane Database of Systematic Reviews* 2019, Issue 3. Art. No.: CD007411. DOI: 10.1002/14651858.CD007411.pub4.

www.cochranelibrary.com

TABLE OF CONTENTS

HEADER	1
ABSTRACT	1
PLAIN LANGUAGE SUMMARY	2
SUMMARY OF FINDINGS	4
BACKGROUND	6
OBJECTIVES	9
METHODS	9
Figure 1	11
RESULTS	14
Figure 2.	18
Figure 3	19
Figure 4	23
Figure 5	25
Figure 6	26
Figure 7	28
ت Figure 8	29
ت Figure 9	31
G Figure 10	36
Figure 11	39
DISCUSSION	46
AUTHORS' CONCLUSIONS	49
ACKNOWLEDGEMENTS	50
REFERENCES	51
CHARACTERISTICS OF STUDIES	65
DATA AND ANALYSES	156
Analysis 1.1. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 1 Live birth; type of antioxidant.	165
Analysis 1.2. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 2 Live birth; placebo or no treatment	166
Analysis 1.3. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 3 Live birth; IVF/ICSI.	167
Analysis 1.4. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 4 Live birth; as-treated analysis.	167
Analysis 1.5. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 5 Clinical pregnancy; type of antioxidant.	168
Analysis 1.6. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 6 Clinical pregnancy; placebo or no treatment.	170
Analysis 1.7. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 7 Clinical pregnancy; IVF/ICSI.	171
Analysis 1.8. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 8 Adverse events.	171
Analysis 1.9. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 9 Sperm DNA fragmentation; type of	172
antioxidant.	112
Analysis 1.10. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 10 Sperm DNA fragmentation (data not suitable for meta-analysis).	173
Analysis 1.11. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 11 Total sperm motility at 3 months or less; type of antioxidant.	174
Analysis 1.12. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 12 Total sperm motility at 3 months or less (data not suitable for meta analysis).	176
Analysis 1.13. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 13 Total sperm motility at 6 months; type of antioxidant.	176
Analysis 1.14. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 14 Total sperm motility at 6 months(data not suitable for meta analysis).	178
Analysis 1.15. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 15 Total sperm motility at 9 months or more; type of antioxidant.	178
Analysis 1.16. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 16 Total sperm motility over time.	179
Analysis 1.17. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 17 Progressive sperm motility at 3 months or less; type of antioxidant.	180
Analysis 1.18. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 18 Progressive sperm motility at 3 months (data not usable for meta-analysis).	182

Antioxidants for male subfertility (Review)

Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

19 Progressive sperm motility at 6 182
ogessive sperm motility at 6 months 183
gressive sperm motility at 9 months 184
gressive sperm motility over time. 184
perm concentration at 3 months or 185
perm concentration at 3 months or 187
Sperm concentration at 6 months; 188
erm concentration at 6 months(data 189
Sperm concentration at 9 months; 190
perm concentration over time 190
ioxidant
pe of antioxidant 197
tility at 3 months or less; type of 198
t 6 months; type of antioxidant 200
at 6 months (data not suitable for 201
lity at 9 months or more; type of 201
notility at 3 months or less; type of 202
rm motility at 6 months; type of 203
rm motility at 9 months; type of 204
ation at 3 months or less; type of 204
n at 6 months; type of antioxidant. 206
on at 6 months (data not suitable for 207
ation at 9 months or more; type of 207

[Intervention Review]

Antioxidants for male subfertility

Roos M Smits¹, Rebecca Mackenzie-Proctor², Anusch Yazdani³, Marcin T Stankiewicz⁴, Vanessa Jordan⁵, Marian G Showell⁵

¹Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands. ²Department of Obstetrics and Gynaecology, Auckland City Hospital, Auckland, New Zealand. ³Queensland Fertility Group Research Foundation, Brisbane, Australia. ⁴Ashford Specialist Centre Suite 22, Adelaide, Australia. ⁵Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand

Contact address: Roos M Smits, Department of Gynaecology and Obstetrics, Radboud University Medical Center, Nijmegen, Netherlands. Roos.Smits@radboudumc.nl.

Editorial group: Cochrane Gynaecology and Fertility Group. Publication status and date: New search for studies and content updated (conclusions changed), published in Issue 3, 2019.

Citation: Smits RM, Mackenzie-Proctor R, Yazdani A, Stankiewicz MT, Jordan V, Showell MG. Antioxidants for male subfertility. *Cochrane Database of Systematic Reviews* 2019, Issue 3. Art. No.: CD007411. DOI: 10.1002/14651858.CD007411.pub4.

Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ABSTRACT

Background

The inability to have children affects 10% to 15% of couples worldwide. A male factor is estimated to account for up to half of the infertility cases with between 25% to 87% of male subfertility considered to be due to the effect of oxidative stress. Oral supplementation with antioxidants is thought to improve sperm quality by reducing oxidative damage. Antioxidants are widely available and inexpensive when compared to other fertility treatments, however most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is uncertain. We compared the benefits and risks of different antioxidants used for male subfertility. This review did not examine the use of antioxidants in normospermic men.

Objectives

To evaluate the effectiveness and safety of supplementary oral antioxidants in subfertile men.

Search methods

The Cochrane Gynaecology and Fertility (CGF) Group trials register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, and two trials registers were searched on 1 February 2018, together with reference checking and contact with study authors and experts in the field to identify additional trials.

Selection criteria

We included randomised controlled trials (RCTs) that compared any type, dose or combination of oral antioxidant supplement with placebo, no treatment or treatment with another antioxidant, among subfertile men of a couple attending a reproductive clinic. We excluded studies comparing antioxidants with fertility drugs alone and studies that included fertile men attending a fertility clinic because of female partner infertility.

Data collection and analysis

We used standard methodological procedures recommended by Cochrane. The primary review outcome was live birth. Clinical pregnancy, adverse events and sperm parameters were secondary outcomes.

Main results

We included 61 studies with a total population of 6264 subfertile men, aged between 18 and 65 years, part of a couple who had been referred to a fertility clinic and some of whom were undergoing assisted reproductive techniques (ART). Investigators compared and combined 18

Antioxidants for male subfertility (Review)

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

different oral antioxidants. The evidence was of 'low' to 'very low' quality: the main limitation was that out of the 44 included studies in the meta-analysis only 12 studies reported on live birth or clinical pregnancy. The evidence is current up to February 2018.

Live birth: antioxidants may lead to increased live birth rates (OR 1.79, 95% CI 1.20 to 2.67, P = 0.005, 7 RCTs, 750 men, $I^2 = 40\%$, low-quality evidence). Results suggest that if in the studies contributing to the analysis of live birth rate, the baseline chance of live birth following placebo or no treatment is assumed to be 12%, the chance following the use of antioxidants is estimated to be between 14% and 26%. However, this result was based on only 124 live births from 750 couples in seven relatively small studies. When studies at high risk of bias were removed from the analysis, there was no evidence of increased live birth (Peto OR 1.38, 95% CI 0.89 to 2.16; participants = 540 men, 5 RCTs, P = 0.15, $I^2 = 0\%$).

Clinical pregnancy rate: antioxidants may lead to increased clinical pregnancy rates (OR 2.97, 95% Cl 1.91 to 4.63, P < 0.0001, 11 RCTs, 786 men, I² = 0%, low-quality evidence) compared to placebo or no treatment. This suggests that if in the studies contributing to the analysis of clinical pregnancy, the baseline chance of clinical pregnancy following placebo or no treatment is assumed to be 7%, the chance following the use of antioxidants is estimated to be between 12% and 26%. This result was based on 105 clinical pregnancies from 786 couples in 11 small studies.

Adverse events

Miscarriage: only three studies reported on this outcome and the event rate was very low. There was no difference in miscarriage rate between the antioxidant and placebo or no treatment group (OR 1.74, 95% CI 0.40 to 7.60, P = 0.46, 3 RCTs, 247 men, $I^2 = 0\%$, very low-quality evidence). The findings suggest that in a population of subfertile men with an expected miscarriage rate of 2%, the chance following the use of an antioxidant would result in the risk of a miscarriage between 1% and 13%.

Gastrointestinal: antioxidants may lead to an increase in mild gastrointestinal upsets when compared to placebo or no treatment (OR 2.51, 95% CI 1.25 to 5.03, P = 0.010, 11 RCTs, 948 men, $I^2 = 50\%$, very low-quality evidence). This suggests that if the chance of gastrointestinal upsets following placebo or no treatment is assumed to be 2%, the chance following the use of antioxidants is estimated to be between 2% and 9%. However, this result was based on a low event rate of 35 out of 948 men in 10 small or medium-sized studies, and the quality of the evidence was rated very low and was high in heterogeneity.

We were unable to draw any conclusions from the antioxidant versus antioxidant comparison as insufficient studies compared the same interventions.

Authors' conclusions

In this review, there is low-quality evidence from seven small randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-quality evidence suggests that clinical pregnancy rates may also increase. Overall, there is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal upsets but the evidence is of very low quality. Subfertilte couples should be advised that overall, the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebo-controlled trials reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.

PLAIN LANGUAGE SUMMARY

Antioxidants for male subfertility

Review question

Do supplementary oral antioxidants compared with placebo, no treatment or another antioxidant improve fertility outcomes for subfertile men?

Background

A couple may be considered to have fertility problems if they have been trying to conceive for over a year with no success. Many subfertile men undergoing fertility treatment also take dietary supplements in the hope of improving their fertility. Fertility treatment can be a very stressful time for men and their partners. It is important that these couples have access to high-quality evidence that will allow them to make informed decisions on whether to take a supplemental antioxidant. This is especially important, as most antioxidant supplements are uncontrolled by regulation. This review aimed to assess whether supplements with oral antioxidants, taken by the subfertile men, would increase the chances of a couple to achieve a (clinical) pregnancy confirmed by ultrasound and ultimately the birth of a baby (live birth). This review did not examine the use of antioxidants in men with normal sperm.

Study characteristics

Cochrane authors conducted a review including 61 randomised controlled trials comparing 18 different antioxidants with placebo, no treatment or another antioxidant in a total population of 6264 subfertile men. The age range of the participants was 18 to 65 years; they

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

were part of a couple who had been referred to a fertility clinic and some were undergoing fertility treatment. The evidence is current to February 2018.

Main results

Antioxidants may be associated with an increased live birth and clinical pregnancy rate. Based on the studied population for live birth, we would expect that out of 100 subfertile men not taking antioxidants, 12 couples would have a baby, compared with between 14 and 26 couples per 100 who would have a baby if taking antioxidants. If studies with high risk were removed from the analysis, there was no evidence of increased live birth. In the people who were studied for clinical pregnancy, we would expect that out of 100 subfertile men not taking antioxidants, seven couples would have a clinical pregnancy, compared with between 12 and 26 couples per 100 who would have a clinical pregnancy, compared with between 12 and 26 couples per 100 who would have a clinical pregnancy if taking antioxidants. Adverse events were poorly reported. However based on three studies, we could conclude that miscarriage did not occur more often if taking antioxidants. The use of antioxidants could give more gastrointestinal upsets, meaning that we expect that out of 100 subfertile men not taking antioxidants, two would have gastrointestinal upsets compared to between two and nine men if taking antioxidants.

Authors' conclusion and quality of the evidence

Antioxidant supplementation taken by subfertile males of a couple attending a fertility clinic may increase the chance of a live birth, however the overall quality of evidence was low from only seven small randomised controlled trials. Low-quality evidence also suggests that clinical pregnancy rates may increase. Overall, there is no evidence of increased risk of miscarriage, however evidence of very low quality suggest that antioxidants may give more mild gastrointestinal upsets. Subfertile couples should be advised that overall the current evidence is inconclusive due to the poor reporting of methods, failure to report on the clinical outcomes live birth rate and clinical pregnancy, and furthermore imprecision due to often low event rates, high number of dropouts and small study group sizes. Further large well-designed randomised placebo-controlled trials reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.

SUMMARY OF FINDINGS

Summary of findings for the main comparison. Antioxidants compared to placebo or no treatment for patients with male subfertility

Antioxidants compared to placebo or no treatment for patients with male subfertility

Patient or population: patients with male subfertility Setting: clinic

Intervention: antioxidants

Comparison: placebo or no treatment

Outcomes	Anticipated absolut	e effects [*] (95% CI)	Relative effect (95% CI)	№ of partici- pants	Certainty of the evidence	Comments
	Risk with placebo or no treatment	Risk with antioxidants		(studies)	(GRADE)	
Live birth rate per couple ran- domised	117 per 1000	192 per 1.000 (138 to 262)	OR 1.79 (1.20 to 2.67)	750 (7 RCTs)	⊕⊕⊝⊝ LOW ¹	
Clinical pregnancy rate per cou- ple randomised	69 per 1000	180 per 1.000 (124 to 255)	OR 2.97 (1.91 to 4.63)	786 (11 RCTs)	⊕⊕⊝⊝ LOW ¹	
Adverse events - Miscarriage	19 per 1000	33 per 1.000 (8 to 129)	OR 1.74 (0.40 to 7.60)	247 (3 RCTs)	⊕ooo VERY LOW ¹²	
Adverse events - Gastrointestinal	18 per 1000	45 per 1.000 (23 to 86)	OR 2.51 (1.25 to 5.03)	948 (11 RCTs)	⊕ooo VERY LOW ¹³	

***The risk in the intervention group** (and its 95% confidence interval) is based on the assumed risk in the comparison group and the **relative effect** of the intervention (and its 95% CI).

CI: Confidence interval; **OR:** Peto Odds ratio;

GRADE Working Group grades of evidence

High certainty: We are very confident that the true effect lies close to that of the estimate of the effect

Moderate certainty: We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different

Low certainty: Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect

Very low certainty: We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of effect

¹ Downgraded two levels for serious risk of bias: lack of allocation concealment, lack of blinding and incomplete accounting of patients and outcome events ² Downgraded one level for serious imprecision: crossing the line of no effect

³ Downgraded one level for serious imprecision: incomplete accounting of patients and outcome events

4

Cochrane Database of Systematic Reviews

BACKGROUND

Description of the condition

It is believed that 48.5 to 186 million people worldwide are affected by the inability to have children (Boivin 2007; Inhorn 2015; Mascarenhas 2012), with delayed conception affecting 10% to 15% of couples trying to conceive (Evers 2002). The International Glossary on Infertility and Fertility Care (Zegers-Hochschild 2017) defines *infertility* as a disease characterised by the failure to establish a clinical pregnancy after 12 months of regular, unprotected intercourse and is used interchangeably with the term *subfertility* (Zegers-Hochschild 2017). Subfertility generally describes any form of grade of reduced fertility in couples unsuccessfully trying to conceive (Gnoth 2005).

In 2010 it was stated in a World Health Organization (WHO) report (Mascarenhas 2012) that worldwide, measured in 190 countries, 1.9% of child-seeking women were unable to have a first live birth (primary infertility) and 10.5% with a prior live birth were unable to have an additional live birth (secondary infertility). However, the distribution of male and female causes of infertility have not been well defined. Based on a WHO multicentre study from the 1980s, it is suggested that 20% of cases are solely attributed to the male, 38% to the female, 27% to both, and 15% not clearly to either (Comhaire 1987). Surprisingly, the most recent studies are from the 1990s and still more than two decades old. However, these data show similar percentages, though mainly based on national databases (ESHRE Guidelines 1996; Thonneau 1991).

In the literature, it is suggested that a male factor is involved in up to 50% of infertility cases (Irvine 1998; Winters 2014). However, the true extent of male infertility is likely to be underestimated due to the lack of male evaluation in infertile couples and the heterogeneity of studies (Barratt 2017; Winters 2014). In the past decades, oxidative stress (OS) has been commonly investigated and found to play a role in 25% to 87% of male factor subfertility (Aitken 1987; Aitken 1989; Aitken 1992; Iwasaki 1992; Mazzilli 1994; Shekarriz 1995; Zini 1993).

In all cells using oxygen to survive, toxins are produced as a consequence. These toxic end-products are better known as free radicals, atoms with unpaired electrons. Some free radicals are characterised by having higher reactive activity than molecular oxygen, and are therefore called reactive oxygen species (ROS). ROS can act as mediators and regulators of cell metabolism and apoptosis (Mirończuk-Chodakowska 2018). The three major ROS are superoxide anion (O₂⁻), hydroxyl radical (°OH), and hydrogen peroxide (H₂O₂). Excessive production of ROS can lead to cell damage. Therefore, the human body has developed a defence system in which antioxidants play an important role. Antioxidants are capable of reducing the production of free radicals, slowing or preventing the oxidation and repairing the damage (Mirończuk-Chodakowska 2018).

The increased levels of ROS are thought to be due to either exogenous or endogenous factors. Exogenous factors could be environmental such as high temperatures, pesticides and pollution or more due to lifestyle factors such as alcohol consumption, smoking, poor nutrition and obesity. Endogenous factors are infections, chronic disease, auto-immune disease and in the male reproductive tract the occurrence of more immature spermatozoa and varicocele (Alvarez 2003; Tremellen 2008). In conclusion, OS occurs when ROS production overwhelms the antioxidant defence mechanisms leading to cellular damage (Sikka 1995).

Description of the intervention

Antioxidants are substances that inhibit or delay the oxidation of biologically relevant molecules, either by directly scavenging free radicals or by chelation of redox metals (Valko 2006). However, the definition is very general and does not specify how a compound may act as an antioxidant (Huang 2018). In general, non-enzymatic antioxidants play a substantial role in first-line defence by preventing the formation of ROS by binding ions and enzymatic antioxidants that regulate the gene expression of oxidative enzymes.

The predominant supplementary antioxidants that are studied in male subfertility clinical trials are vitamin E, vitamin C, carotenoids, carnitines, coenzyme Q10 (ubiquinol), cysteine and the micronutrients folate, selenium and zinc (Eskenazi 2005; Majzoub 2017). Antioxidants can be administered orally as a single or combined supplement. They are widely available and inexpensive when compared to other fertility treatments. However cost-benefit analysis is beyond the scope of this review.

In contrary to the previous versions of this review, pentoxifylline is no longer included as it is a conventional medicine or over-thecounter drug and not a dietary supplement.

Substances with direct antioxidant action

Arginine

Arginine, or L-arginine, is an amino acid that is required for normal spermatogenesis. It plays a role in the inflammatory response and directly protects against oxidative damage by being a free radical scavenger. Arginine can be derived from meat products, dairy, nuts and seeds. Significant adverse events have not been observed, however contraindication for people with a history of genital or oral herpes, asthma or cancer (Appleton 2002).

Carnitines

Carnitine is an antioxidant, with the two most important isomers being called l-carnitine (LC) and l-acetylcarnitine (LAC). In the male genital tract carnitines are found in the epididymis, seminal plasma and in spermatozoa (Bøhmer 1978). Carnitines assist sperm metabolism by positively affecting sperm motility and maturation. There might be an association between the concentration of LAC and male fertility (Agarwal 2004a). Animal products like meat, fish, poultry and dairy are the best sources for carnitines. Doses above 3 g/day can give gastrointestinal side effects and malodorous effects (Annals of the New York Academy of Science 2004).

Carotenoids

Carotenoids are pigments found in plants. One of the most important carotenoids is β -carotene (Ross 2006), a provitamin A, which can directly scavenge ROS. Other carotenoids found in food are lycopene, lutein, and zeaxanthin, however these are not converted into vitamin A. Both in vivo and in vitro, β -carotene has been shown to protect isolated lipid membranes from peroxidation (Bendich 1989). Healthy young men with a higher carotenoid intake have higher sperm motility, and higher lycopene intake is associated with better sperm morphology (Zareba 2013). However, a review by Grune and colleagues (Grune 2010) stated that there are conflicting results whether β -carotene has antioxidant properties.

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Library

Trusted evidence. Informed decisions. Better health.

Carotenoids come from leafy green vegetables, fruits, and some vegetable oils (Ross 2006). Excess intake of preformed vitamin A can lead to toxicity (hypervitaminosis A). However, excessive ingestion of provitamins such as carotenoids are not associated with vitamin A toxicity, the only side effect is carotenaemia (yellow-tinged skin).

Coenzyme Q10

Coenzyme Q10 (CoQ10) is a fat-soluble antioxidant synthesised endogenously and an essential component of the mitochondrial energy metabolism. In its reduced form, CoQH2, ubiquinol, it inhibits protein and DNA oxidation and lipid peroxidation (Littarru 2007). CoQ10 seminal fluid levels are significantly correlated to sperm count and motility, except in men with varicocele (Mancini 1994). Meat, fish, nuts and some oils are the most important dietary sources of CoQ10 due to their relatively high level of fats and mitochondria (Pravst 2010). Reported side effects are mild gastrointestinal symptoms (Bhagavan 2006).

Cysteine

Cysteine plays an important role in glutathione synthesis. Nacetylcysteine (NAC) is a precursor of the amino acid cysteine and a direct scavenger of ROS. Glutathione becomes depleted when there is OS, and this can be reversed by NAC supplementation (Atkuri 2007). NAC is less toxic and less susceptible to oxidation compared to cysteine itself. Oral administration of NAC up to 8000 mg/day is not known to cause significant adverse events (Atkuri 2007). Less is known about ethylcysteine, however in vivo and animal studies have shown anti-oxidative effects (Hsia 2016).

Micronutrients (folate, selenium, zinc)

Folate, also known as vitamin B9, is a micronutrient important for the synthesis of DNA, transfer RNA and the amino acids cysteine and methionine. Folic acid, the synthetic form, can scavenge oxidising free radicals and it inhibits lipid peroxidation (Joshi 2001). Folate is present in green-leafy vegetables, liver, bread, yeast and fruits (Ebisch 2007). Folic acid doses of 5 mg/day and over can cause abdominal cramps, diarrhoea and rash. Higher doses can even cause altered sleep patterns, irritability, confusion, exacerbation of seizures and nausea (Rogovik 2009).

Zinc is involved in DNA transcription and protein synthesis and has extensive antioxidants properties (Ebisch 2007). Zinc has an important role in testes development, sperm physiological functions and decrease of zinc in seminal plasma is associated with sperm quality (Colagar 2009a). Zinc, like selenium, is absorbed from the soil into plants. Dietary sources rich of zinc are meat products, wheat and seeds.

Magnesium and selenium are different than other antioxidant nutrients because they are involved in the mechanisms of cellular antioxidant defence by increasing the activity of the antioxidant enzyme glutathione peroxidase, and not by directly reacting with oxidant molecules (Burk 2002; Yavuz 2013). It is suggested that both magnesium and selenium deficiency would make humans more susceptible to oxidative injury. Selenium is furthermore essential for normal spermatogenesis (Boitani 2008). Selenium is derived from fish, meat products, diary and soil absorption by plants (Navarro-Alarcon 2008). Early indicators of excess intake are a garlic odour in the breath and a metallic taste in the mouth. The most common clinical signs of chronically high selenium intakes are gastrointestinal symptoms, fatigue, hair loss, joint pain and nail problems (MacFarquhar 2010). Magnesium is derived from green leafy vegetables, nuts, beans, and cereals (McNeill 1985).

Vitamin E

Vitamin E, also known as the bioactive form α -tocopherol, has a principal role by being the first defence against oxidant-induced membrane injury (Traber 2007). Vitamin E is found in vegetable oils and there is a given upper daily limit based on the possible increased bleeding risk (Institute of Medicine 2000).

Vitamin C

Vitamin C, also known as ascorbic acid, is able to diminish DNA damage directly by scavenging free radicals and decreasing formation of lipid hydroperoxides (Padayatty 2003). Ascorbic acid concentrations are 10-fold higher in seminal plasma compared to blood plasma. Low levels of seminal plasma ascorbic acid are directly related to decreased amount of normal morphology of spermatozoa and increased sperm DNA damage (Colagar 2009). Vitamin C is mainly found in fruits and vegetables.

Substances with antioxidant properties

Myo-inositol

Inositol is a polyalcohol, naturally occurring as nine stereoisomers including myo-inositol (MYO). Myo-inositol, a "pseudovitamin" and previously known as vitamin B8, plays an important roll in cell membrane formation and lipid synthesis. The highest concentration in the genital tract is within the seminiferous tubules, and myo-inositol is produced by Sertoli cells in response to follicle-stimulating hormone (FSH) (Lewin 1976). Myo-inositol is a precursor for the phosphatidyl-inositol (PtdIns) signalling pathway and directly involved in regulation of motility, capacitation and acrosome reaction (Bevilacqua 2015). Myo-inositol has a role as a possible antioxidant agent by increasing endogenous antioxidant enzymes and directly affecting the mitochondria leading to an increase of the membrane potential (Colone 2010; Condorelli 2017).

Polyunsaturated fatty acids (PUFAs)

Polyunsaturated fatty acids (PUFAs) are classified into omega-3 (docosahexaenoic acid, DHA), omega-6 and omega-9. Omega-9 is synthesised by animals, but omegas-3 and -6 needs to be supplemented in the diet. The main sources of these are vegetable and fish oils (Wathes 2007). PUFAs increase the plasma fluidity of the sperm membrane. However, this fluidity makes the sperm susceptible to ROS and lipid peroxidation that can damage the sperm. Wathes states that "It appears that PUFAs are a two edged sword - some are essential, but too many are potentially harmful" (Wathes 2007, page 198). It seems to be that PUFAs have a pro-oxidant rather than a direct antioxidant effect. Although it is suggested that omega 3 might have a free radical-scavenging potential (Giordano 2014; Richard 2008).

Resveratrol

Resveratrol is a natural phytoalexin with antioxidant properties. Several *in vitro* studies with human cryopreserved sperm and *in vivo* studies in animal models suggest that resveratrol improves sperm motility and enhances antioxidant defences (Branco 2010; Collodel 2011; Ourique 2013). It is naturally found in our diet in the form of grapes, berries, several nuts and wine (Ourique 2013). Worldwide, resveratrol is better known from research on the effect of daily intake of red wine, "the "Mediterranean diet", in cardiovascular disease (Bertelli 2009). Reversible gastrointestinal side effects are reported, however evidence on side effects is limited (Hausenblas 2014).

Vitamin B (complex)

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Vitamin B is a water-soluble vitamin and consists of several precursor and coenzymes such as thiamine (B1), riboflavin (B2) and cobalamin (B12). Vitamin B plays an important role in the homocysteine metabolism. It is suggested that total plasma homocysteine may have a pro-oxidant effect and a role in the release of ROS (Hankey 1999). Increased intake of vitamin B has an homocysteine-lowering effect, which is the strongest for folate, but vitamins B6, B12, and B2 have all been shown to be independently predictive of plasma homocysteine. Vitamin B is mainly found in meat products, other examples of food sources are beans, potatoes, bananas and mushrooms.

Vitamin D

Vitamin D is a fat-soluble vitamin, with the natural main source being dermal synthesis (sun light). The active form of vitamin D is 1,25-dihydroxyvitamin D, also called vitamin D3. Halicka and colleagues suggest that vitamin D3 has antioxidant activity, mainly by inducing the antioxidant protein superoxide dismutase (Halicka 2012). However, there are no other studies about the antioxidant properties of vitamin D in male fertility. Clearly, vitamin D plays an important role in male fertility and serum levels of vitamin D are positively associated with semen quality (de Angelis 2017). However, most of the studies do not mention the antioxidant properties of vitamin D, but rather relate the effect to the synthesis of sex steroids or the regulation of calcium.

How the intervention might work

In the second half of the 20th century it was found that semen leukocytes (white blood cells) and, mostly immature, spermatozoa are major sources of ROS production in the male reproductive tract (Aitken 1987; Aitken 1990; Iwasaki 1992). Additionally, the existence of a varicocele leads to increased scrotal temperature, reflux of blood flow and a damaged microcirculation, all of which act to increase both germ cell death and levels of ROS. This ultimately decreases semen quality and sperm function (Zini 2011). However, a low production of ROS is physiological and needed for adequate sperm functioning by supporting capacitation, maturation and hyperactivation (Aitken 1994).

In most body cells, ROS are directly inactivated and their damage repaired by cytoplasmic antioxidant enzymes such as catalase, superoxide dismutase or glutathione peroxidase (Aitken 1994; Ebisch 2007). However, spermatozoa differ from other cells as a substantial proportion of their cytoplasm is removed during the final stages of spermatogenesis. The lack of cytoplasma and therefore enzymatic antioxidants makes them very vulnerable. Furthermore, spermatozoal membranes are rich in PUFA which makes them susceptible for lipid peroxidation resulting in decreased flexibility of the sperm membrane and reduction of tail motion (Jones 1973). For these two reasons, spermatozoa are dependant on seminal plasma, which is rich in antioxidants (Smith 1996; Zini 1993).

In general, it can be stated that OS can cause fertility problems in two ways; firstly by damaging the sperm membrane thus affecting the sperm motility and ability to break down the oocyte membrane, and secondly by apoptosis and direct alteration of the sperm DNA (Kodama 1997; Lewis 2013) Deceivingly, men with sperm DNA damage can still have normal seminal parameters, but have a poor chance of natural conception (Aktan 2013; Intasqui 2015). Sperm DNA damage or integrity can be measured in a number of ways, either direct or indirect (Agarwal 2017). The most current used sperm DNA fragmentation (SDF) testS are terminal deoxynucleotidyl transferase-mediated dUTP nickend labelling (TUNEL), the COMET assay and sperm chromatin structure assay (SCSA). Other options are measurement of the byproduct of DNA oxidation, 8-hydroxydeoxyguanosine (8-OHdG) or by chemoluminescence assays using luminol or lucigenin. There are experts within the field who state that SDF testing should be part of a standard assessment of the male partner when a couple presents with subfertility (Agarwal 2016; Boe-Hansen 2006). Women undergoing intrauterine insemination with a sperm DNA fragmentation index < 30%, as measured by the SCSA, were seven times more likely to achieve a pregnancy than those couples where the male partner had a higher degree of sperm DNA damage (Bungum 2004). Furthermore, multiple meta-analyses show an association between the sperm DNA fragmentation test and live birth or clinical pregnancy after in vitro fertilisation (IVF) or intracytoplasmic sperm injection (ICSI) treatment (Collins 2008; Evenson 2006; Li 2006; Osman 2015; Zhang 2015; Zhao 2018). However, a recent meta-analysis showed that an association does not imply that SDF tests have an actual predictive value (Cissen 2016). An explanation for the little predictive value of SDF testing in assisted reproductive techniques (ART) is the heterogeneity of tests. Most of them are expensive, complex and lack standardisation and validation (Borini 2017; Cissen 2016).

Multiple studies in the past showed that men of a subfertile couple have higher levels of ROS and lower antioxidant levels in their semen compared to fertile men (Aktan 2013; Bykova 2007; Zini 1993). Furthermore, there is evidence that sperm with high percentages of fragmented DNA have less potential of natural conception, with levels above 30% being mentioned as the cut-off value (Evenson 1999; Spanò 2000). However when fertilisation does occur, spermatozoa releasing ROS could expose oocytes and lead to impaired oocyte function, including its capacity to repair sperm DNA fragmentation post fertilisation (Shimura 2002). The negative impact of damaged paternal DNA could be manifested by impaired embryo development and an association is reported on sperm DNA integrity and early pregnancy loss (Robinson 2012; Simon 2014). On the contrary, there are also some studies suggesting that sperm DNA damage and oxidative stress do not exist in male idiopathic infertility (Hughes 1996; Verit 2006).

If oxidative stress is at the heart of the increased sperm DNA damage and the lowering of pregnancy and live birth rates, then supporting the antioxidant defence system with exogenous antioxidants would seem logical. An extra dietary intake of antioxidants or a healthy diet in general has shown to be strongly associated with semen quality in healthy men (Eskenazi 2005; Irvine 1998; Lewis 1997; Mendiola 2010; Pasqualotto 2001; Salas-Huetos 2017; Zareba 2013). In conclusion, there is a fine balance between preventing oxidative stress by antioxidants, removing excessive amounts of ROS, and maintaining a small amount of ROS for their physiological effect on sperm functions. Since "reductive stress" as a rebound effect has been reported, large or high doses of antioxidants might better be avoided (Dattilo 2016; Ghyczy 2001).

Why it is important to do this review

In an effort to enhance fertility, couples are increasingly resorting to ART. However, these techniques are expensive and do not cure the causes of subfertility, but rather overcome some of its barriers. Since integrity of sperm DNA is one of the major determinants of normal fertilisation and embryo growth in natural and assisted

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

conception (Agarwal 2003; Aitken 2010; Evenson 2006), there is a clear rationale for antioxidant therapy.

One of the other reasons for this review, apart from finding out if antioxidant therapy can overcome some of the barriers of subfertility, is that the global vitamin and supplement market has grown exponentially over the last years. The market value is expected to reach 278 billion USD by 2024 (Grand View Research 2016). The low costs of supplements and relative risk are appealing to both patients and healthcare providers. However, most antioxidants are uncontrolled by regulation and the evidence for their effectiveness is not based on randomised clinical studies. Vitamins and supplements are dispensed through various retail outlets, including health food shops, online retailers, health centres, fitness clubs, supermarkets and pharmacies (Showell 2017).

The purpose of this Cochrane Review is to assess the effectiveness and safety of different antioxidants and dosages used by men of subfertile couples, by means of improvement of live birth rates, clinical pregnancy rates and adverse events. This is an update of a review first published in 2008 (Showell 2008) and updated in 2014 (Showell 2014).

OBJECTIVES

To evaluate the effectiveness and safety of supplementary oral antioxidants compared with placebo, no treatment or another antioxidant in subfertile men.

Search methods

METHODS

Criteria for considering studies for this review

Types of studies

Inclusion criteria

- Randomised controlled trials (RCTs)
- Cross-over trials are included: however, we only used first-phase data in the analysis. Achieving outcomes such as pregnancy and live birth would preclude entry of couples into the next trial phase (Dias 2006)

Exclusion criteria

• Any quasi-randomised trials

Types of participants

Inclusion criteria

 Studies that included subfertile men (male factor subfertility) part of a couple who had been referred to a fertility clinic and might or might not be undergoing assisted reproductive techniques (ART), such as in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI), or intrauterine insemination (IUI)

In situations where individuals were randomised again following failed cycles, the data would not be pooled in a meta-analysis unless individual data could be excluded.

Exclusion criteria

- Studies enrolling only men attending a fertility clinic exclusively as the result of female partner or idiopathic infertility
- Studies enrolling men taking any other fertility enhancing drugs
- Studies enrolling men who had chemotherapy treatment in the past

Types of interventions

Inclusion criteria

- Any type or dose of oral antioxidant supplementation (individual or combined) that can be obtained without prescription and is not regulated as a pharmaceutical drug, versus placebo or no treatment
- Any type or dose of oral antioxidant supplementation (individual or combined) versus another type or dose of oral antioxidant (head-to-head)

Interventions were considered 'combined antioxidants' if they included three or more antioxidants in the intervention arm.

Exclusion criteria

 Interventions that included plant extracts (for example garlic) or herbal substances

Studies that included antioxidants plus a plant extract (for example garlic) were included if the antioxidant agent was the main focus of the investigation.

Definition of antioxidant in male fertility: a substance that has the ability to protect spermatozoa against endogenous oxidative damage by directly neutralising hydroxyl, superoxide, and hydrogen peroxide radicals, chelation of redox metals or by functioning as a component of an antioxidant enzyme.

Types of outcome measures

Primary outcomes

• Live birth rate per couple randomised, defined as delivery of a live fetus after 20 completed weeks of gestation

Secondary outcomes

- Clinical pregnancy rate per couple, defined as evidence of a gestational sac confirmed by ultrasound
- Any adverse event (including miscarriage) reported by the study
- Level of sperm DNA fragmentation, defined as percentage (%) of sperm with abnormal DNA integrity estimated by either toluidine blue (TB) staining, sperm chromatin structure assay (SCSA) or terminal transferase dUTP nick end labelling (TUNEL) assay)
- Total sperm motility: any sperm movement in any direction (progressive plus forward plus non progressive motility), provided as percentage (%)
- Progessive sperm motility: sperm with forward progression, defined as WHO category A + B, provided as percentage (%)
- Sperm concentration:number of sperm (10⁶)/mL

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Search methods for identification of studies

We searched for all published and unpublished RCTs investigating oral antioxidant supplementation for subfertile men, without language restriction and in consultation with the Gynaecology and Fertility Group (CGF) Information Specialist(MGS).

Electronic searches

We searched the following electronic databases for relevant trials.

- The Cochrane Gynaecology and Fertility Group's (CGF) Specialised Register of Controlled Trials, PROCITE platform (searched 1 February 2018) (Appendix 1)
- The Cochrane Central Register of Controlled Trials; via the Cochrane Register of Studies Online (CRSO Web platform) (searched 1 February 2018) (Appendix 2)
- MEDLINE Epub Ahead of Print, In-Process & Other Non-Indexed Citations) Ovid platform (searched from 1946 to 1 February 2018) (Appendix 3)
- Embase Ovid platform (searched from 1980 to 1 February 2018) (Appendix 4)
- CINAHL EBSCO platform (Cumulative Index to Nursing and Allied Health Literature) (searched from 1961 to 1 February 2018) (Appendix 5)
- PsycINFO Ovid platform (searched from 1806 to 1 February 2018) (Appendix 6)

The MEDLINE search was limited by the Cochrane highly sensitive search strategy filter for identifying randomised trials which appears in the *Cochrane Handbook of Systematic Reviews of Interventions* (Version 5.1.0, Chapter 6, 6.4.11) (Higgins 2011). The Embase, PsychINFO and CINAHL searches were combined with trial filters developed by the Scottish Intercollegiate Guidelines Network (SIGN) (www.sign.ac.uk/mehodology/filters.html#random).

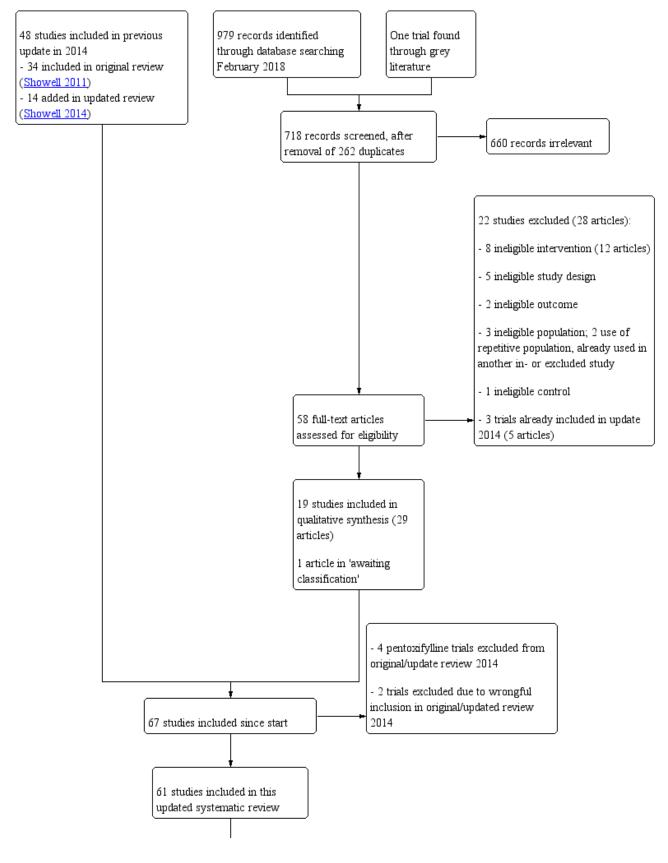
Searching other resources

The following other resources were searched (last search February 2018).

 International trial registers: the ClinicalTrials database, a service of the US National Institutes of Health (clinicaltrials.gov/ ct2/home) and the World Health Organization International Trials Registry Platform search portal (www.who.int/trialsearch/ Default.aspx) (Appendix 7; Appendix 8)

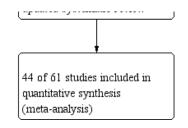
- Google scholar, using the keywords 'antioxidants male infertility' and 'antioxidants sperm random'
- Database for Abstracts of Reviews of Effects (DARE) for other reviews on this topic
- 'Grey' literature (unpublished and unindexed), through the openGREY database (www.opengrey.eu/) (Appendix 9)
- ProQuest Dissertations and Theses (http:// search.proquest.com.ezproxy.auckland.ac.nz/pqdtft/ advanced?accountid=8424) was also searched (Appendix 10)
- Web of Knowledge for conference proceedings and published trials (Appendix 11)
- Appropriate journals were handsearched for trial conference abstracts in the year 2017 (not included in CGF search). These journals included *Human Reproduction*, which contains abstract supplements for the European Society of Human Reproduction and Embryology (ESHRE), and *Fertility and Sterility* that contains abstract supplements for the 'American Society for Reproductive Medicine' (ASRM).

We handsearched reference lists of relevant trials and systematic reviews retrieved by the search and contacted experts in the field to obtain additional data.


Data collection and analysis

Selection of studies

Review authors RS and RM-P did an initial screen of titles and abstracts retrieved by the search. The search was conducted by MGS and RS. We retrieved the full texts of all potentially eligible studies. Two review authors (RS and RM-P) independently examined these full-text articles for compliance with the inclusion criteria and selected eligible studies. We corresponded with study investigators as required, to clarify study eligibility. Disagreements were resolved by discussion. If any reports required translation, we described the process used for data collection. We documented the selection process with a "PRISMA" flow chart (see Figure 1).


Figure 1. Study flow diagram.

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Figure 1. (Continued)

Data extraction and management

Two review authors (RS and RM-P) independently extracted data from eligible studies using a data extraction form designed and pilot-tested by the authors. Any disagreements were resolved by discussion. Data extracted included study characteristics and outcome data (see data extraction table for details, Characteristics of included studies and Characteristics of excluded studies). Where studies had multiple publications, the review authors collated the multiple reports under a single study ID with multiple references.

We corresponded with study investigators for further data on methods and/or results, as required.

Assessment of risk of bias in included studies

Two review authors (RS and RM-P) independently assessed the included studies for risk of bias using the Cochrane 'Risk of bias' assessment tool to assess: selection (random sequence generation and allocation concealment); performance (blinding of participants and personnel); detection (blinding of outcome assessors); attrition (incomplete outcome data); reporting (selective reporting); and other potential sources of bias (Higgins 2011). Judgements were assigned as recommended in the *Cochrane Handbook for Systematic Reviews of Interventions* Section 8.5 (Higgins 2011). Disagreements were resolved by discussion; when needed we consulted a third party to achieve agreement (MGS or VJ). We described all judgements fully and present the conclusions in the 'Risk of bias' table (Characteristics of included studies), which is incorporated in the interpretation of review findings by means of sensitivity analyses (see below). We sought published protocols.

We took care to search for within-study selective reporting, for example, trials failing to report outcomes such as live birth or reporting them in insufficient detail to allow inclusion. Where protocols were available, we assessed studies for differences between study protocols and published results.

In cases where included studies failed to identify the primary outcome of live birth, but did report pregnancy rates, we carried out an informal assessment to determine whether pregnancy rates were similar to those in studies that reported live birth.

We considered that the blinding status of participants could influence findings for the outcomes of live birth, pregnancy and adverse events, as antioxidants are easily available and it would be possible for participants to self-medicate. Therefore, if the participants were not blinded or the study was not placebocontrolled, or both, we considered the study to be at high risk of bias.

Measures of treatment effect

We collected dichotomous data for live birth, pregnancy rate, miscarriage and adverse events and for the continuous data for sperm quality measurements we collected mean differences (MDs) and the associated standard deviations (SDs).

Sperm parameter outcomes were analysed at the time points of three, six and nine months post-randomisation. All studies were analysed in this way regardless of whether the participants were treated for three, six or nine months.

Unit of analysis issues

The primary analysis of the outcomes of live birth, pregnancy and adverse events was per couple randomised, counting multiple births as one live birth event. The sperm outcome analyses were per man randomised. Only the first-phase data from cross-over trials were included.

Dealing with missing data

We analysed the data on an intention-to-treat basis as far as possible (i.e. including all randomised participants in analyses, in the groups to which they were randomised). Attempts were made to obtain missing data from the original trialists and the results of author contact are reported in Characteristics of included studies. When data were unobtainable, we undertook imputation of individual values for live birth only: live birth was assumed not to have occurred in participants without a reported outcome. For other outcomes, we analysed only the available data. Any imputation undertaken was subjected to sensitivity analysis (see below).

If studies reported sufficient detail to calculate MDs but gave no information on an associated SD, we assumed the outcome to have a SD equal to the highest SD from other studies within the same analysis.

Assessment of heterogeneity

We considered whether the clinical and methodological characteristics of included studies were sufficiently similar for meta-analysis to provide a clinically meaningful summary. We assessed statistical heterogeneity by the measure of the I². If an I² was 50% or higher, we assumed high heterogeneity, and conducted a sensitivity analysis. A high I² statistic suggests that variations in effect estimates may be due to differences between trials rather than to chance alone (Higgins 2011).

Assessment of reporting biases

In view of the difficulty of detecting and correcting for publication bias and other reporting biases, we aimed to minimise their potential impact by ensuring a comprehensive search for eligible

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

studies and by being alert for duplication of data. If there were 10 or more studies in an analysis, we used a funnel plot to explore the possibility of small-study effects (a tendency for estimates of the intervention effect to be more beneficial in smaller studies).

Data synthesis

We conducted statistical analysis of the data using Review Manager 5 (RevMan 2014). We expressed the dichotomous data for live birth, pregnancy rate, miscarriage and adverse events as Peto odds ratios (ORs) with 95% confidence intervals (CIs) and combined them in a meta-analysis with Review Manager 5 software using the Peto method and a fixed-effect model (Higgins 2011). A randomeffects model was used on sperm outcomes because we suspected high heterogeneity in these outcomes based on the previous review versions. The Peto OR has mathematically sound properties that are consistent with benefit or harm and work well in small samples with rare events. This effect measure is appropriate when considering subfertility. For continuous data (for example sperm quality measurements) MDs between treatment groups were calculated with associated SDs and 95% CIs. The results were displayed on forest plots, where possible.

We considered pregnancy outcomes to be positive, and higher pregnancy rates of benefit. We considered the outcomes of miscarriage and adverse events to be negative effects, and higher numbers harmful. We combined data for the following comparisons.

- Antioxidants versus placebo or no treatment
- Antioxidants versus antioxidants (head-to-head)

Adverse events as reported in the studies were included in the two comparisons above.

The total sperm motility, progressive sperm motility and concentration outcomes were divided into three groups: measurement after starting treatment, at three, six and nine months or more as reported by the studies. Studies were analysed together if they reported these outcomes at the same point in time, for example a study that stopped treatment at three months but measured at six or nine months was measured in the same analysis as those that were treated for six or nine months.

We displayed increases in the odds of a particular outcome, which may be beneficial (e.g. live birth) or detrimental (e.g. adverse events), graphically in meta-analyses to the right of the centre line, and decreases in the odds of a particular outcome to the left of the centre line.

The aim was to define analyses that were comprehensive and mutually exclusive, so that we could slot all eligible study results into one stratum only. We specified comparisons so that any studies falling within each stratum could be pooled for metaanalysis. Stratification allowed for consideration of effects within each stratum, as well as or instead of an overall estimate for comparison.

If individuals had been randomly re-assigned after failed cycles, we did not pool the data in a meta-analysis.

Statistical analysis was performed using Review Manager 5.3 (RevMan 2014).

Subgroup analysis and investigation of heterogeneity

Where data were available, we conducted subgroup analyses to determine the separate evidence within the following subgroups.

- Studies that included different types of antioxidant ((for the outcomes of live birth and clinical pregnancy)
- Studies that included couples who were also receiving IVF/ICSI treatment (for the outcomes of live birth and clinical pregnancy)
- Studies using no treatment as control group compared to placebo (for outcomes of live birth and clinical pregnancy)
- As-treated analysis
- Over time analysis for sperm outcomes of motility and concentration, at three, six and nine months

If we detected substantial heterogeneity, we explored possible explanations in subgroup analyses (e.g. differing populations) and/ or sensitivity analyses (e.g. differing risk of bias). We took any statistical heterogeneity into account when interpreting the results, especially if there was any variation in the direction of effect.

Sensitivity analysis

We conducted sensitivity analyses (using the random-effects model in RevMan software) on the primary outcomes if we detected a high degree of heterogeneity ($I^2 = 50\%$ or more), excluding studies to assess if there is a change in effect:

- with a high risk of bias, or
- enrolling men who are part of a couple undergoing IUI, or
- enrolling men with varicocele, or
- for studies that reported both live birth and clinical pregnancy rate in order to assess any overestimation of effect and reporting bias, or
- for studies where results had been imputed, or
- for studies that reported remarkably low SDs as the review authors considered that these data were potentially erroneous (a post hoc sensitivity analysis).

Overall quality of the body of evidence: 'Summary of findings' table

We prepared a 'Summary of findings; table using GRADEpro (GRADEpro GDT 2015) and Cochrane methods (Higgins 2011). This table evaluates the overall quality of the body of evidence for the main review outcomes (live birth, clinical pregnancy, and the adverse events) for the main review comparison (antioxidant compared with placebo or no treatment). We assessed the quality of the evidence using GRADE criteria: risk of bias, consistency of effect, imprecision, indirectness and publication bias). Judgements about evidence quality (high, moderate, low or very low) were made by two review authors (RS and RM-P) working independently, with disagreements resolved by discussion. Judgements were justified, documented, and incorporated into reporting of results for each outcome.

We extracted study data, formatted our comparisons in data tables and prepared a 'Summary of findings' table before writing the results and conclusions of our review.

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

RESULTS

Description of studies

Results of the search

2011 version of review

We assessed 590 abstracts for inclusion from the title and abstract found in a search dated from inception to August 2010. The MEDLINE search produced 406 abstracts; there were six abstracts from CENTRAL, three from CINAHL, 62 from Embase, 107 from the CGF database and three from PsycINFO. Two conference abstracts were found from handsearching the conference proceedings of the European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM). One title was found from reference lists in reviews. After removal of inappropriate and duplicate studies, we retrieved the full texts of 53 studies. Five non-English studies were assessed for inclusion: two Chinese, one Bulgarian, one Japanese and one Iranian. The two Chinese studies (Li 2005; Li 2005a), the Japanese study (Akiyama 1999) and the Iranian study (Peivandi 2010) were included in the analysis. The Bulgarian study (Nikolova 2007) was excluded as it did not use random allocation (see Characteristics of excluded studies). We excluded 15 articles and found four ongoing studies in searches of the clinical trial registers.

A total of 34 studies were included in the 2011 version of the review (Showell 2011).

2014 update

We assessed 483 abstracts for inclusion from the title and abstract found in a search dated from 1 August 2010 to 30 January 2014. After duplicates were removed 338 remained. We assessed 34 of these papers in full text.

Eleven of the full-text reports assessed studies were in a language other than English and required translation, five of these were in Chinese, two in Persian and one each in Japanese, Russian, Italian, and Portuguese (see Acknowledgements for those who helped with translation). Five of the Chinese studies were excluded: three (Chen 2012; Tang 2011; Wang 2010a) due to an inappropriate intervention, one was not randomised (Wu 2012), and one had an inappropriate population (Lu 2010). The Portuguese study (Verzeletti 2012) was excluded as it used a herbal intervention. Five non-English studies were included: one in Persian (Eslamian 2013), one Japanese (Kumamoto 1988), one Italian (Morgante 2010), one Russian (Sivkov 2011) and one Chinese (Wang 2010).

We excluded 20 articles, and included 14 articles. An updated search was run in August 2014 where six studies (Anarte 2013; Gopinath 2013; Iacono 2014; Nadjarzadeh 2014; Nashivochnikova 2014; Nematollahi-Mahani 2014) were placed in 'Studies awaiting assessment'. There were six ongoing studies found in the new searches.

We included 14 new trials in the 2014 update: Attallah 2013; Azizollahi 2013; Dimitriadis 2010; Eslamian 2013; Kumamoto 1988; Martinez-Soto 2010; Morgante 2010; Nadjarzadeh 2011; Poveda 2013; Pryor 1978; Safarinejad 2011; Safarinejad 2012; Sivkov 2011; Wang 2010.

A total of 48 studies were included in the 2014 update (Showell 2014).

Cochrane Database of Systematic Reviews

2018 update

We assessed 979 abstracts for inclusion from the title and abstract found in a search dated from January 2014 until February 2018. One extra study was found through the grey literature search. After duplicates were removed, 718 articles remained. We assessed 58 of these papers in full text. One of the full-text articles assessed studies was in Chinese (Deng 2014) and one in Russian (Gamidov 2017); both required translation. We excluded 22 studies (28 articles), and included 19 studies (29 articles). See the PRISMA flow chart (Figure 1)

Of the new included studies, one was from the six studies placed in 'Awaiting classification' in the 2014 update of this review (Gopinath 2013). The remaining studies awaiting classification were all found ineligible after screening of title and abstract or excluded after reading the full text.

In the current update, none of the eight previously 'ongoing studies' were included. Five of these ongoing studies were found ineligible after screening of title and abstract or excluded after reading the full text. Three studies remained as 'ongoing studies' (CTRI/2013/02/003431; NCT00975115; NCT01828710) with the status of still recruiting. We added nine new ongoing studies (DRKS00011616; IRCT2016111830947N1; IRCT2017012432153N1; NCT01407432; NCT01846325; NCT02310087; NCT02421887; NCT03104998; NCT03337360). In this 2018 update, a total of 12 studies are classified as 'ongoing studies' (Characteristics of ongoing studies).

We removed and excluded four pentoxifylline studies that were previously included in the 2014 update and the original review (Merino 1997; Micic 1988; Safarinejad 2011; Wang 1983). Furthermore, we removed two previously included studies due to the discovery that the population did not meet the inclusion criteria: they included men with idiopathic infertility with normal sperm parameters, and no male factor infertility. (Ciftci 2009; Keskes-Ammar 2003).

We included 19 new trials in this update: Barekat 2016; Blomberg Jensen 2018; Boonyarangkul 2015; Busetto 2018; Cyrus 2015; Deng 2014; Ener 2016; Exposito 2016; Gamidov 2017; Gopinath 2013; Haghighian 2015; Haje 2015; Martinez 2015; Mehni 2014; Micic 2017; Pourmand 2014; Raigani 2014; Sharifzadeh 2016; Sofikitis 2016.

A total of 61 studies have been included in this update (Characteristics of included studies). A total of 59 studies were excluded (Characteristics of excluded studies).

Included studies

Study design and setting

The studies came from 28 different countries. Fourteen studies were from Iran (Azizollahi 2013; Barekat 2016; Cyrus 2015; Eslamian 2013; Haghighian 2015; Mehni 2014; Nadjarzadeh 2011; Peivandi 2010; Pourmand 2014; Raigani 2014; Safarinejad 2009; Safarinejad 2009; Safarinejad 2012; Sharifzadeh 2016). Ten studies were based in Italy (Balercia 2005; Balercia 2009; Biagiotti 2003; Busetto 2018; Cavallini 2004; Galatioto 2008; Lenzi 2003; Lenzi 2004; Lombardo 2002; Morgante 2010). Four studies were from China (Deng 2014; Li 2005; Li 2005a; Wang 2010), three from Japan (Akiyama 1999; Dimitriadis 2010; Kumamoto 1988), and three from the UK (Kessopoulou 1995; Pryor 1978; Scott 1998). Two studies each were

Antioxidants for male subfertility (Review)

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

from Kuwait (Omu 1998; Omu 2008), Russia (Gamidov 2017; Sivkov 2011), Spain (Exposito 2016; Martinez-Soto 2010), and the USA (Dawson 1990; Sigman 2006). A single study was set in each of the following countries: Australia (Tremellen 2007), Belgium (Zalata 1998), Canada (Conquer 2000), Denmark (Blomberg Jensen 2018), Egypt (Attallah 2013), France (Greco 2005), Germany (Rolf 1999), Greece (Sofikitis 2016), Hungary (Zavaczki 2003), India (Gopinath 2013), Iraq (Haje 2015), Mexico (Martinez 2015), the Netherlands (Wong 2002), Panama (Poveda 2013), Saudi Arabia (Suleiman 1996), Serbia (Micic 2017), Thailand (Boonyarangkul 2015), Tunisia (Nozha 2001) and Turkey (Ener 2016).

All included studies were randomised. Five studies had a randomised cross-over design (Akiyama 1999; Kessopoulou 1995; Lenzi 2003; Peivandi 2010; Pryor 1978). In the meta-analysis only the first phase data were used as all studies reported first and second phase data separately. The remaining 56 studies used a randomised parallel group design. One study (Li 2005) had a large imbalance between the intervention and control groups at the randomisation stage; 150 men were randomised, 90 into the treatment group and 60 into the control group. This appeared to be a blocked 3:2 allocation ratio. This method of randomisation was not explained in the report. Attempts were made to contact the author but there has been no reply. Thirteen studies (Biagiotti 2003; Cavallini 2004; Conquer 2000; Dawson 1990; Gamidov 2017; Gopinath 2013; Kumamoto 1988; Martinez 2015; Mehni 2014; Raigani 2014; Scott 1998; Sofikitis 2016; Zalata 1998) were threearmed and eight (Azizollahi 2013; Balercia 2005; Boonyarangkul 2015; Haje 2015; Omu 2008; Poveda 2013; Safarinejad 2009; Wong 2002) were four-armed.

The duration of the treatment period ranged from three weeks with a three-week follow up (Dawson 1990) to 12 months treatment (Ener 2016). The longest follow-up periods were in the studies by Blomberg Jensen and Safarinjad with respectively a five-month (Blomberg Jensen 2018) and six and a half-month (Safarinejad 2009a) treatment duration and both with 14 months of followup. Seven studies reporting on either live birth rate or clinical pregnancy rate, only mentioned follow-up consultations during their treatment, however they did not report the length of followup after treatment (Azizollahi 2013; Attallah 2013; Barekat 2016; Busetto 2018; Kessopoulou 1995; Omu 1998; Suleiman 1996).

Funding sources were stated by 23 studies (Barekat 2016; Blomberg Jensen 2018; Busetto 2018; Conquer 2000; Deng 2014; Eslamian 2013; Haghighian 2015; Kessopoulou 1995; Lenzi 2003; Lombardo 2002; Martinez-Soto 2010; Mehni 2014; Micic 2017; Nadjarzadeh 2011; Omu 1998; Peivandi 2010; Poveda 2013; Raigani 2014; Rolf 1999; Safarinejad 2012; Sharifzadeh 2016; Wang 2010; Zavaczki 2003). Five of these studies stated that funding was from a commercial source (Busetto 2018; Conquer 2000; Martinez-Soto 2010; Micic 2017; Safarinejad 2012), and the remaining 18 obtained funding through non-commercial avenues or university grants. Five studies reported specifically no funding (Cyrus 2015; Gopinath 2013; Haje 2015; Lombardo 2002; Pourmand 2014). Thirty-three studies did not mention any funding sources.

Participants

The 61 studies included 6264 subfertile men, 3803 in the intervention groups and 2461 men in the control groups. The age range of the participants was 18 to 65 years. Studies included couples who had attended a fertility clinic, with a fertile partner

Cochrane Database of Systematic Reviews

and had been trying to conceive with regular intercourse for over one year. Most men in the included studies had a deficient level of spermatozoa in the seminal fluid (oligospermia) or a low motility of sperm in the seminal fluid (asthenospermia). Two studies also included fertile (Wong 2002) or normospermic men (Exposito 2016) with subgroup analysis. Studies excluded men with any inflammatory disease, antibody problems or chromosomal problems; and most studies stated that they did not enrol men who smoked, took any additional medication or drank alcohol.

Two studies enrolled men with varicocele (Busetto 2018; Cavallini 2004), six studies enrolled men post-varicocelectomy (Azizollahi 2013; Barekat 2016; Cyrus 2015; Ener 2016; Gamidov 2017; Pourmand 2014), and one study enrolled men with chronic prostatitis (Sivkov 2011). Four studies (Exposito 2016; Kessopoulou 1995; Sigman 2006; Tremellen 2007) enrolled men who, as part of a couple, were undergoing in vitro fertilisation (IVF)/intracytoplasmic sperm injection (ICSI), and one study (Attallah 2013) enrolled men who were part of a couple undergoing intrauterine insemination (IUI).

Further details of inclusion and exclusion criteria are available in Characteristics of included studies.

Interventions

A wide variety of antioxidants were used in the included studies. Comparisons covered antioxidants versus placebo or no treatment and head-to-head comparisons (antioxidant versus antioxidant)

The comparison 'antioxidants versus placebo or no treatment' included the following antioxidants: arginine, carnitines (Lcarnitine, L-acetyl carnitine, L-carnitine plus L-acetyl carnitine), carotenoids (β-carotene), coenzyme Q10 (CoQ10), cysteines (ethylcysteine and N-acetylcysteine (NAC)), folic acid, magnesium, polyunsaturated fatty acids (PUFAs) (alpha-lipoic-acid and docosahexaenoic acid (DHA)), resveratrol, selenium, vitamin B, vitamin C, vitamin D with calcium, vitamin E and zinc. Combined antioxidants were used in 10 studies. They were labelled as Proxeed Plus (Busetto 2018; Micic 2017), Menevit (Tremellen 2007), Selznic (Sivkov 2011), SpermActin-forte (Gamidov 2017) and Spermotrend (Poveda 2013). Four of these 10 studies used combined antioxidants without any brand name or labelling; "Nacetylcysteine (NAC) with vitamins and micronutrients" (Galatioto 2008), selenium plus vitamin A/C/E (Scott 1998), a fixed dose combination (FDC) of coenzyme Q10, L-carnitine, lycopene and zinc (Gopinath 2013), and "essential fatty acid (EFA) mixture combined with α -tocopherol (vitamin E) and β -carotene, acetylcysteine and other antioxidants" (Zalata 1998).

The second comparison, head-to-head, included seven studies. The head-to-head comparisons were included in an attempt to assess whether one antioxidant was more effective than another. They looked at effects of ethylcysteine versus vitamin E, zinc versus folic acid versus zinc plus folic acid, L-carnitine versus L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine, vitamin E plus selenium versus vitamin B, L-carnitine plus acetyl-L-carnitine versus vitamin C, L-carnitine versus vitamin C, plus vitamin C, vitamin D plus calcium versus vitamin C plus vitamin E, L-carnitine plus vitamin E, L-carnitine plus vitamin E, acetyl-cysteine versus essential fatty acid (EFA) plus α -tocopherol (vitamin E) plus β -carotene versus acetylcysteine plus EFA plus antioxidants.

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

In summary:

- 26/61 studies compared antioxidants with placebo;
- 7/61 studies compared antioxidants with no treatment;
- 7/61 studies compared one antioxidant with another antioxidant (head-to-head);
- 21/61 multi-arm studies: 16 of these compared antioxidants versus placebo and five compared antioxidants versus no treatment.

Outcomes

The primary outcome for this review was as follows.

 Live birth per couple. Seven studies reported data for live birth in the antioxidant versus placebo or no treatment comparison (Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Kessopoulou 1995; Omu 1998; Suleiman 1996; Tremellen 2007). One of these studies could also be included in the headto-head comparison of live birth rate (Balercia 2005).

Secondary outcomes for this review were as follows.

- Clinical pregnancy rate per couple, as reported by 11 studies in the antioxidant versus placebo or no treatment comparison (Attallah 2013; Azizollahi 2013; Balercia 2005; Balercia 2009; Barekat 2016; Busetto 2018; Kessopoulou 1995; Omu 1998; Suleiman 1996; Tremellen 2007; Zavaczki 2003). One of these studies could also be included in the head-to-head comparison of clinical pregnancy rate (Balercia 2005); one more study in the head-to-head comparison reported on clinical pregnancy rate (Deng 2014). Data for biochemical and undefined pregnancy can be seen in Table 1.
- Adverse events (miscarriage, gastrointestinal upsets, euphoria and ectopic pregnancy) were reported by 13 studies (Busetto 2018; Cavallini 2004; Gamidov 2017; Gopinath 2013; Kessopoulou 1995; Omu 1998; Pourmand 2014; Safarinejad 2009a; Sharifzadeh 2016; Sigman 2006; Suleiman 1996; Tremellen 2007; Zavaczki 2003) in the antioxidant versus placebo or no treatment comparison. Adverse events were not reported as an outcome in any of the studies in the head-tohead comparisons, except that the study by Li (Li 2005) reported that no side effects were found in either the treatment or control groups.
- DNA fragmentation was reported by six studies (Barekat 2016; Boonyarangkul 2015; Gamidov 2017; Greco 2005; Martinez-Soto 2010; Raigani 2014), comparing antioxidants versus placebo or no treatment. Data from two studies were not usable because of the use of COMET assay and DNA tail length (Boonyarangkul 2015), or use of medians with interquartile ranges (Gamidov 2017)(Analysis 1.10). This outcome was not reported in the headto-head comparison.
- Total sperm motility at three months or less was reported by 16 studies in the antioxidants versus placebo or no treatment comparison (Azizollahi 2013; Balercia 2005; Barekat 2016; Conquer 2000; Dimitriadis 2010; Ener 2016; Gopinath 2013; Greco 2005; Martinez-Soto 2010; Morgante 2010; Nadjarzadeh 2011; Omu 2008; Peivandi 2010; Scott 1998; Sigman 2006; Zavaczki 2003), by eight studies in the head-to-head comparison (Akiyama 1999; Azizollahi 2013; Balercia 2005; Conquer 2000; Dawson 1990; Li 2005; Omu 2008; Scott 1998).

- Total sperm motility at six months was reported by 13 studies in the antioxidants versus placebo or no treatment comparison (Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Busetto 2018; Ener 2016; Gopinath 2013; Lenzi 2004; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012; Sigman 2006; Suleiman 1996). Three studies reported this in the headto-head comparison (Azizollahi 2013; Balercia 2005; Safarinejad 2009).
- Total sperm motility at nine months or more was reported by five studies in the antioxidants versus placebo or no treatment comparison (Balercia 2005; Balercia 2009; Ener 2016; Safarinejad 2009a; Safarinejad 2012). One study reported this in the head-to-head comparison (Balercia 2005).
- Progressive sperm motility at three months or less was reported by 14 studies in the antioxidants versus placebo or no treatment comparison (Attallah 2013; Azizollahi 2013; Balercia 2005; Boonyarangkul 2015; Cyrus 2015; Dawson 1990; Haghighian 2015; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nadjarzadeh 2011; Peivandi 2010; Rolf 1999; Sharifzadeh 2016) Five studies reported this in the head-to-head comparison (Balercia 2005; Deng 2014; Li 2005; Li 2005a; Wang 2010).
- Progressive sperm motility at six months was reported by five studies in the antioxidants versus placebo or no treatment comparison (Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Boonyarangkul 2015). One study reported this in the head-to-head comparison (Balercia 2005).
- Progressive sperm motility at nine months or more was reported by two studies in the antioxidants versus placebo or no treatment comparison (Balercia 2005; Balercia 2009). One study reported this in the head-to-head comparison (Balercia 2005).
- Sperm concentration at three months or less was reported by 21 studies in the antioxidants versus placebo or no treatment comparison (Attallah 2013; Azizollahi 2013; Balercia 2005; Barekat 2016; Boonyarangkul 2015; Conquer 2000; Cyrus 2015; Dimitriadis 2010; Ener 2016; Gopinath 2013; Greco 2005; Haghighian 2015; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nadjarzadeh 2011; Peivandi 2010; Rolf 1999; Scott 1998; Sharifzadeh 2016; Zavaczki 2003), and seven in the head-tohead comparison (Akiyama 1999; Azizollahi 2013; Balercia 2005; Conquer 2000; Li 2005a; Scott 1998; Wang 2010).
- Sperm concentration at six months was reported as an outcome by 11 studies in the antioxidants versus placebo or no treatment comparison (Azizollahi 2013; Balercia 2005; Balercia 2009; Boonyarangkul 2015; Busetto 2018; Ener 2016; Gopinath 2013; Lenzi 2004; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012), and three studies in the head-to-head comparison (Azizollahi 2013; Balercia 2005; Safarinejad 2009).
- Sperm concentration at nine months or more was reported by five studies in the antioxidants versus placebo or no treatment comparison (Balercia 2005; Balercia 2009; Ener 2016; Safarinejad 2009a; Safarinejad 2012), and one study in the headto-head comparison (Balercia 2005).

Data were extracted from 44 of the included studies. The 17 remaining studies either did not report any data or the continuous data were reported in medians or ranges (Biagiotti 2003; Eslamian 2013; Exposito 2016; Galatioto 2008; Haje 2015; Kumamoto 1988; Lenzi 2003; Lombardo 2002; Martinez 2015; Micic 2017; Nozha 2001; Poveda 2013; Pryor 1978; Sivkov 2011; Sofikitis 2016; Wong 2002; Zalata 1998). Another study reported data for a treatment duration

of three to six months, but did not specify this any further and therefore data could not be used in the meta-analysis (Haje 2015).

See Characteristics of included studies and the analyses 'data not usable for meta-analysis'(Analysis 1.10; Analysis 1.12; Analysis 1.14; Analysis 1.18; Analysis 1.20; Analysis 1.24; Analysis 1.26; Analysis 2.5; Analysis 2.12). Table 2 also described the outcomes and conclusions of all included studies. Attempts were made to contact all authors of the included studies for further details and clarification.

Excluded studies

We retrieved the full text of studies that were identified as potentially eligible (see Figure 1). In this update we excluded 22 studies (28 full-text articles) and two ongoing studies, in total we excluded 59 studies. The most common reasons for exclusions were ineligible due to use of a different intervention, study design or population. See details in Characteristics of excluded studies.

In summary:

- 21/59 ineligible based on different intervention such as an added sperm wash or herbal extract; also pentoxifylline studies were excluded;
- 13/59 ineligible based on different study design, they were not randomised;
- 15/59 ineligible based on different population, either normospermic men or used the exact same population as other already included studies; in the search of this update; three of the studies were already included in the previous 2014 update;
- 3/59 ineligible based on different outcome;
- 5/59 ineligible based on different control group, fertile men without treatment;
- 2 previously 'ongoing studies' were placed in excluded studies because they were terminated due to insufficient recruiting (NCT01075334; NCT01520584).

Ongoing studies

Eight studies were 'ongoing studies' in the 2014 update. In the current update, only one of the eight previously ongoing studies was included (Blomberg Jensen 2018).The former ongoing study Righospitalet 2011 was a duplicate registration of this study. The former ongoing study AGUNCO 2012 (NCT01560065) became the article Gulino 2016, which was excluded because of the use of a wrong comparator with fertile men of a subfertile couple undergoing IVF. The former ongoing studies Sadeghi 2008 and Sadeghi 2009 became respectively the already previously included study Nadjarzadeh 2011 and excluded study Nadjarzadeh 2014. Three studies remained as ongoing studies (CTRI/2013/02/003431; NCT00975115; NCT01828710) with the status of still recruiting.

We added nine new ongoing studies (DRKS00011616; IRCT2016111830947N1; IRCT2017012432153N1; NCT01407432; NCT01846325; NCT02310087; NCT02421887; NCT03104998; NCT03337360). In this 2019 update, a total of 12 studies are classified as 'ongoing studies'.

Awaiting classification

Six studies were 'awaiting classification' in the 2014 update of this review. One study was included in the 2018 update (Gopinath 2013). The remaining studies awaiting classification were all found to be ineligible after screening of title and abstract or excluded after reading the full text. The former Anarte 2013a conference abstract was the same study as the conference abstract Anarte 2013, which was already excluded in the 2014 update. Nadjarzadeh 2014 was excluded due to using the same study population as already included Nadjarzadeh 2011. The article of Nashivochnikova 2014 was dismissed after a quick translation from Russian of the methods section due to the use of a non-randomised design. Nematollahi-Mahani 2014 was excluded due to reporting outcomes not of interest to our review; they reported on seminal antioxidant levels and hormone levels but not on semen parameters or pregnancy outcomes. Furthermore, they used the same study population as the included Azizollahi 2013.

One article from the updated 2018 search was placed in Studies awaiting classification, waiting for an answer from the authors after requesting the full text (Goswami 2015).

Risk of bias in included studies

See Figure 2 for a summary of risk of bias in individual studies, and Figure 3 for a summary of each risk of bias item across all included studies.

Allocation

Sequence generation

All of the 61 included studies were randomised, six of these were cross-over studies (Akiyama 1999; Kessopoulou 1995; Lenzi 2003; Lombardo 2002; Peivandi 2010; Pryor 1978) and the remaining studies were parallel design.

Only 27 studies described their methods of sequence generation and were rated as low risk in this domain (Azizollahi 2013; Balercia 2005; Barekat 2016; Biagiotti 2003; Blomberg Jensen 2018; Busetto 2018; Cavallini 2004; Cyrus 2015; Eslamian 2013; Exposito 2016; Galatioto 2008; Gamidov 2017; Gopinath 2013; Haghighian 2015; Kessopoulou 1995; Martinez-Soto 2010; Micic 2017; Nadjarzadeh 2011; Rolf 1999; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012; Scott 1998; Sharifzadeh 2016; Sigman 2006; Tremellen 2007; Wong 2002) (see Figure 2 and Figure 3).

Figure 2. Methodological risk of bias graph: review authors' judgements about each methodological bias item presented as percentages across all included studies.

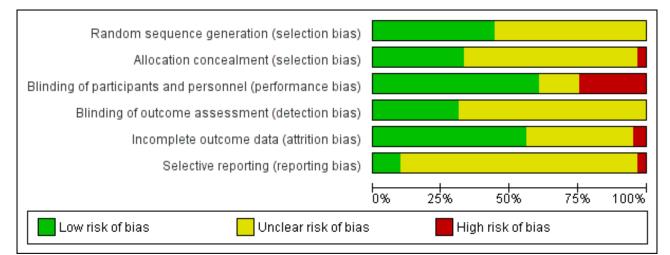
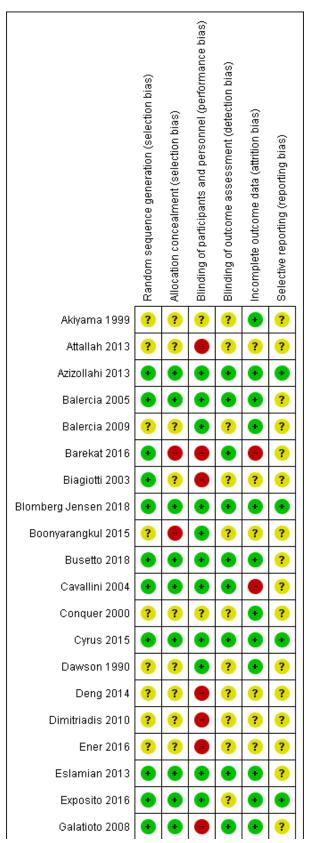



Figure 3. Methodological risk of bias summary: review authors' judgements about each methodological bias item for each included study.

Figure 3. (Continued)

Galatioto 2008	•	•	•	•	•	?
Gamidov 2017	•	?	•	•	•	?
Gopinath 2013	•	•	•	•	•	?
Greco 2005	?	?	•	?	•	?
Haghighian 2015	•	•	•	•	•	?
Haje 2015	?	?	?	?	?	?
Kessopoulou 1995	•	?	•	?	?	?
Kumamoto 1988	?	?	•	?	?	•
Lenzi 2003	?	?	•	?	•	?
Lenzi 2004	?	?	•	?	•	?
Li 2005	?	?	?	?	•	?
Li 2005a	?	?	?	?	?	?
Lombardo 2002	?	?	•	?	?	?
Martinez 2015	?	?	•	•	•	?
Martinez-Soto 2010	•	•	•	?	?	?
Mehni 2014	?	?	•	?	?	?
Micic 2017	•	?	•	÷	•	?
Morgante 2010	?	?	•	?	?	?
Nadjarzadeh 2011	•	÷	•	÷	•	?
Nozha 2001	?	?	•	?	?	?
Omu 1998	?	?	•	?	?	?
Omu 2008	?	?	•	?	•	?
Peivandi 2010	?	•	•	•	?	?
Pourmand 2014	?	?	•	?	•	?
Poveda 2013	?	?	•	?	?	?
Pryor 1978	?	?	•	?	?	?
Raigani 2014	?	?	•	•	?	•
Rolf 1999	•	?	•	?	•	?
Safarinejad 2009	•	•	•	?	•	?
Safarinejad 2009a	•	?	•	•	•	?
Safarinejad 2012	•	•	•	•	•	•

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Figure 3. (Continued)

The remaining 34 studies were rated as unclear risk (Akiyama 1999; Attallah 2013; Balercia 2009; Boonyarangkul 2015; Conquer 2000; Dawson 1990; Deng 2014; Dimitriadis 2010; Ener 2016; Greco 2005; Haje 2015; Kumamoto 1988; Lenzi 2003; Lenzi 2004; Li 2005; Li 2005a; Lombardo 2002; Martinez 2015; Mehni 2014; Morgante 2010; Nozha 2001; Omu 1998; Omu 2008; Peivandi 2010; Pourmand 2014; Poveda 2013; Pryor 1978; Raigani 2014; Sivkov 2011; Sofikitis 2016; Suleiman 1996; Wang 2010; Zalata 1998; Zavaczki 2003).

The predominant method of randomisation was by computergenerated blocks. Tremellen 2007 reported a 2:1 ratio randomisation schedule, Cyrus 2015 reported a 3:2 randomisation schedule, Li 2005 appeared to have a blocked 3:2 allocation, and Micic 2017 appeared to have a 5:2 ratio.

Allocation concealment

The methods of allocation concealment were generally quite poorly described in the included studies. Twenty studies described both their methods of randomisation and allocation concealment and were rated as low risk in this domain (Azizollahi 2013; Balercia 2005; Blomberg Jensen 2018; Busetto 2018; Cavallini 2004; Cyrus 2015; Eslamian 2013; Exposito 2016; Galatioto 2008; Gopinath 2013; Haghighian 2015; Martinez-Soto 2010; Nadjarzadeh 2011; Peivandi 2010; Safarinejad 2009; Safarinejad 2012; Sharifzadeh 2016; Sigman 2006; Tremellen 2007; Wong 2002).

There were two studies with a high risk of allocation concealment: one due to the use of a randomisation table by the doctor (Barekat 2016); and one due to great baseline imbalance for sperm parameters between the intervention and control group (Boonyarangkul 2015)

The remaining 39 studies were rated as unclear risk (Akiyama 1999; Attallah 2013; Balercia 2009; Biagiotti 2003; Conquer 2000; Dawson 1990; Deng 2014; Dimitriadis 2010; Ener 2016; Gamidov

2017; Greco 2005; Haje 2015; Kessopoulou 1995; Kumamoto 1988; Lenzi 2003; Lenzi 2004; Li 2005; Li 2005a; Lombardo 2002; Martinez 2015; Mehni 2014; Micic 2017; Morgante 2010; Nozha 2001; Omu 1998; Omu 2008; Pourmand 2014; Poveda 2013; Pryor 1978; Raigani 2014; Rolf 1999; Safarinejad 2009a; Scott 1998; Sivkov 2011; Sofikitis 2016; Suleiman 1996; Wang 2010; Zalata 1998; Zavaczki 2003). The methods of allocation concealment included anonymous coloured boxes, sealed opaque envelopes, and numbered bottles.

Blinding

Performance bias

Thirty-four studies were described as randomised, double-blind controlled trials in which clinicians and participants were blinded (Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Boonyarangkul 2015; Busetto 2018; Cavallini 2004; Cyrus 2015; Dawson 1990; Exposito 2016; Gopinath 2013; Greco 2005; Kessopoulou 1995; Kumamoto 1988; Lenzi 2003; Lenzi 2004; Lombardo 2002; Martinez 2015; Martinez-Soto 2010; Mehni 2014; Micic 2017; Nadjarzadeh 2011; Poveda 2013; Pryor 1978; Raigani 2014; Rolf 1999; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012; Scott 1998; Sharifzadeh 2016; Sigman 2006; Tremellen 2007; Wong 2002). In two studies investigators, clinicians and participants were blinded (Eslamian 2013; Haghighian 2015). A total of thirty-six studies were rated as low risk (see Figure 2 and Figure 3). In one of the low risk studies (Dawson 1990), it was stated that a placebo was used as the control but only the participants were blinded.

Fifteen other studies were rated high risk (Attallah 2013; Barekat 2016; Biagiotti 2003; Deng 2014; Dimitriadis 2010; Ener 2016; Galatioto 2008; Gamidov 2017; Morgante 2010; Nozha 2001; Omu 1998; Omu 2008; Pourmand 2014; Sofikitis 2016; Suleiman 1996;) Of these high-risk studies, 12 studies used 'no treatment' as their comparator. Two studies were head-to-head trials and open-labelled (Deng 2014; Nozha 2001). The double-blinded trial

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Suleiman 1996 used a placebo, however they reported that if a couple became pregnant then "the treatment was stopped; otherwise it was continued for 6 months. The placebo was given for 6 months" This does appear that they did not stop the placebo. This could suggest that the investigators had knowledge of whether the participants were in the placebo or antioxidant group, therefore this study was rated as high risk.

Nine studies did not give a statement regarding blinding and were rated as unclear risk of bias (Akiyama 1999; Conquer 2000; Haje 2015; Li 2005; Li 2005a; Sivkov 2011; Wang 2010; Zalata 1998; Zavaczki 2003). Three of these studies used a placebo as the control but did not discuss blinding (Conquer 2000; Zavaczki 2003; Sivkov 2011).

Detection bias

The methods of blinding outcome assessment were generally poorly described in the included studies. Only 19 studies reported this aspect of blinding and were therefore classified as low risk (Azizollahi 2013; Balercia 2005; Barekat 2016; Blomberg Jensen 2018; Busetto 2018; Cavallini 2004; Cyrus 2015; Eslamian 2013; Galatioto 2008; Gamidov 2017; Gopinath 2013; Haghighian 2015; Martinez 2015; Micic 2017; Nadjarzadeh 2011; Peivandi 2010; Raigani 2014; Safarinejad 2009a; Safarinejad 2012).

The other 42 studies were rated as unclear risk due to the lack of information (Akiyama 1999; Attallah 2013; Balercia 2009; Biagiotti 2003; Boonyarangkul 2015; Conquer 2000; Dawson 1990; Deng 2014; Dimitriadis 2010; Ener 2016; Exposito 2016; Greco 2005; Haje 2015; Kessopoulou 1995; Kumamoto 1988; Lenzi 2003; Lenzi 2004; Li 2005; Li 2005a; Lombardo 2002; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nozha 2001; Omu 1998; Omu 2008; Pourmand 2014; Poveda 2013; Pryor 1978; Rolf 1999; Safarinejad 2009; Scott 1998; Sharifzadeh 2016; Sigman 2006; Sivkov 2011; Sofikitis 2016; Suleiman 1996; Tremellen 2007; Wang 2010; Wong 2002; Zalata 1998; Zavaczki 2003).

Incomplete outcome data

Thirty-four studies were rated as low risk for incomplete outcome data (Akiyama 1999; Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Busetto 2018; Conquer 2000; Cyrus 2015; Dawson 1990; Eslamian 2013; Exposito 2016; Gopinath 2013; Galatioto 2008; Gamidov 2017; Greco 2005; Haghighian 2015; Lenzi 2003; Lenzi 2004; Li 2005; Martinez 2015; Micic 2017; Nadjarzadeh 2011; Omu 2008; Pourmand 2014; Rolf 1999; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012; Scott 1998; Sharifzadeh 2016; Sigman 2006; Tremellen 2007; Wang 2010; Zavaczki 2003).

Twenty-four studies were rated as unclear, most of them did report the number of drop outs, but did not provide the reasons (Attallah 2013; Biagiotti 2003; Boonyarangkul 2015; Deng 2014; Dimitriadis 2010; Ener 2016; Haje 2015; Kessopoulou 1995; Kumamoto 1988; Li 2005a; Lombardo 2002; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nozha 2001; Omu 1998; Peivandi 2010; Poveda 2013; Pryor 1978; Raigani 2014; Sivkov 2011; Sofikitis 2016; Wong 2002; Zalata 1998).

Three studies were rated as high risk of attrition bias due to lack of compliance directly related to treatment and high drop-out rates (20" to 42%) (Barekat 2016; Cavallini 2004; Suleiman 1996).

Only five studies (Balercia 2009; Blomberg Jensen 2018; Busetto 2018; Galatioto 2008; Pryor 1978) actually stated that they used intention-to-treat (ITT) in their analysis. However, Pryor 1978 stated they had used ITT but the data were not presented. Most of the other included studies accounted for the participants that withdrew from their studies and then analysed the groups in an ITT.

Three studies (Azizollahi 2013; Barekat 2016; Wang 2010) did not use ITT, however the numbers of dropouts were given for each intervention and control group and therefore we were able to use ITT in the data analysis by making the assumption of no event for the binary outcomes. No imputation was carried out on the continuous outcome data these were analysed as they were reported in the studies.

Six studies had over 20% withdrawal from their studies. Cavallini 2004 had a 30% dropout rate and reasons were provided for only 53 out of the 55 dropouts; these reasons included refusal due to the chance of taking a placebo and preference for assisted reproduction techniques (ARP). There also remained some confusion in this study on the total numbers randomised and analysed. Azizollahi 2013 had a 30% dropout rate; Li 2005a; Suleiman 1996, Nadjarzadeh 2011, and Barekat 2016 had slightly over 20% withdrawal from their studies.

One study (Suleiman 1996) had a large imbalance in numbers. There were found to be 52 in the treatment group and 35 in the placebo once the code had been broken at the end of the study. There was no indication of how the randomisation was performed. The reasons given for dropout were only accounted for broadly: many couples had left the region and some simply failed to continue, no numbers were given for individual dropout reasons (see Figure 2 and Figure 3). The numbers of participants that were initially randomised to each group were not available, so ITT for the dichotomous outcomes was not possible.

Selective reporting

Study protocols were only available for six out of the 61 included studies (Azizollahi 2013; Blomberg Jensen 2018; Cyrus 2015; Exposito 2016; Raigani 2014; Sharifzadeh 2016).

Two studies were rated at high risk of reporting bias; Kumamoto 1988 performed subgroup analysis post-treatment and Safarinejad 2012 did not pre-specify outcomes. Six studies were rated as unclear risk as they were conference abstracts (Attallah 2013; Biagiotti 2003; Lombardo 2002; Micic 2017; Sofikitis 2016; Zalata 1998), and two studies were rated as unclear as it was possible that these were two publications of the same study that were reporting on different intervention arms (Li 2005; Li 2005a). Obtaining help with Chinese translation did not clarify this and attempts to contact the authors were unsuccessful. The remaining 45 studies were rated as unclear risk in this domain because there were no published study protocols available.

Other potential sources of bias

One study reported great baseline imbalance for sperm parameters between the intervention and control group (Boonyarangkul 2015).

Effects of interventions

See: Summary of findings for the main comparison Antioxidants compared to placebo or no treatment for patients with male subfertility

Antioxidants for male subfertility (Review)

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

1 Antioxidants versus placebo or no treatment (natural conception and undergoing fertility treatment)

1.1 Live birth; type of antioxidant

See Analysis 1.1 and Figure 4.

Figure 4. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.1 Live birth; type of antioxidant.

Study or Subgroup	Antioxid Events		Placebo or no tre Events		Weight	Peto Odds Ratio Peto, Fixed, 95% Cl	Peto Odds Ratio Peto, Fixed, 95% Cl	Riskof Bias ABCDEF
1.1.1 Carnitines								
Balercia 2005 (1)	2	15	1	5	2.1%	0.61 [0.04, 9.64]		
Balercia 2005 (2)	2	15	1	5	2.1%	0.61 [0.04, 9.64]		
alercia 2005 (3)	5	15	1	5	3.5%	1.83 [0.21, 15.73]		
ubtotal (95% CI)		45		15	7.7%	1.00 [0.24, 4.25]		
otal events leterogeneity: Chi² = 0.55, df est for overall effect: Z = 0.00			3 = 0%					
.1.2 Coenzyme Q10								
		~~			0.000			
alercia 2009 (4) Subtotal (95% CI)	6	30 30	3	30 30	8.2% 8.2 %	2.16 [0.53, 8.82] 2.16 [0.53, 8.82]		??.?
		50	2	50	0.2.70	2.10 [0.55, 0.02]		
otal events	6		3					
leterogeneity: Not applicable est for overall effect: Z = 1.08)						
.1.3 Vitamin D + Calcium								
lomberg Jensen 2018 (5)	30	166	29	164	51.1%	1.03 [0.59, 1.80]		$\bullet \bullet \bullet \bullet \bullet \bullet \bullet$
ubtotal (95% CI)		166		164	51.1%	1.03 [0.59, 1.80]	-	
"otal events Heterogeneity: Not applicable "est for overall effect: Z = 0.09)	29					
.1.4 Vitamin E								
essopoulou 1995 (6)	1	15	0	15	1.1%	7.39 [0.15, 372.38]		• • • • • • • • •
	9	55	0	55	8.8%			226262
uleiman 1996 (7) ubtotal (95% Cl)	9	70	U	70	0.0% 9.8%	8.66 [2.23, 33.64] 8.51 [2.36, 30.70]		
		/0	_	/0	9.070	0.51 [2.30, 30.70]		
otal events leterogeneity: Chi≊ = 0.01, df est for overall effect: Z = 3.27			0 = 0%					
.1.5 Zinc								
)mu 1998 (8)	8	50	2	50	9.6%	3.74 [1.02, 13.74]		?? 🗧 ? ? ?
ubtotal (95% CI)		50		50	9.6%	3.74 [1.02, 13.74]		
otal events	8		2					
leterogeneity: Not applicable 'est for overall effect: Z = 1.99	9)	-					
.1.6 Combined antioxidants	;							
remellen 2007 (9)	20	40	4	20	13.7%	3.42 [1.15, 10.13]		•••?•?
ubtotal (95% CI)		40		20	13.7%	3.42 [1.15, 10.13]		
otal events	20		4					
leterogeneity: Not applicable 'est for overall effect: Z = 2.22)						
otal (95% CI)		401		349	100.0%	1.79 [1.20, 2.67]	◆	
otal events	83		41					
leterogeneity: Chi² = 13.28, d	df = 8 (P = 0	0.10); I	²= 40%					4
est for overall effect: Z = 2.83	3 (P = 0.00	5)					avours placebo/no treatm Favours antioxidant	1
est for subgroup differences			= 5 (P = 0.03), I ² = 6	60.7%		F	avours praceborno treatin i Pavours antioxidant	
ootnotes							Risk of bias legend	
1) L-carnitine 3000 mg. Natu	iral concer	tion 4	dditional data from	author rev	neived		(A) Random sequence generation (selection bias	1
						od		V
2) L-acetyl carnitine 3000 mg							(B) Allocation concealment (selection bias)	nanco bice'
3) L-carnitine 2000 mg + L-a							(C) Blinding of participants and personnel (perform	
4) Coenzyme Q10 200 mg. N							(D) Blinding of outcome assessment (detection bi	as)
5) Vitamin D 1400IU + Calciu	um 500 mg). Natu	ral conception for 1	1/ 59 preg	gnancies,	no significant	(E) Incomplete outcome data (attrition bias)	
6) Vitamin E 600 mg. IVF.							(F) Selective reporting (reporting bias)	
') Vitamin E 300 mg. Natura	l conceptio	n. Una	able to use ITT as it	was unkr	nown from	which group the 23		
B) Zinc 500 mg. Natural cond	eption.							
0) Manavit Additional data fr			d. N.C. O and a star					

(9) Menevit. Additional data from author received: IVF: 3 sets of twin pregnancies in the combined...

Only seven studies reported on live birth; four of these had methodological inadequacies as they did not describe their methods of randomisation or allocation concealment. Three studies reported that all clinical pregnancies led to a live birth (Balercia 2005; Balercia 2009; Kessopoulou 1995). The metaanalysis of the seven studies showed that antioxidants were associated with an increased live birth rate compared with placebo or no treatment (Peto odds ratio (OR) 1.79, 95% confidence interval (CI) 1.20 to 2.67, 750 men, 7 RCTs, P = 0.005, I^2 = 40%, lowquality evidence). This meant that within this studied population of subfertile men with a baseline expected live birth rate of 12%,

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Antioxidants for male subfertility (Review)

use of an antioxidant increased this rate to between 14% and 26% (Summary of findings for the main comparison).

1.1.1 One study reported on this outcome comparing carnitines versus placebo (Balercia 2005). There was no evidence of increased live birth rate (Peto OR 1.00, 95% CI 0.24 to 4.25; 60 men, P = 1.00, I^2 = not applicable).

1.1.2 One study reported on this outcome comparing coenzyme Q10 versus placebo (Balercia 2009). There was no evidence of increased live birth rate (Peto OR 2.16, 95% CI 0.53 to 8.82; 60 men, P = 0.28, $I^2 = not$ applicable).

1.1.3 One study reported on this outcome comparing vitamin D plus calcium versus placebo (Blomberg Jensen 2018). There was no evidence of increased live birth rate (Peto OR 1.03, 95% CI 0.59 to 1.80, 330 men, P = 0.93, $I^2 =$ not applicable).

1.1.4 Two studies reported on this outcome comparing vitamin E versus placebo (Kessopoulou 1995; Suleiman 1996). There was evidence of increased live birth rate (Peto OR 8.51, 95% CI 2.36 to 30.70, 140 men, 2 RCTs, P = 0.001, $I^2 = 0\%$).

1.1.5 One study reported on this outcome comparing zinc versus no treatment (Omu 1998). There was no evidence of increased live birth rate (Peto OR 3.74, 95% CI 1.02 to 13.74, 100 men, P = 0.05, $I^2 =$ not applicable).

1.1.6 One study reported on this outcome comparing combined antioxidants versus placebo (Tremellen 2007). There was evidence of increased live birth rate (Peto OR 3.42, 95% CI 1.15 to 10.13, 60 men, P = 0.03 l² = not applicable). The results from this study also included three sets of twins in the combined antioxidant group and nil in the placebo group. Each twin birth was counted as one event as stated in the methods section in the review protocol.

There was evidence that different antioxidants had differing effects (test for subgroup differences $Chi^2 = 12.72$, P = 0.03).

1.2 Live birth; placebo or no treatment

Only one study (Omu 1998) used 'no treatment' as the control. When this study was removed from the analysis, evidence of increased live birth remained when compared with placebo only (Peto OR 1.65, 95% CI 1.08 to 2.52, 650 men, 6 RCTs, P = 0.02, I^2 = 41%).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 1.05$, P = 0.31).

1.3 Live birth; in vitro fertilisation (IVF)/intracytoplasmic sperm injection (ICSI)

See Analysis 1.3.

There were only two studies in women undergoing IVF/ICSI which reported on live birth (Kessopoulou 1995; Tremellen 2007). There was evidence of increased live birth rate, in those couples undergoing IVF/ICSI, with antioxidant use when compared with placebo (Peto OR 3.61, 95% CI 1.27 to 10.29, 2 RCTs, 90 men, P = 0.02, $I^2 = 0\%$).

Sensitivity analysis for studies reporting live birth and clinical pregnancy

The seven studies that reported live birth had an OR for live birth of 1.79, and in these same studies the OR for clinical pregnancy was 2.96. When we pooled all 11 studies reporting the clinical pregnancy rate there was a comparable OR 2.97. This suggest that there is no overestimation of live birth. However, the true effect is unknown unless all studies reporting on clinical pregnancy rate also reported on live birth rate.

Sensitivity analysis for studies rated as high risk of bias

When the two studies (Omu 1998; Suleiman 1996) rated with a high risk of bias were removed from the analysis, there was no evidence of association between antioxidants and an increased live birth rate when compared with placebo (Peto OR 1.38, 95% CI 0.89 to 2.16; participants = 540 men, 5 RCTs, P = 0.15, $I^2 = 0\%$).

1.4 Live birth; as-treated analysis

See Analysis 1.4.

When an as-treated analysis was done, there was evidence of increased live birth rate when antioxidants were compared with placebo (Peto OR 1.71, 95% CI 1.13 to 2.58, 649 men, 7 RCTs, P = 0.01, $I^2 = 26\%$).

1.5 Clinical pregnancy; type of antioxidant

See Analysis 1.5 and Figure 5 and Figure 6.

Figure 5. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.5 Clinical pregnancy; type of antioxidant.

Antioxidant Events Tota	Placebo/no tre al Events	Total	Weight	Peto Odds Ratio Peto, Fixed, 95% Cl	Peto Odds Ratio Peto, Fixed, 95% Cl	Risk of Bias ABCDE
51	5 1	5	4.3%	1.83 [0.21, 15.73]		
2 1	5 1	5	2.6%	0.61 [0.04, 9.64]		
2 1	5 1	5	2.6%	0.61 [0.04, 9.64]		
4	15	15	9.4%	1.00 [0.24, 4.25]		
9	3					
. df = 2 (P = 0	.76); ² = 0%					
		30	10.0%	2.16 [0.53, 8.82]		?? 🕂 ? 🖶 🤇
3	30	30	10.0 %	2.16 [0.53, 8.82]		
6	3					
able						
.08 (P = 0.28))					
0 4	10 O	13		Not estimable		
4		13		Not estimable		
0	0					
able						
applicable						
1 1	2 0	14	1.3%	8.73 [0.17, 445.08]		- ????.
		14	1.3%	8.73 [0.17, 445.08]		
				_ ,		
	Ŭ					
)					
AC)						
	30 4	30	10.9%	1.60 (0.42. 6.16)		22622
		50	18.5%			
					-	
, df = 1 (P = 0.	.61); I² = 0%					
	,					
	e 0	45	1.00	7 00 00 45 070 001		
						?? 🖨 ? 🖨 🤇
		50	13.5%	0.71[1.98, 22.69]	-	
. –	-					
		13	1.0%	3.76 [0.04, 357.94]		
		50	13.7%	4.48 [1.35, 14.88]		?? 🖉 ? ?
		63	14.6%	4.43 [1.39, 14.14]		
11	2					
• •						
	*					
- ·		4.0	4.000	0.00 0.45 00.00		
		13	1.9%	J.80 [U.15, 99.84]		
-	0					
)					
				• • •	-	
				2.44 [0.84, 7.13]	+	
		72	31.0%	3.19 [1.44, 7.08]		
31	8					
		220	100.0%	2071404 4 621		
		320	100.0%	2.97 [1.91, 4.63]		
83	22				, , , , , , , , , , , , , , , , , , , ,	
, df = 13 (P = 1					0.002 0.1 1 10	500
4.80 (P < 0.00				F	0.002 0.1 1 10 avours placebo/no treatm Favours antioxid	
	$5 1 \\ 2 1 \\ 2 1 \\ 2 1 \\ 2 1 \\ 2 1 \\ 2 1 \\ 4 \\ 9 \\ 6 \\ 5 \\ 6 \\ 1.00 (P = 1.00 \\ (P = 0.00 (P = 1.00 \\ 6 \\ 3 \\ 6 \\ 1.00 (P = 0.28 \\ 0 \\ 4 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Antioxidants for male subfertility (Review)

Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

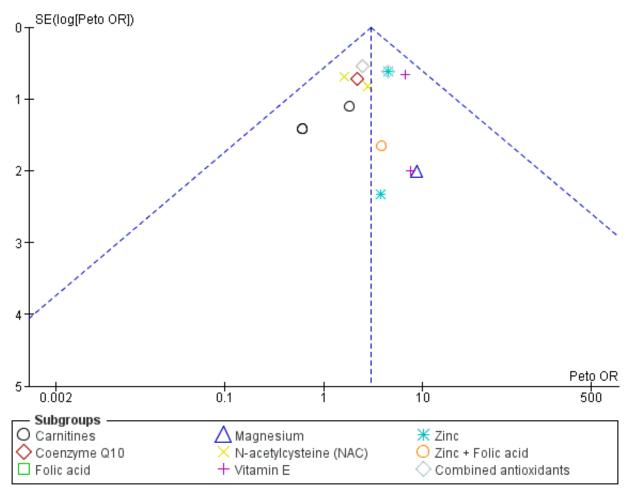


Figure 5. (Continued)

Test (0.002 0.1 1 10 500
Test for overall effect: Z = 4.80 (P < 0.00001)	Favours placebo/no treatm Favours antioxidant
Test for subgroup differences: Chi ² = 5.45, df = 7 (P = 0.61), I ² = 0%	
Footnotes	<u>Risk of bias legend</u>
L-carnitine 2000 mg + L-acetyl carnitine 1000 mg. Natural conception.	(A) Random sequence generation (selection bias)
(2) L-carnitine 3000 mg. Natural conception.	(B) Allocation concealment (selection bias)
(3) L-acetyl carnitine 3000 mg. Natural conception.	(C) Blinding of participants and personnel (performance bias)
(4) Coenzyme Q10 200 mg. Natural conception.	(D) Blinding of outcome assessment (detection bias)
(5) Folic acid 5 mg. Natural conception. After varicocelectomy. Additional data from a	uthors received.(E) Incomplete outcome data (attrition bias)
(6) Magnesium 3000 mg. Natural conception.	(F) Selective reporting (reporting bias)
(7) N-acetylcysteine (NAC) 600 mg. IUI.	
(8) N-acetylcysteine (NAC) 200 mg. Natural conception. After varicocelectomy	
(9) Vitamin E 600 mg. IVF.	
(10) Vitamin E 300 mg. Natural conception.	
(11) Zinc 66 mg. Natural conception. After varicocelectomy. Additional data from auth	ors received on
(12) Zinc 500 mg. Natural conception.	
(13) Zinc 66 mg + Folic acid 5 mg. Natural conception. After varicocelectomy. Addition	nal data from

- (14) Proxeed plus. Spontaneous. Also 1 spontaneous abortion. Varicocele patients
- (15) Menevit. Additional data from author received: IVF: 3 sets of twin pregnancies in the combined..

Figure 6. Funnel plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.5 Clinical pregnancy; type of antioxidant.

Only 11 studies (with 15 treatment arms) reported on clinical pregnancy rate; four of these had methodological inadequacies with high risk of bias for methods of randomisation, allocation concealment or blinding. The meta-analysis of these studies

showed that antioxidants were associated with an increased clinical pregnancy rate when compared to placebo or no treatment (Peto OR 2.97, 95% CI 1.91 to 4.63, 786 men, 15 RCTs, P < 0.001, $I^2 =$ 0%, low-quality evidence). This meant that within this population

Antioxidants for male subfertility (Review)

Copyright \odot 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

of subfertile men with the expected clinical pregnancy rate of 7%, use of an antioxidant increased this rate to between 12% and 26% (Summary of findings for the main comparison).

1.5.1 One study reported on this outcome comparing carnitines versus placebo (Balercia 2005). There was no evidence of increased clinical pregnancy rate (Peto OR 1.00, 95% CI 0.24 to 4.25, 60 men, 3 RCTs, P = 0.76, $I^2 =$ not applicable).

1.5.2 One study reported on this outcome comparing coenzyme Q10 versus placebo (Balercia 2009). There was no evidence of increased clinical pregnancy rate (Peto OR 2.16, 95% CI 0.53 to 8.82, 60 men, 1 RCT, P = 0.28, $I^2 = not$ applicable).

1.5.3 One study reported on this outcome comparing folic acid versus placebo (Azizollahi 2013). There was no OR estimable due to the occurrence of zero pregnancies in both groups.

1.5.4 One study reported on this outcome comparing magnesium versus placebo (Zavaczki 2003). There was no evidence of increased clinical pregnancy rate (Peto OR 8.73, 95% Cl 0.17 to 445.08, 1 RCT, 26 men, P = 0.28, $I^2 =$ not applicable).

1.5.5 Two studies reported on this outcome comparing N-acetylcysteine versus placebo or no treatment (Attallah 2013; Barekat 2016). There was no evidence of increased clinical pregnancy rate (Peto OR 2.00, 95% CI 0.71 to 5.63, 100 men, 2 RCTs, P = 0.19, $l^2 = 0\%$).

1.5.6 Two studies reported on this outcome comparing vitamin E versus placebo (Kessopoulou 1995; Suleiman 1996). There was an increased clinical pregnancy rate (Peto OR 6.71, 95% CI 1.98 to 22.69, 2 RCTs, 117 men, P = 0.002, $I^2 = 0\%$).

1.5.7 Two studies reported on this outcome comparing zinc versus placebo or no treatment (Azizollahi 2013; Omu 1998). There was an increased clinical pregnancy rate (Peto OR 4.43, 95% CI 1.39 to 14.14, 2 RCTs, 153 men, P = 0.01, $I^2 = 0\%$).

1.5.8 One study reported on this outcome comparing zinc with folic acid versus placebo (Azizollahi 2013). There was no evidence of increased clinical pregnancy rate (Peto OR 3.86, 95% CI 0.15 to 99.84, 53 men, 1 RCT, P = 0.42, I^2 = not applicable).

1.5.9 Two studies reported on this outcome comparing combined antioxidants versus placebo (Busetto 2018; Tremellen 2007). There was an increased clinical pregnancy rate (Peto OR 3.19, 95% CI 1.44 to 7.08, 164 men, 2 RCTs, P = 0.004, $I^2 = 0\%$).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 5.45$, P = 0.61).

Sensitivity analysis for studies rated as high risk of bias

When the four studies rated with a high risk of bias, were removed from the analysis there remained an association between

antioxidants and an increased clinical pregnancy rate (Peto OR 2.57, 95% Cl 1.42 to 4.67, 499 men, 7 RCTs, P = 0.002, $I^2 = 0\%$) (Attallah 2013; Barekat 2016; Omu 1998; Suleiman 1996).

Sensitivity analysis for studies enrolling men with varicocele

When the studies that enrolled men with varicocele or after varicocelectomy were removed from the analysis, antioxidants remained associated with increased clinical pregnancy rate when compared to placebo or no treatment (Peto OR 2.76, 95% Cl 1.65 to 4.59, 483 men, 15 RCTs, P < 0.0001, $I^2 = 0\%$) (Azizollahi 2013; Barekat 2016; Busetto 2018).

Sensitivity analysis for studies enrolling men in couples undergoing intrauterine insemination (IUI)

Only one study Attallah 2013 reported on men in couples undergoing IUI. When this study was removed from the analysis there remained an association between the use of antioxidants and increased clinical pregnancy rate when compared to no treatment (OR 3.20, 95% CI 2.00 to 5.13, 726 men, 15 RCTs, P < 0.0001, $I^2 = 0$ %).

1.6 Clinical pregnancy: placebo or no treatment

See Analysis 1.6.

Antioxidants were associated with an increase in clinical pregnancy rate in the studies that compared antioxidants with placebo (Peto OR 3.01, 95% CI 1.81 to 5.03, 626 men, 9 RCTs, 13 intervention arms, P < 0.001, $I^2 = 0\%$) (Azizollahi 2013; Balercia 2005; Balercia 2009; Barekat 2016; Busetto 2018; Kessopoulou 1995; Suleiman 1996; Tremellen 2007; Zavaczki 2003). Antioxidants were also associated with an increase in clinical pregnancy rate in those studies that compared antioxidants versus no treatment (Peto OR 2.84, 95% CI 1.16 to 6.96, 160 men, 2 RCTs, P = 0.02, $I^2 = 20\%$) (Attallah 2013; Omu 1998).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 0.01$, P = 0.91).

1.7 Clinical pregnancy; IVF/ICSI

See Analysis 1.7.

There were only two studies in women undergoing IVF/ICSI which reported on clinical pregnancy rate (Kessopoulou 1995;Tremellen 2007). There was no evidence of an increase in clinical pregnancy in those couples undergoing IVF/ICSI, when antioxidant use was compared with placebo (Peto OR 2.64, 95% CI 0.94 to 7.41, 90 men, 2 RCTs,P = 0.07, I² = 0%).

1.8 Adverse events

See Analysis 1.8 and Figure 7.

Figure 7. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.8 Adverse events.

tudy or Subgroup	Antioxid Events		Placebo/no trea Events		Weight	Peto Odds Ratio Peto, Fixed, 95% Cl	Peto Odds Ratio Peto, Fixed, 95% Cl	Risk of Bias A B C D E
.8.1 Miscarriage								
mu 1998 (1)	1	50	0	50	14.2%	7.39 [0.15, 372.38]		
uleiman 1996 (2)	2	52	0	35	27.0%	5.43 [0.32, 93.28]		- ??●?●?
remellen 2007 (3)	3	40	2	20	58.8%	0.72 [0.11, 4.97]		
ubtotal (95% CI)	0	142	-	105	100.0%	1.74 [0.40, 7.60]		
otal events	6		2					
leterogeneity: Chi² = 1.93 est for overall effect: Z = 0	df = 2 (P							
.8.2 Gastrointestinal		,						
usetto 2018 (4)		52	0	52	10.000	7 95 14 07 57 251		
• •	4				12.3%	7.85 [1.07, 57.35]		
avallini 2004 (5)	2	39	2	47	12.1%	1.21 [0.16, 9.01]		
amidov 2017 (6)	0	38	0	38		Not estimable		
opinath 2013 (7)	4	89	4	36	19.6%	0.33 [0.07, 1.62]		
essopoulou 1995 (8)	0	15	1	15	3.2%	0.14 [0.00, 6.82]	←	• ? • ? ? (
ourmand 2014 (9)	5	50	0	50	15.2%	8.04 [1.34, 48.12]		22626
afarinejad 2009a (10)	Ő	106	Ő	106	10.270	Not estimable		
	7		-		20.00			
harifzadeh 2016 (11)		61	0	53	20.9%	7.20 [1.56, 33.11]		
igman 2006 (12)	0	12	0	9		Not estimable		
remellen 2007 (13)	3	40	0	20	8.2%	4.72 [0.41, 54.32]		
avaczki 2003 (14)	2	10	1	10	8.5%	2.11 [0.19, 23.05]		?????
ubtotal (95% Cl)		512		436	100.0 %	2.51 [1.25, 5.03]	◆	
otal events	27		8					
leterogeneity: Chi² = 13.9 est for overall effect: Z = 2			5); I² = 50%					
8.3 Euphoria								
avallini 2004 (15)	2	39	2	47	100.0%	1.21 [0.16, 9.01]		
ubtotal (95% CI)	4	39	2	47	100.0%	1.21 [0.16, 9.01]		
	2	55	2		100.070	1.21 [0.10, 5.01]		
otal events leterogeneity: Not applica est for overall effect: Z = 0	ble	1.85)	2					
.8.4 Ectopic pregnancy								
remellen 2007 (16)	1	40	0	20	100.0%	4.48 [0.07, 286.49]		
ubtotal (95% CI)		40	Ŭ			4.48 [0.07, 286.49]		
otal events	1		0	20	1001070			
	l la la		U					
eterogeneity: Not applica est for overall effect: Z = 0		.48)						
							0.01 0.1 1 10	100
est for subgroup differen	ces: Chi ^z :	= 0.68	df = 3 (P = 0.88)	I² = 0%			Favours antioxidant Favours placebo/r	
ootnotes			- (///				Risk of bias legend	
) Zinc 500 mg versus no	treatmon	t Natur	al concention				(A) Random sequence generation (selection	hias)
								i vida)
2) Vitamin E 300 mg vers							(B) Allocation concealment (selection bias)	
 Combined antioxidants 							(C) Blinding of participants and personnel (p	
 Combined antioxidants 	-						(D) Blinding of outcome assessment (detect	ion bias)
	g/day + ac	etyl-L-c	arnitine 500 x 2 r	mg/day +	glycerine	suppository versus	(E) Incomplete outcome data (attrition bias)	
	(SpermAc	tin-forte) versus no trea	tment.			(F) Selective reporting (reporting bias)	
		10 50 n	ng + L-carnitine :	500 ma +	lycopene	2.5 mg + zinc 12.5		
5) L-carnitine 1 x 2000 mg 6) Combined antioxidant	enzvme Q		-		, ,			
5) L-carnitine 1 x 2000 mg 6) Combined antioxidant 7) 1 or 2 tablets FDC (Coe								
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Co 8) Vitamin E 600 mg versi	us placeb							
5) L-carnitine 1 x 2000 mg 6) Combined antioxidant 7) 1 or 2 tablets FDC (Co 8) Vitamin E 600 mg vers 9) L-carnitine 750 mg vers	us placeb sus no tre	atment						
5) L-carnitine 1 x 2000 mg 6) Combined antioxidant 7) 1 or 2 tablets FDC (Co 8) Vitamin E 600 mg vers 9) L-carnitine 750 mg vers 10) Coenzyme Q10 300 n	us placeb sus no tre ng versus	atment placeb	0.					
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Cor 3) Vitamin E 600 mg vers 3) L-carnitine 750 mg vers 10) Coenzyme Q10 300 n 11) Zinc solution 0.5% 10	us placeb sus no tre ng versus ml versus	atment placeb s place	o. bo solution 10 m					
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Cor 8) Vitamin E 600 mg vers 9) L-carnitine 750 mg vers 10) Coenzyme Q10 300 n 11) Zinc solution 0.5% 10 12) L-carnitine 2000 mg 4	us placeb sus no tre ng versus ml versus • L-acetylc	atment placeb s place arnitine	o. bo solution 10 m e 1000 mg versu		D.			
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Cor 3) Vitamin E 600 mg vers 3) L-carnitine 750 mg vers 10) Coenzyme Q10 300 n 11) Zinc solution 0.5% 10	us placeb sus no tre ng versus ml versus • L-acetylc	atment placeb s place arnitine	o. bo solution 10 m e 1000 mg versu		D.			
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Coo 8) Vitamin E 600 mg versi 9) L-carnitine 750 mg versi 10) Coenzyme Q10 300 n 11) Zinc solution 0.5% 10 12) L-carnitine 2000 mg 4 13) Combined antioxidan	us placeb sus no tre ng versus ml versus Lacetylc ts (Menevi	atment placeb s place arnitine it) versu	o. bo solution 10 m e 1000 mg versu		D.			
5) L-carnitine 1 x 2000 mg 5) Combined antioxidant 7) 1 or 2 tablets FDC (Cor 3) Vitamin E 600 mg versi 9) L-carnitine 750 mg versi 10) Coenzyme Q10 300 n 11) Zinc solution 0.5% 10 12) L-carnitine 2000 mg 13) Combined antioxidan 14) Magnesium 3000 mg	us placeb sus no tre ng versus ml versus L-acetylc ts (Menevi versus pl	atment placeb s place arnitine it) versu acebo.	o. bo solution 10 m e 1000 mg versu is placebo.	s placeb(a suppository versus		
) L-carnitine 1 x 2000 mg) Combined antioxidant) 1 or 2 tablets FDC (Coo) Vitamin E 600 mg vers:) L-carnitine 750 mg vers: 0) Coenzyme Q10 300 n 1) Zinc solution 0.5% 10 2) L-carnitine 2000 mg 4 3) Combined antioxidan	us placeb sus no tre ng versus - L-acetylc ts (Menevi versus pl ng/day + a	atment placeb s place arnitine it) versu acebo. cetyl-L-	o. bo solution 10 m a 1000 mg versu is placebo. carnitine 500 x 2	s placeb(e suppository versus.		

The only adverse events reported in the studies were miscarriage, gastrointestinal disorders, euphoria and ectopic pregnancy.

1.8.1 Miscarriage. Only three studies reported on miscarriage and the event rate was very low (eight miscarriages from 247 couples) (Omu 1998; Suleiman 1996; Tremellen 2007). The analysis of these three studies showed no evidence of increased miscarriage between the use of antioxidants when compared to placebo or no treatment (Peto OR 1.74, 95% CI 0.40 to 7.60, 3 RCTs, 247 men, P = 0.46, $l^2 = 0\%$, very low-quality evidence). This meant that within this population of subfertile men, with an expected miscarriage rate of 2%, the chances of having a miscarriage lay between 1% and 13%

with the use of an antioxidant (Summary of findings for the main comparison).

1.8.2 Gastrointestinal. The analysis of 11 studies showed an increase between the use of antioxidants and gastrointestinal upsets when compared to placebo or no treatment (Peto OR 2.51, 95% CI 1.25 to 5.03, 948 men, 11 RCTs, P =0.010, I^2 = 50%, very low-quality evidence) (Busetto 2018; Cavallini 2004; Gamidov 2017; Gopinath 2013; Kessopoulou 1995; Pourmand 2014; Safarinejad 2009a; Sharifzadeh 2016; Sigman 2006; Tremellen 2007; Zavaczki 2003). However, the event rate was very low so we could not be sure of these results. Three of these 11 studies reported no events,

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Antioxidants for male subfertility (Review)

therefore a Peto OR could not be estimated and a funnel plot was not created.

1.8.3 Euphoria. Only one study (Cavallini 2004) reported on this adverse event and there was no evidence of increased occurrence of euphoria when antioxidants were compared to placebo (Peto OR 1.21, 95% CI 0.16 to 9.01,1 RCT, 86 men, P = 0.85, $I^2 =$ not applicable).

1.8.4 Ectopic pregnancy. Only one study (Tremellen 2007) reported on this adverse event and there was no evidence of increase of ectopic pregnancy when antioxidants were compared to placebo (Peto OR 4.48, 95% CI 0.07 to 286.49,1 RCT, 60 men, P = 0.48, $I^2 = not$ applicable).

It was unlikely that these last two adverse events, euphoria and ectopic pregnancy, were related to intake of antioxidants especially with the reported extreme low event rate. Therefore these outcomes were not included in the 'Summary of findings' table.

1.9 Sperm DNA fragmentation; type of antioxidant

See Analysis 1.9, Analysis 1.10 and Figure 8

Figure 8. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.9 Sperm DNA fragmentation; type of antioxidant.

Study or Subgroup	Anti Mean	ioxidant SD	Total	Placeb Mean	o/no treatn SD		Weight	Mean Difference IV. Random, 95% Cl	Mean Difference IV. Random. 95% Cl	Riskof Bias ABCDEF
1.9.1 Docosahexaenoic	acid (DH/	A)					0		· · · · ·	
Martinez-Soto 2010 (1) Subtotal (95% CI)	11	9.8	21 21	25.1	16	15 15	15.4% 15. 4%	-14.10 [-23.22, -4.98] - 14.10 [-23.22, -4.98]	•	•••???
Heterogeneity: Not appli Test for overall effect: Z =		: 0.002)								
1.9.2 Folic acid										
Raigani 2014 (2) Subtotal (95% Cl)	33.1	8.2	20 20	38.9	14.5	18 18	16.5% 16.5 %	-5.80 [-13.40, 1.80] - 5.80 [-13.40, 1.80]	•	??••?•
Heterogeneity: Not appli Test for overall effect: Z =		: 0.13)								
1.9.3 Folic acid + Zinc										
Raigani 2014 (3) Subtotal (95% Cl)	37.7	10.9	21 21	38.9	14.5	18 18	16.1% 16.1 %	-1.20 [-9.36, 6.96] - 1.20 [-9.36, 6.96]		?? ** ?*
Heterogeneity: Not appli Test for overall effect: Z =		: 0.77)								
1.9.4 N-acetylcysteine (NAC)									
Barekat 2016 (4) Subtotal (95% CI)	89.8	5.4222	15 15	85.9	7.6026	20 20	18.5% 18.5 %	3.90 [-0.42, 8.22] 3.90 [-0.42, 8.22]	•	•••••
Heterogeneity: Not appli Test for overall effect: Z =		: 0.08)								
1.9.5 Vitamin C + Vitami	in E									
Greco 2005 (5) Subtotal (95% Cl)	9.1	7.2	32 32	22.9	7.9	32 32		-13.80 [-17.50, -10.10] - 13.80 [-17.50, -10.10]	+	??.?.?.?
Heterogeneity: Not appli Test for overall effect: Z =		< 0.0000	1)							
1.9.6 Zinc										
Raigani 2014 (6) Subtotal (95% Cl)	40.2	18.3	24 24	38.9	14.5	18 18	14.8% 14.8 %	1.30 [-8.62, 11.22] 1.30 [-8.62, 11.22]	-	??
Heterogeneity: Not appli Test for overall effect: Z =		= 0.80)								
Total (95% CI)			133			121	100.0%	-5.00 [-12.61, 2.61]	•	
Heterogeneity: Tau² = 76 Test for overall effect: Z =	= 1.29 (P =	: 0.20)							-50 -25 0 25 Favours antioxidant Favours placebo	50 50
Test for subgroup differe	ences: Chi	i ^z = 43.6	9, df = 5	5 (P < 0.0	0001), I² =	88.6%				and a shart
<u>Footnotes</u> (1) TUNEL assay. Brudy	Plus (DH	A 1000 r	na + ei	cosanen	taenoic aci	id (EPA)	135 ma)	At 10 weeks	Risk of bias legend (A) Random sequence generation (selection)	on bias)
(2) Toluidine blue (TB) s							. 20 mg/		(B) Allocation concealment (selection bias	
(3) Toluidine blue (TB) s									(C) Blinding of participants and personnel	
(4) TUNEL assay. N-ace									(D) Blinding of outcome assessment (dete	,
(5) TUNEL assay. Vitam									(E) Incomplete outcome data (attrition bias)	

Four studies reported on DNA fragmentation and found that there was a lower DNA fragmentation rate when antioxidants were compared with placebo or no treatment (mean difference (MD) -5.00, 95% CI -12.61 to 2.61, 254 men, 4 RCTs, six intervention arms, P < 0.0001, $I^2 = 89\%$) (Barekat 2016; Greco 2005; Martinez-Soto 2010; Raigani 2014).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 43.69$, P < 0.00001).

Sensitivity analysis for studies enrolling men with varicocele

In the literature it is reported that men with varicocele have higher levels of DNA fragmentation. Only one study reported on men with varicocele. When this study was removed from the analysis there remained an association between the use of antioxidants and lower DNA fragmentation rate when compared to no treatment (MD -10.05, 95% Cl -12.86 to -7.25, 219 men, 6 RCTs, P < 0.001, $l^2 = 74\%$) (Barekat 2016).

1.10 Data not usable for meta-analysis

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Two studies reported on DNA fragmentation, but could not be included in the forest plots of the meta-analysis. Boonyarangkul 2015 because of the use of Comet assay, and Gamidov 2017 only reported medians and interquartile ranges (Analysis 1.10). Both studies showed an improvement (decrease) in DNA fragmentation

after the use of antioxidants. However, in Boonyarangkul 2015 this was only in the (excluded) arm tamoxifen plus folate.

1.11 Total sperm motility at three months or less; type of antioxidant

See Analysis 1.11 and Figure 9

Library

Figure 9. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.11 Total sperm motility at 3 months or less; type of antioxidant.

Study or Subgroup	Antioxida Mean SD	Total	Mean	no treatme SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl	Riskof Bias ABCDE
I.11.1 Carnitines									
Balercia 2005 (1)	59.9 8	15	44.6	7.7	5	15.1%	15.30 [7.43, 23.17]		
Balercia 2005 (2)	55.1 10.2	14	44.6	7.7	5	14.9%	10.50 [1.89, 19.11]	_ _ _	
Balercia 2005 (3)	56.5 11.6		44.6	7.7	5	14.9%			
							11.90 [2.96, 20.84]		
Dimitriadis 2010 (4)	35.6 15.5		24.7	10.8	22	15.2%	10.90 [3.43, 18.37]		5 5 6 5 5
.enzi 2003 (5)	11 15.5	43	8.8	10.8	43	15.5%	2.20 [-3.45, 7.85]		?? 🗣 ? 🗣
Peivandi 2010 (6)	48.3 0.16	15	17	0.09	15	16.0%	31.30 [31.21, 31.39]	-	? 🛨 🛨 🤶 ? (
Sigman 2006 (7)	28.6 38.1	12	37.6	33	9	8.4%	-9.00 [-39.49, 21.49]		
Subtotal (95% CI)	20.0 00.1	140	01.0		104	100.0%	11.91 [-0.85, 24.66]		
Heterogeneity: Tau ² = 264	.15; Chi² = 19		= 6 (P < 0.0	10001); I 2 =		100.070	1101[-0.00, 2400]	-	
est for overall effect: Z = '	1.83 (P = 0.07)							
.11.2 Coenzyme Q10									
ladjarzadeh 2011 (8)	41.91 15.6	23	38.3	18.4	24	100.0%	3.61 [-6.13, 13.35]		
Subtotal (95% CI)	41.01 10.0	23	00.0	10.4	24	100.0%	3.61 [-6.13, 13.35]		
	- 1-1 -	20			2.4	100.070	5.61[-6.16, 15.56]		
leterogeneity: Not applica 'est for overall effect: Z = I)							
		,							
. 11.3 Folic acid zizollahi 2013 (9)	53.3 15.3	26	44.9	33	25	100.0%	8.40 [-5.81, 22.61]	_ 	
ubtotal (95% Cl)	JJ.J 10.3	26	44.3	55	25	100.0%	8.40 [-5.81, 22.61] 8.40 [-5.81, 22.61]		
		20			20	100.0%	0.40 [-0.01, 22.01]		
leterogeneity: Not applica									
est for overall effect: Z = '	1.16 (P = 0.25)							
.11.4 Magnesium									
Zavaczki 2003 (10)	33.5 29.8	10	19	14.4	10	100.0%	14.50 [-6.01, 35.01]	-+- 	?????
Subtotal (95% CI)		10	-		10	100.0%	14.50 [-6.01, 35.01]		
leterogeneity: Not applica	ahlo								
est for overall effect: Z = 1)							
.11.5 N-acetylcysteine (I	NAC)								
, , , , , , , , , , , , , , , , , , , ,			10.0	04.0	~~	400.00	4 4 6 6 10 6 6 6 6 6 7		
arekat 2016 (11)	58.2 20.9		43.6	21.9		100.0%	14.60 [0.32, 28.88]		
ubtotal (95% CI)		15			20	100.0%	14.60 [0.32, 28.88]		
leterogeneity: Not applica est for overall effect: Z = 3)							
	2.00 () = 0.00	,							
11.6 PUFAs								_	
onquer 2000 (12)	39.4 24.3	9	47.2	18.6	5	15.8%	-7.80 [-30.56, 14.96]		?????
onquer 2000 (13)	32 16.1	10	47.2	18.6	4	19.0%	-15.20 [-35.98, 5.58]		?????
lartinez-Soto 2010 (14)	41.5 18.7		48	15.5	15	65.2%	-6.50 [-17.70, 4.70]		
ubtotal (95% CI)	41.0 10.7	40	40		24	100.0%	-8.35 [-17.40, 0.69]	-	
leterogeneity: Tau² = 0.00		df = 2 (F	P = 0.77); I ²	= 0%				•	
Test for overall effect: Z = 1	1.81 (P = 0.07)							
.11.7 Selenium									
Scott 1998 (15)	30.2 22.8	16	15.3	17.4	18	100.0%	14.90 [1.14, 28.66]		• ? • ? •
Subtotal (95% CI)	JJ.Z ZZ.O	16	10.0	1.1.4	18	100.0%	14.90 [1.14, 28.66]		
		10			10	100.0%	14.30 [1.14, 20.00]		
leterogeneity: Not applica									
est for overall effect: Z = 3	2.12 (P = 0.03)							
.11.8 Vitamin C + Vitami	nE								
reco 2005 (16)		32	38.7	21.5	32	100.0%	2.90 [-7,76, 13 56]		??
eco 2005 (16) Subtotal (95% CD)	41.6 22		38.7	21.5		100.0% 100.0 %	2.90 [-7.76, 13.56] 2.90 [-7.76, 13.56]	±	? ? ® ? ® (
ubtotal (95% CI)	41.6 22	32 32	38.7	21.5	32 32	100.0% 100.0 %	2.90 [-7.76, 13.56] 2.90 [-7.76, 13.56]	#	??
ubtotal (95% Ćl) leterogeneity: Not applica	41.6 22 able	32	38.7	21.5				*	2 2 8 3 8 (
ubtotal (95% Ćl) leterogeneity: Not applica	41.6 22 able	32	38.7	21.5				*	2 2 8 2 8
ubtotal (95% Ćl) leterogeneity: Not applica est for overall effect: Z = (41.6 22 able	32	38.7	21.5				*	2 2 8 2 8
ubtotal (95% ĆI) leterogeneity: Not applica est for overall effect: Z = I .11.9 Vítamin E	41.6 22 able 0.53 (P = 0.59	32)			32	100.0%	2.90 [-7.76, 13.56]	*	
ubtotal (95% ĆI) leterogeneity: Not applica est for overall effect: Z = I . 11.9 Vitamin E ner 2016 (17)	41.6 22 able	32) 22	38.7 42.5	21.5 28.7	32 23	100.0 %	2 .90 [-7.76, 13.56] 18.90 [4.90, 32.90]	*	2 2 0 2 0 2 2 0 2 0
ubtotal (95 [%] Ćl) leterogeneity: Not applica est for overall effect: Z = I . 11.9 Vítamin E ner 2016 (17) ubtotal (95% Cl)	41.6 22 able 0.53 (P = 0.59 61.4 18.3	32)			32 23	100.0%	2.90 [-7.76, 13.56]	*	
ubtotal (95% ĆI) leterogeneity: Not applica est for overall effect: Z = 1 .11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) leterogeneity: Not applica	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able	32) 22 22			32 23	100.0 %	2 .90 [-7.76, 13.56] 18.90 [4.90, 32.90]	*	
ubtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = (11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able	32) 22 22			32 23	100.0 %	2 .90 [-7.76, 13.56] 18.90 [4.90, 32.90]	*	
ubtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = (11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = (41.6 22 able 0.53 (P = 0.59 61.4 18.3 able	32) 22 22			32 23	100.0 %	2 .90 [-7.76, 13.56] 18.90 [4.90, 32.90]	*	
ubtotal (95% ČI) leterogeneity: Not applica est for overall effect: Z = 1 .11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) leterogeneity: Not applica est for overall effect: Z = 3 .11.10 Zinc	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00	32) 22 22 8)	42.5	28.7	32 23 23	100.0% 100.0% 100.0 %	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90]	*	3 3 € 3 3
ubtotal (95% ČI) eterogeneity: Not applica est for overall effect: Z = 1 11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = 3 11.10 Zinc	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able	32) 22 22 8)			32 23	100.0% 100.0% 100.0 %	2 .90 [-7.76, 13.56] 18.90 [4.90, 32.90]	*	
ubtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = 1 11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica set for overall effect: Z = 3 11.10 Zinc tizollahi 2013 (18) mu 2008 (19)	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00	32) 22 22 8) 32 11	42.5	28.7	32 23 23 25 8	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93]	*	
Ibtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = I 11.9 Vítamin E ner 2016 (17) Ibtotal (95% CI) eterogeneity: Not applica sis for overall effect: Z = I 11.10 Zinc izollahi 2013 (18) mu 2008 (19)	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7	32) 22 22 8) 32	42.5	28.7 33	32 23 23 25 8	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11]	*	
Ibtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = 1 11.9 Vítamin E her 2016 (17) Ibtotal (95% CI) eterogeneity: Not applica sat for overall effect: Z = 1 11.10 Zinc izollahi 2013 (18) mu 2008 (19)	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12	32) 22 22 8) 32 11 43	42.5 44.9 24	28.7 33 12	32 23 23 25 8	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93]	*	
Ibtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = (11.9 Vítamin E her 2016 (17) Ibtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = : 11.10 Zinc tizollahi 2013 (18) mu 2008 (19) Ibtotal (95% CI) eterogeneity: Tau ² = 171	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4	32) 22 8) 32 11 43 47, df = 1	42.5 44.9 24	28.7 33 12	32 23 23 25 8	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93]	*	
ubtotal (95% ČI) eterogeneity: Not applica est for overall effect: Z = 1 .11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = 2 .11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% CI) eterogeneity: Tau ² = 171 est for overall effect: Z = 1	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4	32) 22 8) 32 11 43 47, df = 1	42.5 44.9 24	28.7 33 12	32 23 23 25 8	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93]		
ubtotal (95% Čl) leterogeneity: Not applica iest for overall effect: Z = 1 .11.9 Vitamin E iner 2016 (17) ubtotal (95% Cl) leterogeneity: Not applica est for overall effect: Z = 2 .11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% Cl) leterogeneity: Tau ² = 171 iest for overall effect: Z = 2 .11.11 Zinc + Folic acid	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 (P = 0.14	32) 22 8) 32 11 43 17, df = 1	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88]		
ubtotal (95% Čl) leterogeneity: Not applica iest for overall effect: Z = 1 .11.9 Vitamin E iner 2016 (17) ubtotal (95% Cl) leterogeneity: Not applica est for overall effect: Z = 2 .11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% Cl) leterogeneity: Tau ² = 171 iest for overall effect: Z = 2 .11.11 Zinc + Folic acid	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4	32) 22 8) 32 11 43 17, df = 1) 29	42.5 44.9 24	28.7 33 12	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93]		
reco 2005 (16) ubtotal (95% CI) leterogeneity: Not applica iest for overall effect: Z = 1 .11.9 Vitamin E iner 2016 (17) ubtotal (95% CI) leterogeneity: Not applica est for overall effect: Z = 1 .11.10 Zinc zizollahi 2013 (18) vmu 2008 (19) ubtotal (95% CI) leterogeneity: Tau ² = 171 est for overall effect: Z = 1 .11.11 Zinc + Folic acid zizollahi 2013 (20) ubtotal (95% CI)	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 (P = 0.14	32) 22 8) 31 43 17, df = 1	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88]		
ubtotal (95% ČI) eterogeneity: Not applica est for overall effect: Z = 1 .11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = 2 .11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% CI) eterogeneity: Tau ² = 171 est for overall effect: Z = 1 .11.11 Zinc + Folic acid zizollahi 2013 (20) ubtotal (95% CI)	41.6 22 able 0.53 ($P = 0.59$ 61.4 18.3 able 2.65 ($P = 0.00$ 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 ($P = 0.14$ 51.7 17.2	32) 22 8) 32 11 43 17, df = 1) 29	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88] 6.80 [-7.57, 21.17]		
ubtotal (95% ĆI) leterogeneity: Not applica est for overall effect: Z = 1 .11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) leterogeneity: Not applica est for overall effect: Z = 3 .11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% CI) leterogeneity: Tau ² = 171 est for overall effect: Z = 4 .11.11 Zinc + Folic acid zizollahi 2013 (20)	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 (P = 0.14 51.7 17.2 able	32) 22 8) 32 8) 32 11 43 17, df = 1) 29 29	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88] 6.80 [-7.57, 21.17]		
ubtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = (11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = (11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% CI) eterogeneity: Tau ² = 171 est for overall effect: Z = (11.11 Zinc + Folic acid zizollahi 2013 (20) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = (41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 (P = 0.14 51.7 17.2 able	32) 22 8) 32 8) 32 11 43 17, df = 1) 29 29	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 25 8 33	100.0% 100.0% 100.0% 45.9% 54.1% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88] 6.80 [-7.57, 21.17]		
ubtotal (95% ĆI) eterogeneity: Not applica est for overall effect: Z = 1 11.9 Vitamin E ner 2016 (17) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = 2 11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% CI) eterogeneity: Tau ² = 171 est for overall effect: Z = 1 11.11 Zinc + Folic acid zizollahi 2013 (20) ubtotal (95% CI) eterogeneity: Not applica est for overall effect: Z = 1 11.12 Zinc + Vitamin E	41.6 22 able 0.53 ($P = 0.59$ 61.4 18.3 able 2.65 ($P = 0.00$ 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 ($P = 0.14$ 51.7 17.2 able 0.93 ($P = 0.35$	32) 22 8) 32 11 43 17, df = 1) 29 29	42.5 44.9 24 (P = 0.03) 44.9	28.7 33 12 ; ² = 78% 33	32 23 23 23 23 25 8 33 25 25	100.0% 100.0% 45.9% 54.1% 100.0% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88] 6.80 [-7.57, 21.17] 6.80 [-7.57, 21.17]		
ubtotal (95% Cl) eterogeneity: Not applica est for overall effect: Z = 1 11.9 Vitamin E ner 2016 (17) ubtotal (95% Cl) eterogeneity: Not applica est for overall effect: Z = 3 11.10 Zinc zizollahi 2013 (18) mu 2008 (19) ubtotal (95% Cl) eterogeneity: Tau ² = 171 est for overall effect: Z = 4 11.11 Zinc + Folic acid zizollahi 2013 (20) ubtotal (95% Cl) eterogeneity: Not applica	41.6 22 able 0.53 (P = 0.59 61.4 18.3 able 2.65 (P = 0.00 48.9 27.7 49 12 .19; Chi [#] = 4.4 1.47 (P = 0.14 51.7 17.2 able	32) 22 8) 32 11 43 17, df = 1) 29 29	42.5 44.9 24 (P = 0.03)	28.7 33 12 1 ²	32 23 23 23 23 25 8 33 25 25	100.0% 100.0% 45.9% 54.1% 100.0% 100.0%	2.90 [-7.76, 13.56] 18.90 [4.90, 32.90] 18.90 [4.90, 32.90] 4.00 [-12.11, 20.11] 25.00 [14.07, 35.93] 15.37 [-5.14, 35.88] 6.80 [-7.57, 21.17]		

Antioxidants for male subfertility (Review)

Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Figure 9. (Continued)

	·								
Omu 2008 (21) Subtotal (95% CI)	50	18	12 12	24	12			26.00 [12.85, 39.14 26.00 [12.85, 39.1 5	
Heterogeneity: Not applicabl Test for overall effect: Z = 3.8		: 0.000 [,]	1)						
			.,						
1.11.13 Zinc + Vitamin E + V									
Omu 2008 (22) Subtotal (95% Cl)	50	20	14 14	24	12	8 8		26.00 [12.62, 39.3] 26.00 [12.62, 39.3]	
Heterogeneity: Not applicabl Test for overall effect: Z = 3.8		: 0.000	1)						
1.11.14 Combined antioxida	nts								
Gopinath 2013 (23)		11.3	43	42.1	10.6	18	21.9%	8.00 [2.05, 13.9	asi 🚽 🖷 🖷 🖷 🖷 😨 🕐
	51.6	13	46	42.1	10.6	18	21.1%	9.50 [3.33, 15.6]	
Morgante 2010 (25)	40.3	6.4	90	25.1	4.2	90		15.20 [13.62, 16.7]	
Scott 1998 (26)		20.3	30	15.3	17.4	18	10.4%	11.70 [0.87, 22.5]	
Sivkov 2011 (27)		20.3	15	18	17.4	15	7.3%	20.30 [6.77, 33.8]	
Subtotal (95% CI)	30.3	20.5	224	10	17.4	159	100.0%	12.43 [8.39, 16.46	
Heterogeneity: Tau ² = 10.15;	Chi ≧ =	= 8 82		P = 0.07	I ² = 55%				~ ~
Test for overall effect: Z = 6.0				= 0.017	1 = 00 %				
			,						
									-50 -25 0 25 50 Favours placebo/no treatm Favours antioxidant
Test for subgroup difference	s: Chi	2 = 34.7	77, df=	13 (P = 0	.0009), I ² =	62.6%			Favours placebolito treatin Favours antioxidant
Footnotes									Risk of bias legend
(1) L-carnitine 3000 mg.									(A) Random sequence generation (selection bias)
(2) L-carnitine 2000 mg + L-a	retvl	carnitir	ne 1000	ma					(B) Allocation concealment (selection bias)
(3) L-acetyl carnitine 3000 m		o arritin	10 1000	ing.					(C) Blinding of participants and personnel (performance bias)
(4) L-carnitine 1000 mg.	y.								(D) Blinding of outcome assessment (detection bias)
(5) L-carnitine 2000 mg. Only	mon	0 00 9	Daivon	,					(E) Incomplete outcome data (attrition bias)
(6) L-carnitine 2000 mg. 2 m					ling to out	borroo		d (not SE)	(F) Selective reporting (reporting bias)
					ing to aut	norrea	ily SD use	su (not 5E).	(r) Selective reporting (reporting bias)
(7) L-carnitine 2000 mg + L-a	icetylo	carmun	e 1000	mg.					
(8) Coenzyme Q10 200 mg.									
(9) Folic acid 5 mg. After vari	cocele	ectomy.							
(10) Magnesium 3000 mg.									
(11) N-acetylcysteine (NAC)		-		celectomy					
(12) Docosahexaenoic acid			-						
(13) Docosahexaenoic acid			-						
(14) Docosahexaenoic acid	DHA)	1000 r	mg. At 1	0 weeks.					
(15) Selenium 100 µg.		-							
(16) Vitamin C 1000 mg + Vit				2 month	5.				
(17) Vitamin E 600 mg. Varic			ts.						
(18) Zinc 66 mg. After varicoo	electo	omy.							
(19) Zinc 500 mg.									
(20) Zinc 66 mg + Folic acid			aricocel	ectomy.					
(21) Zinc 400 mg + Vitamin E		-							
(22) Zinc 400 mg + Vitamin E									
(23) 1 tablet FDC (Coenzyme		-					-		
(24) 2 tablets FDC (Coenzym									
(25) L-arginine 1660 mg + ca	arnitin	ie 150 r	mg + ac	etyl-carni	tine 50 mg	g + gins	eng 200 i	mg.	
(26) Selenium 100 µg + Vitar	nin A	1 mg +	Vitami	n C 10 m	g + Vitami	n E 15 r	ng.		
(27) Selznic (selenium + zinc	+ vita	amins).							

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.11.1 Five studies (seven intervention arms) comparing carnitines with placebo or no treatment did not show an increase in total sperm motility (Balercia 2005; Dimitriadis 2010; Lenzi 2003; Peivandi 2010; Sigman 2006) (MD 11.91, 95% CI -0.85 to 24.66, 244 men, 5 RCTs, 7 intervention arms, P = 0.07, I² = 97%). One study (Lenzi 2003) did not report standard deviations (SDs); we assumed the outcome to have an SD equal to the highest SD from other studies within this analysis. The heterogeneity was extremely high due to the fact that one study (Peivandi 2010) had very small SDs when compared to data in the other studies but the authors confirmed, when contacted, that they are indeed SDs and not standard errors (SEs). When these two studies were removed from the analysis carnitines did show an increase in total sperm motility when compared with placebo or no treatment, with low heterogeneity (MD 11.83, 95% CI 7.78 to 15.87, 128 men, 3 RCTs, 5 intervention arms, P < 0.00001, $I^2 = 0\%$).

1.11.2 Coenzyme Q10 did not show evidence of an increase in total sperm motility compared with placebo (Nadjarzadeh 2011) (MD 3.61, 95% CI -6.13 to 13.35, 47 men, 1 RCT, P = 0.47, $I^2 =$ not applicable).

1.11.3 Folic acid did not show evidence of an increase in total sperm motility compared with placebo (Azizollahi 2013) (MD 8.40, 95% CI -5.81 to 22.61, 51 men, 1 RCT, P = 0.25, $I^2 =$ not applicable).

1.11.4 Magnesium did not show evidence of an increase in total sperm motility compared with placebo (Zavaczki 2003) (MD 14.50, 95% CI -6.01 to 35.01, 20 men, 1 RCT, P = 0.17, $I^2 = not$ applicable).

1.11.5 N-acetylcysteine (NAC) did not show evidence of an increase in total sperm motility compared with placebo (Barekat 2016) (MD 14.60, 95% CI 0.32 to 28.88, 35 men, P = 0.05, I^2 = not applicable).

1.11.6 Two studies (three intervention arms) compared polyunsaturated fatty acids (PUFAs) with placebo and did not show evidence of an increase in total sperm motility (Conquer 2000;

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Antioxidants for male subfertility (Review)

Martinez-Soto 2010) (MD -8.35, 95% CI -17.40 to 0.69, 64 men, 3 RCT, P = 0.07, $I^2 = 0$ %).

1.11.7 Selenium did show an increase in total sperm motility compared with placebo (Scott 1998) (MD 14.90, 95% Cl 1.14 to 28.66, 34 men, 1 RCT, P = 0.03, $I^2 = not$ applicable).

1.11.8 Vitamin C plus Vitamin E did not show evidence of an increase in total sperm motility compared with placebo (Greco 2005) (MD 2.90, 95% CI -7.76 to 13.56, 64 men, 1 RCT, P = 0.59, I^2 = not applicable).

1.11.9 Vitamin E did show an increase in total sperm motility compared with no treatment (Ener 2016) (MD 18.90, 95% CI 4.90 to 32.90, 45 men, 1 RCT, P = 0.08, l^2 = not applicable).

1.11.10 Two studies compared zinc with placebo or no treatment and did not show evidence of an increase in total sperm motility (Azizollahi 2013; Omu 2008). As the heterogeneity was high (78%) we have not reported the pooled analysis; individually their results were:

- Azizollahi 2013 showed did not show evidence of an increase in total sperm motility at three months when compared to placebo (MD 4.00, 95% CI -12.11 to 20.11, 57 men);
- Omu 2008 showed an increase in total sperm motility at three months when compared to no treatment (MD 25.00, 95% Cl 14.07 to 35.93, 19 men).

1.11.11 Zinc plus folic acid did not show evidence of an increase in total sperm motility compared with placebo (Azizollahi 2013) (MD 6.80, 95% CI -7.57 to 21.17, 54 men,1 RCT, P = 0.93, I² = not applicable).

1.11.12 Zinc plus vitamin E did show an increase in total sperm motility compared with no treatment (Omu 2008) (MD 26.00, 95% CI 12.85 to 39.15, 20 men, 1 RCT, $P = 0.0001 I^2 = not applicable$)

1.11.13 Zinc plus vitamin E plus vitamin C did show an increase in total sperm motility compared with no treatment (Omu 2008) (MD 26.00, 95% CI 12.62 to 39.38, 22 men, 1 RCT, P - 0.0001, I^2 = not applicable).

1.11.14 Four studies (five intervention arms) compared combined antioxidants with placebo or no treatment (Gopinath 2013; Morgante 2010; Scott 1998; Sivkov 2011). There was an increase in total sperm motility (MD 12.43, 95% CI 8.39 to 16.46, 383 men, 4 RCTs, P < 0.00001, I² = 55%). However, there was high heterogeneity of 55%. One study (Morgante 2010) had not described the method of randomisation and carried 40.8% of the weight in this analysis; a sensitivity analysis for this risk of bias still showed an increase in total sperm motility, however now with low heterogeneity (MD 10.02, 95% CI 6.20 to 13.84, 203 men, 3 RCTs, P < 0.00001, I² = 0%).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 853.44$, P < 0.00001).

1.12 Data not usable for meta-analysis

Analysis 1.12

Four studies (Cavallini 2004; Galatioto 2008; Kessopoulou 1995; Raigani 2014) provided data as medians or percentages, and

therefore they could not be used in the forest plot. Three of these studies (Galatioto 2008; Kessopoulou 1995; Raigani 2014) found no difference between the intervention and control or no treatment for this outcome. Two studies (Cavallini 2004; Lenzi 2003) indicated that there might be some improvement in sperm motility in the intervention group when measured at three months, however these data were not rigorous and no conclusions could be made.

1.13 Total sperm motility at six months or less; type of antioxidant

See Analysis 1.13.

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.13.1 Three studies compared carnitines with placebo (Balercia 2005; Lenzi 2004; Sigman 2006) . As the heterogeneity was high (78%) we have not reported the pooled analysis for these studies; individually their results were:

- Balercia 2005 (three arms) showed an increased total sperm motility at six months when compared to placebo (MD 21.13, 95% Cl 14.58 to 27.68, 30 men, P < 0.00001);
- Lenzi 2004 showed no evidence of increased total sperm motility at six months when compared to placebo (MD 1.50, 95% CI-4.56 to 7.56, 56 men, P = 0.63);
- Sigman 2006 showed no evidence of increased total sperm motility at six months when compared to placebo (MD -7.70, 95% CI -33.24 to 17.84, 21 men, P = 0.55).

1.13.2 Three studies compared coenzyme Q10 with placebo (Balercia 2009; Safarinejad 2009a; Safarinejad 2012). As the heterogeneity was extremely high (99%) we we have not reported the pooled analysis; individually their results were:

- Balercia 2009 did show an increased total sperm motility when compared to placebo (MD 4.50, 95% 0.74 to 8.26, 60 men, P = 0.02);
- Safarinejad 2009a did show an increased total sperm motility when compared to placebo (MD 4.50, 95% Cl 3.89 to 5.11, 194 men, P < 0.000001);
- Safarinejad 2012 did show an increased total sperm motility when compared to placebo (MD 10.40, 95% CI 9.77 to 11.03, 225 men, P < 0.000001).

1.13.3 Folic acid did not show evidence of increased total sperm motility when compared to placebo (MD 1.70, 95% CI -8.49 to 11.89, 51 men, P = 0.74, l^2 = not applicable) (Azizollahi 2013).

1.13.4 N-acetylcysteine (NAC) did show increased total sperm motility when compared to placebo (MD 1.90, 95% CI 1.20 to 2.60, 211 men, $P \le 0.0001$, I^2 = not applicable) (Safarinejad 2009).

1.13.5 Selenium did show increased total sperm motility when compared to placebo (MD 3.20, 95% CI 2.50 to 3.90, 211 men, P \leq 0.00001, I² = not applicable) (Safarinejad 2009).

1.13.6 Selenium plus N-acetylcysteine did show increased total sperm motility when compared to placebo (MD 6.30, 95% CI 5.60 to 7.00, 210 men, $P \le 0.00001$, I^2 = not applicable) (Safarinejad 2009).

Antioxidants for male subfertility (Review)

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

1.13.7 Vitamin D plus calcium did not show evidence of increased total sperm motility when compared to placebo (MD -4.00, 95% CI -9.57 to 1.57, 260 men, P = 0.16, I^2 = not applicable) (Blomberg Jensen 2018).

1.13.8 Vitamin E did show increased total sperm motility when compared to placebo or no treatment (MD 11.20, 95% CI 4.70 to 17.70, 132 men, 2 RCTs, P = 0.0007, I^2 = 16%) (Ener 2016; Suleiman 1996).

1.13.9 Zinc did not show evidence of increased total sperm motility when compared to placebo (MD 0.00, 95% CI -10.19 to 10.19, 57 men, P = 1.00, $I^2 =$ not applicable) (Azizollahi 2013).

1.13.10 Zinc plus folic acid did not show evidence of increased total sperm motility when compared to placebo (MD 2.60, 95% CI -8.82 to 14.02, 54 men, P = 0.66, l^2 = not applicable) (Azizollahi 2013).

1.13.11 Combined antioxidants did not show evidence of increased total sperm motility when compared to placebo or no treatment (Busetto 2018; Gopinath 2013). As the heterogeneity was high (80%) we we have not reported the pooled analysis; individually their results were:

- Busetto 2018 did show increased total sperm motility when compared to placebo (MD 4.40, 95% CI 1.49 to 7.31, 104 men, P = 0.003);
- Gopinath 2013 with three arms, did show increased total sperm motility when compared to placebo(MD 12.44, 95% CI 8.29 to 16.59, 125 men, P < 0.00001).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 239.07$, P < 0.00001).

1.14 Data not usable for meta-analysis

See Analysis 1.14.

Three studies (Cavallini 2004; Micic 2017; Wong 2002) provided data as medians, no SDs or percentages, and therefore could not be used in the forest plot. All studies indicated that there might be some increase in sperm motility in the intervention group when measured at six months, however these data are not rigorous and no conclusions could be made.

1.15 Total sperm motility at nine months or more; type of antioxidant

See Analysis 1.15.

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.15.1 One study reported on carnitines, and did show increased total sperm motility when compared to placebo (Balercia 2005):

- L-carnitine did show increased total sperm motility when compared to placebo (MD 11.54, 95% CI 1.66 to 21.42, 19 men, P = 0.02);
- L-acetyl carnitine did not show evidence of increased total sperm motility when compared to placebo (MD 7.84, 95% CI -1.41 to 17.09, 20 men, P = 0.10);

 L-carnitine + L-acetyl carnitine did not show evidence of increased total sperm motility when compared to placebo (MD 6.27, 95% CI -3.36 to 15.90, 20 men, P = 0.20).

1.15.2 Three studies reported on coenzyme Q10 (Balercia 2009; Safarinejad 2009a; Safarinejad 2012). As the heterogeneity was extremely high (98%) we we have not reported the pooled analysis; individually their results were:

- Balercia 2009 did not show evidence of increased total sperm motility when compared to placebo (MD -2.30, 95% CI -5.94 to 1.34, 60 men, P = 0.22);
- Safarinejad 2009a did show increased total sperm motility when compared to placebo (MD 1.40, 95% CI 0.79 to 2.01, 194 men, P < 0.00001);
- Safarinejad 2012 did show increased total sperm motility when compared to placebo (MD 5.40, 95% CI 4.80 to 6.00, 225 men, P < 0.00001).

1.15.4 Vitamin E did not show evidence of increased total sperm motility when compared to no treatment (Ener 2016) (MD 2.20, 95% CI -8.48 to 12.88, 45 men, 1 RCT, P = 0.69, $I^2 = not$ applicable).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 3.42$, P = 0.18).

1.16 Total sperm motility over time

See Analysis 1.16.

This analysis was only useful in directly comparing the same studies reporting at the three time points and not in comparing results of meta-analyses that included different subsets of studies.

1.16.1 Total sperm motility at three months or less. We analysed this outcome using a random-effects model (MD 10.19, 95% CI 4.35 to 16.04, 1105 men, 18 RCTs, 27 intervention arms, P = 0.006, $I^2 = 97\%$) and used subtotals (Attallah 2013; Azizollahi 2013; Balercia 2005; Barekat 2016; Conquer 2000; Dimitriadis 2010; Ener 2016; Gopinath 2013; Greco 2005; Lenzi 2003; Martinez-Soto 2010; Morgante 2010; Nadjarzadeh 2011; Omu 2008; Peivandi 2010; Scott 1998; Sigman 2006; Zavaczki 2003).

1.16.2 Total sperm motility at six months. We analysed this outcome using a random-effects model (MD 6.00, 95% CI 3.92 to 8.09, 1768 men,13 RCTs, 20 intervention arms, P < 0.000001, I² = 95%) and used subtotals (Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Busetto 2018; Ener 2016; Gopinath 2013; Lenzi 2004; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012; Sigman 2006; Suleiman 1996).

1.16.3 Total sperm motility at nine months or more. We analysed this outcome using a random-effects model (MD 3.29, 95% CI 0.36 to 6.23, 583 men, 5 RCTs, seven intervention arms, $P = 0.03 I^2 =$ 94%) and used subtotals (Balercia 2005; Balercia 2009; Ener 2016; Safarinejad 2009a; Safarinejad 2012).

Two of the studies included in the analysis of the semen parameter outcomes (Safarinejad 2009; Safarinejad 2009a) had consistently reported SDs very much smaller than those reported by most of the other included studies. The review authors considered that these were potentially erroneous, but an attempt to check with the study authors was unsuccessful. One other study (Peivandi 2010) also had very small SDs when compared to data in the other studies, but the

Antioxidants for male subfertility (Review)

authors confirmed, when contacted, that they are indeed SDs and not SEs. We tried to manage these analyses in two different ways: firstly we assumed the outcome to have a SD equal to the highest SD from other studies within the same analysis and secondly by treating the data as SEs and converting back to SDs, however heterogeneity remained high in both situations so for the final analyses we reverted to the SDs as reported in the studies. The low SDs may have been due to the strict inclusion and exclusion criteria indicating that the study was homogenous in nature, however we were unable to carry out a sensitivity analysis on these studies as pooling was not possible due to high heterogeneity.

1.17 Progressive sperm motility at three months or less; type of antioxidant

See Analysis 1.17 and Figure 10.

Figure 10. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.17 Progressive sperm motility at 3 months or less; type of antioxidant.

tudy or Subgroup .17.1 Carnitines	Mean	oxidan SD	t Total	Mean	no treatm SD	Total	Weight	Mean Difference IV, Random, 95% Cl	Mean Difference IV, Random, 95% Cl	Riskof Bias ABCDE
alercia 2005 (1)	34.9	9.2	15	22.3	7.8	5	2.1%	12.60 [4.33, 20.87]		
alercia 2005 (1)	33.9	8.4	14	22.3	7.8	5	2.1%	11.60 [3.47, 19.73]		
alercia 2005 (2) alercia 2005 (3)	38.9	7.1	15	22.3	7.8	5	2.2%	16.60 [8.88, 24.32]		
lehni 2014 (4)	24.6	1.5	51	3.3	2.7	59	43.6%			22422
eivandi 2010 (5)	24.0	0.2	15	3.3 9	0.9	15	43.0%	21.00 [20.53, 21.47]		2002
ubtotal (95% CI)	50	0.2	110		0.5	89	100.0%		T T	
leterogeneity: Tau² = 0.75 est for overall effect: Z = 3				P = 0.03); I	* = 63%					
.17.2 Coenzyme Q10		0.000	,01,7							
ladiarzadeh 2011	28.9	14.8	23	24.3	13.6	24	100.0%	4.60 [-3.54, 12.74]		
ubtotal (95% CI)	20.0	11.0	23	21.0	10.0	24	100.0%	4.60 [-3.54, 12.74]		
leterogeneity: Not applica est for overall effect: Z = 1		0.27)								
.17.3 Docosahexaenoic										
lartinez-Soto 2010 (6)	37.8	3.2	21	44.4	2.8	15	100.0%	-6.60 [-8.57, -4.63]		
ubtotal (95% CI)	01.0	0.2	21		2.0	15	100.0%	-6.60 [-8.57, -4.63]	•	
eterogeneity: Not applica est for overall effect: Z = 6		0 0000	11)							
17.4 Folic acid	5.51 (i ··	0.0000	,,,							
zizollahi 2013 (7)	48.6	32.6	26	34.1	36.5	25	27.7%	14.50 [-4.52, 33.52]		
oonyarangkul 2015 (7)	40.0 20.4		20 15	34.1 18.1	36.5 13.4	25 15	72.3%	2.30 [-8.03, 12.63]		20022
ubtotal (95% CI)	20.4	10.4	41	10.1	10.4	40	100.0%	5.68 [-5.02, 16.38]		
eterogeneity: Tau² = 13.4 est for overall effect: Z = 1				P = 0.27); I	²=18%					
17.5 N-acetylcysteine (f		5.55)								
tallah 2013 (9)	22.5	11	30	18.7	7.8	30	100.0%	3.80 [-1.03, 8.63]	—	??.? ?
ubtotal (95% CI)	22.0		30			30	100.0%	3.80 [-1.03, 8.63]	₩	
eterogeneity: Not applica	able								-	
est for overall effect: Z = 1		0.12)								
17.6 PUFAs									_	
aghighian 2015 (10)	33.5	2.9	23 23	27.1	2.4	21 21	100.0% 100.0 %	6.40 [4.83, 7.97] 6.40 [4.83, 7.97]	—	
ubtotal (95% CI) leterogeneity: Not applica		0 0000				21	100.0%	0.40 [4.85, 7.97]	•	
est for overall effect: Z = 8	3.UU (P <	0.0000	,,,							
.17.7 Vitamin C										
yrus 2015 (11)	54.5	18.3	46	44.9	21.4	69	48.5%	9.60 [2.29, 16.91]	- -	
awson 1990 (12)		22.1	10	49	25.3	5	27.5%	2.00 [-24.07, 28.07]		22.2.2
awson 1990 (13)	94	32	10	49	25.3	5	24.0%	45.00 [15.25, 74.75]		
ubtotal (95% CI)			66		2000	79	100.0%	16.03 [-3.90, 35.95]		
leterogeneity: Tau² = 199 est for overall effect: Z = 1			df = 2	(P = 0.06);	; I² = 64%					
.17.8 Vitamin C + Vitami	nE								\perp	
olf 1999 (14)	34.1	11.8	15	33.9	16.3		100.0%	0.20 [-9.77, 10.17]		•?•?•
ubtotal (95% CI)			15			16	100.0%	0.20 [-9.77, 10.17]	•	
leterogeneity: Not applica										
est for overall effect: Z = (0.04 (P =	0.97)								
17.9 Zinc										
zizollahi 2013 (15)	40.8	35.6	32	34.1	36.5	25	5.7%	6.70 [-12.19, 25.59]	<u> </u>	
harifzadeh 2016 (16)	25.5	11.1	51	24.7	12.5	49	94.3%	0.80 [-3.84, 5.44]	📮 🖉	
ubtotal (95% CI)			83			74	100.0%	1.14 [-3.37, 5.64]	•	
eterogeneity: Tau² = 0.00 est for overall effect: Z = 0			f=1 (P	= 0.55); I²	= 0%					
17.10 Zinc + Folic acid										
zizollahi 2013 (17)	37.9	27.5	29	34.1	36.5	25	100.0%	3.80 [-13.66, 21.26]		
ubtotal (95% Cl)	51.5	21.0	29	34.1	55.5		100.0%		-	
eterogeneity: Not applica	able									
est for overall effect: Z = (0.67)								
17.11 Combined antioxi										
organte 2010 (18)	40.3	6.4	90	25.1	4.2			15.20 [13.62, 16.78]	📮	? ? 🖲 ? ? (
ubtotal (95% CI)			90			90	100.0%	15.20 [13.62, 16.78]	•	
leterogeneity: Not applica		- 0.000	1041							
est for overall effect: Z = 1	10.84 (P	∽ U.UUL	JUT)							
								_	-50 -25 0 25 50	_
								F	avours placebo/no treatm Favours antioxidant	
st for subgroup differen	ces: Chi ^a	² = 634	89 df=	= 10 (P < 0	00001) 8	² = 98.4	96	1.6	avours placeborrio a cauni il avours anaoxidant	

Antioxidants for male subfertility (Review)

Figure 10. (Continued)

Test for subgroup differences: Chi² = 634.89, df = 10 (P < 0.00001), l² = 98.4% Footnotes (1) L-acetyl carnitine 3000 mg (2) L-carnitine 2000 mg + L-acetyl carnitine 1000 mg. (3) L-carnitine 3000 mg. (4) L-carnitine 1000 mg (5) L-carnitine 2000 mg, 2 months (crossover trial), According to author really SD used (not SE). (6) Docosahexaenoic acid (DHA) 1000 mg. At 10 weeks. (7) Folic acid 5 mg. After varicocelectomy (8) Folic acid 5 mg. (9) N-acetylcysteine (NAC) 600 mg (10) Alpha-lipoic acid (ALA) 600 mg. (11) Vitamin C 500 mg. After varicocelectomy (12) Vitamin C 200 mg (13) Vitamin C 1000 mg. (14) Vitamin C 1000 mg + Vitamin E 800 mg. At 2 months. (15) Zinc 66 mg. After varicocelectomy. (16) Zinc 10 ml solution of 0.5%. (17) Zinc 66 mg + Folic acid 5 mg, After varicocelectomy, (18) L-arginine 1660 mg + carnitine 150 mg + acetyl-carnitine 50 mg + ginseng 200 mg.

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.17.1 Three studies with carnitines reported an increase in progressive sperm motility when compared to placebo (Balercia 2005; Mehni 2014; Peivandi 2010). As the heterogeneity was moderately high (63%), we have not reported the pooled analysis; individually their results were:

- Balercia 2005 showed an increase in progressive sperm motility when compared to placebo (MD 13.72, 95% CI 9.08 to 18.35, 59 men, P < 0.00001);
- Mehni 2014 showed an increase in progressive sperm motility when compared to placebo (MD 21.30, 95% CI 20.50 to 22.10, 110 men, P < 0.00001);
- Peivandi 2010 showed an increase in progressive sperm motility when compared to placebo (MD 21.00, 95% CI 20.53 to 21.47, 30 men, P < 0.00001).

1.17.2 Coenzyme Q10 did not show evidence of increased progressive sperm motility when compared to placebo (Nadjarzadeh 2011) (MD 4.60, 95% CI -3.54 to 12.74, 47 men, 1 RCT, P = 0.27, $I^2 =$ not applicable).

1.17.3 Docosahexaenoic (DHA) did show an increase in progressive sperm motility when compared to placebo (Martinez-Soto 2010) (MD -6.60, 95% CI -8.57 to -4.63, 36 men, 1 RCT, P< 0.00001, I^2 = not applicable).

1.17.4 Two studied with folic acid did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013; Boonyarangkul 2015) (MD 5.68, 95% CI -5.02 to 16.38, 81 men, 2 RCTs, P = 0.3, $I^2 = 18\%$).

1.17.5 N-acetylcysteine (NAC) did not show evidence of increased progressive sperm motility when compared to no treatment (Attallah 2013) (MD 3.80, 95% CI -1.03 to 8.63, 60 men, 1 RCT, P = 0.12, I^2 = not applicable).

1.17.6 PUFAs did not show evidence of increased progressive sperm motility when compared to placebo (Haghighian 2015) (MD 6.40, 95% CI 4.83 to 7.97, 44 men,1 RCT, P < 0.00001, I² = not applicable).

Favours placebo/no treatm Favours antioxidant

Risk of bias legend

- (A) Random sequence generation (selection bias)
- (B) Allocation concealment (selection bias)
- (C) Blinding of participants and personnel (performance bias)
- (D) Blinding of outcome assessment (detection bias)
- (E) Incomplete outcome data (attrition bias)
- (F) Selective reporting (reporting bias)

1.17.7 Two studies with vitamin C did show an increase in progressive sperm motility when compared to placebo (Cyrus 2015; Dawson 1990). As the heterogeneity was high (64%) we have not reported the pooled analysis; individually their results were:

- Cyrus 2015 showed an increase in progressive sperm motility when compared to placebo (MD 9.60, 95% CI 2.29 to 16.91, 115 men, P = 0.01);
- Dawson 1990 showed an increase in progressive sperm motility when vitamin C 1000 mg was compared to placebo (MD 45.00, 95% CI 15.25 to 74.75,15 men, P = 0.03);
- Dawson 1990 did not show evidence of increased progressive sperm motility when vitamin C 200 mg was compared to placebo (MD 2.00, 95% CI -24.07 to 28.07, 15 men, P = 0.88).

1.17.8 Vitamin C plus vitamin E did not show evidence of increased progressive sperm motility when compared to placebo (Rolf 1999) (MD 0.20, 95% CI -9.77 to 10.17, 31 men, 1 RCT, P = 0.97, I^2 = not applicable).

1.17.9 Two studies with zinc did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013; Sharifzadeh 2016) (MD 1.14, 95% CI -3.37 to 5.64, 157 men, 2 RCTs, P = 0.62, $I^2 = 0$ %).

1.17.10 Zinc plus folic acid did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013) (MD 3.80, 95% CI -13.66 to 21.26, 54 men, 1 RCT, P = 0.67, I^2 = not applicable).

1.17.11 Combined antioxidants did not show evidence of increased progressive sperm motility when compared to placebo (Morgante 2010) (MD 15.20, 95% CI 13.62 to 16.78, 180 men, 1 RCT, P < 0.00001, I^2 = not applicable).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 1152.65$, P < 0.00001).

1.18 Data not usable for meta-analysis

See Analysis 1.18.

Two studies provided data as medians with interquartile ranges and therefore could not be used in the forest plot (Gamidov 2017;

Antioxidants for male subfertility (Review)

Micic 2017). These data are not rigorous and no conclusions could be made.

1.19 Progressive sperm motility at six months; type of antioxidant

See Analysis 1.19.

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.19.1 Carnitines did show an increase in progressive sperm motility when compared with placebo (Balercia 2005) (MD 15.94, 95% CI 11.01 to 20.87, 59 men, 1 RCT, 3 intervention arms, P < 0.00001, I^2 = not applicable).

1.19.2 Coenzyme Q10 did show an increase in progressive sperm motility when compared to placebo (Balercia 2009) (MD 5.00, 95% Cl 2.13 to 7.87, 60 men,1 RCT, P = 0.0006, l² = not applicable).

1.19.3 Two studies with folic acid did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013; Boonyarangkul 2015) (MD -1.77, 95% CI -10.21 to 6.67, 81 men, 2 RCTs, P = 0.68, $I^2 = 0$ %).

1.19.4 Vitamin D with calcium did not show evidence of increased progressive sperm motility when compared to placebo (Blomberg Jensen 2018) (MD -4.00, 95% CI -9.59 to 1.59, 260 men, P = 0.16, I^2 = not applicable).

1.19.5 Zinc did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013) (MD 2.00, 95% CI -13.56 to 17.56, 57 men, 1 RCT, P = 0.80, I^2 = not applicable).

1.19.6 Zinc plus folic acid did not show evidence of increased progressive sperm motility when compared to placebo (Azizollahi 2013) (MD 2.70, 95% CI -14.58 to 19.98, 54 men, 1 RCT, P = 0.76, I^2 = not applicable).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 31.49$, P < 0.000001).

1.20 Data not usable for meta-analysis

See Analysis 1.20.

One study provided data as medians with interquartile range and therefore could not be used in the forest plot (Micic 2017). Results indicated that there might be increased progressive sperm motility in the intervention group when measured at six months, however these data are not rigorous and no conclusions could be made.

1.21 Progressive sperm motility at nine months or more; type of antioxidant

See Analysis 1.21.

We analysed this outcome using a random-effects model and used subtotals as pooling was not possible.

1.21.1 Carnitines did show an increase in progressive sperm motility when compared to placebo (Balercia 2005) (MD 7.77, 95% Cl 2.68 to 12.87, 59 men, 1 RCT, 3 intervention arms, P = 0.003, $I^2 =$ not applicable).

1.21.2 Coenzyme Q10 did not show evidence of increased progressive sperm motility when compared to placebo (Balercia 2009) (MD -0.90, 95% CI -2.68 to 0.88, 60 men, 1 RCT, P = 0.32, I^2 = not applicable).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 9.93$, P = 0.002).

1.22 Progressive sperm motility over time

See Analysis 1.22.

This analysis was only useful in directly comparing the same studies reporting at the three time points and not in comparing results of meta-analyses that included different subsets of studies.

1.22.1 Progressive sperm motility at three months or less. We analysed this outcome using a random-effects model and used subtotals (Attallah 2013; Azizollahi 2013; Balercia 2005; Balercia 2009; Boonyarangkul 2015; Cyrus 2015; Dawson 1990; Haghighian 2015; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nadjarzadeh 2011; Peivandi 2010; Rolf 1999).

1.22.2 Progressive sperm motility at six months. We analysed this outcome using a random-effects model (MD 6.11, 95% CI 0.57 to 11.66, 521 men, 5 RCTs, 9 intervention arms, P = 0.03, I^2 = 76%) and used subtotals (Azizollahi 2013; Balercia 2005; Balercia 2009; Blomberg Jensen 2018; Boonyarangkul 2015).

1.22.3 Progressive sperm motility at nine months or more. We analysed this outcome using a random-effects model (MD 4.64, 95% CI -1.67 to 10.95, 119 men, 2 RCTs, 4 intervention arms, P=0.15) and used subtotals (Balercia 2005; Balercia 2009).

1.23 Sperm concentration at three months or less; type of antioxidant

See Analysis 1.23 and Figure 11.

Figure 11. Forest plot of comparison: 1 Antioxidant(s) versus placebo or no treatment, outcome: 1.23 Sperm concentration at 3 months or less; type of antioxidant.

tudy or Subgroup	Mean	SD Tot	al Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	ABCDE
.23.1 Carnitines									
alercia 2005 (1)	39.3 1	8.1 1	15 31.4	12.9	5	13.7%	7.90 [-6.65, 22.45]		
alercia 2005 (2)	41 1	7.3 1	15 31.4	12.9	5	13.8%	9.60 [-4.70, 23.90]		
alercia 2005 (3)	36.9 1	9.7 1	14 31.4	12.9	5	13.2%	5.50 [-9.81, 20.81]		
)imitriadis 2010 (4)	15.4	6.7	26 16.3	7	22	19.6%	-0.90 [-4.80, 3.00]		?? 🕒 ? ? (
lehni 2014 (5)	9.3	1.7 (51 0.8	1.8	59	20.2%	8.50 [7.85, 9.15]		?? 🛨 ? ? (
eivandi 2010 (6)	46 3	3.62	15 16.5	7.26	15	19.5%	29.50 [25.39, 33.61]		? • • • ? (
ubtotal (95% CI)		13	36		111	100.0%	10.43 [0.99, 19.87]	-	
leterogeneity: Tau² = 114. est for overall effect: Z = 2			df=5(P≺0).00001); I²	= 96%				
.23.2 Coenzyme Q10									
adiarzadeh 2011 (7)	16.1 1	2.9	23 16.2	27.7	24	100.0%	-0.10 [-12.37, 12.17]		
ubtotal (95% CI)			23		24	100.0%	-0.10 [-12.37, 12.17]		
eterogeneity: Not applica est for overall effect: Z = 0		99)							
23.3 Folic acid	.02 () 0								
	46.0.4			22	25	57.0%	22.20.12.00.40.001		
zizollahi 2013 (8)	46.8 4		26 24.6		25		22.20 [3.80, 40.60]		20022
oonyarangkul 2015 (9) Jototal (95% CI)	66.6 2		15 76.2 11	50.7	15 40	43.0% 100.0%	-9.60 [-39.36, 20.16] 8.54 [-22.31, 39.39]		
eterogeneity: Tau² = 346.		3.17, df		7); I² = 68%		100.070	0.04 [-22.0], 00.09]		
est for overall effect: Z = 0	.54 (P = 0	.59)							
23.4 Magnesium avaczki 2003 (10)	16.1 1	0.2	10 10.9	7.4	10	100.0%	5.20 [-2.61, 13.01]		????
avaczki 2003 (10) ubtotal (95% CI)	10.1 1		10 10.9 10	7.4	10	100.0% 100.0%	5.20 [-2.61, 13.01] 5.20 [-2.61, 13.01]		
	hla		10		10	100.070	5.20[-2.01, 15.01]		
eterogeneity: Not applica est for overall effect: Z = 1		.19)							
23.5 N-acetylcysteine (N	AC)								
tallah 2013 (11)	36.6	9.2	30 31.9	10.6	30	93.8%	4.70 [-0.32, 9.72]	+ <mark></mark> -	33033
arekat 2016 (12)	45.4 2		15 42.4	31.4	20	6.2%	3.00 [-16.57, 22.57]		
ubtotal (95% CI)		4	45		50	100.0%	4.59 [-0.27, 9.46]	◆	
eterogeneity: Tau² = 0.00 est for overall effect: Z = 1		•	l (P = 0.87);	I ² = 0%					
23.6 PUFAs		,							
onquer 2000 (13)	44.6 4	11.1 ·	10 43.1	40.5	5	0.2%	1.50 [-42.19, 45.19]		????
onquer 2000 (14)	37.8 3		9 43.1	40.5	4	0.1%	-5.30 [-51.74, 41.14] =		2 2 2 2 🛨
aghighian 2015 (15)			23 22.9	2.7	21	98.7%	3.50 [1.76, 5.24]		
artinez-Soto 2010 (16)	29.1 2		21 30.5	26.2	15	1.0%	-1.40 [-18.82, 16.02]		
ubtotal (95% CI)			63		45	100.0%	3.44 [1.70, 5.17]	•	
leterogeneity: Tau² = 0.00 est for overall effect: Z = 3		•	8 (P = 0.93);	I ² = 0%					
.23.7 Selenium	.00 () = 0								
cott 1998 (17)	48.7 3	35.2	16 27.5	42.4	9	100.0%	21.20 [-11.43, 53.83]		- •?•?•
ubtotal (95% Cl)			16 21.5		9		21.20 [-11.43, 53.83]		_
eterogeneity: Not applica	ble						. / .		
est for overall effect: Z = 1		.20)							
23.8 Vitamin C									
yrus 2015 (18)	58.4 2		46 48.7	27.8		100.0%	9.70 [0.09, 19.31]		
ubtotal (95% CI)		4	46		69	100.0%	9.70 [0.09, 19.31]		
eterogeneity: Not applica est for overall effect: Z = 1		.05)							
23.9 Vitamin C + Vitamir		*							
reco 2005 (19)	27.5 2	74 6 ⁻	32 20.3	21.2	32	49.6%	7.20 [-4.05, 18.45]	_ 	??
olf 1999 (20)	27.5 2		52 20.3 15 25	17.8	16	49.0% 50.4%	-4.40 [-15.48, 6.68]	_	
ubtotal (95% CI)	20.0		13 23 17		48	100.0%	1.36 [-10.01, 12.72]		
eterogeneity: Tau² = 34.8	3: Chi ř = 1); ² = 52%				T	
est for overall effect: Z = 0									
23.10 Vitamin E									
ner 2016 (21)	49.5 2		22 30.6	23		100.0%	18.90 [3.92, 33.88]		?? 🗧 ? ?
ıbtotal (95% CI)		2	22		23	100.0%	18.90 [3.92, 33.88]		
eterogeneity: Not applica est for overall effect: Z = 2		.01)							
23.11 Zinc									
izollahi 2013 (22)	41.5 4	10.2 ·	32 24.6	22	25	14.2%	16.90 [0.52, 33.28]	└──	
harifzadeh 2016 (22)	41.0 4		52 24.0 51 9.8	8.9	49	85.8%	7.40 [2.93, 11.87]		
ubtotal (95% CI)			33 3.0	0.5		100.0%	8.75 [2.25, 15.24]		
uniotal (55% CI)						2.5	- ,	-	
eterogeneity: Tau ² = 7.60	: Chi ² = 1	20. df = 1	I (P = U 777	*=17%h					

Antioxidants for male subfertility (Review)

Figure 11. (Continued)

Test for overall effect: Z =	2.64 (P =	0.008)						
1.23.12 Zinc + Folic acid								
Azizollahi 2013 (24) Subtotal (95% CI)	42.6	39.9	29 29	24.6	22	25 25	100.0% 100.0 %	18.00 [1.11, 34.89] 18.00 [1.11, 34.89]
Heterogeneity: Not applic	able							
Test for overall effect: Z =	2.09 (P =	0.04)						
1.23.13 Combined antiox	cidants							
Gopinath 2013 (25)	24.9	7	43	14.9	5.9	18	29.8%	10.00 [6.56, 13.44]
Gopinath 2013 (26)	26.4	8.9	46	14.9	5.9	18	29.5%	11.50 [7.75, 15.25]
Morgante 2010 (27)	18.2	3.5	90	19.1	3	90	31.1%	-0.90 [-1.85, 0.05]
Scott 1998 (28)	34	34.5	30	27.5	30	9	9.6%	6.50 [-16.66, 29.66]
Subtotal (95% CI)			209			135	100.0%	6.71 [-1.91, 15.33]
Heterogeneity: Tau ² = 61.	.89; Chi * =	= 71.01	, df = 3 ((P < 0.000	01); I² = 9	16%		

Test for overall effect: Z = 1.53 (P = 0.13)

Test for subgroup differences: Chi² = 13.93, df = 12 (P = 0.31), l² = 13.8% <u>Footnotes</u>

- (1) L-acetyl carnitine 3000 mg
- (2) L-carnitine 3000 mg
- (3) L-carnitine 2000 mg + L-acetyl carnitine 1000 mg.
- (4) L-carnitine 1000 mg. (5) L-carnitine 1000 mg
- (6) L-carnitine 2000 mg. 2 months (crossover trial). According to author really SD used (not SE).
- (7) Coenzyme Q10 200 mg
- (8) Folic acid 5 mg. After varicocelectomy.
- (9) Folic acid 5 mg.
- (10) Magnesium 3000 mg.
- (11) N-acetylcysteine (NAC) 600 mg
- (12) N-acetylcysteine (NAC) 200 mg. After varicocelectomy.
- (13) Docosahexaenoic acid (DHA) 800 mg (14) Docosahexaenoic acid (DHA) 400 mg.
- (15) Alpha-lipoic acid (ALA) 600 mg.
- (16) Docosahexaenoic acid (DHA) 1000 mg. 10 weeks.
- (17) Selenium 100 µg.
- (18) Vitamin C 500 mg. After varicocelectomy.
- (19) Vitamin C 1000 mg + Vitamin E 1000 mg. 2 months.
- (20) Vitamin C 1000 mg + Vitamin E 800 mg. 2 months. (21) Vitamin E 600 mg. After varicocelectomy.
- (22) Zinc 66 mg. After varicocelectomy.
- (23) Zinc 10 ml solution of 0.5%
- (24) Zinc 66 mg + Folic acid 5 mg. After varicocelectomy.
- (25) 1 tablet FDC (Coenzyme Q10 50 mg + L-carnitine 500 mg + lycopene 2.5 mg + zinc 12.5 mg).
- (26) 2 tablets FDC (Coenzyme Q10 50 mg + L-carnitine 500 mg + lycopene 2.5 mg + zinc 12.5 mg).

(27) L-arginine 1660 mg + carnitine 150 mg + acetyl-carnitine 50 mg + ginseng 200 mg.

(28) Selenium 100 µg + Vitamin A 1 mg + Vitamin C 10 mg + Vitamin E 15 mg.

We analysed this outcome using a random-effects model. We used only subtotals in this analysis.

1.23.1 Four studies (six intervention arms) compared carnitines with placebo or no treatment and showed an increase in sperm concentration (Balercia 2005; Dimitriadis 2010; Mehni 2014; Peivandi 2010). As the heterogeneity was extremely high (96%) we have not reported the pooled analysis; individually their results were:

- Balercia 2005 did not show evidence of increased sperm concentration when compared to placebo (MD 7.76, 95% CI -0.73 to 16.25, 59 men, P = 0.07);
- Dimitriadis 2010 did not show evidence of increased sperm concentration when compared to no treatment (MD -0.90, 95% CI -4.80 to 3.00, 48 men, P = 0.65);
- Mehni 2014 showed an increase in sperm concentration when compared to placebo (MD 8.50, 95% CI 7.85 to 9.15, 110 men, P < 0.00001):
- Peivandi 2010 showed an increase in sperm concentration when compared to placebo (MD 29.50, 95% CI 25.39 to 33.61, 30 men, P < 0.00001).

1.23.2 Coenzyme Q10 did not show evidence of increased sperm concentration when compared to placebo (Nadjarzadeh 2011) (MD -0.10, 95% CI -12.37 to 12.17, 47 men, 1 RCT, P = 0.99, I² = not applicable).

-50

-25

Risk of bias legend

ń Favours placebo/no treatm Favours antioxidant

(A) Random sequence generation (selection bias)

(D) Blinding of outcome assessment (detection bias) (E) Incomplete outcome data (attrition bias)

(C) Blinding of participants and personnel (performance bias)

(B) Allocation concealment (selection bias)

(F) Selective reporting (reporting bias)

25

50

1.23.3 Two studies compared folic acid with placebo and did not show evidence of increased sperm concentration (Azizollahi 2013; Boonyarangkul 2015). As the heterogeneity was high (68%) we have not reported the pooled analysis; individually their results were:

- Azizollahi 2013 showed an increase in sperm concentration when compared to placebo (MD 22.20, 95% CI 3.80 to 40.60, 51 men, P = 0.02);
- Boonyarangkul 2015 did not show evidence of increased sperm • concentration when compared to placebo (MD -9.60, 95% CI -39.36 to 20.16, 30 men, P = 0.53). However, in this study there was great baseline imbalance for sperm parameters between the intervention and control group.

1.23.4 Magnesium did not show evidence of increased sperm concentration when compared to placebo (Zavaczki 2003) (MD 5.20, 95% CI -2.61 to 13.01, 20 men, 1 RCT, P = 0.19, I² = not applicable).

Cochrane Database of Systematic Reviews

Antioxidants for male subfertility (Review)

1.23.5 Two studies did not show evidence of increased sperm concentration when N-acetylcysteine (NAC) was compared with placebo or no treatment (Attallah 2013; Barekat 2016) (MD 4.59, 95% CI -0.27 to 9.46, 95 men, 2 RCTs, P = 0.06, $I^2 = 0\%$).

1.23.6 Three studies showed an increase in sperm concentration when PUFAs were compared to placebo or no treatment (Conquer 2000; Haghighian 2015; Martinez-Soto 2010) (MD 3.44, 95% CI 1.70 to 5.17, 108 men, P = 0.0001, $I^2 = 0\%$).

1.23.7 Selenium did not show evidence of increased sperm concentration when compared to placebo (Scott 1998) (MD 21.20, 95% CI -11.43 to 53.83, 25 men, 1 RCT,P = 0.20, I^2 = not applicable).

1.23.8 Vitamin C did not show evidence of increased sperm concentration when compared to placebo (Cyrus 2015) (MD 9.70, 95% CI 0.09 to 19.31, 115 men, 1 RCT,P = 0.05, I^2 = not applicable).

1.23.9 Two studies did not show evidence of increased sperm concentration when Vitamin C plus vitamin E was compared to placebo (Greco 2005; Rolf 1999). As the heterogeneity was high (52%) we have not reported the pooled analysis; individually their results were:

- Greco 2005 did not show evidence of increased sperm concentration when compared to placebo (MD 7.20, 95% CI -4.05 to 18.45, 64 men, P = 0.21);
- Rolf 1999 did not show evidence of increased sperm concentration when compared to placebo (MD -4.40, 95% Cl -15.48 to 6.68, 31 men, P = 0.44).

1.23.10 Vitamin E showed an increase in sperm concentration when compared to no treatment (Ener 2016) (MD 18.90, 95% CI 3.92 to 33.88, 45 men, 1 RCT, P = 0.01, l^2 = not applicable).

1.23.11 Two studies showed an increase in sperm concentration when zinc was compared to placebo (Azizollahi 2013; Sharifzadeh 2016) (MD 8.75, 95% CI 2.25 to 15.24, 157 men, 2 RCTs, P = 0.008, I² = 17%).

1.23.12 Zinc plus folic acid showed an increase in sperm concentration when compared to placebo (Azizollahi 2013) (MD 18.00, 95% Cl 1.11 to 34.89, 54 men, 1 RCT, P = 0.04, $l^2 =$ not applicable).

1.23.13 Three studies (four intervention arms) showed an increase in sperm concentration when combined antioxidants were compared to placebo or no treatment (Gopinath 2013; Morgante 2010; Scott 1998). As the heterogeneity was extremely high (96%) we have not reported the pooled analysis; individually their results were:

- Gopinath 2013 showed an increase in sperm concentration when compared to placebo (MD 10.69, 95% CI 8.15 to 13.22, 125 men, P < 0.00001);
- Morgante 2010 showed an increase in sperm concentration when compared to no treatment (MD -0.90, 95% CI -1.85 to 0.05, 180 men, P = 0.06);
- Scott 1998 did not show evidence of increased sperm concentration when compared to placebo (MD 6.50, 95% CI -16.66 to 29.66, 39 men, P = 0.58).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 236.53$, P < 0.00001).

Data not usable for meta-analysis

See Analysis 1.24.

Four studies (Cavallini 2004; Gamidov 2017; Kessopoulou 1995; Raigani 2014) provided data as medians and interquartile ranges or percentiles and therefore could not be used in the forest plot. These studies might indicate some improvement in sperm concentration in the intervention group when measured at three months, however these data were not rigorous and no conclusions could be made. One study (Lenzi 2003) provided data as the mean with no SD, the P value was 0.03 indicating that there may have been an association between L-carnitine and improved sperm concentration at three months.

1.25 Sperm concentration at six months; type of antioxidant

See Analysis 1.25.

We analysed this outcome using a random-effects model. We used only subtotals in this analysis.

1.25.1 Two studies (four intervention arms) did not show evidence of increased sperm concentration when carnitines were compared with placebo (Balercia 2005; Lenzi 2004) (MD 2.60, 95% CI -3.13 to 8.33, 115 men, 2 RCTs, 4 intervention arms, P = 0.37, $I^2 = 0$ %).

1.25.2 Three studies showed an increase in sperm concentration when coenzyme Q10 was compared with placebo (Balercia 2009; Safarinejad 2009a; Safarinejad 2012). As the heterogeneity was extremely high (96%) we have not reported the pooled analysis; individually their results were:

- Balercia 2009 did not show evidence of increased sperm concentration when compared to placebo (MD -1.50, 95% CI -11.39 to 8.39, 60 men, P = 0.77);
- Safarinejad 2009a showed an increase in sperm concentration when compared to placebo (MD 5.60, 95% CI 4.38 to 6.82, 194 men, P < 0.00001);
- Safarinejad 2012 showed an increase in sperm concentration when compared to placebo (MD 11.90, 95% Cl 10.72 to 13.08, 225 men, P < 0.00001).

1.25.3 Two studies compared folic acid with placebo did not show evidence of increased sperm concentration (Azizollahi 2013; Boonyarangkul 2015). As the heterogeneity was high (78%) we have not reported the pooled analysis; individually their results were:

- Azizollahi 2013 showed an increase in sperm concentration when compared to placebo(MD 19.20, 95% CI 12.24 to 26.16, 51 men, P < 0.00001);
- Boonyarangkul 2015 did not show evidence of increased sperm concentration when compared to placebo (MD -22.80, 95% CI -60.44 to 14.84, 30 men, P = 0.24). However, in this study there was great baseline imbalance for sperm parameters between the intervention and control group.

1.25.4 N-acetylcysteine (NAC) showed an increase in sperm concentration when compared to placebo (Safarinejad 2009) (MD 3.30, 95% CI 1.80 to 4.80, 211 men, 1 RCT, P < 0.0001, I^2 = not applicable).

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

ochrane

1.25.5 Selenium showed an increase in sperm concentration when compared to placebo (Safarinejad 2009) (MD 4.10, 95% CI 2.45 to 5.75, 211 men, 1 RCT, P < 0.0001, I^2 = not applicable).

1.25.6 Selenium plus N-acetylcysteine (NAC) showed an increase in sperm concentration when compared to placebo (Safarinejad 2009) (MD 8.60, 95% CI 6.89 to 10.31, 210 men, 1 RCT, P < $0.0001 I^2$ = not applicable).

1.25.7 Vitamin E did not show evidence of increased sperm concentration when compared to no treatment (Ener 2016) (MD 5.90, 95% CI -10.83 to 22.63, 45 men, 1 RCT, P = 0.49, I^2 = not applicable).

1.25.8 Zinc did not show evidence of increased sperm concentration when compared to placebo (Azizollahi 2013) (MD 9.70, 95% CI -7.00 to 26.40, 57 men, 1 RCT, P = 0.26, I^2 = not applicable).

1.25.9 Zinc plus folic acid did not show evidence of increased sperm concentration when compared to placebo (Azizollahi 2013) (MD 17.70, 95% CI -1.88 to 37.28, 54 men, 1 RCT< P = 0.08, I^2 = not applicable).

1.25.10 Two studies (three intervention arms) did not show evidence of increased in sperm concentration when combined antioxidants were compared to placebo (Busetto 2018; Gopinath 2013). As the heterogeneity was high (74%) we have not reported the pooled analysis; individually their results were:

- Busetto 2018 showed an increase in sperm concentration when compared to placebo (MD 7.70, 95% CI 2.41 to 12.99, 104 men, P = 0.004);
- Gopinath 2013 showed an increase in sperm concentration when compared to placebo (MD 16.48, 95% CI 13.08 to 19.87, 125 men, P < 0.00001).

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 82.87$, P < 0.00001)

Data not usable for meta-analysis

Analysis 1.26

Three studies (Blomberg Jensen 2018; Cavallini 2004; Wong 2002) provided data as medians with interquartile ranges or percentages with no SDs, and therefore could not be used in the forest plot. The last two mentioned of these studies indicated that there might be some improvement in sperm concentration in the intervention group when measured at six months.

1.27 Sperm concentration at nine months; type of antioxidant

See Analysis 1.27.

We analysed this outcome using a random-effects model. We used only subtotals in this analysis.

1.27.1 Carnitines (three intervention arms) did not show evidence of increased sperm concentration when compared to placebo (Balercia 2005) (MD 4.17, 95% CI -1.71 to 10.06, 59 men, 1 RCT, 3 intervention arms, P = 0.16, $I^2 = not$ applicable).

1.27.2 Three studies showed an increase in sperm concentration when coenzyme Q10 was compared to placebo (Balercia 2009; Safarinejad 2009a; Safarinejad 2012). As the heterogeneity was extremely high (95%) we have not reported the pooled analysis; individually their results were:

- Balercia 2009 did not show evidence of increased sperm concentration when compared to placebo (MD -5.40, 95% CI -15.75 to 4.95, 60 men, P = 0.31);
- Safarinejad 2009a showed an increase in sperm concentration when compared to placebo (MD 1.60, 95% CI 0.53 to 2.67, 194 men, P = 0.003);
- Safarinejad 2012 showed an increase in sperm concentration when compared to placebo (MD 6.20, 95% CI 5.17 to 7.23, 225 men, P < 0.00001).

1.27.3 Vitamin E did not show evidence of increased sperm concentration when compared to no treatment (Ener 2016) (MD 11.40, 95% CI -2.56 to 25.36, 45 men, 1 RCT, P = 0.11, I^2 = not applicable).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 1.10$, P = 0.58).

1.28 Sperm concentration over time

See Analysis 1.28.

This analysis was only useful in directly comparing the same studies reporting at the three time points and not in comparing results of meta analyses that included different subsets of studies.

1.28.1 Total sperm concentration at three months or less. We analysed this outcome using a random-effects model (MD 7.51, 95% CI 4.23 to 10.79, 1244 men, 20 RCTs, P < 0.000001, I² = 95%) and used subtotals (Attallah 2013; Azizollahi 2013; Balercia 2005; Balercia 2009; Barekat 2016; Boonyarangkul 2015; Conquer 2000; Cyrus 2015; Dimitriadis 2010; Ener 2016; Gopinath 2013; Greco 2005; Haghighian 2015; Martinez-Soto 2010; Mehni 2014; Morgante 2010; Nadjarzadeh 2011; Peivandi 2010; Rolf 1999; Scott 1998; Zavaczki 2003).

1.28.2 Total sperm concentration at six months. We analysed this outcome using a random-effects model (MD 7.49, 95% CI 4.76 to 10.23, 1430 men, 11 RCTs, P < 0.0001, I² = 87%) and used subtotals (Azizollahi 2013; Balercia 2005; Balercia 2009; Busetto 2018; Boonyarangkul 2015; Ener 2016; Gopinath 2013; Lenzi 2004; Safarinejad 2009; Safarinejad 2009a; Safarinejad 2012).

1.28.3 Total sperm concentration at nine months or more. We analysed this outcome using a random-effects model (MD 3.61, 95% CI 0.17 to 7.06, 583 men, 5 RCTs, seven intervention arms, P = 0.04, I² = 86%) and used subtotals (Balercia 2005; Balercia 2009; Ener 2016; Safarinejad 2009a; Safarinejad 2012).

2 Head-to-head antioxidants (natural conception and undergoing fertility treatment)

The studies included in this comparison did not report on adverse events or sperm DNA fragmentation.

2.1 Live birth; type of antioxidant

See Analysis 2.1.

Totals were not used in this analysis as there were data for one study only per subgroup, and therefore pooling was not possible.

2.1.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased live birth rate when compared to L-acetyl carnitine (Balercia 2005) (Peto OR 1.00, 95% CI 0.13 to 7.92, 30 men, 1 RCT, P = 1.00).

2.1.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was evidence of the use of L-carnitine and increased live birth rate when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (Peto OR 0.34, 95% CI 0.06 to 1.79, 30 men, 1 RCT, P = 0.20).

2.1.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased live birth rate when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (Peto OR 0.34, 95% CI 0.06 to 1.79, 30 men, 1 RCT, P = 0.20).

There was no evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 0.79$, P = 0.67)

2.2 Clinical pregnancy; type of antioxidant

See Analysis 2.2.

Totals were not used in this analysis as there were data for one study only per subgroup, and therefore pooling was not possible.

2.2.1. L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased clinical pregnancy rate when compared to L-acetyl carnitine (Balercia 2005) (Peto OR 1.00, 95% CI 0.13 to 7.92, 30 men, 1 RCT, P = 1.00).

2.2.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased clinical pregnancy rate when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (Peto OR 0.34, 95% CI 0.06 to 1.79, 30 men,1 RCT, P = 0.20).

2.2.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased clinical pregnancy rate when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (Peto OR 0.34, 95% CI 0.06 to 1.79, 30 men,1 RCT, P = 0.20).

2.2.4 Vitamin D plus calcium versus vitamin E plus vitamin C. There was an association between the use of vitamin D plus calcium and increased clinical pregnancy rate when compared to vitamin E plus vitamin C (Deng 2014) (Peto OR 5.13, 95% CI 1.21 to 21.79, 86 men, P = 0.03)

There was evidence that different antioxidants had differing effects (test for subgroup differences: $Chi^2 = 8.15$, P = 0.04)

2.3 Total sperm motility at three months or less; type of antioxidant

See Analysis 2.3.

Totals were not used in this analysis as, of the eight studies included, there were data for one study only per subgroup, and therefore pooling was not possible.

2.3.1 Docosahexaenoic acid (DHA) 400 mg versus DHA 800 mg. There was no evidence of the use of DHA 400 g/day and increased

sperm motility when compared to DHA800 mg/day (Conquer 2000) (MD 7.40, 95% CI -11.35 to 26.15, 19 men, P = 0.44).

2.3.2 Ethylcysteine versus vitamin E. There was no evidence of the use of ethyl cysteine and increased sperm motility when compared to vitamin E (Akiyama 1999) (MD -1.90, 95% CI -41.97 to 38.17, 10 men, P = 0.93).

2.3.3 L acetyl carnitine plus L carnitine versus vitamin E plus vitamin C. There was an association between the use of L acetyl carnitine + L carnitine and increased sperm motility when compared to vitamin E + vitamin C (Li 2005) (MD 23.10, 95% CI 20.14 to 26.06, 138 men, P < 0.00001).

2.3.4 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 3.40, 95% CI -3.73 to 10.53, 30 men, P = 0.35).

2.3.5 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 4.80, 95% CI -1.76 to 11.36, 30 men, P = 0.15).

2.3.6 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 1.40, 95% CI -6.42 to 9.22, 30 men, P = 0.73).

2.3.7 Selenium versus combined antioxidants. There was no evidence of the use of selenium and increased sperm motility when compared to combined antioxidants (Scott 1998) (MD 3.20, 95% CI -10.13 to 16.53, 46 men, P = 0.64).

2.3.8 Vitamin C 200 mg/day versus vitamin C 1000 mg/day. There was an association between the use of ascorbic acid 200 mg/day and decreased sperm motility when compared to ascorbic acid 1000 mg/day (Dawson 1990) (MD -43.00, 95% CI -67.10 to -18.90, 20 men, P = 0.0005).

2.3.9 Zinc versus folic acid. There was no evidence of the use of zinc and increased sperm motility when compared to folic acid (Azizollahi 2013) (MD -4.40, 95% CI -14.21 to 5.41, 80 men, P = 0.38).

2.3.10 Zinc versus zinc plus folic acid. There was no evidence of the use of zinc and increased sperm motility when compared to zinc plus folic acid (Azizollahi 2013) (MD -2.80, 95% CI -12.91 to 7.31, 80 men, P = 0.59).

2.3.11 Zinc plus folic acid versus folic acid. There was no evidence of the use of zinc plus folic acid and increased sperm motility when compared to folic acid alone (Azizollahi 2013) (MD -0.60, 95% CI -7.74 to 6.54, 80 men, P = 0.87).

2.3.12 Zinc versus zinc plus vitamin E. There was no evidence of the use of zinc and increased sperm motility when compared to zinc plus vitamin E (Omu 2008) (MD -1.00, 95% CI -15.00 to 13.00, 18 men, P = 0.89).

2.3.13 Zinc versus zinc plus vitamin E plus vitamin C. There was no evidence of the use of zinc and increased sperm motility when compared to zinc plus vitamin E plus vitamin C (Omu 2008) (MD -1.00, 95% Cl -19.66 to 17.66, 12 men, P = 0.89).

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

2.3.14 Zinc plus vitamin E versus zinc plus vitamin E plus vitamin C. There was no evidence of the use of zinc plus vitamin E and increased sperm motility when compared to zinc plus vitamin E plus vitamin C (Omu 2008) (MD -0.00, 95% CI -18.97 to 18.97, 18 men, P = 1.00).

2.4 Total sperm motility at six months or less; type of antioxidant

See Analysis 2.4.

Pooling was not possible in this analysis as of the four studies included in this analysis there were data for one study per subgroup.

2.4.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 4.10, 95% CI -2.70 to 10.90, 30 men, P = 0.2).

2.4.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 3.40, 95% CI -2.87 to 9.67, 30 men, P = 0.29).

2.4.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD -0.70, 95% CI -7.73 to 6.33, 30 men, P = 0.85).

2.4.4 N-acetylcysteine versus selenium plus NAC. There was an association between the use of NAC and decreased sperm motility when compared to selenium plus NAC (Safarinejad 2009) (MD -4.40, 95% Cl -5.14 to -3.66, 234 men, P < 0.00001).

2.4.5 Selenium versus N-acetylcysteine (NAC). There was an association between the use of selenium and increased sperm motility when compared to NAC (Safarinejad 2009) (MD 1.30, 95% CI 0.56 to 2.04, 234 men, P = 0.0006).

2.4.6 Selenium versus selenium plus N-acetylcysteine (NAC). There was an association between the use of selenium and decreased sperm motility when compared to selenium plus NAC (Safarinejad 2009) (MD -3.10, 95% CI -3.85 to -2.35, 232 men, P < 0.00001).

2.4.7 Zinc versus folic acid. There was no evidence of the use of zinc and increased sperm motility when compared to folic acid (Azizollahi 2013) (MD -1.70, 95% CI -6.42 to 3.02, 80 men, P = 0.48).

2.4.8 Zinc plus folic acid versus folic acid. There was no evidence of the use of zinc plus folic acid and increased sperm motility when compared to folic acid (Azizollahi 2013) (MD 0.90, 95% CI -5.45 to 7.25, 80 men, P = 0.78).

2.4.9 Zinc versus zinc plus folic acid. There was no evidence of the use of zinc and increased sperm motility when compared to zinc plus folic acid (Azizollahi 2013) (MD -2.60, 95% CI -9.13 to 3.93, 80 men, P = 0.44).

Data not usable for meta-analysis

See Analysis 2.5.

Zinc versus folic acid, zinc versus zinc plus folic acid, folic acid versus zinc plus folic acid. One study Wong 2002 reported data as medians and ranges for these three subgroups. There was no indication of any difference in effect for total sperm motility at six months between the intervention and control groups, however these data were not rigorous and no conclusions could be made.

2.6 Total sperm motility at nine months or more; type of antioxidant

See Analysis 2.6.

Pooling was not possible in this analysis as it included only one study.

2.6.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 3.70, 95% CI -1.69 to 9.09, 30 men, P = 0.18).

2.6.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 5.30, 95% CI -0.73 to 11.33,30 men, P = 0.08).

2.6.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 1.60, 95% CI -3.29 to 6.49, 30 men, P = 0.52).

2.7 Progressive sperm motility at three months or less; type of antioxidant

See Analysis 2.7.

Pooling was not possible in this analysis as of the four studies included in this analysis there were data for one study per subgroup.

2.7.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased progressive sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 4.00, 95% CI -1.88 to 9.88, 30 men, P = 0.18).

2.7.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 5.00, 95% CI -0.68 to 10.68, 29 men, P = 0.08)

2.7.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 1.00, 95% CI -5.41 to 7.41, 29 men, P = 0.76).

2.7.4 L-acetyl carnitine versus L-carnitine plus vitamin E plus vitamin C. There was an association between the use of L-acetyl carnitine and increased progressive sperm motility when compared to L-carnitine plus vitamin E plus vitamin C (Li 2005) (MD 13.30, 95% Cl 11.21 to 15.39, 138 men, P < 0.00001).

2.7.5 L-carnitine versus vitamin E plus vitamin C. There was an association between the use of L-carnitine and increased progressive sperm motility when compared to vitamin E plus vitamin C (Li 2005a) (MD 30.50, 95% CI 27.70 to 33.30, 63 men, P < 0.00001).

Antioxidants for male subfertility (Review)

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

2.7.6 L-carnitine plus vitamin E versus vitamin E. There was an association between the use of L-carnitine plus vitamin E and increased progressive sperm motility when compared to vitamin E (Wang 2010) (MD 14.10, 95% Cl 10.11 to 18.09, 113 men, P < 0.00001).

2.7.7 Vitamin D plus calcium versus vitamin E plus vitamin C. There was an association between the use of vitamin D plus calcium and increased progressive sperm motility when compared to vitamin E plus vitamin C (Deng 2014) (MD 6.90, 95% CI 5.38 to 8.42, 86 men, P < 0.000001).

2.8 Progressive sperm motility at six months; type of antioxidant

See Analysis 2.8.

Pooling was not possible in this analysis as it included only one study.

2.8.1 L-carnitine versus L-acetyl carnitine. There was an association between the use of L-carnitine and increased progressive sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 6.30, 95% Cl 0.42 to 12.18, 30 men, P = 0.04).

2.8.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was an association between the use of L-carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 5.70, 95% Cl 0.10 to 11.30, 29 men, P = 0.05).

2.8.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD -0.60, 95% CI -6.93 to 5.73, 29 men, P = 0.85).

2.9 Progressive sperm motility at nine months or more; type of antioxidant

See Analysis 2.9.

Pooling was not possible in this analysis as it included only one study.

2.9.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased progressive sperm motility when compared to L-acetyl carnitine (Balercia 2005) (MD 3.80, 95% Cl -1.50 to 9.10, 30 men, P = 0.16).

2.9.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 5.50, 95% CI -0.11 to 11.11,29 men, P = 0.05).

2.9.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased progressive sperm motility when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 1.70, 95% CI -4.17 to 7.57, 29 men, P = 0.57).

2.10 Sperm concentration at three months or less; type of antioxidant

See Analysis 2.10.

Pooling was not possible in this analysis as the six studies included in this analysis reported on single subgroups.

2.10.1 Docosahexaenoic acid (DHA) 400 mg versus DHA 800 mg. There was no evidence of the use of DHA 400 mg and increased sperm concentration when compared to DHA 800 mg (Conquer 2000) (MD -6.80, 95% CI -41.87 to 28.27, 19 men, P = 0.70).

2.10.2 Ethyl cysteine versus vitamin E. There was no evidence of the use of ethyl cysteine and increased sperm concentration when compared to vitamin E (Akiyama 1999) (MD 2.20, 95% CI -16.65 to 21.05, 10 men, P = 0.82).

2.10.3 L-carnitine versus vitamin E plus vitamin C. There was an association between the use of L-carnitine and increased sperm concentration when compared to vitamin E plus vitamin C (Li 2005a) (MD 15.50, 95% Cl 12.49 to 18.51, 63 men, P < 0.00001).

2.10.4 L-carnitine plus vitamin E versus vitamin E. There was no evidence of the use of L-carnitine plus vitamin E and increased sperm concentration when compared to vitamin E (Wang 2010) (MD 1.90, 95% CI -10.52 to 14.32, 113 men, P = 0.76).

2.10.5 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-acetyl carnitine (Balercia 2005) (MD 1.70, 95% CI -10.97 to 14.37, 30 men, P = 0.79).

2.11.6 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 4.10, 95% CI -9.17 to 17.37, 30 men, P = 0.54).

2.10.7 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 2.40, 95% CI -11.14 to 15.94, 30 men, P = 0.73).

2.10.8 Selenium versus combined antioxidants. There was no evidence of the use of selenium and increased sperm concentration when compared to combined antioxidants (Scott 1998) (MD 14.70, 95% CI -6.51 to 35.91, 46 men, P = 0.17).

2.10.9 Zinc versus folic acid. There was no evidence of the use of zinc and increased sperm concentration when compared to folic acid (Azizollahi 2013) (MD -5.30, 95% CI -23.38 to 12.78, 80 men, P = 0.57).

2.10.10 Zinc plus folic acid versus folic acid. There was no evidence of the use of zinc plus folic acid and increased sperm concentration when compared to folic acid alone (Azizollahi 2013) (MD -4.20, 95% Cl -22.21 to 13.81, 80 men, P = 0.65).

2.10.11 Zinc versus zinc plus folic acid. There was no evidence of the use of zinc and increased sperm concentration when compared to zinc plus folic acid (Azizollahi 2013) (MD -1.10, 95% CI -18.63 to 16.43, 80 men, P = 0.90)

2.11 Sperm concentration at six months or less; type of antioxidant

See Analysis 2.11.

Antioxidants for male subfertility (Review)

Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Pooling was not possible in this analysis as of the three studies included in this analysis there were data for only one study per subgroup.

2.11.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-acetyl carnitine (Balercia 2005) (MD 5.90, 95% CI -8.92 to 20.72, 30 men, P = 0.44).

2.11.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 8.10, 95% CI -5.54 to 21.74, 30 men, P = 0.24).

2.11.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 2.20, 95% CI -10.89 to 15.29, 30 men, P = 0.74).

2.11.4 N-acetylcysteine (NAC) versus selenium plus NAC. There was an association between the use of NAC and decreased sperm concentration when compared to selenium plus NAC (Safarinejad 2009) (MD -5.30, 95% CI -6.86 to -3.74, 234 men, P < 0.00001).

2.11.5 Selenium versus N-acetylcysteine (NAC). There was no evidence of the use of selenium and increased sperm concentration when compared to NAC (Safarinejad 2009) (MD 0.80, 95% CI -0.71 to 2.31, 234 men, P = 0.30).

2.11.6 Selenium versus selenium plus N-acetylcysteine (NAC). There was an association between the use of selenium and decreased sperm concentration when compared to selenium plus NAC (Safarinejad 2009) (MD -4.50, 95% CI -6.20 to -2.80, 232 men, P < 0.00001).

2.11.7 Zinc versus folic acid. There was no evidence of the use of zinc and increased sperm concentration when compared to folic acid (Azizollahi 2013) (MD -9.50, 95% CI -20.31 to 1.31, 80 men, P = 0.08).

2.11.8 Zinc plus folic acid versus folic acid. There was no evidence of the use of zinc plus folic acid and increased sperm concentration when compared to folic acid (Azizollahi 2013) (MD -1.50, 95% CI -15.06 to 12.06, 80 men, P = 0.83).

2.11.9 Zinc versus zinc plus folic acid. There was no evidence of the use of zinc and increased sperm concentration when compared to zinc plus folic acid (Azizollahi 2013) (MD -8.00, 95% CI -23.69 to 7.69, 80 men, P = 0.32).

Data not usable for meta-analysis

See Analysis 2.12.

One study Wong 2002 reported data as medians and ranges for these three subgroups. There may have been an association with improved sperm concentration at six months for the intervention groups when compared to the control groups, however these data were not rigorous and no conclusions could be made.

2.13 Sperm concentration at nine months or more; type of antioxidant

See Analysis 2.13.

Pooling was not possible in this analysis as only one study reported on two subgroups.

2.13.1 L-carnitine versus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-acetyl carnitine (Balercia 2005) (MD 8.20, 95% CI -0.07 to 16.47, 30 men, P = 0.05).

2.13.2 L-carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD 6.10, 95% CI -3.74 to 15.94, 30 men, P = 0.22).

2.13.3 L-acetyl carnitine versus L-carnitine plus L-acetyl carnitine. There was no evidence of the use of L-acetyl carnitine and increased sperm concentration when compared to L-carnitine plus L-acetyl carnitine (Balercia 2005) (MD -2.10, 95% CI -10.24 to 6.04, 30 men, P = 0.61).

Funnel plot

We assessed publication bias by using a funnel plot. Only the outcome of clinical pregnancies included 10 studies. There was no clear evidence of publication bias. We did not have enough studies to look at each of the subgroups for publication bias (Figure 6). However, the majority of the other studies (33) included in this review reported only on sperm parameters. Only 30 of the 61 studies reported on pregnancy. Only six studies reported live birth (Balercia 2005; Blomberg Jensen 2018; Kessopoulou 1995; Omu 1998; Suleiman 1996; Tremellen 2007). The author of Balercia 2005 provided live birth data for this update. No new studies in the update reported on live birth. Twelve studies reported on clinical pregnancy (Attallah 2013; Azizollahi 2013; Balercia 2005; Barekat 2016; Busetto 2018; Deng 2014; Haje 2015; Kessopoulou 1995; Omu 1998; Suleiman 1996; Tremellen 2007; Zavaczki 2003). Seventeen studies reported on biochemical pregnancy or undefined pregnancy (Balercia 2009; Cavallini 2004; Ener 2016; Exposito 2016; Galatioto 2008; Gopinath 2013; Lenzi 2003; Lenzi 2004; Li 2005; Nadjarzadeh 2011; Peivandi 2010; Pryor 1978; Rolf 1999; Safarinejad 2009a; Scott 1998; Sigman 2006; Wang 2010) (Table 1). Six of these studies reported on pregnancy rates even though this was not stated a priori in the methods sections of the papers (Balercia 2005; Balercia 2009; Barekat 2016; Kessopoulou 1995; Lenzi 2004; Omu 1998) (Table 2). Six studies were included in both the clinical pregnancy and the live birth analyses (Balercia 2005; Balercia 2009; Kessopoulou 1995; Omu 1998; Suleiman 1996; Tremellen 2007). Failure to report live birth or pregnancy is common and of great loss as ultimately for couples these are the most meaningful outcomes.

DISCUSSION

Summary of main results

Effectiveness of antioxidants versus placebo or no treatment

Live birth

The findings of this review suggest that for subfertile men, the use of antioxidants may be effective in increasing a couple's chances of having a live birth when compared to placebo or no treatment. It was found that within the studies that contributed to the analysis of live birth rate, the population of subfertile men had a baseline or expected live birth rate of 12% and with the use of antioxidant

Antioxidants for male subfertility (Review)

this would increase to between 14% and 26%. However, there were only seven studies with a total of 750 couples reporting on live birth and the quality of this evidence was considered to be low (Summary of findings for the main comparison). The methods were not well explained in two out of seven of these studies, Suleiman 1996 had a significant number of participants who dropped out of the study and Omu 1998 used 'no treatment' as control which introduced a degree of performance bias. We were unaware of how many of the dropouts were from the treatment or control groups. When these high-risk studies were removed from the analysis, there was no evidence of association between the use of antioxidants and increased live birth.

The apparent benefit from antioxidants persisted when analyses were restricted to placebo-controlled studies and studies enrolling men undergoing assisted reproductive techniques (ART) (in vitro fertilisation (IVF)/intracytoplasmic sperm injection(ICSI)).

Clinical pregnancy

The findings of this review also suggest that for subfertile men the use of antioxidants may be effective in increasing a couple's chances of clinical pregnancy rate when compared to placebo or no treatment. It was found that within the studies that contributed to the analysis of clinical pregnancy, the population of subfertile men had a baseline or expected clinical pregnancy rate of 7%, and with the use of antioxidants this would increase to between 12% and 26%. However there were only 11 studies with a total of 786 men reporting on clinical pregnancy and the quality of this evidence was considered to be low (Summary of findings for the main comparison). The methods were not well explained in four of the 11 studies, with two of these studies having a significant number of participants who dropped out of the study (Barekat 2016; Suleiman 1996). Furthermore, four of the 15 analyses (one trial had three arms) crossed the line of no effect with wide confidence intervals.

The apparent benefit from antioxidants persisted when analyses were restricted to studies at lower risk of bias, studies of men not undergoing ART, and studies of men post-varicocelectomy. This benefit was not seen in the men undergoing IVF/ICSI.

Adverse events

There is no evidence that antioxidants used by the subfertile male lead to an increased miscarriage risk when compared to placebo or no treatment. It was found that within this population of subfertile men with an expected miscarriage rate of 2%, the use of an antioxidant would increase the chances of having a miscarriage to between 1% and 13%. However, there were only three studies with a total of 247 men reporting on miscarriage and the quality of this evidence was very low quality (Summary of findings for the main comparison). The event rate in this analysis was very low with only eight miscarriages reported in three studies, furthermore there was a high risk of bias within these studies.

The use of antioxidants by subfertile men may increase the occurrence of mild gastrointestinal complaints when compared to placebo or no treatment. It was found that within this population of subfertile men with an expected gastrointestinal event rate of 2%, the use of an antioxidant would increase the chances of having gastrointestinal complaints to between 2% and 9%. However, there were only 11 studies with a total of 948 men reporting on gastrointestinal complaints and the quality of this evidence was

very low (Summary of findings for the main comparison). The event rate in this analysis was low with only 35 events reported; furthermore there was a high risk of bias within these studies.

There was no evidence that the risk of other adverse events, such as euphoria and ectopic pregnancy differed between antioxidant or control group.

Sperm DNA fragmentation

Only four studies (254 men) reported on sperm DNA fragmentation. Antioxidant use showed a lowered sperm DNA fragmentation when compared to placebo. One study reported substantial higher DNA fragmentation rates (> 80%), which could be explained by enrolment of post-varicocelectomy participants (Barekat 2016).

Sperm parameters

The findings for total sperm motility, progressive sperm motility and concentration at three, six and nine months were unreliable as heterogeneity was extremely high in each analysis. The only subgroups within the analyses with low heterogeneity reported the following.

- Carnitines (three studies, five intervention arms, 128 men) showed evidence of increased total sperm motility at three months when compared to placebo or no treatment
- PUFAs (two studies, three intervention arms, 64 men) did not show evidence of increased total sperm motility at three months when compared to placebo
- Combined antioxidants (three studies, four intervention arms, 203 men) showed evidence of increased total sperm motility at three months when compared to placebo or no treatment
- Zinc (two studies, 157 men) did not show evidence of increased progressive sperm motility at three months when compared to placebo
- Folic acid (two studies, 81 men) did not show evidence of increased progressive sperm motility when compared to placebo
- N-acetylcysteine (two studies, 95 men) did not show evidence of increased sperm concentration at three months when compared to placebo or no treatment
- PUFAs (three studies, 108 men) showed evidence of increased sperm concentration at three months when compared to placebo or no treatment
- Zinc (two studies, 157 men) showed evidence of increased sperm concentration at three months when compared to placebo
- Carnitines (two studies, four intervention arms, 115 men) did not show evidence of increased sperm concentration at six months when compared to placebo

Comparisons for each parameter over time showed an improvement after the use of antioxidants, especially after three and six months of use. The slight decrease of this positive effect after nine months of use could be explained by a possible decrease in therapy compliance or less living up to influencing lifestyle factors such as smoking and alcohol use.

Effectiveness of antioxidants versus antioxidants (head-to-head)

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

In the head-to-head studies only two studies reported on live birth and/or clinical pregnancy, one study with different types of carnitines in multiple arms (versus placebo) and one study comparing vitamin D plus calcium with vitamin E plus vitamin C. Only vitamin D plus calcium showed an association. However, due to the small study size no direct conclusions can be drawn. The head-to-head studies did not report adverse events.

Overall completeness and applicability of evidence

Of the 61 studies included in this review only seven reported on the primary outcome of live birth, and only 12 reported on clinical pregnancy rate. Live birth and clinical pregnancy rate are the outcomes of most interest to subfertile couples and until these are robustly reported by all subfertility studies we will not be able to draw clear conclusions for the use of antioxidants for subfertile men. We believe that the lower baseline rate for clinical pregnancy than the baseline rate for live birth could be due to the difference in included populations. In the clinical pregnancy analysis (11 studies) there were three studies including men with varicocele; those studies did not report live birth and were therefore not included in the live birth rate analysis (seven studies). Adverse events such as miscarriage, ectopic pregnancy, euphoria and gastrointestinal side effects appear to be poorly reported. The high heterogeneity may be an artefact caused by some of the studies reporting very small and potentially erroneous standard deviations (SDs). This undermines the credibility of the data.

Two of the trials included in the analysis of the semen parameter outcomes (Safarinejad 2009; Safarinejad 2009a) had consistently reported SDs very much smaller than those reported by most of the other included trials. The review authors considered that these were potentially erroneous, but an attempt to check with the study authors was unsuccessful. One other trial (Peivandi 2010), also had very small SDs when compared to data in the other trials but the authors confirmed, when contacted, that they are indeed SDs and not standard errors (SEs). We tried to manage these analyses in two different ways: firstly by imputing SDs from studies of a similar size and secondly by treating the data as SEs and converting back to SDs, however heterogeneity remained high in both situations so for the final analyses we reverted to the SDs as reported in the studies. The low SDs may have been due to the strict inclusion and exclusion criteria indicating that the trial was homogenous in nature, however we were unable to carry out a sensitivity analysis on these trials as pooling was not possible due to high heterogeneity.

Sixteen of the 61 included trials were very small in size (randomising < 50 men), 25 of 61 included trials were small in size (randomising between 50 to 100 men) and only 20 of 61 included trials included more then 100 men. The estimates of the intervention effect tend to be more beneficial in smaller studies. Smaller studies also may not be as rigorous as the larger studies in their methodology (Higgins 2011).

We tried to assess which type of antioxidant might have a beneficial effect on the outcomes of interest in this review, however only three studies at the most could be pooled in any antioxidant subgrouping. Five studies (Busetto 2018; Gopinath 2013; Morgante 2010; Scott 1998; Tremellen 2007) used combined antioxidants versus placebo or no treatment but only Tremellen 2007 reported on live birth and clinical pregnancy rate. The other studies reported on total or progressive sperm motility and concentration.

The head-to-head comparison does not provide constructive information as we could not pool direct comparisons. Subgrouping of antioxidants, or different doses of antioxidants, was unable to be performed in the treatment versus treatment groups as there were only single studies analysing these differences. Therefore, this review was unable to show any difference in effect between different antioxidants or different doses of the same antioxidant.

There were 24 studies that contained data that were unusable in the analysis, with either some or all of their data (Biagiotti 2003; Boonyarangkul 2015; Cavallini 2004; Eslamian 2013; Exposito 2016; Gamidov 2017; Galatioto 2008; Haje 2015; Kessopoulou 1995; Kumamoto 1988; Lenzi 2003; Lombardo 2002; Martinez 2015; Micic 2017; Nozha 2001; Omu 1998; Pourmand 2014; Poveda 2013; Pryor 1978; Raigani 2014; Sivkov 2011; Sofikitis 2016; Wong 2002; Zalata 1998). The reasons for this were baseline imbalance, presentation of medians, percentages or ranges, and in some cases no SDs or SEs were given (Analysis 1.10; Analysis 1.12; Analysis 1.14; Analysis 1.18; Analysis 1.20; Analysis 1.24; Analysis 1.26; Analysis 2.5; Analysis 2.12). Attempts were made to contact these authors regarding the data. There was no clear evidence of publication bias

Quality of the evidence

The evidence was graded as low to very low quality. The main limitation of this review was that out of the 44 included studies in the meta-analysis, only 13 studies reported on live birth or clinical pregnancy. Other limitations included poor reporting of study methods, imprecision, the number of small studies, reporting bias and lack of data about adverse events. There was no clear evidence of publication bias.

Figure 2 shows the review authors' judgements about the risk of bias of the studies included in this review. All included studies were described as randomised, however only less than 50% gave information on how the randomisation was achieved. Allocation concealment was described in only 31% of the studies. Blinding was better described with over 56% of the studies being double-blinded or occasionally single-blinded; 8% of studies stated that there was no blinding and 21% of included studies used no treatment as a control. Dropout rates were high in some studies and dropout rates tended to be higher in the control groups, which created a potential for differential follow-up with better reporting of clinical pregnancies in the intervention groups. Reporting bias was unclear in 87% of studies.

Potential biases in the review process

There may have been some potential for bias in the review process, as there were some changes compared to the protocol. These included additions and deletions to exclusion criteria such as the removal of pentoxifylline, and adding the new outcome progressive sperm motility. Some bias in the review process may have arisen due to the inclusion of studies that have had a dropout of participants of > 20%, with subsequent imbalances in the number of participants between the treatment and control groups.

Agreements and disagreements with other studies or reviews

The results of our review are in agreement with those of other published systematic reviews. Two other reviews described the effects of L-carnitine and L-acetylcarnitine on subfertile men. The systematic review and meta-analysis by Zhou and colleagues (Zhou

2007) compared L-carnitine and L-acetylcarnitine therapy versus placebo treatment and found improvements in pregnancy rate and total sperm motility. Our review was unable to pool the results of the carnitine studies due to inconsistencies between the studies. The descriptive review by Patel and Sigman (Patel 2008) discusses the improvement in pregnancy rates with oral intake of antioxidants, however Patel states that randomised controlled trials (RCTs) have not shown an effect on sperm motility and that there is a need for more RCTs in men with oxidative stress. Furthermore, Garg 2016 discusses in a review the effect of antioxidants in men with varicocele. They conclude that antioxidant therapy is a potential option as primary treatment or adjunct after surgical repair of varicocele.

Agarwal and colleagues discussed in both an overview of the literature (Agarwal 2004) and systematic review (Majzoub 2018), the effectiveness of antioxidants. In the 2004 overview Agarwal notes that vitamin E and a combination of vitamin E with other antioxidants such as N-acetylcysteine, vitamin A and fatty acids appears to improve pregnancy rates in asthenozoospermic men. This is in agreement with our review. However, their conclusion that carnitines also appear to have an effect on pregnancy rates could not be confirmed. In the systematic review Majzoub 2018 included 29 studies, of which there were 19 RCTs and 10 prospective studies. In 26 studies they found a significant positive effect on basic semen parameters, advanced sperm function tests, ART outcomes or live birth rate. Specifically, a positive effect was seen on live birth rate and fertilisation rate when using vitamin E, vitamin C, carnitines, coenzyme Q10 and zinc. A difference between differing antioxidants was not seen in our study.

Another review (Ross 2010) showed improvement in pregnancy rate and sperm quality after antioxidant therapy. This is in agreement with our review, although we are uncertain of the sperm parameter outcomes due to the extreme heterogeneity. A systematic review (Lafuente 2013) looking at the effect of coenzyme Q10 and male subfertility found an association between this antioxidant and improved pregnancy rate, sperm concentration and motility. We did agree on the effect of coenzyme Q10 on sperm motility and concentration at six months, however we could not draw clear conclusions due to the heterogeneity in these analyses. A more recent systematic review with meta-analysis studied the effectiveness of folate and folate plus zinc on sperm parameters in subfertile men (Irani 2017). They concluded that folate alone was only effective on sperm concentration, and folate plus zinc only on sperm concentration and morphology. Both interventions did not have any effect on sperm motility. This effect of zinc plus folate or folate alone could be confirmed with our review.

The above-mentioned systematic reviews mainly reported on overall pregnancy rates, whereas this updated Cochrane Review reported specifically on clinical pregnancy rates (as confirmed by the identification of a gestational sac on ultrasound) so fewer studies were available for analysis.

A Cochrane Review of antioxidants for female subfertility has been published (Showell 2017) showing that there is limited evidence for a beneficial effect of antioxidants for subfertile women. Furthermore, a recent systematic review and meta-analysis looking at the effect of micronutrient supplementation, in both male and females, on IVF outcomes showed a positive influence on clinical outcomes in terms of pregnancy rate and/or live birth rate (Kofi Arhin 2017). However, only five RCTs could be included, with significant heterogeneity among the interventions and study designs.

AUTHORS' CONCLUSIONS

Implications for practice

In this review, there is low-quality evidence from seven small randomised controlled trials suggesting that antioxidant supplementation in subfertile males may improve live birth rates for couples attending fertility clinics. Low-quality evidence suggests that clinical pregnancy rates may also increase. Overall, there is no evidence of increased risk of miscarriage, however antioxidants may give more mild gastrointestinal upsets but the evidence is of very low quality. Subfertilte couples should be advised that overall the current evidence is inconclusive based on serious risk of bias due to poor reporting of methods of randomisation, failure to report on the clinical outcomes live birth rate and clinical pregnancy, often unclear or even high attrition, and also imprecision due to often low event rates and small overall sample sizes. Further large well-designed randomised placebocontrolled trials reporting on pregnancy and live births are still required to clarify the exact role of antioxidants.

Implications for research

In this review there were only seven small studies reporting on live birth, the most important outcome from the perspective of the couple experiencing difficulty with conception, and the number of events was very small. Strangely, most of the trials in our metaanalysis reporting on live birth are from before 2008. Despite our recommendations in the original review and 2014 update on this topic, principal investigators of clinical trials seem not to have taken clinical outcomes into consideration, which leads to a great gap in evidence. Only four studies reported on DNA fragmentation. A low degree of DNA fragmentation is thought to increase the likelihood of achieving a pregnancy. Further large well-designed placebocontrolled randomised trials with live birth as primary outcome are needed.

Five studies (Busetto 2018; Gopinath 2013; Morgante 2010; Scott 1998; Tremellen 2007) used combined antioxidants (three or more antioxidants) versus control but reported on different outcomes. The results were generally in favour of the antioxidant over the control. However, there is a need for more randomised controlled trials in order to make any conclusions on whether a combination of antioxidants would have a statistically significant benefit over a single antioxidant versus placebo.

If evidence emerges from placebo-controlled randomised trials which shows that antioxidant supplements improve clinical outcomes (pregnancy and live birth) then randomised head-tohead trials will be needed to assess whether one antioxidant is more effective than another in terms of size of benefit. A network meta-analysis could be of interest.

There is also a gap in the evidence as to whether different doses of an antioxidant have different effects. This review was only able to include single studies measuring different doses and therefore meta-analysis of this comparison was not possible.

Evidence to date shows that few studies reported side effects. According to the studies that did report, the side-effect profile of antioxidants was low and mild. However, more data are required to

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

evaluate fully any adverse events and the side effect profile of these supplements.

ACKNOWLEDGEMENTS

Cochrane Gynaecology and Fertility group. I would like to make special mention of the editors who were very thorough and helpful in editing this review.

Many thanks to the translators of the non-English studies: Ichiro Omori, Shaofu Li, Ivan Sola, Pawel Kanturski, Dr Peviandi, Shaofu Li, Farhad Shokraneh, Taixiang Wu, Juliane Reid, Roberto D'Amico, Vasily Vlassov, Liu Qin, Jianping Liu, Guoyan Yang, Gustavo Porfi, Valter Silva, Maíra Parra, Dr Tomoko Kumaga, Tan Wantao and Andrew Dubovyi. A special thank you to Juliane Reid and Helen Nagels for putting us in touch with many of our translators.

Thanks also to Stephan Bontekoe who kindly helped with some of the text in the original review.

We acknowledge comments sent by Tina Kold Jensen, Niels Erik Skakkebaek, Niels Jørgensen, Martin Blomberg Jensen, Anders Juul, Peter Gøtzsche, Department of Growth and Reproduction, and The Nordic Cochrane Centre, Rigshospitalet, Denmark. Our formal response was published in December 2011 and the points made have been addressed.

The authors of the 2018 review thank Professor Roger Hart for his contributions to all previous version of this review.

Further information for the studies was received from:

Dr N Adel (Adel 2015)

Dr Ovchinnikov (Gamidov 2017)

Dr Zavari (Gopinath 2013)

Dr Kabir (Cyrus 2015)

Professor Matorras (Exposito 2016)

Dr Balercia (Balercia 2005; Balercia 2009)

Dr Busetto (Busetto 2018)

Dr Nasr-Esfahani (Barekat 2016)

Dr Irge (NCT01520584)

Dr Dimitriadis (Sofikitis 2016)

Dr Agarwal and ms. Micic (Micic 2017)

Dr Norouzi (Sharifzadeh 2016)

Dr Hekmatdoost (NCT01846325)

Dr Mathieu-d'Argent (NCT01407432)

Dr Kamath (CTRI/2013/02/003431)

Dr Pinter (NCT02310087)

Dr Nematollahi-mahani (Azizollahi 2013),

Associate Professor Kelton Tremellen (Tremellen 2007).

Dr Kamath (CTRI/2013/02/003431)

Dr Peivandi (Peivandi 2010)

Dr El Gindy (Elgindy 2008)

Dr M Sigman (Sigman 2006)

Professor Niewchlag (Rolf 1999)

Dr Cavallini (Cavallini 2004)

Dr Wang (Wang 1983)

Dr Martinez-Soto (Martinez-Soto 2010)

Dr Morgante (Morgante 2010)

Dr Nadjarzadeh (Nadjarzadeh 2011)

Dr Safarinejad (Safarinejad 2009; Safarinejad 2009a).

REFERENCES

References to studies included in this review

Akiyama 1999 {published data only}

Akiyama M. In vivo scavenging effect of ethylcysteine on reactive oxygen species in human semen. *Japanese Journal of Urology* 1999;**90**(3):421-8.

Attallah 2013 {published data only}

Attallah D, El Nashar IH, Mahmoud R, Shaaban OM, Salman SA. N-acytelcysteine prior to intrauterine insemination in couples with isolated athenozospermia: a randomized controlled trial. *Fertility and Sterility* 2013;**100**(3 Suppl):S462.

Azizollahi 2013 {published data only}

* Azizollahi G, Azizollahi S, Babaei H, Kianinejad M, Baneshi MR, Nematollahi-mahani SN. Effects of supplement therapy on sperm parameters, protamine content and acrosomal integrity of varicocelectomized subjects. *Journal of Assisted Reproduction and Genetics* 2013;**30**(4):593-9.

Azizollahi G, Azizollahi S, Babaei H, Kianinejad MA, Baneshi MR, Nematollahi-Mahani SN. Effects of zinc sulfate and folic acid coadministration on sperm parameters, protamine content and acrosomal integrity of varicocelectomized patients. *Iranian Journal of Reproductive Medicine* 2013;**1**):37.

Azizollahi S, Azizollahi G, Nematollahi SN, Babaei H, Rastegari A, Maghsudi S. The effect of folic acid administration on protamine deficiency, acrosomal activity and semen parameters in varicocelectomized patients. *Human Reproduction* 2011;**26 Suppl 1 Abstract no: P-57**:i340.

Azizollahi S, Nematollahi-Mahani SN, Azizollahi G, Baneshi MR, Safari Z. The effect of folic acid and zinc sulfate on endocrine parameters and seminal antioxidant level, after variocelectomy. *Iranian Journal of Reproductive Medicine* 2013;**1**):36.

Balercia 2005 {published data only}

Balercia G, Regoli F, Armeni T, Koverech A, Mantero F, Boscaro M. Placebo-controlled double-blind randomized trial on the use of L-carnitine, L-acetylcarnitine, or combined L-carnitine and L-acetylcarnitine in men with idiopathic asthenozoospermia. *Fertility and Sterility* 2005;**84**(3):662-71.

Balercia 2009 {published data only}

Balercia G, Buldreghini E, Vignini A, Tiano L, Paggi F, Amoroso S, et al. Coenzyme Q10 treatment in infertile men with idiopathic asthenozoospermia: a placebo-controlled, double-blind randomized trial. *Fertility and Sterility* 2009;**91**(5):1785-92.

Barekat 2016 {published data only}

Barekat F, Tavalaee M, Deemeh MR, Bahreinian M, Azadi L, Abbasi H, et al. A Preliminary Study: N-acetyl-L-cysteine Improves Semen Quality following Varicocelectomy. *International Journal of Fertility & Sterility* 2016;**10**(1):120-6.

Biagiotti 2003 {published data only}

Biagiotti G, Cavallini G, Modenini F, Vitali G, Magli C, Ferraretti A. Prostaglanadins pulsed down-regulation enhances carnitine therapy performance in severe idiopathic oligoasthenospermia. *Human Reproduction* 2003;**18 Suppl 1**:202.

Blomberg Jensen 2018 {*published data only*}

* Blomberg Jensen M, Gerner Lawaetz J, Andersson A, Petersen JH, Nordkap L, Bang AK, et al. Vitamin D deficiency and low ionized calcium are linked with semen quality and sex steroid levels in infertile men. *Human Reproduction* 2016;**31**(8):1875-85.

* Blomberg Jensen M, Lawaetz JG, Petersen JH, Juul A, Jorgensen N. Effects of vitamin D supplementation on semen quality, reproductive hormones, and live birth rate: a randomized clinical trial. *Journal of Clinical Endocrinology & Metabolism* 2018;**103**(3):870-81.

Boonyarangkul 2015 {published data only}

Boonyarangkul A, Vinayanuvattikhun N, Chiamchanya C, Visutakul P. Comparative study of the effects of tamoxifen citrate and folate on semen quality of the infertile male with semen abnormality. *Journal of the Medical Association of Thailand* 2015;**98**(11):1057-63.

Busetto 2018 {published data only}

Busetto G, Virmani A, Del Giudice F, Micic S, Agarwal A, De Berardinis E. Varicocele and oligoasthenoteratozoo-spermia: Evaluation of antioxidant supplementation effect on pregnancy rate and sperm quality. *Fertility and Sterility* 2017;**108 (3 Supplement 1)**:e133.

Busetto G, Virmani MA, Antonini G, Ragonesi G, De Berardinis E, Agarwal A, et al. Effect of antioxidant supplementation on sperm parameters in oligoasthenoteratozoospermia, with and without varicocele: A DBPC study. *Fertility and Sterility* 2016;**106** (Supplement 3):e46.

* Busetto GM, Agarwal A, Virmani A, Antonini G, Ragonesi G, Del Giudice F, et al. Effect of metabolic and antioxidant supplementation on sperm parameters in oligo-asthenoteratozoospermia, with and without varicocele: a double-blind placebo-controlled study. *Andrologia* 2018;**07**:07.

Busetto GM, Virmani A, Antonini G, Ragonesi G, Del Giudice F, Agarwal A, et al. Effect of antioxidant supplementation on sperm parameters in oligo-astheno-teratozoospermia, with and without varicocele: A double blind place controlled (DBPC) study. *Human Reproduction* 2017;**32 (Supplement 1)**:i142-3.

Cavallini 2004 {published data only}

* Cavallini G, Ferraretti AP, Gianaroli L, Biagiotti G, Vitali G. Cinnoxicam and L-carnitine/acetyl-L-carnitine treatment for idiopathic and varicocoele associated oligoasthenospermia [see comment]. Journal of Andrology 2004; Vol. 25, issue 5:761-70.

Cavallini G, Ferraretti AP, Gianaroli L, Magli MC, Biagiotti G, Vitali G. Cinnoxicam + carnitines for idiopathic dyspermia. The 20th Annual Meeting of the European Society of Human Reproduction and Embryology. Human Reproduction 2004:i23-4.

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Antioxidants for male subfertility (Review)

Conquer 2000 {published data only}

Conquer JA, Martin JB, Tummon I, Watson L, Tekpetey F. Effect of DHA supplementation on DHA status and sperm motility in asthenozoospermic males. *Lipids* 2000;**35**(2):149-54.

Cyrus 2015 {published data only}

Cyrus A, Kabir A, Goodarzi D, Moghimi M. The effect of adjuvant vitamin C after varicocele surgery on sperm quality and quantity in infertile men: a double blind placebo controlled clinical trial. International Brazilian Journal of Urology 2015; Vol. 41, issue 2:230-8.

Dawson 1990 {published data only}

Dawson EB, Harris WA, Powell LC. Relationship between ascorbic acid and male fertility. World Review of Nutrition and Dietetics 1990; Vol. 62:1-26.

Deng 2014 {published data only}

* Deng XL, Li YM, Yang XY, Huang JR, Guo SL, Song LM. Efficacy and safety of vitamin D in the treatment of idiopathic oligoasthenozoospermia. [Chinese]. Zhonghua nan ke xue = National Journal of Andrology 2014; Vol. 20, issue 12:1082-5.

Deng XL, Li YM, Yang XY, Huang JR, Guo SL, Song LM. [Efficacy and safety of vitamin D in the treatment of idiopathic oligoasthenozoospermia]. Zhong Hua Nan Ke Xue 2014; Vol. 20, issue 12:1082-5.

Dimitriadis 2010 {published data only}

Dimitriadis F, Tsambalas S, Tsounapi P, Kawamura H, Vlachopoulou E, Haliasos N, et al. Effects of phosphodiesterase-5 inhibitors on Leydig cell secretory function in oligoasthenospermic infertile men: A randomized trial. *BJU International* 2010;**106**(8):1181-5.

Ener 2016 {published data only}

Ener K, Aldemir M, Isik E, Okulu E, Ozcan MF, Ugurlu M, et al. The impact of vitamin E supplementation on semen parameters and pregnancy rates after varicocelectomy: A randomised controlled study. *Andrologia* 2016;**48**(7):829-34.

Eslamian 2013 {published data only}

* Eslamian G, Amirjannati N, Sadeghi MR, Rashidkhani B, Pahlavan S, Hooshangi A, et al. The effects of combined supplementation of docosahexaenoic acid and vitamin E on fatty acid changes in sperm membrane in asthenozoospermic men. *Iranian Journal of Nutrition Sciences & Food Technology* 2013;**8**(1):23-37.

Hekmatdoost A. The effects of administration of combined docosahexaenoic acid and vitamin E supplements on spermatogram and seminal plasma oxidative stress in infertile men with asthenozoospermia. www.clinicaltrials.gov. [ClinicalTrials.gov: NCT01846325]

Exposito 2016 {published data only}

* Exposito A, Perez-Sanz J, Crisol L, Aspichueta F, Quevedo S, Diaz-Nunez M, et al. A prospective double-blind randomized placebo-controlled study of the effect of vitamin E on semen parameters in infertile men. Human Reproduction 2016; Vol. 31 (Supplement 1):i137-8. Exposito A, Perez-Sanz J, Crisol L, Aspichueta F, Quevedo S, Diaz-Nunez M, et al. A prospective double-blind randomized placebo-controlled study of the effect of vitamin E on semen parameters in infetile men. Human Reproduction 2016; Vol. 31 (Supp1):i137-i138 Abstract no: P-018.

Galatioto 2008 {published data only}

Galatioto GP, Gravina GL, Angelozzi G, Sacchetti A, Innominato PF, Pace G, et al. May antioxidant therapy improve sperm parameters of men with persistent oligospermia after retrograde embolization for varicocele?. World Journal of Urology 2008; Vol. 26, issue 1:97-102.

Gamidov 2017 {published data only}

* Gamidov SI, Ovchinnikov RI, Popova AY, Avakyan AY, Sukhikh GT. Adjuvant antioxidant therapy in varicocele infertility. [Russian]. Urologiia 2017; Vol. 2:64-72.

Gamidov SI, Ovchinnikov RI, Popova AY, Avakyan AY, Sukhikh GT. [Adjuvant antioxidant therapy in varicocele infertility]. Urologiia (Moscow, Russia) 2017, issue 2 (supplement):64-72.

Gopinath 2013 {published data only}

Gopinath PM, Kalra B, Saxena A, Malik S, Kochhar K, Kalra S, et al. Fixed dose combination therapy of antioxidants in treatment of idiopathic oligoasthenozoospermia: Results of a randomized, double-blind, placebo-controlled clinical trial. International Journal of Infertility and Fetal Medicine 2013; Vol. 4, issue 1:6-13.

Greco 2005 {published data only}

Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. Journal of Andrology 2005; Vol. 26, issue 3:349-53.

Haghighian 2015 {published data only}

Haghighian HK, Haidari F, Mohammadi-Asl J, Dadfar M. Randomized, triple-blind, placebo-controlled clinical trial examining the effects of alpha-lipoic acid supplement on the spermatogram and seminal oxidative stress in infertile men. Fertility & Sterility 2015; Vol. 104, issue 2:318-24.

Haje 2015 {published data only}

Haje M, Naoom K. Combined tamoxifen and L-carnitine therapies for the treatment of idiopathic male infertility attending intracytoplasmic sperm injection: A randomized controlled trial. International Journal of Infertility and Fetal Medicine 2015; Vol. 6, issue 1:20-4.

Kessopoulou 1995 {published data only}

Kessopoulou E, Powers HJ, Sharma KK, Pearson MJ, Russell JM, Cooke ID, et al. A double-blind randomized placebo cross-over controlled trial using the antioxidant vitamin E to treat reactive oxygen species associated male infertility. Fertility and Sterility 1995; Vol. 64, issue 4:825-31.

Kumamoto 1988 {published data only}

Kumamoto Y, Maruta H, Ishigami J, Kamidono S, Orikasa S, Kimura M, et al. Clinical efficacy of mecobalamin in the treatment of oligozoospermia--results of double-blind

Antioxidants for male subfertility (Review)

comparative clinical study. *Hinyokika Kiyo. Acta Urologica Japonica* 1988;**34**:1109-32.

Lenzi 2003 {published data only}

Lenzi A, Lombardo F, Sgro P, Salacone P, Caponecchia L, Dondero F, et al. Use of carnitine therapy in selected cases of male factor infertility: a double-blind crossover trial [see comment]. Fertility and Sterility 2003; Vol. 79, issue 2:292-300.

Lenzi 2004 {published data only}

Lenzi A, Sgro P, Salacone P, Paoli D, Gilio B, Lombardo F, et al. A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia [see comment]. Fertility and Sterility 2004; Vol. 81, issue 6:1578-84.

Li 2005 {published data only}

Li Z, Chen GW, Shang XJ, Bai WJ, Han YF, Chen B, et al. A controlled randomized trial of the use of combined Lcarnitine and acetyl-L-carnitine treatment in men with oligoasthenozoospermia. Zhong Hua Nan Ke Xue 2005; Vol. 11, issue 10:761-4.

Li 2005a {published data only}

Li Z, Gu R, Liu Y, Xiang Z, Cao X, Han Y, et al. Curative effect of Lcarnitine supplementation in the treatment of male infertility. Academic Journal of Shanghai Second Medical University 2005; Vol. 25, issue 3:292-4.

Lombardo 2002 {published data only}

Lombardo F, Gandini L, Agarwal A, Sgro P, Dondero F, Lenzi A. A prospective double blind placebo controlled cross over trial of carnitine therapy in selected cases of male infertility. Fertility and Sterility 2002; Vol. 78 Suppl 1:68-9.

Martinez 2015 {published data only}

Martinez AM, Sordia-Hernandez LH, Morales JA, Merino M, Vidal O, Garcia Garza MR, et al. A randomized clinical study assessing the effects of the antioxidants, resveratrol or SC1002, a hydrogen sulfide prodrug, on idiopathic oligoasthenozoospermia. Asian Pacific Journal of Reproduction 2015; Vol. 4, issue 2:106-11.

Martinez-Soto 2010 {published data only}

Martinez-Soto JC, Domingo JC, Cardobilla LP, Pellicer A, Landeras J. Effect of dietary DHA supplementation on sperm DNA integrity. *Fertility and Sterility* September 2010;**94**(4):S235-6.

Mehni 2014 {published data only}

Mehni NM, Ketabchi AA, Hosseini E. Combination effect of pentoxifylline and L-carnitine on idiopathic oligoasthenoteratozoospermia. Iranian Journal of Reproductive Medicine 2014; Vol. 12, issue 12:817-24.

Micic 2017 {published data only}

Micic S, Lalic N, Bojanic N, Djordjevic D, Virmani A, Agarwal A. Assessment of sperm motility in oligoasthenospermic men, treated with metabolic and essential nutrients, in a randomized, double blind, placebo study. Human Reproduction 2016; Vol. 31 (Supplement 1):i151-2. Micic S, Lalic N, Bojanic N, Djordjevic D, Virmani A, Agarwal A. DBPC study in oligoasthenospermic men treated with metabolic and essential nutrients showed that progressive sperm motility was correlated to seminal carnitine levels. Andrology 2016; Vol. 4 (Supplement 2):56.

* Micic S, Lalic N, Bojanic N, Djordjevic D, Virmani A, Agarwal A. DBPC study showed significant correlation of DNA fragmetation index (DFI) and seminal carnitine with progressive sperm motility in oligospermic men treated with metabolic and essential nutrients. Fertility and Sterility 2017; Vol. 108 (3 Supplement 1):e307-8.

Micic S, Lalic N, Bojanic N, Djordjevic D, Virmani A, Agarwal A. Oligoastenospermic men treated with proxeed plus showed correlation between sperm motility and seminal carnitine. Fertility and Sterility 2016; Vol. 106 (Supplement 3):e298-9.

Micic S, Lalic N, Djordjevic D, Bogavac-Stanojevic N, Virmani A, Agarwal A. Seminal carnitine and DNA fragmentation index (DFI) impact progressive sperm motility in oligoasthenospermic men treated with metabolic and essential nutrients, with moderate accuracy. Human Reproduction 2017; Vol. 32 (Supplement 1):i132.

Morgante 2010 {published data only}

Morgante G, Scolaro V, Tosti C, Di Sabatino A, Piomboni P, De Leo V. Treatment with carnitine, acetyl carnitine, L-arginine and ginseng improves sperm motility and sexual health in men with asthenopermia. *Minerva Urologica e Nefrologica* 2010;**62**(3):213-8.

Nadjarzadeh 2011 {published data only}

Nadjarzadeh A, Shidfar F, Amirjannati N, Vafa MR, Motevalian SA, Gohari MR, et al. Coenzyme Q10 improves seminal oxidative defense but does not affect on seman in idiopathic oligoasthenoteratozoospermia: A randomized doubleblind placebo controlled trial. *Journal of Endocrinological Investigation* 2011;**34**:e224-8.

Nozha 2001 {published data only}

Nozha CF, Leila AK, Zouhir S, Hanen G, Khled Z, Tarek R. Oxidative stress and male infertility: comparative study of combined vitamin E/selenium treatment versus vitamin B. Human Reproduction 2001; Vol. 17, issue Abstract book 1:111-2.

Omu 1998 {published data only}

Omu AE, Dashti H, Al-Othman S. Treatment of asthenozoospermia with zinc sulphate: andrological, immunological and obstetric outcome. European Journal of Obstetrics, Gynecology, and Reproductive Biology 1998; Vol. 79, issue 2:179-84.

Omu 2008 {*published data only*}

Omu AE, Al-Azemi MK, Kehinde EO, Anim JT, Oriowo MA, Mathew TC. Indications of the mechanisms involved in improved sperm parameters by zinc therapy. Medical Principles and Practice 2008; Vol. 17, issue 2:108-16.

Antioxidants for male subfertility (Review)

Peivandi 2010 {published data only}

Peivandi S, Abasali K, Narges M. Effects of L-carnitine on infertile men's spermogram; a randomised clinical trial. *Journal of Reproduction and Infertility* 2010;**10**(4):331.

Pourmand 2014 {published data only}

* Pourmand G, Movahedin M, Dehghani S, Mehrsai A, Ahmadi A, Pourhosein M, et al. Does L-carnitine therapy add any extra benefit to standard inguinal varicocelectomy in terms of deoxyribonucleic acid damage or sperm quality factor indices: a randomized study. Urology 2014; Vol. 84, issue 4:821-5.

Pourmand GH, Movahedin M, Dehghan S, Mehrsai A, Ahmadi A, Pourhosein M. Does L-carnitine therapy add any extra benefit to standard inguinal varicocelectomy in terms of deoxyribonucleic acid damage or sperm quality factor indices: a randomized study. Iranian Journal of Reproductive Medicine. 2015, issue 4 suppl. 1:67.

Poveda 2013 {published data only}

Poveda C, Rodriguez R, Chu EE, Aparicio LE, Gonzales IG, Moreno CJ. A placebo-controlled double-blind randomized trial of the effect of oral supplementation with spermotrend, maca extract (lepidium meyenii) or L-carnitine in semen parameters of infertile men. Fertility and Sterility 2013; Vol. 100, issue 3 Suppl:S440.

Pryor 1978 {published data only}

Pryor JP, Blandy JP, Evans P, Chaput de Saintonge DM, Usherwood M. Controlled clinical trial of arginine for infertile men with oligozoospermia. *British Journal of Urology* 1978;**50**:47-50.

Raigani 2014 {published data only}

Raigani M, Yaghmaei B, Amirjannti N, Lakpour N, Akhondi MM, Zeraati H, et al. The micronutrient supplements, zinc sulphate and folic acid, did not ameliorate sperm functional parameters in oligoasthenoteratozoospermic men. Andrologia 2014; Vol. 46, issue 9:956-62.

Rolf 1999 {published data only}

* Rolf C, Cooper TG, Yeung CH, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study. *Human Reproduction* 1999;**14**(4):1028-33.

Rolf C, Cooper TG, Yeung CH, Nieschlag E. Antioxidant treatment of patients with asthenozoospermia or moderate oligoasthenozoospermia with high-dose vitamin C and vitamin E: a randomized, placebo-controlled, double-blind study [see comment]. *Human Reproduction* 1999;**14**(4):1028-33.

Safarinejad 2009 {published data only}

Safarinejad MR, Safarinejad S. Efficacy of selenium and/or Nacetyl-cysteine for improving semen parameters in infertile men: a double-blind, placebo controlled, randomized study. *Journal of Urology* 2009;**181**(2):741-51.

Safarinejad 2009a {published data only}

Safarinejad ME. Efficacy of coenzyme Q10 on semen parameters, sperm function and reproductive hormones in infertile men. *Journal of Urology* 2009;**182**(1):237-48.

Safarinejad 2012 {published data only}

Safarinejad MR, Shafiei N, Safarinejad S. Effects of the reduced form of coenzyme Q10 (ubiquinol) on semen parameters in men with idiopathic infertility: A double-blind, placebo controlled, randomized study. *Journal of Urology* 2012;**188**(2):526-31.

Scott 1998 {published data only}

Scott R, MacPherson A, Yates RW, Hussain B, Dixon J. The effect of oral selenium supplementation on human sperm motility. British Journal of Urology 1998; Vol. 82, issue 1:76-80.

Sharifzadeh 2016 {published data only}

Sharifzadeh F, Norouzi S, Ashrafi M, Aminimoghaddam S, Koohpayezadeh J. Effects of zinc sulfate on subfertility related to male factors: a prospective double-blind, randomized, placebo-controlled clinical trial. Journal of Obstetrics, Gynecology and Cancer Research 2016; Vol. 1, issue 2:e7242. [2476-5848]

Sigman 2006 {published data only}

Pryor JL, Stacy L, Glass S, Campagnone J, Sigman M. Randomized double blind placebo controlled trial of carnitine for the treatment of idiopathic asthenospermia. *Fertility and Sterility* 2003;**80 Suppl 3**:48.

* Sigman M, Glass S, Campagnone J, Pryor JL. Carnitine for the treatment of idiopathic asthenospermia: a randomized, double-blind, placebo-controlled trial. *Fertility and Sterility* 2006;**85**(5):1409-14.

Sivkov 2011 {published data only}

Sivkov AV, Oshchepkov VN, Evdokimov VV, Keshishev NG, Skabko OV. Selzink plus study in patients with chronic noninfectious prostatitis and abnormal fertility. [Russian]. Urologii 2011; Vol. 5:27-33.

Sofikitis 2016 {published data only}

Sofikitis N, Dimitriadis F, Skouros S, Stavrou S, Seminis G, Giannakis I, et al. Effects of avanafil on semen quality and sperm cytoskeleton in oligoasthenospermic infertile men: A randomized controlled trial. Journal of Sexual Medicine 2016; Vol. 2:S164-5.

Suleiman 1996 {published data only}

Suleiman SA, Ali ME, Zaki ZM, el-Malik EM, Nasr MA. Lipid peroxidation and human sperm motility: protective role of vitamin E. Journal of Andrology 1996; Vol. 17, issue 5:530-7.

Tremellen 2007 {published data only}

Tremellen K, Froiland D, Miari G, Thompson J. A randomised control trial examining the effect of an antioxidant on sperm function pregnancy outcome during IVF treatment. The Fertility Society of Australia 25th Annual scientific meeting. *Australian & New Zealand Journal of Obstetrics & Gynaecology* 2006;**46 Suppl 2**:A.2.

* Tremellen K, Miari G, Froiland D, Thompson J. A randomised control trial examining the effect of an antioxidant (Menevit) on pregnancy outcome during IVF-ICSI treatment. *Australian & New Zealand Journal of Obstetrics & Gynaecology* 2007;**47**:216-21.

Wang 2010 {published data only}

Wang YX, Yang SW, Qu CB, Huo HX, Li W, Li JD, et al. L-carnitine: safe and effective for asthenozoospermia. *Zhonghua nan ke xue* - *National Journal of Andrology* 2010;**16**(5):420-2.

Wong 2002 {published data only}

Ebisch IM, Pierik FH, De Jong FH, Thomas CM, Steegers-Theunissen RP. Does folic acid and zinc sulphate intervention affect endocrine parameters and sperm characteristics in men?. *International Journal of Andrology* 2006;**29**(2):339-45.

* Wong WY, Merkus HM, Thomas CM, Menkveld R, Zielhuis GA, Steegers-Theunissen RP. Effects of folic acid and zinc sulfate on male factor subfertility: a double-blind, randomized, placebocontrolled trial. Fertility and Sterility 2002; Vol. 77, issue 3:491-8.

Zalata 1998 {published data only}

* Zalata A, Christophe A, Horrbin D, Dhooge W, Comhaire F. Protection of sperm function and DNA by essential fatty acids and antioxidants dietary supplementation. *Fertility and Sterility* 1998;**70**:287.

Zalata A, Christophe A, Horrobin D, Dhooge W, Comhaire F. Effect of essential fatty acids and antioxidants dietary supplementation on the oxidative DNA damage of the human spermatozoa. ESHRE 14th annual meeting. Goteborg, 1998:270-1.

Zavaczki 2003 {published data only}

Zavaczki Z, Szollosi J, Kiss S, Koloszar S, Fejes I, Kovacs L, Pal A. Magnesium-orotate supplementation for idiopathic infertile male patients: a randomized, placebo-controlled clinical pilot study. *Magnesium Research* 2003;**16**(2):131-6.

References to studies excluded from this review

Adel 2015 {published data only}

Adel N, El Maghraby H, Ghareeb D, Elmahdy M. Vitamin e and berberine counteract the adverse effects of ros on sperm and seminal parameters. *Human Reproduction* 2015;**30 Suppl 1**:i171 Abstract no: P-113.

Alahmar 2017 {published data only}

Alahmar AT. Effect of vitamin C, vitamin E, zinc, selenium, and coenzyme Q10 in infertile men with idiopathic oligoasthenozoospermia. *International Journal of Infertility and Fetal Medicine* 2017;**8**(2):45-9.

Alizadeh 2018 {published data only}

Alizadeh F, Javadi M, Karami AA, Gholaminejad F, Kavianpour M, Haghighian HK. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: A randomized clinical trial. *Phytotherapy Research* 2018;**32**(3):514-21.

Alsalman 2018 {published data only}

Alsalman AR, Almashhedy LA, Hadwan MH. Effect of oral zinc supplementation on the thiol oxido-reductive index and thiolrelated enzymes in seminal plasma and spermatozoa of Iraqi asthenospermic patients. *Biological Trace Element Research* 2018;**184**(2):340-9.

Anarte 2012 {published data only}

Anarte C, Calvo I, Domingo A, Presilla N, Aleman M, Bou R, et al. Effect of DHA supplementation on fatty acid composition of sperm and its relation to semen quality. Human Reproduction - Abstract book of the 28th ESHRE Annual Meeting, Turkey 1-4 July 2012. 2012; Vol. 27, issue 2:ii121-ii50.

Anarte 2013 {published data only}

Anarte C, Domingo A, Agirregoikoa JA, De Pablo J, Barrenetxea G. Regular consumption of docosahexaenoic acid (DHA) improves semen quality. *Fertility and Sterility* 2013;**100 Suppl 3**:S443.

Azizollahi 2013a {published data only}

Azizollahi S, Nematollahi-Mahani SN, Azizollahi G, Baneshi MR, Safari Z. The effect of folic acid and zinc sulfate on endocrine parameters and seminal antioxidant level, after variocelectomy. *Iranian Journal of Reproductive Medicine* 2013;1):36.

Cai 2012 {published data only}

Cai T, Wagenlehner F, Mazzoli S, Meacci F, Mondaini N, Nesi G, et al. Semen quality in patients with Chlamydia trachomatis genital infection treated concurrently with prulifloxacin and a phytotherapeutic agent. *Journal of Andrology* 2012;**33**(4):615-23.

Calogero 2015 {published data only}

Calogero AE, Gullo G, La Vignera S, Condorelli RA, Vaiarelli A. Myoinositol improves sperm parameters and serum reproductive hormones in patients with idiopathic infertility: a prospective double-blind randomized placebo-controlled study. *Andrology* 2015;**3**(3):491-5.

Capece 2017 {published data only}

* Capece M, Romeo G, Ruffo A, Romis L, Mordente S, Di Lauro G. A phytotherapic approach to reduce sperm DNA fragmentation in patients with male infertility. *Urologia (Treviso)* 2017;**84**(2):79-82.

Capece M, Romeo G, Ruffo A, Romis L, Mordente S, Di Lauro G. Alga Ecklonia Bicyclis, tribulus terrestris, myoinositol and biovistm reduce sperm DNA fragmentation in patients with oligo-asthenoterato-zoospermia (OAT) syndrome. *Journal of Sexual Medicine* 2015;**12 (Supplement 5)**:365.

Chattopadhyay 2016 {published data only}

Chattopadhyay R, Yasmin S, Chakravarty BN. Effect of continuous 6 months oral antioxidant combination with universally recommended dosage in idiopathic male infertility. *International Journal of Infertility and Fetal Medicine* 2016;**7**(1):1-6.

```
Antioxidants for male subfertility (Review)
```


Chen 2012 {published data only}

Chen XF, Li Z, Ping P, Dai JC, Zhang FB, Shang XJ, et al. Efficacy of natural vitamin E on oligospermia and asthenospermia: a prospective multi-centered randomized controlled study of 106 cases. *Zhong Hua Nan Ke Xue* 2012;**18**(5):428-31.

Ciftci 2009 {published data only}

Ciftci H, Verit A, Savas M, Yeni E, Erel O. Effects of Nacetylcysteine on semen parameters and oxidative/antioxidant status. *Urology* 2009;**74**(1):73-6.

Comhaire 2005 {published data only}

Comhaire FH, El Garem Y, Mahmoud A, Eertmans F, Schoonjans F. Combined conventional/antioxidant "Astaxanthin" treatment for male infertility: a double blind, randomized trial. *Asian Journal of Andrology* 2005;**7**(3):257-62.

Ebisch 2003 {published data only}

Ebisch IM, van Heerde WL, Thomas CM, van der Put N, Wong WY, Steegers-Theunissen RP. C677T methylenetetrahydrofolate reductase polymorphism interferes with the effects of folic acid and zinc sulfate on sperm concentration. *Fertility and Sterility* 2003;**80**(5):1190-4.

Elgindy 2008 {published data only}

Elgindy EA, El-Huseiny AM, Mostafa MI, Gaballah AM, Amed TA. N-Acetylcysteine: Could it be an effective adjuvant therapy in ICSI cycles. *Fertility and Sterility* 2008;**90 Suppl 1**(American Society for Reproductive Medicine 64th Annual Meeting. 8-12 November 2008, San Francisco, CA):356 Abstract no: P738.

Ghafarizadeh 2018 {published data only}

Ghafarizadeh AA, Vaezi G, Shariatzadeh MA, Malekirad AA. Effect of in vitro selenium supplementation on sperm quality in asthenoteratozoospermic men. *Andrologia* 2018;**50**(2):e12869.

Ghanem 2010 {published data only}

Ghanem H, Shaeer O, El-Segini A. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: a randomized controlled trial. *Fertility and Sterility* 2010;**93**(7):2232-5.

Gulati 2015 {published data only}

Gulati S, Chattopadhyay R, Ghosh B, Yasmin S, Ghosh S, Bose G, et al. Treatment with combined antioxidant formulation before ICSI improves pregnancy rate in couples with obstructive azoospermia. *Fertility and Sterility* 2015;**1**):e241.

Gulino 2016 {unpublished data only}

AGUNCO Obstetrics and Gynecology Centre (PI unknown). Effect of treatment with myo-inositol on human semen parameters in patients undergoing in vitro fertilization cycles. https:// clinicaltrials.gov.

* Gulino FA, Leonardi E, Marilli I, Musmeci G, Vitale SG, Leanza V, et al. Effect of treatment with myo-inositol on semen parameters of patients undergoing an IVF cycle: in vivo study. *Gynecological Endocrinology* 2016;**32**(1):65-8.

Hafeez 2011 {published data only}

Hafeez M, Ahmed A, Usmanghani K, Mohiuddin E, Asif HM, Akram M, et al. Clinical evaluation of herbal medicine for oligospermia. *Pakistan Journal of Nutrition* 2011;**10**(3):238-40.

lacono 2014 {published data only}

Iacono F, Ruffo A, Prezioso D, Illiano E, Romeo G, Romis L, et al. Combination therapy with antiestrogen and a natural composite containing tribulus terrestris, alga ecklonia bicyclis, biovis and myo-inositol in the treatment of male idiopathic infertility. *Journal of Sexual Medicine* 2014;**1**:92.

Jawad 2013 {published data only}

Jawad HM. Zinc sulfate treatment of secondary male infertility associated with positive serum and seminal plasma antisperm antibody test. *Middle East Fertility Society Journal* 2013;**18**(1):24-30.

Kanta Goswami 2017 {published data only}

Kanta Goswami S, Chattopadhyay R, Ghosh S, Ghosh B, Yasmin S, Goswami M, et al. Exogenous oral combination antioxidants in idiopathic infertile males, having higher DNA fragmentation index, before ICSI cycle may improve live birth rate. *Human Reproduction* 2017;**32 (Supplement 1)**:i160.

Keskes-Ammar 2003 {published data only}

Keskes-Ammar L, Feki-Chakroun N, Rebai T, Sahnoun Z, Ghozzi H, Hammami S, et al. Sperm oxidative stress and the effect of an oral vitamin E and selenium supplement on semen quality in infertile men. *Archives of Andrology* 2003;**49**(2):83-94.

Kim 2010 {published data only}

Kim C-H, Yoon J-W, Ahn J-W, Kang H-J, Lee J-W, Kang B-M. The effect of supplementation with omega-3-polyunsaturated fatty acids in intracytoplasmic sperm injection cycles for infertile patients with a history of unexplained total fertilization failure. *Fertility and Sterility* 2010;**94**(4 Suppl 1):S242.

Korosi 2017 {published data only}

Korosi T, Barta C, Rokob K, Torok T. Physiological Intra-Cytoplasmic Sperm Injection (PICSI) outcomes after oral pretreatment and semen incubation with myo-inositol in oligoasthenoteratozoospermic men: results from a prospective, randomized controlled trial. *European Review for Medical & Pharmacological Sciences* 2017;**21**(2 Suppl):66-72.

Kumar 2011 {published data only}

Kumar R, Saxena V, Shamsi M, Venkatesh S, Dada R. Herbo-mineral supplementation in men with idiopathic oligoasthenoteratospermia: A double blind randomized placebo-controlled trial. *Indian Journal of Urolology* 2011;**27**(3):357–62.

Lenzi 1993 {published data only}

Lenzi A, Culasso F, Gandini L, Lombardo F, Dondero F. Placebocontrolled, double-blind, cross-over trial of glutathione therapy in male infertility. *Human Reproduction* 1993;**8**(10):1657-62.

Lu 2010 {published data only}

Lu SM, Li X, Zhang HB, Hu JM, Yan JH, Liu JL, et al. [Use of L-carnitine before percutaneous epididymal sperm

aspiration-intracytoplasmic sperm injection for obstructive azoospermia]. *Zhonghua nan ke xue - National Journal of Andrology* 2010;**16**(10):919-21.

Martinez-Soto 2016 {published data only}

Martinez-Soto JC, Domingo JC, Cordobilla B, Nicolas M, Fernandez L, Albero P, et al. Dietary supplementation with docosahexaenoic acid (DHA) improves seminal antioxidant status and decreases sperm DNA fragmentation. *Systems Biology in Reproductive Medicine* 2016;**62**(6):387-95.

Merino 1997 {published data only}

Merino G, Martinez Chequer JC, Barahona E, Bermudez JA, Moran C, Carranza-Lira S. Effects of pentoxifylline on sperm motility in normogonadotropic asthenozoospermic men. *Archives of Andrology* 1997;**39**(1):65-9.

Micic 1988 {published data only}

Micic S, Hadzi-Djokic J, Dotlic R, Tulic C. Pentoxifyllin treatment of oligoasthenospermic men. *Acta Europaea Fertilitatis* 1988;**19**(3):135-7.

Micic 2001 {published data only}

Micic S, Lalic N, Bojanic N, Nale DJ. Oligospermic men treated by carnitine. 17th World Congress on Fertility and Sterility. Melbourne, 2001:38.

Movahedin 2014 {published data only}

Movahedin M, Mehrsai A, Noori M, Dehghani S, Pourmand G, Ahmadi A, et al. Does anti-oxidant therapy add any extra benefit to standard inguinal varicocelectomy in terms of DNA damage or sperm quality factor indices: a randomized study. *Urology* 2014;**4**(suppl. 1):S252.

Nadjarzadeh 2014 {published data only}

Nadjarzadeh A, Shidfar F, Amirjannati N, Vafa MR, Motevalian SA, Gohari MR, et al. Effect of Coenzyme Q10 supplementation on antioxidant enzymes activity and oxidative stress of seminal plasma: a double-blind randomised clinical trial. *Andrologia* 2014;**46**(2):177-83.

Nashivochnikova 2014 {published data only}

Nashivochnikova NA, Krupin VN, Selivanova SA. [Efficiency of spematon in male infertility]. *Urologiia (Moscow, Russia: 1999)* 2014;**2**:52-4. [PUBMED: 24956674]

NCT01075334 {unpublished data only}

Tsafrir A. Is a carnitine based food supplement (PorimoreTM) for infertile men superior to folate and zinc with regard to pregnancy rates in intrauterine insemination cycles?. https:// clinicaltrials.gov.

NCT01520584 {unpublished data only}

Irge D. Supplement intake in infertile men; the effect on sperm parameters, fertilization rate and embryo quality. https:// clinicaltrials.gov.

Nematollahi-Mahani 2014 {published data only}

Nematollahi-Mahani SN, Azizollahi GH, Baneshi MR, Safari Z, Azizollahi S. Effect of folic acid and zinc sulphate on endocrine

parameters and seminal antioxidant level after varicocelectomy. *Andrologia* 2014;**46**(3):240-5.

Niederberger 2011 {published data only}

Niederberger C. Combination clomiphene citrate and antioxidant therapy for idiopathic male infertility: a randomized controlled trial. *Journal of Urology* 2011;**185**(1):252.

Nikolova 2007 {published data only}

Nikolova V, Stanislavov R, Vatev I, Nalbanski B, Punevska M. Sperm parameters in male idiopathic infertility after treatment with prelox. *Akusherstvo i Ginekologiia* 2007;**46**(5):7-12.

Pawlowicz 2001 {published data only}

Pawlowicz P, Stachowiak G, Bielak A, Wilczynski J. Administration of natural anthocyanins derived from chokeberry (aronia melanocarpa) extract in the treatment of oligospermia in males with enhanced autoantibodies to oxidized low density lipoproteins (oLAB). The impact on fructose levels. *Ginekologia Polska* 2001;**72**(12):983-8.

Polak 2013 {published data only}

Polak de Fried E, Bossi NM, Notrica JA, Vazquez Levin MH. Vitamin-d treatment does not improve pregnancy rates in patients undergoing art: a prospective, randomized, doubleblind placebo-controlled trial. *Fertility and Sterility* 2013;**100 Suppl 3**:S493-4.

Raigani 2010 {published data only}

Raigani M, Sadeghi MR, Akhondi MA, Amir Jannati N, Soleimani Badia M. Impacts of MTHFR polymorphism on the effects of folic acid and zinc sulfate supplementations in OAT men. *Iranian Journal of Reproductive Medicine* 2010;**1**):46.

Safarinejad 2011 {published data only}

Safarinejad MR. Effect of pentoxifylline on semen parameters, reproductive hormones and seminal plasma antioxidant capacity in men with idiopathic infertility: a randomized double-blind placebo-controlled study. *International Urology and Nephrology* 2011;**43**:315-28.

Safarinejad 2011a {published data only}

Safarinejad MR, Shafiei N, Safarinejad S. A prospective doubleblind randomized placebo-controlled study of the effect of saffron (Crocus sativus Linn.) on semen parameters and seminal plasma antioxidant capacity in infertile men with idiopathic oligoasthenoteratozoospermia. *Phytotherapy research: PTR* 2011;**25**(4):508-16.

Singh 2016 {published data only}

Singh AK, Deshpande SB. Role of nutraceuticals in treatment of azoospermia due to maturation arrest. *Indian Journal of Physiology and Pharmacology* 2016;**60 (5 Supplement 1)**:6-7.

Soylemez 2012 {published data only}

Soylemez H, Kilic S, Atar M, Penbegul N, Sancaktutar AA, Bozkurt Y. Effects of micronised purified flavonoid fraction on pain, semen analysis and scrotal color Doppler parameters in patients with painful varicocele; results of a randomized placebo-controlled study. *International Urology and Nephrology* 2012;**44**(2):401-8.

Antioxidants for male subfertility (Review)

Stanislavov 2009 {published data only}

Stanislavov R, Nikolova V, Rohdewald P. Improvement of seminal parameters with Prelox®: a randomized, double-blind, placebo controlled, cross over trial. *Phytotherapy Research* 2009;**23**:297-302. [DOI: 10.1002]

Stanislavov 2014 {published data only}

Stanislavov R, Rohdewald P. Sperm quality in men is improved by supplementation with a combination of L-arginine, Lcitrullin, roburins and Pycnogenol. *Minerva Urologica e Nefrologica* 2014;**66**(4):217-23.

Stanislavov R, Rohdewald P. Sperm quality in men is improved by supplementation with a combination of L-arginine, Lcitrulline, roburins and Pycnogenol. *Minerva Urologica e Nefrologica* 2014;**66**(4):217-23.

* Stanislavov R, Rohdewald P. Sperm quality in men is improved by supplementation with a combination of L-arginine, L-citrulline, roburins and Pycnogenol. *Minerva Urologica e Nefrologica* 2014;**66**(4):217-23.

Tang 2011 {published data only}

Tang KF, Xing Y, Wu CY, Liu RZ, Wang XY, Xing JP. [Tamoxifen combined with coenzyme Q10 for idiopathic oligoasthenospermia]. *Zhong Hua Nan Ke Xue* 2011;**17**(7):615-8.

Verzeletti 2012 {published data only}

Verzeletti FB, Poletto RS, Bertolin TE, Fornari F. Evaluation of sperm quality in adults after use spirulina platensis and resveratrol. *Jornal Brasileiro de Reproducao Assistida* 2012;**16**(5):271-7.

Vicari 2001 {published data only}

Vicari E, Calogero AE. Effects of treatment with carnitines in infertile patients with prostatovesiculoepididymitis and elevated sperm oxidative stress. ESHRE 17th Annual Meeting. Lausanne: Human Reproduction, 2001; Vol. 16 Suppl 1:106-7.

Vicari 2001a {published data only}

Vicari E, Rubino C, De Palma A, Longo G, Lauretta M, Consoli S, et al. Antioxidant therapeutic efficiency after the use of carnitine in infertile patients with bacterial or non bacterial prostato-vesiculo-epididymitis. *Archivio Italiano di Urologia, Andrologia* 2001;**73**(1):15-25.

Vicari 2002 {published data only}

Vicari E, La Vignera S, Calogero AE. Antioxidant treatment with carnitines is effective in infertile patients with prostatovesiculoepididymitis and elevated seminal leukocyte concentrations after treatment with nonsteroidal anti-inflammatory compounds. *Fertility and Sterility* 2002;**78**(6):1203-8.

Wang 1983 {published data only}

Wang C, Chan CW, Wong KK, Yeung KK. Comparison of the effectiveness of placebo, clomiphene citrate, mesterolone, pentoxifylline, and testosterone rebound therapy for the treatment of idiopathic oligospermia. *Fertility and Sterility* 1983;**40**(3):358-65.

Wang 2010a {published data only}

Wang Y, Yang S, Cai W, Qu C, Li J, Chang X, et al. [Clinical efficacy of L-carnitine combined with tamoxifen in treatment of oligoasthenozoospermia] LA: Chi. *Zhonghua nan ke xue - National Journal of Andrology* 2010;**16**(5):420-2.

Wu 2012 {published data only}

Wu ZM, Lu X, Wang YW, Sun J, Tao JW, Yin FH, et al. Shortterm medication of L-carnitine before intracytoplasmic sperm injection for infertile men with oligoasthenozoospermia. *Zhong Hua Nan Ke Xue* 2012;**18**(3):253-6.

References to studies awaiting assessment

Goswami 2015 {published data only}

Goswami SK, Yasmin S, Chakraborty P, Chattopadhyay R, Ghosh S, Goswami M, et al. Role of dietary antioxidant supplementation in treatment of idiopathic male infertility: Promising evidence from a sub-continental study. *Fertility and Sterility* 2015;**1**):e288.

References to ongoing studies

CTRI/2013/02/003431 {unpublished data only}

Kamath MS. To compare the effectiveness of antioxidants versus no treatment for male partner for improving pregnancy rates in couples undergoing In vitro fertilization (IVF) for abnormal semen analysis. www.who.int/trialsearch.

DRKS00011616 {unpublished data only}

Baumgraß H. Randomized, placebo-controlled, double-blind, multi-centre pilot study to investigate the effect of AM019016 on male spermatogenesis in subjects with diagnosed unspecific (idiopathic) subfertility. www.who.int/trialsearch.

IRCT2016111830947N1 {unpublished data only}

Talebi A, Amini L. The effect of oral vitamin D3 supplementation on spermogram quantitative and qualitative indicators in infertile male. www.who.int/trialsearch.

IRCT2017012432153N1 {unpublished data only}

Azima S. The effects of folic acid, vitamin E, selenium on semen parameters in infertile men [Effect of folic acid, vitamin E, selenium on semen parameters]. www.who.int/trialsearch.

NCT00975115 {unpublished data only}

Aguilar MM. Assessment of the efficacy of dietary supplement spermotrend in the treatment of male infertility. ClinicalTrials.gov.

NCT01407432 {unpublished data only}

Mathieu-d'Argent E. Impact of folates in the care of the male infertility (FOLFIV). https://clinicaltrials.gov.

NCT01828710 {unpublished data only}

Palumbo M. Myo-inositol on human semen parameters [Effect of of treatment with Myo-inositol on human semen parameters in patients undergoing IVF cycles]. https://clinicaltrials.gov.

Antioxidants for male subfertility (Review)

NCT01846325 {unpublished data only}

Hekmatdoost A. The effects of administration of combined docosahexaenoic acid and vitamin e supplements on spermatogram and seminal plasma oxidative stress in infertile men with asthenozoospermia. https://clinicaltrials.gov.

NCT02310087 {unpublished data only}

Pinter B, Imamovic Kumalic S. Oral Astaxanthin and semen quality, fertilization and embryo development in Assisted Reproduction Techniques procedures. https://clinicaltrials.gov.

NCT02421887 {unpublished data only}

Eisenberg E, Steiner AZ. Males, antioxidants, and infertility trial (MOXI). https://clinicaltrials.gov.

NCT03104998 {unpublished data only}

Jawaid M. Neotililty trial: Effect of coenzyme Q10 on semen parameters in men with idiopathic infertility (neotility). https:// clinicaltrials.gov.

NCT03337360 {unpublished data only}

Smits RM, Fleischer K, Braat DDM. The impact of a nutritional supplement (Impryl[®]) on male fertility. https://clinicaltrials.gov.

Additional references

Agarwal 2003

Agarwal A, Said T. Role of sperm chromatin abnormalities and DNA damage in male infertility. *Human Reproduction Update* 2003;**9**(4):331-45.

Agarwal 2004

Agarwal A, Nallella KP, Allamaneni S, Said TM. Role of antioxidants in treatment of male infertility: an overview of the literature. *Reproductive Biomedicine Online* 2004;**8**(6):616-27.

Agarwal 2004a

Agarwal A, Said TM. Carnitines and male infertility. Reproductive BioMedicine Online (Reproductive Healthcare Limited). Reproductive Healthcare Limited, 2004; Vol. 8, issue 4:376-84.

Agarwal 2016

Agarwal A, Majzoub A, Esteves SC, Ko EY, Ramasamy R, Zini A. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. *Translational Andrology and Urology* 2016;**5**(6):935-50.

Agarwal 2017

Agarwal A, Majzoub A. Laboratory tests for oxidative stress. *Indian Journal of Urology* 2017;**33**(3):199-206. [0970-1591: (Print)]

Aitken 1987

Aitken RJ, Clarkson JS. Cellular basis of defective sperm function and its association with the genesis of reactive oxygen species by human spermatozoa. *Journal of Reproduction and Fertility* 1987;**81**(2):459-69. [0022-4251: (Print)]

Aitken 1989

Aitken RJ, Clarkson JS, Hargreave TB, Irvine DS, Wu FC. Analysis of the relationship between defective sperm function and the generation of reactive oxygen species in cases of oligozoospermia. *Journal of Andrology* 1989;**10**(3):214-20. [0196-3635: (Print)]

Aitken 1990

Aitken RJ, West KM. Analysis of the relationship between reactive oxygen species production and leucocyte infiltration in fractions of human semen separated on Percoll gradients. International Journal of Andrology. Blackwell Publishing Ltd, 1990; Vol. 13, issue 6:433-51.

Aitken 1992

Aitken RJ, Buckingham D, West K, Wu FC, Zikopoulos K, Richardson DW. Differential contribution of leucocytes and spermatozoa to the generation of reactive oxygen species in the ejaculates of oligozoospermic patients and fertile donors. *Journal of Reproduction and Fertility* 1992;**94**(2):451-62. [0022-4251: (Print)]

Aitken 1994

Aitken J, Fisher H. Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. *Bioessays* 1994;**16**(4):259-67. [0265-9247: (Print)]

Aitken 2010

Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. *Human Reproduction* 2010;**25**(10):2415-26.

Aktan 2013

Aktan G, Dogru-Abbasoglu S, Kucukgergin C, Kadioglu A, Ozdemirler-Erata G, Kocak-Toker N. Mystery of idiopathic male infertility: is oxidative stress an actual risk?. *Fertility and Sterility* 2013;**99**(5):1211-5.

Alvarez 2003

Alvarez 2003. Nuture vs nature: How can we optimise sperm quality?. *Journal of Andrology* 2003;**24**(5):640-8.

Annals of the New York Academy of Science 2004

Annals of the New York Academy of Science. Preface: Carnitine: Lessons from One Hundred Years of Research. Annals of the New York Academy of Science. Blackwell Publishing Ltd, 2004; Vol. 1033, issue 1:ix-xi.

Appleton 2002

Appleton J. Arginine: clinical potential of a semi-essential amino acid. *Alternative Medicine Review* 2002;**7**(6):512-22. [10895159]

Atkuri 2007

Atkuri KR, Mantovani JJ, Herzenberg LA, Herzenberg LA. N-Acetylcysteine—a safe antidote for cysteine/glutathione deficiency. *Cancer/Immunomodulation* 2007;**7**(4):355-9.

Barratt 2017

Barratt CLR, Bjorndahl L, De Jonge CJ, Lamb DJ, Osorio Martini F, McLachlan R, et al. The diagnosis of male infertility: an analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. *Human Reproduction Update* 2017;**23**(6):660-80. [1460-2369: (Electronic)]

Bendich 1989

Bendich A, Olson JA. Biological actions of carotenoids. *The FASEB Journal* 1989;**3**(8):1927-32.

Bertelli 2009

Bertelli AA, Das DK. Grapes, wines, resveratrol, and heart health. *Journal of Cardiovascular Pharmacology* 2009;**54**(6):468-76.

Bevilacqua 2015

Bevilacqua A, Carlomagno G, Gerli S, Montanino Oliva M, Devroey P, Lanzone A, et al. Results from the International Consensus Conference on myo-inositol and D-chiro-inositol in Obstetrics and Gynecology – assisted reproduction technology. *Gynecological Endocrinology* 2015;**31**(6):441-6.

Bhagavan 2006

Bhagavan HN, Chopra RK. Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. *Free Radical Research* 2006;**40**(5):445-53.

Boe-Hansen 2006

Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P. The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. *Human Reproduction* 2006;**21**(6):1576-82.

Boitani 2008

Boitani C, Puglisi R. Selenium, a key element in spermatogenesis and male fertility. Molecular Mechanisms in Spermatogenesis. New York, NY: Springer New York, 2008:65-73.

Boivin 2007

Boivin J, Bunting L, Collins JA, Nygren KG. International estimates of infertility prevalence and treatment-seeking: potential need and demand for infertility medical care. *Human Reproduction* 2007;**22**(6):1506-12. [0268-1161]

Borini 2017

Borini A, Tarozzi N, Nadalini M. Sperm DNA fragmentation testing in male infertility work-up: are we ready?. *Translational Andrology and Urology* 2017;**6**(Suppl 4):S580-2.

Branco 2010

Branco CS, Garcez ME, Pasqualotto FF, Erdtman B, Salvador M. Resveratrol and ascorbic acid prevent DNA damage induced by cryopreservation in human semen. *Cryobiology* 2010;**60**(2):235-7.

Bungum 2004

Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A. The predictive value of sperm chromatin structure assay (SCSA) parameters for the outcome of intrauterine insemination, IVF and ICSI. *Human Reproduction* 2004;**19**(6):1401-8. Burk 2002

Burk RF. Selenium, an antioxidant nutrient. *Nutrition in Clinical Care* 2002;**5**(2):75-9.

Bykova 2007

Bykova M, Athayde K, Sharma R, Jha R, Sabanegh E, Agarwal A. Defining the reference value of seminal reactive oxygen species in a population of infertile men and normal healthy volunteers. *Fertility and Sterility* 2007;**88 Suppl 1**(P-597):305.

Bøhmer 1978

Bøhmer T, Hoel P, Purvis K, Hansson V. Carnitine levels in human accessory sex organs. *Archives of Andrology* 1978;**1**(1):53-9.

Cissen 2016

Cissen M, Wely M, Scholten I, Mansell S, Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and metaanalysis. *PLOS One* 2016;**11**(11):e0165125.

Colagar 2009

Colagar AH, Marzony ET. Ascorbic acid in human seminal plasma: determination and its relationship to sperm quality. *Journal of Clinical Biochemistry and Nutrition* 2009;**45**(2):144-9.

Colagar 2009a

Colagar AH, Marzony ET, Chaichi MJ. Zinc levels in seminal plasma are associated with sperm quality in fertile and infertile men. Nutrition Research 2009; Vol. 29, issue 2:82-8.

Collins 2008

Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization?. *Fertility and Sterility* 2008;**89**(4):823-31.

Collodel 2011

Collodel G, Federico MG, Geminiani M, Martini S, Bonechi C, Rossi C, et al. Effect of trans-resveratrol on induced oxidative stress in human sperm and in rat germinal cells. *Reproductive Toxicology* 2011;**31**(2):239-46.

Colone 2010

Colone M, Marelli G, Unfer V, Bozzuto G, Molinari A, Stringaro A. Inositol activity in oligoasthenoteratospermia--an in vitro study. *European Review for Medical and Pharmacological Sciences* 2010;**14**(10):891-6. [1128-3602: (Print)]

Comhaire 1987

Comhaire FH. Towards more objectivity in diagnosis and management of male infertility. International Journal of Andrology. Supplement. Oxford; Melbourne: Blackwell Scientific, 1987; Vol. 7.

Condorelli 2017

Condorelli RA, La Vignera S, Mongioi LM, Vitale SG, Lagana AS, Cimino L, et al. Myo-inositol as a male fertility molecule: speed them up!. *European Review for Medical and Pharmacological Sciences* 2017;**21**(2 Suppl):30-5. [2284-0729: (Electronic)]

Antioxidants for male subfertility (Review)

Dattilo 2016

Dattilo M, Giuseppe D, Ettore C, Ménézo Y. Improvement of gamete quality by stimulating and feeding the endogenous antioxidant system: mechanisms, clinical results, insights on gene-environment interactions and the role of diet. *Journal of Assisted Reproduction and Genetics* 2016;**33**(12):1633-48.

de Angelis 2017

de Angelis C, Galdiero M, Pivonello C, Garifalos F, Menafra D, Cariati F, et al. The role of vitamin D in male fertility: A focus on the testis. *Reviews in Endocrine and Metabolic Disorders* 2017;**18**(3):285-305.

Dias 2006

Dias S, McNamee R, Vail A. Evidence of improving quality of reporting of randomised controlled trials in subfertility. *Human Reproduction* 2006;**21**(10):2617-27.

Ebisch 2007

Ebisch IM, Thomas CM Peters WH, Braat DD, Steegers-Theunissen RP. The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. *Human Reproduction Update* 2007;**13**(2):163-74.

El-Taieb 2009

El-Taieb MA, Herwig R, Nada EA, Greilberger J, Marberger M. Oxidative stress and epididymal sperm transport, motility and morphological defects. *European Journal of Obstetrics, Gynecology, and Reproductive Biology* 2009;**144 Suppl 1**:199-203.

ESHRE Guidelines 1996

The European Society of Human Reproduction and Embryology (ESHRE). Guidelines to the prevalence, diagnosis, treatment and management of infertility, 1996. *Human Reproduction* 1996;**11**(8):1775.

Eskenazi 2005

Eskanazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobeck AJ. Antioxidant intake is associated with semen quality in healthy men. *Human Reproduction* 2005;**20**(4):1006-12.

Evenson 1999

Evenson DP, Jost LK, Marshall D, Zinaman MJ, Clegg E, Purvis K, et al. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. *Human Reproduction* 1999;**14**(4):1039-49.

Evenson 2006

Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. *Reproductive Biomedicine Online* 2006;**12**(4):466-72.

Evers 2002

Evers JL. Female subfertility. *Lancet* 2002;**360**(9327):151-9. [0140-6736: (Print)]

Garg 2016

Garg H, Kumar R. An update on the role of medical treatment including antioxidant therapy in varicocele. *Asian Journal of Andrology* 2016;**18**(2):222-8.

Ghyczy 2001

Ghyczy M, Boros M. Electrophilic methyl groups present in the diet ameliorate pathological states induced by reductive and oxidative stress: a hypothesis. *British Journal of Nutrition* 2001;**85**(4):409-14.

Giordano 2014

Giordano E, Visioli F. Long-chain omega 3 fatty acids: Molecular bases of potential antioxidant actions. *Prostaglandins Leukotrienes and Essential Fatty Acids* 2014;**90**(1):1-4.

Gnoth 2005

Gnoth C, Godehardt E, Frank-Herrmann P, Friol K, Tigges J, Freundl G. Definition and prevalence of subfertility and infertility. *Human Reproduction* 2005;**20**(5):1144-7.

GRADEpro GDT 2015 [Computer program]

GRADEpro. GRADEpro Guideline Development Tool. McMaster University: developed by Evidence Prime, Inc., 2015.

Grand View Research 2016

Grand View Research. Dietary Supplements Market Analysis By Ingredient (Botanicals, Vitamins, Minerals, Amino Acids, Enzymes), By Product (Tablets, Capsules, Powder, Liquids, Soft Gels, Gel Caps), By Application (Additional Supplement, Medicinal Supplement, Sports Nutrition), By End-Use (Infant, Children, Adults, Pregnant Women, Old-Aged) And Segment Forecasts To 2024. https://www.grandviewresearch.com 2016:0-200.

Grune 2010

Grune T, Lietz G, Palou A, Ross AC, Stahl W, Tang G, et al. β -Carotene Is an Important Vitamin A Source for Humans1–3. Journal of Nutrition 2010;**140**(12):2268S-85S.

Halicka 2012

Halicka HD, Zhao H, Li J, Traganos F, Studzinski GP, Darzynkiewicz Z. Attenuation of constitutive DNA damage signaling by 1,25-dihydroxyvitamin D3. Aging. Impact Journals, LLC, 2012; Vol. 4, issue 4:270-8.

Hankey 1999

Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999; Vol. 354, issue 9176:407-13.

Hausenblas 2014

Hausenblas HA, Schoulda JA, Smoliga JM. Resveratrol treatment as an adjunct to pharmacological management in type 2 diabetes mellitus—systematic review and meta-analysis. *Molecular Nutrition & Food Research* 2014;**59**(1):147-59.

Higgins 2011

Higgins JP, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions 5.1.0 (updated March 2011). The Cochrane Collaboration 2011. Available from www.cochranehandbook.org. Chichester UK: John Wiley and Sons Ltd.

Hsia 2016

Hsia T, Yin M. Post-intake of S-Ethyl Cysteine and S-Methyl Cysteine improved LPS-induced acute lung injury in mice. *Nutrients* 2016;**8**(8):507.

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Huang 2018

Huang D, Tocmo R. Assays based on competitive measurement of the scavenging ability of reactive oxygen/nitrogen species. In: Apak R, Capanoglu E, Shahidi F editor(s). Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications. Chichester, West Sussex, UK: John Wiley & Sons Ltd, 2018.

Hughes 1996

Hughes CM, Lewis SE, McKelvey-Martin VJ, Thompson W. A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. *Molecular Human Reproduction* 1996;**2**(8):613-9. [1360-9947: (Print)]

Inhorn 2015

Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. *Human Reproduction Update* 2015;**21**(4):411-26. [1460-2369: (Electronic)]

Institute of Medicine 2000

Institute of Medicine. Vitamin E. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: The National Academies Press, 2000.

Intasqui 2015

Intasqui P, Antoniassi M, Camargo M, Nichi M, Carvalho VM, Cardozo KHM, et al. Differences in the seminal plasma proteome are associated with oxidative stress levels in men with normal semen parameters. *Fertility and Sterility* 2015;**104**(2):292-301.

Irani 2017

Irani M, Amirian M, Sadeghi R, Lez JL, Latifnejad Roudsari R. The effect of folate and folate plus zinc supplementation on endocrine parameters and sperm characteristics in sub-fertile men: a systematic review and meta-analysis. *Urology Journal* August 29 2017;**14**(5):4069-78.

Irvine 1998

Irvine DS. Epidemiology and aetiology of male infertility. *Human Reproduction* 1998;**13 Suppl 1**:33-44. [0268-1161: (Print)]

lwasaki 1992

Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. *Fertility and Sterility* 1992;**57**(2):409-16. [0015-0282: (Print)]

Jones 1973

Jones R, Mann T. Lipid peroxidation in spermatozoa. *Proceedings of the Royal Society Series B-Biological Sciences* 1973;**184**(1074):103-7. [0080-4649]

Joshi 2001

Joshi R, Adhikari S, Patro BS, Chattopadhyay S, Mukherjee T. Free radical scavenging behavior of folic acid: evidence for possible antioxidant activity. *Free Radical Biology & Medicine* 2001;**30**(12):1390-9.

Kodama 1997

Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T. Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. *Fertilty and Sterility* 1997;**68**(3):519-24. [0015-0282: (Print)]

Kofi Arhin 2017

Kofi Arhin S, Zhao Y, Lu XS, Chetry M, Lu JQ. Effect of micronutrient supplementation on IVF outcomes: a systematic review of the literature. *Reproductive BioMedicine Online* 2017;**35**(6):715-22.

Lafuente 2013

Lafuente R, Gonzalez-Comadran M, Sola I, Lopez G, Brassesco M, Carreras R, et al. Coenzyme Q10 and male infertility: a metaanalysis. *Journal of Assisted Reproduction and Genetics.* 2013;**30**(9):1147-56.

Lewin 1976

Lewin LM, Yannai Y, Sulimovici S, Kraicer PF. Studies on the metabolic role of myo-inositol. Distribution of radioactive myo-inositol in the male rat. *Biochemical Journal* 1976;**156**(2):375-80.

Lewis 1997

Lewis SE, Sterling ES, Young IS, Thompson W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. *Fertility and Sterility* 1997;**67**(1):142-7.

Lewis 2013

Lewis SEM, Aitken RJ, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reproductive BioMedicine Online 2013; Vol. 27, issue 4:325-37.

Li 2006

Li Z, Wang L, Cai J, Huang H. Correlation of sperm DNA damage with IVF and ICSI outcomes: a systematic review and metaanalysis. *Journal of Assisted Reproduction and Genetics* 2006;**23**(9-10):367-76.

Littarru 2007

Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. *Molecular Biotechnology* 2007;**37**(1):31-7.

MacFarquhar 2010

MacFarquhar JK, Broussard DL, Melstrom P, Hutchinson R, Wolkin A, Martin C, et al. Acute selenium toxicity associated with a dietary supplement. *Archives of Internal Medicine* 2010;**170**(3):256-61.

Majzoub 2017

Majzoub A, Agarwal A. Antioxidant therapy in idiopathic oligoasthenoteratozoospermia. *Indian Journal of Urology* 2017;**33**(3):207-14.

Majzoub 2018

Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: Benefits on semen parameters,

Copyright ${\ensuremath{{\rm constraint}}}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

advanced sperm function, assisted reproduction and live-birth rate. *Arab Journal of Urology* 2 January 2018;**16**(1):113-24.

Mascarenhas 2012

Mascarenhas MN, Flaxman SR, Boerma T, Vanderpoel S, Stevens GA. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. *PLOS Medicine* 2012;**9**(12):e1001356. [1549-1676: (Electronic)]

Mazzilli 1994

Mazzilli F, Rossi T, Marchesini M, Ronconi C, Dondero F. Superoxide anion in human semen related to seminal parameters and clinical aspects. *Fertility and Sterility* 1994;**62**(4):862-8. [0015-0282: (Print)]

McNeill 1985

McNeill DA, Ali PS, Song YS. Mineral analyses of vegetarian, health, and conventional foods: magnesium, zinc, copper, and manganese content. *Journal of the American Dietetic Association* 1985;**85**(5):569-72. [0002-8223: (Print)]

Mendiola 2010

Mendiola J, Torres-Cantero AM, Vioque J, Moreno-Grau JM, Ten J, Roca M, et al. A low intake of antioxidant nutrients is associated with poor semen quality in patients attending fertility clinics. *Fertility and Sterility* 2010;**93**(4):1128-33.

Mirończuk-Chodakowska 2018

Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. *Advances in Medical Sciences* 2018;**63**(1):68-78.

Navarro-Alarcon 2008

Navarro-Alarcon M, Cabrera-Vique C. Selenium in food and the human body: A review. *Science of The Total Environment* 2008;**400**(1):115-41.

Osman 2015

Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. *Reproductive Biomedicine Online* 2015;**30**(2):120-7.

Ourique 2013

Ourique GM, Finamor IA, Saccol EM, Riffel AP, Pês TS, Gutierrez K, et al. Resveratrol improves sperm motility, prevents lipid peroxidation and enhances antioxidant defences in the testes of hyperthyroid rats. *Reproductive Toxicology* 2013;**37**:31-9.

Padayatty 2003

Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee J, et al. Vitamin C as an antioxidant: evaluation of Its role in disease prevention. *Journal of the American College of Nutrition* 2003;**22**(1):18-35.

Pasqualotto 2001

Pasqualotto FF, Sharma RK, Kobayashi H, Nelson DR, Jr AJT, Agarwal A. Oxidative stress in normospermic men undergoing infertility evaluation. *Journal of Andrology* 2001;**22**(2):316-22.

Patel 2008

Patel SR, Sigman M. Antioxidant therapy in male infertility. Urologic Clinics of North America. 2008;**35**(2):319-30. [MEDLINE: 18423251]

Pravst 2010

Pravst I, Žmitek K, Žmitek J. Coenzyme Q10 contents in foods and fortification strategies. *Critical Reviews in Food Science and Nutrition* 2010;**50**(4):269-80.

RevMan 2014 [Computer program]

Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager 5 (RevMan 5). Version 5.3. Copenhagen: Nordic Cochrane Centre, The Cochrane Collaboration, 2014.

Richard 2008

Richard D, Kefi K, Barbe U, Bausero P, Visioli F. Polyunsaturated fatty acids as antioxidants. *Pharmacological Research* 2008;**57**(6):451-5.

Robinson 2012

Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. [Review]. *Human Reproduction* 2012;**27**(10):2908-17.

Rogovik 2009

Rogovik AL, Vohra S, Goldman RD. Safety considerations and potential interactions of vitamins: should vitamins be considered drugs?. *Annals of Pharmacotherapy* 2009;**44**(2):311-24.

Ross 2006

Ross AC. Vitamin A and Carotenoids. In: Shils ME SM, Ross AC, Caballero B, Cousins R editor(s). Modern Nutrition in Health and Disease. Vol. **10th edition**, Lippincott Williams & Wilkins, 2006:351-75.

Ross 2010

Ross C, Morriss A, Khairy M, Khalaf Y, Braude P, Coomarasamy A, El-Toukhy T. A systematic review of the effect of oral antioxidants on male infertility. *Reproductive Biomedicine Online* 2010;**20**(6):711-23. [PUBMED: 20378409]

Salas-Huetos 2017

Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. *Human Reproduction Update* 1 July 2017;**23**(4):371–89.

Shekarriz 1995

Shekarriz M, Thomas AJ Jr, Agarwal A. Incidence and level of seminal reactive oxygen species in normal men. *Urology* 1995;**45**(1):103-7. [0090-4295: (Print)]

Shimura 2002

Shimura T, Toyoshima M, Taga M, Shiraishi K, Uematsu N, Inoue M, et al. The novel surveillance mechanism of the Trp53dependent s-phase checkpoint ensures chromosome damage repair and preimplantation-stage development of mouse

Antioxidants for male subfertility (Review)

embryos fertilized with x-irradiated sperm. *Radiation Research* 2002;**158**(6):735-42.

Showell 2017

Showell MG, Mackenzie-Proctor R, Jordan V, Hart RJ. Antioxidants for female subfertility. *Cochrane Database of Systematic Reviews* 2017, Issue 7. [DOI: 10.1002/14651858.CD007807.pub3]

Sikka 1995

Sikka S, Rajasekaran M, Hellstrom W. Role of oxidative stress and antioxidants in male infertility. *Journal of Andrology* 1995;**16**(6):464-8.

Simon 2014

Simon L, Murphy K, Shamsi MB, Liu L, Emery B, Aston KI, et al. Paternal influence of sperm DNA integrity on early embryonic development. *Human Reproduction* 2014;**29**(11):2402-12.

Smith 1996

Smith R, Vantman D, Ponce J, Escobar J, Lissi E. Total antioxidant capacity of human seminal plasma. *Human Reproduction* 1996;**11**(8):1655-60.

Spanò 2000

Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G. Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. *Fertility and Sterility* 2000;**73**(1):43-50.

Thonneau 1991

Thonneau P, Marchand S, Tallec A, Ferial M, Ducot B, Lansac J, et al. Incidence and main causes of infertility in a resident population (1 850 000) of three French regions (1988–1989)*. *Human Reproduction* 1991;**6**(6):811-6.

Traber 2007

Traber MG, Atkinson J. Vitamin E, antioxidant and nothing more. *Free Radical Biology and Medicine* 2007;**43**(1):4-15.

Tremellen 2008

Tremellen K. Oxidative stress and male infertility - a clinical perspective. *Human Reproduction Update* 2008;**14**(3):243-58.

Valko 2006

Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. *Chemico-Biological Interactions* 2006;**160**(1):1-40.

Verit 2006

Verit FF, Verit A, Kocyigit A, Ciftci H, Celik H, Koksal M. No increase in sperm DNA damage and seminal oxidative stress in patients with idiopathic infertility. *Archives of Gynecology and Obstetrics* 2006;**274**(6):339-44.

Wathes 2007

Wathes DC, Abayasekara DR, Aitken RJ. Polyunsaturated fatty acids in male and female reproduction. *Biology of Reproduction* 2007;**77**(2):190-201.

Winters 2014

Winters BR, Walsh TJ. The epidemiology of male infertility. Urologic Clinics of North America 2014;**41**(1):195-204. [1558-318X: (Electronic)]

Yavuz 2013

Yavuz Y, Mollaoglu H, Yurumez Y, Ucok K, Duran L, Tunay K, et al. Therapeutic effect of magnesium sulphate on carbon monoxide toxicity-mediated brain lipid peroxidation. *European Review for Medical and Pharmacological Sciences* 2013;**17 Suppl 1**:28-33. [1128-3602: (Print)]

Zareba 2013

Zareba P, Colaci DS, Afeiche M, Gaskins AJ, Jorgensen N, Mendiola J, et al. Semen quality in relation to antioxidant intake in a healthy male population. *Fertility and Sterility* 2013;**100**(6):1572-9.

Zegers-Hochschild 2017

Zegers-Hochschild F, Adamson GD, Dyer S, Racowsky C, de Mouzon J, Sokol R, et al. The International Glossary on Infertility and Fertility Care, 2017. *Human Reproduction* 2017;**32**(9):1786-1801. [1556-5653: (Electronic)]

Zhang 2015

Zhang Z, Zhu L, Jiang H, Chen H, Chen Y, Dai Y. Sperm DNA fragmentation index and pregnancy outcome after IVF or ICSI: a meta-analysis. *Journal of Assisted Reproduction and Genetics* 2015;**32**(1):17-26.

Zhao 2018

Zhao J, Huang X, Xu B, Yan Y, Zhang Q, Li Y. Whether vitamin D was associated with clinical outcome after IVF/ICSI: a systematic review and meta-analysis. *Reproductive Biology and Endocrinology* 2018;**16**(1):13.

Zhou 2007

Zhou X, Liu F, Zhai S. Effect of L-carnitine and/or L-acetylcarnitine in nutrition treatment for male infertility: a systematic review. *Asia Pacific Journal of Clinical Nutrition* 2007;**16 Suppl 1**:383-90. [MEDLINE: 17392136]

Zini 1993

Zini A, de Lamirande E, Gagnon C. Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. International Journal of Andrology 1993; Vol. 16, issue 3:183-8. [0105-6263: (Print)]

Zini 2011

Zini A, Dohle G. Are varicoceles associated with increased deoxyribonucleic acid fragmentation? [Review]. *Fertility and Sterility* 2011;**96**(6):1283-7.

References to other published versions of this review

Showell 2008

Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. *Cochrane*

Antioxidants for male subfertility (Review)

Database of Systematic Reviews 2008, Issue 4. [DOI: 10.1002/14651858.CD007411]

Showell 2011

Showell MG, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. *Cochrane Database of Systematic Reviews* 2011, Issue 1. [DOI: 10.1002/14651858.CD007411.pub2]

CHARACTERISTICS OF STUDIES

Characteristics of included studies [ordered by study ID]

Akiyama 1999

Showell 2014

Showell MG, Mackenzie-Proctor R, Brown J, Yazdani A, Stankiewicz MT, Hart RJ. Antioxidants for male subfertility. *Cochrane Database of Systematic Reviews* 2014, Issue 12. [DOI: 10.1002/14651858.CD007411.pub3]

* Indicates the major publication for the study

Akiyama 1999						
Methods	Randomised single-cen	tre cross-over trial				
	Duration of study: 8 mo	nths				
Participants	Country: Japan					
	Population: infertile me	en, N = 10				
	Mean age: 36 years (trea	atment group age range 24 to 49 years, control age range 30 to 37 years)				
	Inclusion criteria: male	infertility (ROS > 5 x 10,000 counts/10,000,000 viable spermatozoa)				
	Exclusion criteria: azoos	spermia, pyospermia				
Interventions	Ethylcysteine 600 mg (n = 5)					
	versus					
	Vitamin E 600 mg (n = 5))				
	Duration of treatment: 3	3 months, with a one month wash out, then cross-over for another 3 months.				
	Only data from the first	phase were used in data analysis				
Outcomes	Sperm parameters, bloc	od serum and seminal plasma levels of ethylcysteine and vitamin E				
Notes	In Japanese. Data extra	ction translated by Ichiro, a colleague of Samantha Roberts, 29.01.2009				
	Author contacted 'no fu	Irther information is available'				
Risk of bias						
Bias	Authors' judgement	Support for judgement				
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "Patients were divided randomly"				

(selection bias)			
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned	
Blinding of outcome as- sessment (detection bias)	Unclear risk	Not mentioned	

Not mentioned

Antioxidants for male subfertility (Review)

Allocation concealment

Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Unclear risk

Akiyama 1999 (Continued) All outcomes

Incomplete outcome data (attrition bias) All outcomes	Low risk	No incomplete outcome data
Selective reporting (re- porting bias)	Unclear risk	Sperm parameters reported. No protocol available.

Attallah 2013

Methods	Randomised controlled open-label trial
	Duration of the study: unclear
Participants	Country: Egypt
	Population: men with isolated idiopathic athenozospermia, prior to intrauterine insemination (IUI), N = 60
	Mean age: unknown, quote "both treatment groups were homogenous at the time of randomisation re- garding the type and duration of infertility"
	Inclusion criteria: couples with idiopathic athenozospermia (progressive motility < 32%) with normal other seminal criteria and normal infertility workup for female partner
	Exclusion criteria: unclear
Interventions	N-acetylcysteine (NAC) 600 mg (n = 30)
	versus
	No treatment (n = 30)
	Duration of treatment: 12 weeks
Outcomes	Sperm concentration, progressive sperm motility, clinical pregnancy rate
Notes	Conference abstract, no full text.
	Attempted to contact authors 04.02.2014, unable to find e-mail address. Letter posted 12.02.2014

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "Couples were randomised" Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Quote: "Open-labelled"

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Attallah 2013 (Continued)		
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Unknown - conference abstract

Azizollahi 2013

Randomised double-blind placebo-controlled trial Duration of study: from May 2008 to November 2010					
Country: Iran					
Population: infertile men with varicocele grade III, N = 160 (only 112 completed the study)					
Mean age: age range from 20 to 43 (mean \pm SD: 29.07 \pm 6.8) years					
Inclusion criteria: the presence of a grade III varicocele assessed by clinical parameters and was con- firmed by Doppler ultrasound scanning					
Exclusion criteria: evidence of leukocytospermia, low testicular volume < 15 mL, congenital urogenital abnormalities and urogenital infections					
Zinc 66 mg (n = 32)					
versus					
Folic acid 5 mg (n = 26)					
versus					
Zinc 66 mg + Folic acid 5 mg (n = 29)					
versus					
Placebo (n = 25)					
Duration of treatment: 6 months, after varicocelectomy					
Sperm parameters; number, morphology, halo formation rate, motility, forward progressive motility, chromomycin A3 positivity					
Trial registration: IRCT138802261910N1					
E-mailed the author 03.03.2014 (nematollahimahani@yahoo.com / nnematollahi@kmu.ac.ir).					
Author replied 06.03.2014 with information included in the ROB table. Author e-mailed again to ask about pregnancy data and dropouts from which group. The author informed us that Azizollahi 2011 was part of this trial and gave pregnancy and dropout data (there were originally 40 in each group). Quote: "At that time we observed 2 pregnancies in zinc/folic acid group, 1 pregnancy in zinc group, and no pregnancy in placebo and folic acid group. These data were just 6 months after the start of the trial.					

Risk of bias

Antioxidants for male subfertility (Review)

Azizollahi 2013 (Continued)

Bias	Authors' judgement	Support for judgement				
Random sequence genera- tion (selection bias)	Low risk	Quote: "For randomisation we used a table with 200 numbers (1 to 200). Be- fore the trial we gave each group a number between 1 and 4 and allocated each group into the table. By this method the first, fifth, ninth, 13th and pa- tients were allocated into the group 1 and the same manner was applied to th other groups"				
Allocation concealment (selection bias)	Low risk	Quote: "We used sealed containers with the randomisation number on them. Drugs or placebo were in opaque capsules"				
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Our study was double blind. Neither the urologist nor the patient or examiner in the lab were aware of the arrangement of the study"				
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Our study was double blind. Neither the urologist nor the patient or examiner in the lab were aware of the arrangement of the study"				
Incomplete outcome data (attrition bias) All outcomes	Low risk	Information gained from communication with the author explained the dropout numbers				
Selective reporting (re- porting bias)	Low risk	Clinical pregnancy rate data gained from email correspondence with the au- thor. Protocol available.				

Balercia 2005

Methods	Randomised double-blind trial
	Duration of study: 9 months, follow-up 3 months
Participants	Country: Italy
	Population: infertile men with idiopathic asthenozoospermia, N = 60
	Mean age: 30 (range 24 to 38) years
	Inclusion criteria: primary infertility > 2 years after regular intercourse with a fertile woman, 20 to 40 years of age, normal rheologic characteristics, sperm count > 20 x 10 ⁶ /mL, sperm motility < 50%, nor mal sperm morphological features > 30%, seminal WBC < 1 x 10 ⁶ /mL, negative sperm culture and chlamydia and mycoplasma urealyticum, normal serum gonadotropins, T, E ² and PRL, absence of infectious or genital disease, no anatomic abnormalities of the genital tract, absence of systemic diseases or treatment with other drugs within the 3 months before enrolment in the study, absence of smoking, alcohol or recreational drug use or of occupational chemical exposure
Interventions	L-carnitine 3 g (n = 15)
	versus
	L-acetyl carnitine 3 g (n = 15)
	versus
	L-carnitine 2 g + L-acetyl carnitine 1 g (n = 14)
	versus

Antioxidants for male subfertility (Review)

Balercia 2005 (Continued) Placebo (n = 15)

	1146600 (11 = 15)	
	Duration of treatment: 6 months	
Outcomes	Sperm parameters	
Notes	2018: email sent on 07.03.2018 to author Balercia (g.balercia@aoumbertoprimo.marche.it: error, found new email: g.balercia@univpm.it) to ask if pregnancy rate were clinical pregnancies, how they were conceived, methods of randomisation and blinding	
	Reply from author on 12.03.2018: Quote: "Pregnancies were clinical pregnancies, spontaneously con- ceived. I had at this time no data about the weekly progression, but the outcome of all pregnancies was newborn babies."	
	New information added to RoB table. Added data in meta-analysis on clinical pregnancy, live birth and progressive motility ('Antioxidants vs placebo/no treatment' and 'head to head')	

Risk of bias

Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote (from email): "The randomisation was made by blinded key"		
Allocation concealment (selection bias)	Low risk	Quote (from email): "sealed opaque envelopes provided by the monitor" (reply email)		
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.		
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote (from email): "The randomisation was made by a blinded key, sealed opaque envelopes provided by the monitor, without any access for the re- searchers (except the hypothesis of adverse events). The key of randomization was available just at the end of the study." (reply email)		
Incomplete outcome data (attrition bias) All outcomes	Low risk	1 withdrawal from the L carnitine 2 g/day + L acetyl carnitine 1 g/day group Quote (from email): "as far your last question, I can confirm the results con- cerning the drop-out has not be considered in data analysis" (reply email) Con- clusion: no ITT.		
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.		

Balercia 2009

Methods	Randomised double-blind placebo-controlled trial	
	Duration of study: 10 months, follow-up 3 months	
Participants	Country: Italy	
	Population: infertile men with idiopathic asthenozoospermia, N = 60	
	Mean age: 32 (range 27 to 32) years	

Antioxidants for male subfertility (Review)

Balercia 2009 (Continued)	Inclusion criteria: age 20 to 40 years, infertility > 2 years, regular sexual intercourse with a potentially fertile female, normal rheologic characteristics (appearance, consistency and liquefaction) of semen and volume and pH in normal range, sperm count > 20 x 10 ⁶ /mL, sperm motility < 50% (WHO 1999), normal morphology > 30%, seminal WBC < 1 x 10 ⁶ /mL and a negative sperm culture and chlamydia and <i>Mycoplasma urealyticum</i> (<i>M.urealyticum</i>) detection, normal levels of gonadotropins, absence of genital disease and anatomical abnormalities of the genital tract including variocoele and antibodies, absence of systemic disease or treatment with other drugs within 3 months of being enrolled in the study, absence of smoking, alcohol and drug addiction and exposure to occupational chemicals Exclusion criteria: transient decrease in semen quality during run in and those who had sudden improvement in semen parameters during run in
Interventions	Coenzyme Q10 200 mg (n = 30) versus Placebo (n = 30) Duration of treatment: 6 months
Outcomes	Primary: sperm parameters, variations of coenzyme Q10 and ubiqiunol concentrations in seminal plas- ma and spermatozoa Secondary: pregnancy rate
Notes	2018: added data on progressive sperm motility Email sent to author (g.balercia@staff.univpm.it) to ask if pregnancies were clinical and if he has live birth rates Reply of author Balercia on 29.03.2018: Quote: "Like the other study, I can confirm that pregnancies were clinical pregnancies, spontaneously conceived, but I had no data about the weekly progression (our outcome was another and we just reported the pregnancies as "collateral" data). All pregnancies gave newborn babies (patient/parent contacted us to share the joyful moment")". Data added.

Risk of bias

Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	At end of trial the paper mentions - quote: "after opening randomisation list" page 1789		
Allocation concealment (selection bias)	Unclear risk	Not mentioned		
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.		
Blinding of outcome as-	Unclear risk	Quote: "Semen quality was assessed by the same biologist"		
sessment (detection bias) All outcomes		Blinding not mentioned.		
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "5 patients dropped out of the study", 2 from the treatment group and 3 from the placebo group; this was discovered after opening the randomisation list at the end of the study. ITT was carried out		
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.		

Antioxidants for male subfertility (Review)

Barekat 2016

Methods	Randomised clinical tri	al		
	Duration of study: uncl	ear, from 2011 to 2013		
Participants	Country: Iran			
	Population: subfertile r	nen with varicocele grade 2-3, N = 40		
	Mean age: 30.1 ± 4.4 (ra	nge: 22-45) years		
	pation and Doppler du	45 years, primary infertility, left-sided varicocele (grade 2-3) diagnosed by pal- plex ultrasound. Female partner with age < 35 years, normal ovulatory cycles irmed by hysterosalpingography or laparoscopy).		
	infections, testicular si syndrome, cancer, feve drug consumption, pre	cocele grade I, azoospermia, recurrent varicocele, leukocytospermia, urogenital ze discrepancy, abnormal hormonal profile, anatomical disorders, Klinefelter's er in the 90 days prior to sugery, seminal sperm antibodies, excessive alcohol and vious history of scrotal trauma or surgery, occupational exposure. Female part- s, cycle irregularity, or gross anatomical abnormalities		
Interventions	N-acetylcysteine (NAC) 200 mg (n = 20)			
	versus			
	No treatment (n = 20)			
	Duration of treatment:	3 months, directly after varicocelectomy		
Outcomes	Sperm parameters, DNA-fragmentation (TUNEL), protamine deficiency, ROS levels			
Notes	Email sent to last author Nasr-Esfahani (mh.nasr-esfahani@royaninstitute.org) on 06.03.2018 to ask about the allocation concealment, sequence generation and definition of pregnancies and method of conceiving. Reply the same day from author (06.03.2018): Quote: "Clinical, spontaneous, pregnancies confirmed by heartbeat." Rest of information in RoB.			
	Authors replied on 04.04.18 answering that data was presented with SEM			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote (from email):"Randomisation done by table. We used computer-gener- ated or random allocation software and with one block"		

Random sequence genera- tion (selection bias)	Low risk	Quote (from email):"Randomisation done by table. We used computer-gener- ated or random allocation software and with one block"
Allocation concealment (selection bias)	High risk	Quote (from email): "Dr would prescribe the NAC based on randomization ta- ble"
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	No blinding of participants or health care providers (control is no treatment)
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote (from email): "All parameters assessed in this study were carried out by a single trained individual unaware of treatment assignment." "Lab collect- ed the sample based on a table of allocation and handed the sample over to the researcher that carried out the semen analysis and sperm functional tests and was unaware to randomization. A third person called the patients and en-

Antioxidants for male subfertility (Review)

Barekat 2016 (Continued)		quired about pregnancy and whether it was confirmed by heartbeat. Finally, the data gathered and analyzed independently of Dr or researchers"
Incomplete outcome data (attrition bias)	High risk	Quote: "In this study, five individuals were excluded from the treatment group due to lack of compliance with NAC use, according to the study protocol"
All outcomes		Lack of compliance directly related to treatment, furthermore 25% dropout is high. No ITT.
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Biagiotti 2003

Methods	Randomised trial			
	Duration of study: uncl	lear		
Participants	Country: Italy			
	Population: men with	severe idiopathic oligoasthenospermia (sperm concentration < 5000 /µl), N = 42		
	Mean age: group A and B 35 (range 30 to 40) years, Group C 31 (range 24 to 34) years			
	Inclusion criteria: seve	re idiopathic oligoasthenospermia (sperm concentration < 5000 / μ l)		
	Exclusion criteria: geno	omic, hormonal or inflammatory diseases		
Interventions	Acetyl-carnitine 1 g + L	-carnitine 2 g + Cinnoxicam (n = 14)		
	versus			
	Acetyl-carnitine 1 g + L-carnitine 2 g (n = 14)			
	versus			
	No treatment (n = 14)			
	Duration of treatment: unclear			
Outcomes	Sperm parameters			
Notes	Conference abstract. No full text or data given. Contacted authors but no reply.			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera-	Low risk	Quote: "randomised (1patient = 1 block) analysis of variance"		
tion (selection bias)		Was this at the time of sequence generation or at data analysis?		
Allocation concealment (selection bias)	Unclear risk	Not mentioned		
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment.		

Antioxidants for male subfertility (Review)

Biagiotti 2003 (Continued)		
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned.
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Unclear conference abstract

Blomberg Jensen 2018

Methods	Randomised single-centre,triple-blinded, clinical trial
	Duration of study: from January 2011 to August 2014, follow-up 14 months
Participants	Country: Denmark
	Population: men part of an infertile couple with impaired semen quality, N = 307
	Mean age: 34.8 ± 6.6 years
	Inclusion criteria: impaired semen quality (determined by WHO criteria) and vitamin D insufficient (25 OHD level #50 nmol/L)
	Exclusion criteria: serious comorbidities
Interventions	Vitamin D 1400 IU + calcium 500 mg (n = 151) plus vitamin D 300,000 IU oil once orally
	versus
	Placebo (n = 156) plus placebo oil once orally
	Duration of treatment: 150 days (5 months)
Outcomes	Sperm parameters, reproductive hormones, live birth rate
Notes	Power calculation performed.

Risk of bias

Bias	Authors' judgement	Support for judgement Quote: "Infertile men were randomly assigned 1:1 (in blocks of 10) to either placebo or"		
Random sequence genera- tion (selection bias)	Low risk			
		"Included men were given a specific trial identity number determined by min- imization using the computer program Minim (21). Minimization was done us- ing four groups based on serum 250HD, sperm concentration, body mass in- dex (BMI) and serum inhibin B"		
Allocation concealment (selection bias)	Low risk	Quote: "Randomization and manufacture of the high initial dose of vitamin D and placebo were performed by Glostrup Apotek."		
Blinding of participants and personnel (perfor- mance bias)	Low risk	Quote: "triple-blinded", "To avoid unblinding, the principal investigator gave the necessary clinical information to the sponsor, who had a list of numbers headed by X or Y. This ensured that both the principal investigator and the		

Antioxidants for male subfertility (Review)

Trusted evidence. Informed decisions. Better health.

Blomberg J	ensen	2018	(Continued)
Alloutcom	200		

All outcomes	inico)	sponsor were unaware whether the patient was allocated to the vitamin D plus calcium (active) group or the placebo group (i.e., double blinding)."
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "The trial remained blinded until all biochemical analyses, data han- dling, and statistical analyses by an independent statistician had been com- pleted (i.e., triple blinding)."
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "Twenty men in the placebo group and 18 in the vitamin D plus calcium group were lost to follow-up. In total, 269 of 307 men (87.6%) completed the study (Fig. 1). By counting returned tablets, it was evident that one man in the vitamin D group and three in the placebo group were noncompliant; however, all data from these four men were included in all the analyses."
		Quote: "Twenty-nine of the 269 men completing the trial reported their part- ner was pregnant before start of the intervention, whereas five men lost their partner during the study period, leaving 235 with the possibility of effecting a pregnancy."
		ITT. No explanation given for lost to follow-up? Therefore unclear risk
Selective reporting (re- porting bias)	Low risk	All the outcomes from the protocol were reported

Boonyarangkul 2015

Methods	Randomised double-blind controlled trial
	Duration of study: from May 2013 to October 2014
Participants	Country: Thailand
	Population: men with abnormal semen analysis, N = 68
	Mean age: treatment group (folate only) 26.08 \pm 0.76 years, control group 24.7 \pm 10.84 years
	Inclusion criteria: abnormal semen analysis of at least one parameter according to WHO Criteria 2010(13) (concentration < 15 million/ml, motility < 40%, or morphology < 4%), failure of the female partner to conceive after one year of regular unprotected sexual intercourse, no history of tamoxifen and folate allergy
	Exclusion criteria: use of tamoxifen and folate within three months before recruitment, use of other medicines or vitamin during study period
Interventions	Placebo (n = 15)
	versus
	Tamoxifen citrate 20 mg (n = 15)
	versus
	Folate 5 mg (n = 15)
	versus
	Tamoxifen citrate 20 mg + Folate 5 mg (n = 15)
	Duration of treatment: 3 months

Boonyarangkul 2015 (Continued)

Outcomes	Sperm parameters, hyaluronan binding assay, hypo-osmotic swelling test and DNA damage (Comet as- say, tail length)
Notes	Only folate and placebo arm included.
	Email sent to author on 06.03.2018 to Boonyarangkul (doctor_artit@yahoo.co.th) to ask about the ran- domisation process, blinding of outcome assessment, drop-out rate and funding of trial. Reminder email sent on 22.03.2018 to authors Boonyarangkul and Chiamchanya (doctor_artit@yahoo.co.th; charoenchai12@hotmail.com). No reply to date (19.04.2018)
	Data used in meta-analysis, however a sensitivity analysis was performed due to great baseline imbal-

ance between these two groups, especially sperm concentration

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	High risk	Baseline imbalance in concentration control versus folate group
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Quote: "Eight patients were excluded from the study (three patients declined to participate and five patients stop medication before completing the trial)" Unclear in which groups they participated. Data analysis by the authors was done without the 8 dropouts
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Busetto 2018

Dusetto 2010			
Methods	Randomised double-blind placebo-controlled study		
	Duration of study: from December 2014 to June 2015, follow-up unclear		
Participants	Country: Italy		
	Population: infertile men with oligo- and/or astheno- and/or teratozoospermia, N = 104, divided in two clusters, 52 patients with varicocele grade I-III and 52 patients without varicocele		
	Mean age: 32.5 ± 6.7 years		
	Inclusion criteria: age 18 – 50 years, oligo-, astheno- and/or teratozoospermia, with or without varic- ocele, having a history of infertility for more than 12 months, varicocele patients were not surgically treated before and during the treatment, patients without varicocele were suffering from idiopathic male infertility, no other previous history of diseases affecting fertility. Fertile female partners were re-		

Antioxidants for male subfertility (Review)

	ian concealment, blinding of outcome assessment and if the pregnancies were clinical and sponta- neous conceived. Reply from author on 07.03.2018: Quote: "All natural pregnancies, spontaneously		
	Email sent to author Busetto (gianmaria.busetto@uniroma1.it) on 07.03.2018 to ask about allocat-		
Notes	Power calculation performed.		
Outcomes	Sperm parameters, pregnancy rate		
	Duration of treatment: 6 months		
	Placebo 2 sachets (n = 52)		
	versus		
Interventions	Proxeed Plus 2 sachets (n = 52) (l-carnitine 1000 mg, fumarate 725 mg, acetyl-l-carnitine 500 mg, fruc- tose 1000 mg, CoQ10 20 mg, vitamin C 90 mg, zinc 10 mg, folic acid 200 μg and vitamin B12 1.5 μg)		
	Exclusion criteria: known hypersensitivity to any of the treatment compounds, history of undescended testes or cancer, endocrine disorders, history of post-pubertal mumps, genitourinary surgery, obstruc- tive azoospermia or obstructive pathology of the urogenital system, autoimmune disease, cystic fibro- sis, history of taking any therapy affecting fertility within last 3 months, excessive consumption of alco- hol or regular use of illicit or "recreational" drugs, positive serology for HIV, participants following any special diet, any condition which in the opinion of the investigator might put the participant at risk by participating in this study, participants involved in any other clinical trials		
Busetto 2018 (Continued)	quired with regular menstrual cycles, age <40 and couples not looking for fertility-related procedures (IVF/ICSI/IUI) for the next 90 days		

Bias **Authors' judgement** Support for judgement Random sequence genera-Quote: "The block randomisation method was used to randomise subjects into Low risk tion (selection bias) groups resulting in equal sample sizes to ensure a balance across the groups over time." Quote (from email): "Randomisation schedule (nQuery Advisor nTerim 2.0 (2012) program)" Allocation concealment Low risk Quote (from email): "The randomization was done by an external company (selection bias) (non-pharmaceutical)" Low risk Quote (from email): "We used a double blind system and so researched didn't **Blinding of participants** and personnel (perforknow anything about the randomization". Placebo used. mance bias) All outcomes Quote (from email): "An external statistician evaluated everything external" Low risk Blinding of outcome assessment (detection bias) All outcomes Incomplete outcome data Low risk "Ten patients dropped out from the study leaving 45 patients with varicocele (attrition bias) and 49 without varicocele." All outcomes "As for the ANCOVA, the p-values refer to the intention-to-treat population (ITT). The last observation carried forward (LOCF) method was used for replacing the missing data" Reasons for dropout not mentioned.

Antioxidants for male subfertility (Review)

Unclear risk

Busetto 2018 (Continued)

Selective reporting (reporting bias) All the outcomes from the aim of the study and methods were reported. No protocol available.

Methods	Randomised controlled trial				
	Duration of study: follow-up 9 months				
Participants	Country: Italy				
	Population: idiopathic men with variocoele or idiopathic oligo-asthenospermia (OAT), N = 325				
	Mean age: 34 (range 27 to 40) years				
	Inclusion criteria: men with OAT and with deficiencies in all sperm patterns whose chief complaint was primary couple infertility > 12 months with regular intercourse. Normal sperm appearance, consisten- cy, liquefaction, volume, pH. Female partner without fertility problems. Varicoceles.				
	Exclusion criteria: azoospermia, seminal WBC concentration more than 1000,000/mL, positive urethral chlamydia swab test, oligospermia < 5,000,000 /mL, hormonal alterations, age > 40 years, presence of anti-sperm antibodies, drug, tobacco or alcohol abuse, ongoing medical treatments, presence of hy-drocoele, diabetes, hypertension, x-ray exposure in previous 8 months, peptic ulcer, unexplained gastric pain, previous hypersensitivity to NSAIDS or carnitines, carnitine metabolism deficiency, bilateral variocoele, prostate abnormalities, previous or current testicular pathology, testicle echographic abnormalities				
Interventions	Placebo starch tablets 2 times/day + glycerine suppository (1 every 4 days) (n = 118)				
	versus				
	L-carnitine 1 x 2 g/day + acetyl-L-carnitine 500 x 2 mg/day + glycerine suppository (n = 101)				
	versus				
	L-carnitine 1x 2 g/day + acetyl-L-carnitine 500 x 2 mg/day + glycerine suppository + cinnoxicam suppos itory 1 x 30 mg (every 4 days) (n = 106)				
	Duration of treatment: 6 months				
Outcomes	Primary: sperm parameters				
	Secondary: pregnancy, side effects				
Notes	Cinnoxicam is a NSAID, therefore the third arm was not included in meta-analysis as per protocol				
	Continuous data taken from Cavallini 2004a 'excluded conference abstract' no data for placebo group				
	Unit of analysis variocoele therefore cannot extract data that were presented as median (interquartile range)				
	Author contacted regarding uneven numbers and missing placebo and continuous data				
	Author replied that raw data were not available due to computer crash				
Risk of bias					
Bias	Authors' judgement Support for judgement				

Antioxidants for male subfertility (Review)

Cavallini 2004 (Continued)

Random sequence genera- tion (selection bias)	Low risk	Quote: "casual random tables"
Allocation concealment (selection bias)	Low risk	Quote: "drug placebos identical in appearance", "anonymized carnitine and cinnoxicam and glycerine suppository containers; and filled and sealed anony- mous color coded boxes", "the color code was disclosed to physicians by phar- macists and by IRB at the end of the research"
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "All study personnel and participants were blinded to treatment assign- ment for the duration of the study"
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "All study personnel and participants were blinded to treatment assign- ment for the duration of the study"
Incomplete outcome data (attrition bias) All outcomes	High risk	325 randomised but only 185 accounted for; 55 dropouts from 185 (42%), 53 reasons given for the dropouts
Selective reporting (re- porting bias)	Unclear risk	Sperm parameters as primary outcome. Intention to collect biochemical preg- nancy data as secondary outcome recorded in the methods. No protocol avail- able.

Conquer 2000

conquer 2000			
Methods	Randomised placebo-controlled trial		
	Duration of study: unclear		
Participants	Country: Canada		
	Population: healthy asthenozoospermic men who were patients of an infertility clinic, N = 28		
	Mean age: placebo group 35.2 years, treatment group 400 mg 38.3 years and treatment group 800 mg 34.4 years		
	Inclusion criteria: asthenozoospermic, sperm motility < 50% of total sperm		
	Exclusion criteria: unclear		
Interventions	Docosahexaenoic acid (DHA) 400 mg (n = 9)		
	versus		
	Docosahexaenoic acid (DHA) 800 mg(n = 10)		
	versus		
	Placebo (n = 9)		
	Duration of treatment: 3 months		
Outcomes	Sperm parameters		
Notes	Data with SEs converted to SDs. Placebo arms split		

Antioxidants for male subfertility (Review)

Conquer 2000 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "The 28 subjects were randomly assigned to"
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	All men randomised were in the analysis, no dropouts.
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Cyrus 2015			
Methods	Randomised double-blind placebo-controlled trial		
	Duration of study: from February 2010 to May 2011		
Participants	Country: Iran		
	Population:infertile men with palpable varicocele grade 2-3, N = 115		
	Mean age: 27.6 ± 5.3 years.		
	Inclusion criteria: a palpable varicocele in physical examination and accompanying abnormalities in count, motility, or morphology of sperm in two separate semen analyses (according WHO criteria 1999), age range between 18 and 50, weight between 50 kg and 100 kg, being married		
	Negative inclusion criteria:		
	 absence of azoospermia, diabetes mellitus, 		
	 hormonal disorders (according to medical history and clinical examination), tobacco smoking, opium or recreational drugs addiction, 		
	 regular usage of vitamins or nutritional supplements, 		
	 active or chronic genitourinary infection (based on medical history, physical examination, semen and urine analysis), 		
	 history of peptic ulcer, 		
	 previous reaction to or intolerance to vitamin C. 		

Exclusion criteria: missed follow-up, incorrect usage of the capsules, de vitamin C, commencement of smoking or opium addiction during the for plications of varicocelectomy such as: hydrocele, recurrence of varicocelectomy such as: hydrocele, recurrence of varicocelectomy such as: hydrocele, recurrence of varicocelectomy Interventions Vitamin C 500 mg (n = 46) versus Placebo (n = 69) Duration of treatment: 3 months, after varicocelectomy Outcomes Primary: mean sperm count, motility (mean perc ent of type A plus type morphology index (before and after surgery) Secondary: complications of surgery, varicocele grade, age and weight	llow-up period, delayed com-
versus Placebo (n = 69) Duration of treatment: 3 months, after varicocelectomy Outcomes Primary: mean sperm count, motility (mean perc ent of type A plus type morphology index (before and after surgery)	
Placebo (n = 69) Duration of treatment: 3 months, after varicocelectomy Outcomes Primary: mean sperm count, motility (mean perc ent of type A plus type morphology index (before and after surgery)	
Outcomes Primary: mean sperm count, motility (mean perc ent of type A plus type morphology index (before and after surgery)	
Outcomes Primary: mean sperm count, motility (mean perc ent of type A plus type morphology index (before and after surgery)	
morphology index (before and after surgery)	
Secondary: complications of surgery, varicocele grade, age and weight	B divided by all motility types) ,
Notes Trial registration: IRCT201103042134N2	
Email sent to author on 06.03.2018 to dr Kabir (aikabir@yahoo.com) to a new matched cases were randomised.	isk about funding and if the
Reply on 23.03.2018 with all questions answered (see RoB)	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Simple randomization method using Excel 2010 software (Microsoft Corporation, Washington, USA) by RANDBETWEEN(0;1000000)"function."
		Quote: "Five patients from the intervention group and eight patients from controls did not show-up for the follow-up visits and were substituted with matched new cases"
		Reply from authors by email: new cases were randomised
Allocation concealment (selection bias)	Low risk	Quote: "The allocation sequence was produced by our statistician and was delivered to our pharmacist. Participants were enrolled by the two executive urologists who were unaware of the results of the allocation table. Then based on the number in the sequence being odd or even each new patient after varic- ocele surgery was assigned to intervention or placebo group by our pharma- cist who supplied the drugs. The ratio of placebo to intervention group was 1.5"
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double-blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Analyzed in a reference laboratory (Sina Laboratory of Arak) by an ex- perienced specialist in pathology and clinical laboratory medicine. Complica- tions of surgery, varicocele grade, age and weight were determined"
		Reply from authors by email: outcome assessors were blinded
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "Five patients from the intervention group and eight patients from controls did not show-up for the follow-up visits and were substituted with matched new cases"
		Quote (from email): "We were able to have access to some of these drop-out cases. None of them mentioned disease-, medication-, or study-related causes

Antioxidants for male subfertility (Review)

Cyrus 2015 (Continued)		for loss to follow up. Moving out from the city, changing their mind for partici- pating in the study immediately after accepting to participate, personal secret causes and so on were among some of these reasons."
Selective reporting (re- porting bias)	Low risk	Quote: "Our secondary complications were rare and they were excluded from the study and only those with clinically cured varicocele were selected for the final analysis. If there was any other unaccounted factor from Ivanissevich method that could affect the results, since both groups had the same type of operation, it would be balanced in the two groups"
		All the outcomes from the aim of the study and methods were reported.

Dawson 1990

auson 1550			
Methods	Randomised controlled trial		
	Duration of study: 4 weeks		
Participants	Country: USA		
	Population: men with sperm agglutination, N = 30		
	Mean age: range 25 to 45 years		
	Inclusion criteria: sperm agglutination over 25%, negative sperm antibodies, physically normal, no in- flammatory disease		
	Exclusion criteria: unclear		
Interventions	Ascorbic acid (vitamin	C) 1000 mg (n = 10)	
	versus		
	Ascorbic acid (vitamin C) 200 mg (n = 10)		
	versus		
	Placebo (n = 10)		
	Duration of treatment: 3 weeks		
Outcomes	Seminal parameters		
Notes	Placebo numbers split	by 2. Data were given in SE converted to SD	
	New comment 2018: progressive forward motility instead of total motility, data total sperm r moved to outcome progressive sperm motility		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "By random selection, three groups of 10 subjects each"	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Dawson 1990 (Continued)

Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Each subject was told he was receiving AA and expected improvement in sperm quality"
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	No dropouts
Selective reporting (re- porting bias)	Unclear risk	All specified outcomes were reported. No protocol available.

)eng 2014			
Methods	Randomised controlled trial		
	Duration of study: from January 2013 to February 2014		
Participants	Country: China		
	Population: men with idiopathic oligoasthenozoospermia (N = 86)		
	Mean age: treatment group 31.5 \pm 3.7 years, control group, 32.0 \pm 4.1 years		
	Inclusion criteria: 18 to 45-year-old male infertility patients, no contraception after marriage and infer- tility more than 12 months, normal sex life, no abnormal fertility of the women. According to WHO re- quirements 5 × 106/mL <s 10%="" 106="" 20="" <="" concentration="" forward="" ml,="" motility="" percentage<br="" perm="" sperm="" ×="">< 50%.</s>		
	Exclusion criteria: severe oligozoospermia; dead sperm disease due to erectile dysfunction (ED) or ret- rograde ejaculation or non-ejaculation; drug, uncontrolled bacterial prostatitis, fever and other factors affecting fertility; taking drugs that may affect sperm function; congenital malformations, fine tract ob- struction, testicular atrophy; tuberculosis, liver, kidney and haematopoietic system of severe primary disease, mental illness.		
Interventions	Vitamin D 200 IU + calcium 600 mg chewable tablet once daily (n = 43)		
	versus		
	Vitamin E 100 mg + vitamin C 100 mg three times a day (n = 43)		
	Duration of treatment: 3 months		
Outcomes	Sperm parameters, adverse reactions, pregnancy rate		
Notes	Email sent on 23.07.2018 to dr Deng (dengxiaolin@hsc.pku.edu.cn) with questions regarding the ran- domisation, blinding, outcome data assessment. No reply to date		
Risk of bias			
Bias	Authors' judgement Support for judgement		

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Deng 2014 (Continued)

Random sequence genera- tion (selection bias)	Unclear risk	Quote: "86 patients were randomly divided into treatment group and control group"
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Not blinded: treatment A once daily chewable tablets, treatment B tablets three times a day
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Dimitriadis 2010

Methods	Randomised controlled trial	
	Duration of study: unclear	
Participants	Country: Japan	
	Population: infertile men with oligoasthenospermia, N = 96	
	Mean age: unclear	
	Inclusion criteria: unclear	
	Exclusion criteria: unclear	
Interventions	Vardenafil 10 mg (n = 23)	
	versus	
	Sildenafil 50 mg (n = 25)	
	versus	
	L-carnitine 1000 mg (n = 26)	
	versus	
	No treatment (n = 22)	
	Duration of treatment: 12 weeks	
Outcomes	Seminal parameters	
Notes	Excluded were vardenafil (n = 23) and sildenafil (n = 25)	

Antioxidants for male subfertility (Review)

Dimitriadis 2010 (Continued)

Tried multiple times to contact authors for randomisation details and methods. No response. Last contacted in Feburary 2014. E-mail addresses tried: saitomo@kochi-u.ac.jp, akrosnin@hotmail.com

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control no treatment.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	No dropouts or lost to follow-up mentioned.
Selective reporting (re- porting bias)	Unclear risk	All data points accounted for. No protocol available.

Ener 2016 Methods Randomised controlled trial Duration of study: unclear Participants Country: Turkey Population: infertile men with a left-sided clinical varicocele, N = 56 Mean age: 25.8 ± 4.6 years Inclusion criteria: males diagnosed with a left-sided clinical varicocele in the urology polyclinic, and for whom subinguinal varicocelectomy was planned Exclusion criteria: the use of alcohol, tobacco or any drugs including vitamins Interventions Vitamin E 600 mg (n = 22) versus No treatment (n = 23) Duration of treatment: 12 months, start after varicocelectomy Outcomes Sperm parameters, pregnancy rate Notes Power calculation performed

Antioxidants for male subfertility (Review)

Ener 2016 (Continued)

Email sent to author on 06.03.2018 to dr Ener (kemalener75@yahoo.com) to ask about funding, the randomisation process, blinding of outcome assessment and if the reported pregnancies were clinical pregnancies and how they were conceived. Reminder email sent to Ener and Ozayar (eozayar@yahoo.com.tr) on 22.03.2018.

No reply to date (19.04.2018), data on pregnancy not used, unknown if clinical

Risk of bias Bias **Authors' judgement** Support for judgement Random sequence genera-Unclear risk Not mentioned tion (selection bias) Allocation concealment Unclear risk Not mentioned (selection bias) **Blinding of participants** High risk Control group is no treatment and personnel (performance bias) All outcomes Blinding of outcome as-Unclear risk Not mentioned sessment (detection bias) All outcomes Unclear risk Quote: "A total of 45 patients were included in the study." Incomplete outcome data (attrition bias) Quote: "Of note, our cohort was not without limitation. During the study set-All outcomes up, the sample size was calculated as 56. However, 11 patients who could not use vitamin E regularly, or did not come to visit in control periods, were excluded from the study." Not clear in which groups drop-outs belonged Unclear risk All the outcomes from the aim of the study and methods were reported. No Selective reporting (reporting bias) protocol available.

Eslamian 2013

Methods	Randomised controlled triple-blinded trial
	Duration of study: 12 weeks
Participants	Country: Iran
	Population: asthenozoospermic infertile men, N = 50
	Mean age: unclear
	Inclusion criteria: patients interest in contribution aged 20-45 who have passed at least one year from the date they have decided to have a baby, not to using pregnancy protection methods, affected by id-iopathic asthenozoospermia based on WHO criteria, normal serum gonadotropin, testosterone and prolactin values
	Exclusion criteria: affected by genital system infection or taking drug for the infection during past three months, affected by anatomical anomalies in genital system such as varicocoele, surgical history on testicles and vasdeferane

Antioxidants for male subfertility (Review)

Copyright ${\ensuremath{{\odot}}}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

slamian 2013 (Continued)			
Interventions	Docosahexaenoic acid (DHA) 465 mg + vitamin E 600 IU (n = 25) versus		
	Duration of treatment:	12 weeks	
Outcomes	Sperm parameters, ser	rum fatty acid concentration and sperm membrane fatty acid concentration	
Notes	In Arabic, translated. Tried multiple times to contact authors for further study details with no response Last tried to contact Feburary 2014: janati@avicenna.ac.ir		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Stratified blocked randomisation	
Allocation concealment (selection bias)	Low risk	Cans containing capsules marked as A1, A2, B1, B2 and patients, researchers and physician were unaware of the types of drugs	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Cans containing capsules marked as A1, A2, B1, B2 and patients, re- searchers and physician were unaware of the types of drugs"	
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Triple-blinded" "Cans containing capsules marked as A1, A2, B1, B2 and patients, researchers and physician were unaware of the types of drugs"	
Incomplete outcome data (attrition bias) All outcomes	Low risk	Withdrawals and exclusions:	
		Intervention group (3 withdrawals) : one man could not refer to the clinic in sixth week, the wife of the other one got pregnant, and another one was excluded because he have not taken more than 10% of the capsules	
		Control group (6 withdrawals) : two men could not refer to the clinic in sixth week, one man could not refer to the clinic in 12^{th} week. One man used complementary Coenzyme Q_{10} , and another one was excluded because he have not taken more than 10% of the capsules	
Selective reporting (re- porting bias)	Unclear risk	Sperm parameters reported. No protocol available.	

Exposito 2016

Methods	Randomised double-blind placebo-controlled trial	
	Duration of study: quote: "from January 2010 to July 2014" (information from email)	
Participants	Country: Spain	
	Population: men from infertile couples participating in an IVF/ICSI program, N = 113 according to final manuscript and authors, grouped into three categories: normozoospermic, oligozoospermic and as-thenozoospermic.	

Antioxidants for male subfertility (Review)

Exposito 2016 (Continued)	
	Mean age: 37.6 ± 3.8 years
	Inclusion criteria: duration of infertility of at leat 12 months and female age less than 40, as this a mandatory criterion in all Spanish public hospitals
	Exclusion criteria: quote: "the patient does not sign the informed consent" (information from email)
Interventions	Vitamin E (α-tocopherol) 400 mg (n = 55, n = 50 completed treatment)
	versus
	Placebo (n = 59, n = 51 completed treatment)
	Duration of treatment: 3 months
Outcomes	Sperm concentration, sperm count, progressive motility (A+B%), pregnancy rate
Outcomes Notes	Sperm concentration, sperm count, progressive motility (A+B%), pregnancy rate Conference abstract. Trial registration: EudraCT 2007-000960-25
	Conference abstract. Trial registration: EudraCT 2007-000960-25 Email sent to author Exposito (antonia.expositonavarro@osakidetza.eus;) and Matorras (JOSEROBER- TO.MATORRASWEINIG@osakidetza.eus) on 20.02.2018 and 07.03.2018 to request full text or data re-

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote (from email): "To maintain the blindness to the investigator and the subject, the investigator receives the information of the treatment allocation number from the computer system."
		Computer randomisation
Allocation concealment (selection bias)	Low risk	Quote (from email): "To maintain the blindness to the investigator and the subject, the investigator receives the information of the treatment allocation number from the computer system. The subject receives his study medication package from the study site of the institution."
		Investigator receives a number belonging to a study medication package
Blinding of participants	Low risk	Quote: "Double-blind". Placebo used.
and personnel (perfor- mance bias) All outcomes		Quote (from email): "All the active and placebo capsules are identical in appearance, shape, smell and taste"
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote (from email): "At the end 101 couples completed the treatment (placebo group N=51 and vitamin E group N=50). Nine couples withdrew from this study before completing their 3 months of treatment due to IVF cycle cancelled or a lack of continuing interest(8%) (five of the placebo group and four of the vita- min E group)(N=104). Three couples achieved spontaneous pregnancy at 50, 60

Antioxidants for male subfertility (Review)

Exposito 2016 (Continued)		and 90 days of treatment;two of them belonged to placebo group and the oth- er belonged to the vitamin E group (2.7%)"
		Quote (from email): "The data analysis was done with the people who com- pleted the study (n=101)"
		No ITT. Reasons for drop-out well explained and balanced.
Selective reporting (re- porting bias)	Low risk	All the outcomes from the aim of the study and methods were reported

Galatioto 2008

Duration of study: 12 m	d, intention-to-treat, single centre study. nonths, from January 2003 to June 2005	
	nonths, from January 2003 to June 2005	
Country 14		
Country: Italy		
Population: men with persistent oligospermia (5 to 20 m/ml), N = 42		
Mean age: treatment group 32 (27.5 to 35.5) years, control 33 (23 to 36) years		
Inclusion criteria: havir tent oligospermia and	ng performed a retrograde embolization with concomitant oligospermia, persis- infertility > 12 months	
Exclusion criteria: smoking, alcohol consumption, taking any fertility drugs within 3 months prior to the study, serious medical or psychiatric condition, abnormal hormonal profile, sperm infection		
N-acetylcysteine (NAC) 600 mg + vitamins-minerals (vitamin C, vitamin E, vitamin A, thiamine, ri- boflavin, piridoxin, nicotinamide, pantothenate, biotin, cyanocobalamin, ergocalciferol, calcium, mag- nesium, phosphate, iron, manganese, copper, zinc) (n = 20)		
versus		
No treatment (n = 22)		
Duration of treatment: 90 days		
Primary: seminal parar	neters	
Secondary: pregnancy	(undefined) and adverse effects	
Power calculation performed.		
Attempted to contact author regarding median data. No response yet (2014)		
2018: motility reported as WHO Class A motile sperm instead of total motility, added to table 'data not usable for meta-analysis'		
Authors' judgement	Support for judgement	
Low risk	Quote: "Subjects were randomly assigned to either antioxidant therapy or no medical therapy. Randomisation number was assigned by random allocation software using a block randomisation design"	
	Mean age: treatment g Inclusion criteria: havin tent oligospermia and Exclusion criteria: smo study, serious medical N-acetylcysteine (NAC) boflavin, piridoxin, nico nesium, phosphate, irco versus No treatment (n = 22) Duration of treatment: Primary: seminal parar Secondary: pregnancy Power calculation perf Attempted to contact a 2018: motility reported usable for meta-analys	

Antioxidants for male subfertility (Review)

Galatioto 2008 (Continued)

Allocation concealment (selection bias)	Low risk	Quote: "All steps of randomisation process were performed blindly in the phar- macy of our hospital"
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "All ejaculate analysis was analyzed blindly with respect to the treat- ment groups"
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "intention to treat"
Selective reporting (re- porting bias)	Unclear risk	No protocol available.

Gamidov 2017

Methods	'Open perspective randomised' study
	Duration of study: unclear
Participants	Country: Russia
	Population: men with varicocele, N = 114
	Mean age: 34.1 ± 12.1 years
	Inclusion criteria: aged 25-45 years, participants' wives had not become pregnant in the last 12 months or more, despite regular unprotected sexual intercourse between the partners; oligo-,asteno- and/or teratozoospermia, varicocele evident upon palpation confirmed by Doppler ultrasonography of scro- tum blood vessels, normal constitutional development as determined by the physical exam
	Exclusion criteria: previously established genetic causes of infertility (Klinefelter syndrome, microdele- tions AZF, CFTR), azoospermia, clinical and laboratory evidence for inflammatory changes to sex glands, pyospermia, follicle-stimulating hormone (FSH) overproduction, immunologic infertility (MAR- test IgG > 10%), pronounces somatic pathology, psychosexual or ejaculatory disfunction
Interventions	SpermActin-forte (acetyl-L-carnitine, L-carnitine fumarate and alpha-lipoic acid) (n = 38)
	versus
	SpermActin-forte + Vitamin complex 'Man's formula' (n = 38)
	versus
	No treatment (n = 38)
	Duration of treatment: 3 months, after microsurgical varicocelectomy (MVE)
Outcomes	Sperm parameters, DNA fragmentation, side-effects
Notes	Article in Russian, translated by Andrew Dubovyi. Ethical approval and obtaining informed consent not mentioned in text.

Antioxidants for male subfertility (Review)

Gamidov 2017 (Continued)

Email sent to author Ovchinnikov (r_ovchinnikov@oparina4.ru) on 29.03.2018 to ask about the randomisation process, blinding of outcome assesors, drop-outs and which side-effects they aimed for ("No side effects related to the pharmacological treatment were observed."). Reply on 11.04.18, see RoB.

Data on adverse events used. Other data not usable due to the use of medians and interquartile ranges

Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Using adaptive dynamic randomization with stratification patients were assigned to one of three groups of 38 subjects"
		Quote (from email): "It was computer randomized block design"
Allocation concealment (selection bias)	Unclear risk	Quote (from email): "Randomization was done by the researchers"
Blinding of participants and personnel (perfor-	High risk	Control is no treatment, furthermore group A uses 1 tablet, group B uses 2 tablets
mance bias) All outcomes		Quote (from email):"The study was not blinded"
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote (from email): question was the person who assed the outcomes blind- ed? "Yes"
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote (from email):"There were no lost to follow-up participants (the samples were small)"
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.
		Quote (from email) when asking about which adverse events were aimed for: "We have not registered any side effects, including gastro-intestinal, urologi- cal, neurological complications, etc"

Gopinath 2013

Methods	Randomised placebo-controlled double-blind parallel three-arm multicentre trial
methods	
	Duration of study: follow-up 6 months
Participants	Country: India
	Population: Idiopathic oligoasthenozoospermia men, N = 138 (N = 125 completed the study)
	Mean age: 30.74 (range 24-45) years
	Inclusion criteria: age 21-50 years, infertility >1 year, sperm count less than 15 million/mL, sperm total motility < 40%, no history of taking therapy for infertility, no history of OAT, regular sexual intercourse with a potentially normal fertile female, willing to sign informed consent and likely to be available for all visits during follow-up period
	Exclusion criteria: primary testicular disease, any organic cause for infertility including varicocele, prostate-vesiculo-epididymitis,genital infectious disease,planning for any other ART during study peri- od, serum follicle-stimulating hormone FSH >15 mIU/mL, abnormal serum levels of LH, testosterone,

Antioxidants for male subfertility (Review)

Sopinath 2013 (Continued)	
	estradiol and prolactin, presence of antispermatozoa antibodies, severe oligospermia (< 2 million sperm/mL), azoospermia, seminal WBCs more than 1 x 10 ⁶ mL, major hepatic and renal disease, my- opathy, history of allergy to any ingredient of the formulation, not likely to be available for follow-up, have participated in another clinical trial in the past 3 months, female partners with anatomic or physi- ological alterations causing subfertility
Interventions	Fixed doses combination (FDC) 2 tablets (Coenzyme Q10 50 mg + L-carnitine 500 mg + lycopene 2.5 mg + zinc 12.5 mg) (n = 46)
	versus
	Fixed doses combination (FDC) 1 tablet + 1 Placebo tablet (n = 43)
	versus
	Placebo 2 tablets (n = 36)
	Duration of treatment: 180 days
Outcomes	Primary: improvement in sperm count, total sperm motility (90 and 180 days)
	Secondary: pregnancy rate, side effects
Notes	Email sent on 06.03.2018 to dr Zaveri (drhemantzaveri@gmail.com) to ask about the pregnancies (clini- cal? How conceived?), the randomisation process, blinding of outcome assessment and allocation of 13 dropouts. Reminder email sent on 27.03.2018. Reply on 30.03.2018 from author; see text in RoB.
	Pregnancy data not used, distribution in groups unknown, only reply from author quote: "No pregnan- cies were not followed up to stage 12 weeks. So no pregnancy was clinical. 9 pregnancies were con- ceived through ART 3 Conceived spontaneous" Numbers from text: 6 in FDC 2, 7 in FDC 1, 2 in Placebo. Pregnancy data used in table 1.
Risk of bias	

Bias **Authors' judgement** Support for judgement Random sequence genera-Low risk Quote (from email): "Procedures were computer" tion (selection bias) Allocation concealment Low risk Quote: "Centrally randomised to one of three treatment arms (arm 1-3) in a (selection bias) 1:1:1 ratio" Central randomisation Blinding of participants Low risk Quote: "Double-blinded". Placebo used and personnel (performance bias) All outcomes Quote (from email): "Yes outcome assessment was blinded " Blinding of outcome as-Low risk sessment (detection bias) All outcomes 13 lost to follow-up (dropout), quote: "at different stage during the study" Incomplete outcome data Low risk (attrition bias) Asked by email in which groups or what reasons. Quote (reply email): "5 in pa-All outcomes ternia BID, 6 in placebo, 2 in paternia BID" Data-analysis only on the 125 who completed the study. Low risk because dropouts accounted for.

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Gopinath 2013 (Continued)

Selective reporting (re-	Unclear risk
porting bias)	

All the outcomes from the aim of the study and methods were reported. No protocol available.

Methods	Randomised controlled	d double-blind trial	
	Duration of study: uncl	ear	
Participants	Country: France		
	Population: infertile m	ales, N = 64	
	Mean age: unclear		
	Inclusion criteria: TUN zoa	EL assay showed a presence of fragmented DNA \ge 15% of ejaculated spermato-	
	Exclusion criteria: vario	ocele, genitourinary inflammation, infection, smoking	
Interventions	Vitamin C 1000 mg + Vi	tamin E 1000 mg (n = 32)	
	versus		
	Placebo (n = 32)		
	Duration of treatment: 2 months		
Outcomes	Sperm parameters		
Notes			
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "The study was double-blinded with both the authors and the patients unaware of which of the patients was in the treatment or control arm of the study"	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	
Incomplete outcome data (attrition bias) All outcomes	Low risk	No dropouts	
Selective reporting (re- porting bias)	Unclear risk	No protocol available.	

Antioxidants for male subfertility (Review)

Haghighian 2015

Methods	Randomised triple-blir Duration of study: uncl	nd placebo-controlled trial ear, in 2014	
Participants	Country: Iran		
	Population: men with idiopathic asthenozoospermia, N = 48		
	Mean age: 33.56 ± 5.07	years	
	ical condition that cou	illing childlessness at least 24 months in duration with a female partner, no med- ld account for infertility, normal fertile female partner according to investiga- needed to have stopped all medical therapy R12 weeks before study initiation	
	guinal or genital surge (cryptorchidism, curre tem disease and endoo drogens, or antiandrog abnormalities that wo alcohol abuse, hepatol	history of epididymo-orchitis, prostatitis, genital trauma, testicular torsion, in- ry, urinary tract infection, or previous hormonal therapy, another genital disease nt genital inflammation or varicocele), severe general or central nervous sys- crinopathy, use of cytotoxic drugs, immunosuppressants, anticonvulsants, an- gens, recent history of sexually transmitted infection, psychologic or physiologic uld impair sexual performance or the ability to provide semen samples, drug or biliary disease, significant renal insufficiency, occupational and environmental e reproductive toxins, BMI of >30 kg/m ² , participation in another investigational ility for follow-up	
Interventions	Alpha-lipoic acid (ALA) 600 mg (n = 23)		
	versus		
	Placebo (n = 21)		
	Duration of treatment:	12 weeks	
Outcomes	Sperm parameters, markers of oxidative stress (total antioxidant capacity (TAC) and malondialdehyde (MDA)), side-effects		
Notes	Email sent to last author Haidari (haidari58@gmail.com) on 06.03.2018 to ask what side effects they aimed for and reasons for lost to follow-up.		
	Reminder email sent on 22.03.2018 to Haidari and Dadfar (mdadfar@yahoo.com). No reply to date (19.04.2018).		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera-	Low risk	Quote: "Each eligible patient received a randomization number which was de-	

tion (selection bias)		termined by a computer-generated schedule. Then a randomization table was generated by the method of random permuted blocks"
Allocation concealment (selection bias)	Low risk	Quote: "Persons who were operationally independent from the study investi- gator performed the study randomization"
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "The investigator, clinician prescriber, and patients were blinded to the treatment condition"

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Haghighian 2015 (Continued)

Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Patients'data collected during this trial were kept confidential and locked in a secure area. Randomization codes of the study were opened only after all participants had completed the study protocol"
Incomplete outcome data (attrition bias) All outcomes	Low risk	N = 48, quote: "44 completed the study, rest lost to follow-up: data analysis with 23 of 24 in ALA group, 21 of 24 in placebo group" Reasons lost to follow-up not mentioned.
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Haje 2015

Methods	Randomised controlled trial Duration of study: from January 2013 to June 2014			
Participants	Country: Iraq			
	Population: infertile men with idiopathic oligozoospermia (OA), N = 128 (in flow chart "182")			
	Mean age: 37.54 ± 2.46 years			
	Inclusion criteria: repeated exhibition of OA without detectable cause (idiopathic OA)			
	Exclusion criteria: leukocytospermia, altered testicular volume of a minimum of 20 ml as depicted by ultrasonography, varicocele as detected by clinical examination and ultrasonography, abnormal FSH levels, couples with combined male and female factors			
Interventions	Tamoxifen 20 mg (n = 45)			
	versus			
	L-carnitine 1000 mg (n = 20)			
	versus			
	Tamoxifen 20 mg + L-carnitine 1000 mg (n = 34)			
	versus			
	Placebo (n = 29)			
	Duration of treatment: 3 to 6 months followed by ICSI			
Outcomes	Sperm parameters, fertility and pregnancy outcome following ICSI			
Notes	Email sent to author Haje on 06.03.2018 (milathaji@yahoo.com) to ask about randomisation, dropouts amount of pregnancies (intead of %) and if they were clinical, and to provide raw data specified for amount of months treatment used?			
	Reminder email sent on 22.03.2018. No reply to date (19.04.2018).			
	Data not usable: range of treatment 3 - 6 months, not specified as separates, pregnancy in % instead of numbers, unknown if clinical or not.			
Risk of bias				

Antioxidants for male subfertility (Review)

Haje 2015 (Continued)

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Dropouts not mentioned. Furthermore baseline characteristics not mentioned
Selective reporting (re- porting bias)	Unclear risk	Primary and secondary outcomes are mentioned and provided. No protocol available.

Kessopoulou 1995

Methods	Randomised double-blinded placebo cross-over trial				
	Duration of study: unclear				
Participants Participants Interventions Dutcomes	Country: UK				
	Population: men with high levels of reactive oxygen species (ROS) of a couple undergoing IVF, N = 30				
	Mean age: unclear, median age 32 years				
	Inclusion criteria: attending fertility clinic, high levels of ROS in semen. Female partner has patent tubes and is ovulating				
	Exclusion criteria: men with antisperm antibodies, > 20% spermatozoa with Ig (immunoglobulin A) or IgG antibodies and sperm concentration < 5 x 10 ⁶ mL				
nterventions	Vitamin E 600 mg (n = 15)				
	versus				
	Placebo (n = 15)				
	Duration of treatment: 3 months, 1 month wash-out, 3 more months after cross-over				
Outcomes	Primary outcomes: sperm parameters				
	Secondary outcomes: adverse effects, live birth				
Notes	Power calculation performed.				
	Attempted to contact author regarding median data, no response as yet (2014). Only first phase data used in analysis				

Antioxidants for male subfertility (Review)

Kessopoulou 1995 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Quote: "The study was a randomised double blind placebo controlled trial". "The randomisation was performed by the manufacturer"	
Allocation concealment (selection bias)	Unclear risk	Quote: "The randomisation was performed by the manufacturer"	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "the code was blind for the researcher and patients. The code was bro- ken at the end of the trial"	

Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Quote: "30 patients completed the study over 2 years" Changed to unclear risk in 2018 (was low risk); not reported how many were randomised to start with, or how many drop-outs
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported as stated in the methods section. No protocol available.

Kumamoto 1988

Methods	Randomised double-blind parallel trial		
	Duration of study: from January 1985 to June 1986		
Participants	Country: Japan, 25 centres		
	Population: men with abnormal sperm count or motility, N = 375		
	Mean age: unclear, average 32.8 (SD 4.8) years Inclusion criteria: average sperm count ≤ 40 × 10 ⁶ /mL measured on ≥ 2 occasions OR average sperm count ≥ 40 count ≤ 40 × 10 ⁶ /mL measured on ≥ 2 occasions AND sperm motility < 50% Exclusion criteria: sperm count only measured at 1 occasion, average sperm count ≤ 2 × 10 ⁶ /mL, sperm motility = 0%, testicular size < 8 mL using orchidometer bilaterally, use of hormone or anti-hormone drug within preceding 3 months before the study period, WBC > 5/HPF in the semen or the presence of possible genito-urinary infection, presence of hypoganadism or endocrine disease, presence of un- descended testes, genito-uninary tract obstruction, varicocele or any other serious associated condi- tion also included concomitant use of anti-hormonal and hormonal treatment and the 2 patients with polypharmacy were excluded from the data analysis		
Interventions	Mecobalamin (vitamin B12) 6.000 mcg (n = 125)		
	versus		
	Mecobalamin (vitamin B12) 1.500 mcg (n = 124)		
	versus		
	Placebo (n = 126)		

Antioxidants for male subfertility (Review)

Kumamoto 1988 (Continued)	Duration of treatment:	f treatment: 12 weeks				
Outcomes	Sperm concentration,	sperm motility				
Notes	Article in Japanese, tra	Article in Japanese, translated by Dr Tomoko Kumaga and Tan Wantao.				
	No contact details available for authors. No useable data available.					
Risk of bias						
Bias	Authors' judgement	Support for judgement				
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "The 396 patients were divided into 3 groups (6000ug/day, 1500ug/day, placebo) by randomisation. The implementation of randomisation and alloca- tion concealment was carried out by two people (Doctor Yamamoto, Doctor Shimizu)				
Allocation concealment (selection bias)	Unclear risk	See above				
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.				
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned				
Incomplete outcome data	Unclear risk	No ITT. 21 lost to follow-up; 19 dropouts, 2 polypharmacy				
(attrition bias) All outcomes		2018 Change in RoB to unclear. Not sure in which groups dropouts belonged.				
Selective reporting (re- porting bias)	High risk	Subgroup analysis performed as an addition post-treatment				

Lenzi 2003

Methods	Randomised placebo-controlled, double-blind cross-over trial
	Duration of study: 10 months
articipants	Country: Italy
	Population: infertile men with oligoasthenoteratozoospermia (OAT), N = 100
	Mean age: unclear, range: 20 to 40 years
	Inclusion criteria: age between 20 to 40 years with infertility lasting longer than 2 years, regular sexu- al intercourse with a gynaecologically normal female partner with no female infertility, absence of en- docrine disease, genital infections, obstructive cryptorchism, antisperm antibodies, normal sperm pa- rameters with no significant differences after 3 tests, mild oligospermia with perm concentration 10 to 20 x 10 ⁶ /mL and motility 10% to 30%
	Exclusion criteria: unclear
Interventions	L-carnitine 2 g (n = 43)

Antioxidants for male subfertility (Review)

Lenzi 2003 (Continued)				
	versus			
	Placebo (n = 43)			
	Duration of treatment: 2 months of washout, 2 months of therapy/placebo, 2 more months of washout, 2 more months of placebo/therapy			
Outcomes	Sperm parameters, pregnancy rate			
Notes	Power calculation performed			
	First phase data: attempted to contact author regarding standard deviations, how many were in each group for the first phase and how many of the 4 who went to assisted reproduction did so in the first phase and what do they mean by 172 cycles. No response yet (2014). Added to outcome data 'not us- able for meta-analysis'			

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blinded", "seemingly identical placebo"
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	14 withdrew - 4 went onto assisted reproduction, 6 did not return for second period and 4 due to pregnancy in first phase. Therefore should only be ?4 at the most lost from first phase. No ITT
		All withdrawals accounted for for whole trial however how many were lost in the first phase in first phase
Selective reporting (re- porting bias)	Unclear risk	All outcomes are reported. No protocol available.

Lenzi 2004

Methods	Randomised placebo-controlled, double-blind trial
	Duration of study: 8 months
Participants	Country: Italy
	Population: infertile men with OAT, N = 60
	Mean age: unclear, range 20 to 40 years

Antioxidants for male subfertility (Review) Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

enzi 2004 (Continued)	Inclusion criteria: oligoasthenoteratospermia, age between 20 to 40 years, infertility > 2 years with ular intercourse, no endocrine disease, cryptorchidism, genital infections or obstructions, variocoe testicular hypertrophy, antisperm antibodies Exclusion criteria: none				
Interventions	L-carnitine 2 g + L-acety	yl-carnitine 1000 mg (n = 30)			
	versus				
	Placebo (n = 26)				
	Duration of treatment:	6 months			
Outcomes	Sperm parameters, pre	egnancy rate			
Notes	Power calculation performed				
	Attempted to contact author regarding 8-month follow-up data. No reply as yet (2014)				
Risk of bias					
Bias	Authors' judgement	Support for judgement			
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned			
Allocation concealment (selection bias)	Unclear risk	Mentions coding: quote: "When codes were broken at the end of the study"			
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.			
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned			
Incomplete outcome data (attrition bias) All outcomes	Low risk	4 men withdrew from the placebo group. 60 randomised 56 analysed. No ITT			
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.			

. :	2	n	0	E.	
	-	υ	υ	Э.	

Randomised double-blinded parallel trial
Duration of study: 3 months
Country: Eastern China
Population: infertile men with oligoasthenospermia, N = 150
Mean age: treatment group 30 \pm 5.5 (23 to 45) years, control group 32 \pm 3.5 (24 to 46) years
P

Antioxidants for male subfertility (Review)

Li 2005 (Continued)	Inclusion criteria: no sn fore	noking or alcohol use, any fertility medication needed to be stopped 2 weeks be-
	Exclusion criteria: none	
Interventions	L-carnitine 2 g + acetyl-	L-carnitine 1 g (n = 85) (90 with ITT)
	versus	
	Vitamin E 200 mg + vita	min C 200 mg (n = 53) (60 with ITT)
	Duration of treatment:	3 months
Outcomes	Sperm parameters, pre	gnancy rate
Notes	Article in Chinese, trans	slated by Shaofu Li 10.11.2008.
	Contact author regardi query that this is the sa	ng methods of randomisation, concealment and whether SD or SEs used and me trial as Li 2005a
	2018: added data on pr	ogressive motility
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Quote: "Double-blind" but unclear who is blinded as the control is another an- tioxidant i.e. not placebo
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Attrition explained. Withdrawal: 5 from treatment group and 7 from control
Selective reporting (re- porting bias)	Unclear risk	No protocol available.
Li 2005a		

Methods	Randomised trial
	Duration: unclear
Participants	Country: Eastern China
	Population: infertile men with oligoasthenospermia, N = 80
	Mean age: 29 ± 3.5 (23 to 40) years

Antioxidants for male subfertility (Review)

Li 2005a (Continued)	Inclusion critoria: no sr	noking or alcohol, any fertility medication needed to be stopped 2 weeks before
	Exclusion criteria: none	
Interventions	L-carnitine 2 g (n = 40)	
	versus	
	Vitamin E 100 mg + Vita	amin C 200 mg (n = 40)
	Duration of treatment:	
Outcomes	Seminal parameters, p	regnancy rate
Notes	Article in Chinese, trans	slated by Shaofu Li 10.11.2008.
	and whether this is the	author re methods of randomisation, concealment and whether SD or SEs used same trial as Li 2005. Also asked whether there were any data on pregnancy 22.09.2009 no pregnancy data were available in the text of the trial
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Withdrawal: 8 from treatment (n = 32) and 9 from control (n = 31). 21% loss to follow-up. No ITT
Selective reporting (re- porting bias)	Unclear risk	No protocol available.
Lombardo 2002		

Methods	Randomised controlled cross-over trial
	Duration of study: 10 months
Participants	Country: Italy
	Population: infertile men with oligoasthenospermia, N = 100
	Mean age: unclear, range 20 to 40 years

Antioxidants for male subfertility (Review)

ombardo 2002 (Continued)	-	20 to 40 years, infertility > 2 years, 3 baseline semen analysis demonstrating con-	
		/mL, 10% to 30% total motility, forward progression < 15%, abnormal morpho- rvilinear velocity 10 to 30 /second + linearity < 4	
	Exclusion criteria: uncl	ear	
Interventions	L-carnitine 2 g (n = ?)		
	versus		
	Placebo (n = ?)		
	Duration of treatment:	2 months	
Outcomes	Sperm parameters		
Notes	Abstract only		
	Attempted to contact a there was a full publica	author re first phase data, outcomes, randomisation, concealment and whether ition of the trial	
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	86 patients completed the trial out of 100. Need to see full trial for the reason for withdrawals and ITT	
Selective reporting (re- porting bias)	Unclear risk	Abstract only	
loutin of 2015			
Iartinez 2015 Methods	Randomised double-bl	ind controlled trial	
	Duration of study: from July 2009 to September 2010		
Participants	Country: Mexico		
i anticipanto	Country. MEXICO		
	Population mon with :	diopathic oligoasthenozoospermia, N = 54	

Antioxidants for male subfertility (Review)

Martinez 2015 (Continued)	Inclusion criteria: patient between the ages of 20 to 45 years with a diagnosis of idiopathic oligoas- thenozoospermia. The diagnosis of oligoasthenozoospermia was reached by performing two semen analyses on different dates with an interval of three weeks between them. Exclusion criteria: infertile patients with normal findings on semen analysis, chronic smokers, antiox- idants use in the last 6 months prior to the study, chronic degenerative diseases such as diabetes or high blood pressure Hormonal abnormalities
Interventions	Resveratrol (3,5,4 ´-trihydroxystilbene) 25 mg + 725 mg microcrystalline cellulose (n = 18) versus SG1002 (hydrogen sulfide) 750 mg (n = 18) versus Placebo 750 mg microcrystalline cellulose (n = 18) Duration of treatment: 75 days
Outcomes	Sperm parameters (with A+B type sperm motility)
Notes	 SG1002 (hydrogen sulfide) excluded because it is a gaseous transmitter Email sent to second author Sordia-Hernandez (luissordia@telmexmail.com) on 22.03.2018 to ask details about the randomisation process and for him to provide more data (SDs). Inconsistence in sentence about adverse events: 3 side effects in SG1002 group, however in the sentence before only 2 in this group? Data not usable, no SD's. No reply to date (19.04.2018).

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double-blind". Quote: "Bottles and capsules for each treatment were identical and identified by a code unknown to the researchers or subject." Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Sperm analysis performed by lab technicians, blinded to the treat- ment group"
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "Of the seven subjects who did not complete the study (3 from the placebo group, 2 from the resveratrol treatment group and 2 from the SG1002 treatment group), none returned for follow-up visits and therefore no data on sperm count, motility or abnormality was available and an intent to treat analysis could not be carried out. Four of these subjects were lost in follow-up while the other three withdrew due to unpleasant smelling sweat (SG1002

Antioxidants for male subfertility (Review)

Martinez 2015 (Continued)		treatment group), nausea and flatulence (SG1002 treatment group), and in- convenience (SG1002 treatment group)."
		Quote: "All study subjects who did not comply with medication given as pre- scribed, who discontinued the drug or were hypersensitive to it were eliminat- ed"
		Reasons enough explained, all 3 in SG1002 due to side effects, however we did not include this arm
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Methods	Randomised double-bl	ind controlled trial	
	Duration of study: 10 w	reeks	
Participants	Country: Spain		
	Population: infertile mo	en, N = 42 (abstract), N = 64 (from author)	
	Mean age: treatment g	roup 35.23 years, placebo 36.10 years, overall average age 35 years	
		suffering from male factor infertility, according to the WHO guidelines (WHO ndergoing infertility evaluation during the period 2009 to 2011	
	Exclusion criteria: oncological patients, those suffering from metabolic disease, chromosomal or ge- netic alterations, and patients on anticoagulant treatment		
Interventions	Brudy Plus 1500 mg of DHA-enriched oil (DHA 1000 mg + eicosapentaenoic acid (EPA) 135 mg) (n = 35)		
	versus		
	Placebo (n = 29)		
	Duration of treatment: 10 weeks		
Outcomes	Sperm DNA fragmentat	tion, seminal parameters, lipid composition, antioxidant capacity	
Notes	Conference abstract only.		
	Contacted author multiple times by e-mail (JuanCarlos.Martinez@ivi.es) for further study details. Clar- ified that the abstract details were different from that in the final study, a copy of the unofficial manu- script was submitted to the review authors. Last contact was on 26.02.2014		
	2018: added data on progressive sperm motility		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Random list with a computer program	
Allocation concealment (selection bias)	Low risk	Closed and numerated envelopes with allocation group	

Antioxidants for male subfertility (Review)

Martinez-Soto 2010 (Continued)

Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Participants knew that they was included in group A or B but only Brudy tech- nology knew the assignation to the control group or experimental group
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Methods	Randomised double-blind, placebo-controlled trial
	Duration of study: from May 2008 to August 2012
Participants	Country: Iran
	Population: infertile men with idiopathic OAT, N = 235
	Mean age: treatment (L-carnitine) group 30 \pm 1.7 years, control group 30 \pm 4.6 years
	Inclusion criteria: age 25 – 40 years, infertile men with OAT, healthy fertile wives
	Exclusion criteria: existence of genital abnormalities (undescended testes, varicocele, atrophy of testes), occupational chemical exposure history, systemic diseases, abnormal semen volume, pH, agglutination or viscosity, derum hormonal abnormalities (FSH, LH, testosterone, estradiol, prolactin), wives with known fertility risk factors confirmed by gynecologist
Interventions	Pentoxifylline 800 mg + L-carnitine 1000 mg (n = 58)
	versus
	Pentoxifylline 800 mg + Placebo (n = 59)
	versus
	L-carnitine 1000 mg + Placebo (n = 59)
	versus
	Placebo (n = 59)
	Duration of treatment: 3 months
Outcomes	Sperm parameters (progressive sperm motility), selection of type of assisted reproductive techniques (ART)
Notes	Only data from L-carnitine and placebo arm used.
	Email sent to author (dr.ketabchi@gmail.com) on 06.03.2018 to ask about the randomisation process and blinding of the outcome assessment

Antioxidants for male subfertility (Review)

Mehni 2014 (Continued)

Reminder email sent to Ketabchi on 22.03.2018. No reply to date (19.04.2018).

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera-	Unclear risk	Quote: "Randomized by Bloch method to four groups"
tion (selection bias)		Bloch (block?) method, does this mean computerised? Insufficient explanation
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double-blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias)	Unclear risk	Quote: "After intervention 23 patients excluded from study (3 patients for drug intolerance in group I, and 20 patients for uncooperative in group II and III)"
All outcomes		Data-analysis only with for those who completed the study (N = 212)
		According to figure 1: 5 patients (instead of 3 mentioned in text) dropped out due to drug intolerance in group I? Type error?
		Reasons and exact numbers for dropout not given for L-carnitine arm specifically.
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Micic 2017

Methods	Randomised double-blind placebo-controlled trial	
	Duration of study: unclear	
Participants	Country: Serbia	
	Population: men with oligo-asthenozoospermia, N = 175	
	Mean age: unclear	
	Inclusion criteria: men visiting the Andrology center, (18-50 years) and with difficulty in conceiving > 12 months	
	Exclusion criteria: unclear	
Interventions	Proxeed Plus (L-carnitine 2 g, acetyl-L-carinitine 1 g, vitamins and minerals) (n = 125)	
	versus	
	Placebo (n = 50)	

Antioxidants for male subfertility (Review)

Micic 2017 (Continued) Duration of treatment: 6 months (and 2 months wash-out) Outcomes Progressive motility, seminal plasma carnitine Notes Conference abstract only. Email sent to last author Agarwal (AGARWAA@ccf.org) on 20.02.2018. Answer on 21.02.18 "this study is not published in a journal at this time" New email on 06.03.2018 to ask raw data (means with SD) and more information about randomisation/blinding outcome/dropout rates. Reply on 22.03.18 from Agarwal & Micic (savamicic2016@gmail.com) with more information in a word document. Only medians with IQR. Data not usable, medians with IQR.

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote (from email): "Random list was made using the nQuery Advisor nTerim 2.0 (2012) program"
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote (from email): "This is a double blind study. Neither the patient, providers, nor investigators responsible for collecting data or analyzing labo- ratory specimens have been knowledgeable regarding the assignment of ac- tive or placebo product. A file has been maintained at each of the sites under the responsibility of the primary investigator which will provide product iden- tification for each subject. Upon entry into the study, subjects have been as- signed a unique study identification number."
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote (from email): "Neither the patient, providers, nor investigators respon- sible for collecting data or analyzing laboratory specimens have been knowl- edgeable regarding the assignment of active or placebo product. "
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote (from email): "From the treated group (total 125) drop out was 6 sub- jects; 2 of them got flu with high temperature, 2 went form Serbia (new job), 2 stopped without reason. And from the placebo group (total 50) drop out was 4; 2 drop out without explanation, 1 underwent abdominal surgery, and 1 di- vorced"
Selective reporting (re- porting bias)	Unclear risk	Abstract only

Morgante 2010		
Methods	Randomised controlled trial	
	Duration of study: 3 months	
Participants	Country: Italy	
	Population: infertile men with with asthenospermia, N = 180	

Antioxidants for male subfertility (Review)

Trusted evidence. Informed decisions. Better health.

Morgante 2010 (Continued)	Moon ago: rango 25 an	d 40 voars	
	Mean age: range 25 and		
	Inclusion criteria: age between 28 and 45, sperm concentration < 20 x 10 ⁶ spermatozoa /mL, sperm pro- gressive motility < 30%, normal morphology < 30%, leucocyte < 1 x 10 ⁶ /mL, no infections		
	mL, sperm progressive fections, history of test	younger than 28 and over 45, sperm concentration > 20 x 10 ⁶ spermatozoa / motility > 30%, normal morphology > 30%, leucocyte > 1 x 10 ⁶ /mL, current in- ticular pathology: cryptorchidism, varicocele, surgical operations, radiotherapy of anabolic steroids, deficiency of hypothalamic-pituitary-gonadal axis, genital	
Interventions	L-arginine 1660 mg + ca	arnitine 150 mg + acetyl-carnitine 50 mg + ginseng 200 mg in one vial (n = 90)	
	versus		
	No treatment (n = 90)		
	Duration of treatment:	3 months	
Outcomes	Sperm parameters, se	kual satisfaction	
Notes	Article in Italian, translated by Roberto D'Amico.		
	Contacted author by email (giuseppe.morgante@unisi.it) to clarify study details, recruitment, randomi- sation, blinding, ethics approval, study population, withdrawals and to clarify progressive mortality. Last response was on 12.03.2014		
	Quote: "Total motility and progressive motility are similar terms for the same definition: all the sperma- tozoa that have progressive or not linear motility"		
	2018: motility data included as progressive motility		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned.	
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned	
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.	

Antioxidants for male subfertility (Review) Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Methods	Randomised controlled trial			
	Duration of study: 3 months			
Participants	Country: Iran			
	Population: infertile men with OAT who have been trying for pregnancy for > 1 year unprotected inter- course, N = 60 (analysed N = 47)			
	Mean age: 34 years			
	Inclusion criteria: seminal WBC < 1,000,000 /mL, absence of anatomical abnormalities of the genital tract, absence of infectious genital diseases or systemic diseases, absence of treatment with other drugs and dietary supplement during the 3 months before enrolling in the study, at last absence of smoking, drug, and alcohol use or occupational chemical exposure			
	Exclusion criteria: seminal WBC > 1,000,000 /mL, presence of anatomical abnormalities of the genital tract, presence of infectious genital diseases or systemic diseases, presence of treatment with other drugs and dietary supplement during the 3 months before enrolling in the study, currently smoking, using drug, or alcohol use or occupational chemical exposure			
Interventions	Coenzyme Q10 (CoQ10) 200 mg (n = 23)		
	versus			
	Placebo (n = 24)			
	Duration of treatment: 3 months			
Outcomes	Sperm motility and concentration, progression, total antioxidant capacity (TAC)			
Notes	Power calculation performed			
	Contacted regarding methods, randomisation, allocation concealment, recruitment, blinding and dropouts.			
	Response from Azadeh	Nadjarzadeh (azmm1383@yahoo.com)in October 2013		
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote (from email):"Participants were randomised using block randomisation. It was done by Dr Motevallian who is epidemiologist and it has done before study"		
Allocation concealment (selection bias)	Low risk	Quote (from email): "Before the trial a colleague, that had not role in the study, coded the bottles of Coenzyme Q10 and placebo (that were similar) in A and B and give them to one of the staff of Avicenna Research centre. Only that person has a list of randomisation and give A or B bottles to the participants according to their code"		
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote (from email): "Both participants and investigators blinded"		
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote (from email): "The appearance and the bottles of capsules were similar and none of outcome assessors knew group, because everyone had a code af- ter being allocated group A and B"		

Antioxidants for male subfertility (Review)

Nadjarzadeh 2011 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "13 dropped out for personal reasons" - 22%: 7 from treatment group and 6 from the control group
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Nozha 2001

Methods	Randomised comparative study		
	Duration of study: uncl	ear	
Participants	Country: Tunisia		
	Population: infertile males with OAT, N = unclear		
	Mean age: unclear		
	Inclusion criteria: male	s with OAT.	
	Exclusion criteria: uncl	ear	
Interventions	Vitamin E 400 mg + Selenium 200 μg (n = 12)		
	versus		
	Vitamin B_2 , B_6 and B_{12}	(n = 8)	
	Duration of treatment: 3 months		
Outcomes	Seminal parameters		
Notes	Abstract only		
	Attempted to contact authors regarding methods of randomisation and data. No reply as yet (2014).		
	No extractable data fro	om the abstract.	
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "In a prospective randomised comparative study"	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	

Antioxidants for male subfertility (Review)

Nozha 2001 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Omu 1998

Methods	Randomised controlled open trial		
	Duration of study: follo	w-up 12 months	
Participants	Country: Kuwait		
	Population: men with asthenozoospermia attending infertility and andrology clinic, N = 100 $$		
	Mean age: treatment group 37.8 \pm 7.9 years, control group 38.1 \pm 8.2 years		
	Inclusion criteria: men with asthenozoospermia, spermatozoal motility impaired with >4 0% non- motile sperm, have been trying to conceive for at least one year plus no obvious female factor		
	Exclusion criteria: none	e mentioned	
Interventions	Zinc 500 mg (n = 49)		
	versus		
	No treatment (n = 48)		
	Duration of treatment: 3 months		
Outcomes	Sperm parameters		
Notes	Attempted to contact authors regarding methods randomisation and concealment questioned. No reply as yet (2014).		
	Data on sperm count/motility not used; only percentage of increase/decrease given		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	

Antioxidants for male subfertility (Review)

Omu 1998 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Unclear risk	100 men randomised, 97 analysed, dropouts are not accounted for
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Omu 2008

Methods	Randomised controlled open trial		
	Duration of study: uncl	ear	
Participants	Country: Kuwait		
	Population: men with a	sthenozoospermia attending infertility clinic in Kuwait, N = 45	
	Mean age: 35 ± 1 years		
	Inclusion criteria: asthe with 40% or more imm	enozoospermia with normal sperm concentration (20 to 250 million/mL) but otile sperm	
	Exclusion criteria: asthe	enozoospermia but sperm concentration of < 20 million/mL	
Interventions	Zinc 400 mg (n = 11)		
	versus		
	Zinc 400 mg + Vitamin E 20 mg (n = 12)		
	versus		
	Zinc 400 mg + Vitamin E 20 mg + Vitamin C 10 mg (n = 14)		
	versus		
	No treatment (n = 8)		
	Duration of intervention: 3 months		
Outcomes	Sperm parameters		
Notes	Attempted to contact author regarding methods of randomisation, it states that quote: "8 men served as non- therapy control".		
	No reply as yet (2014).		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Omu 2008 (Continued) Blinding of participants High risk Control is another antioxidant or no treatment and personnel (performance bias) All outcomes Unclear risk Blinding of outcome as-Not mentioned sessment (detection bias) All outcomes All outcomes are reported. No dropouts Incomplete outcome data Low risk (attrition bias) All outcomes Selective reporting (re-Unclear risk Outcomes reported. No protocol available. porting bias)

Methods	Randomised double-blind cross-over trial		
	Duration of study: unclear, from 2005 to 2006		
Participants	Country: Iran		
	Population: infertile men, N = 30		
	Mean age: 29.5 (SD 5.48) years		
	Inclusion criteria: at least two abnormal spermograms based o during four weeks, normal range of gonadotropins, testostero		
	Exclusion criteria: variocoele, testicular atrophy, ejaculatory d mia, endocrinological disorders, ICSI candidacy or other cause		
Interventions	L-carnitine 2 g (n = 15)		
	versus		
	Placebo (n = 15)		
	Duration of treatment: 8 weeks, washout period of 8 weeks, ch weeks	nanged intervention and use for 8 more	
Outcomes	Sperm parameters		
Notes	Abstract in English, full text in Arabic. Contacted the author and he is filling out the data extraction sheets. Author responded but data queries remain contacted again re SDs and pregnancies in first phase of cross-over. Author responded saying that the data were given in SDs and there were 3 pregnancies in the first phase		
	2018: added data on progessive motility for first phase (2 months).		
Risk of bias			
Bias	Authors' judgement Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk Not mentioned		

Antioxidants for male subfertility (Review)

Peivandi 2010 (Continued)

Allocation concealment (selection bias)	Low risk	Quote: "sealed opaque envelopes"
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "outcome assessor was blinded"
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Quote: "loss to follow up was not accounted for"
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Pourmand	2014
----------	------

Methods	Randomised trial with add-on intervention		
	Duration of study: unclear		
Participants	Country: Iran		
	Population: men with male factor infertility and varicocele, N = 100		
	Mean age: treatment group 26.73 \pm 6.25 years, control group 27.52 \pm 5.23 years		
	Inclusion criteria: left-sided clinical or subclinical varicocele plus one of these factors: primary infertili- ty, secondary infertility, or impaired semen analysis.		
	Exclusion criteria: right- sided isolated varicocele, bilateral varicocele, and each side varicocele that did not decompress in lying position, or any medical or surgical history of male factor infertility		
	- Medical: opium or drug abuse, any prior medical treatment for infertility, recurrent urinary tract infec- tion, sexually transmitted disease, prostatitis, mumps in childhood, epididymo-orchitis, and so forth		
	- Surgical: cryptorchidism, orchiopexy, prior varicocelectomy repair, inguinal hernia repair, other in- guinal surgeries, and so forth		
Interventions	L-carnitine 750 mg (n = 50)		
	versus		
	No treatment (n = 50)		
	Duration of treatment: 6 months, after varicocelectomy		
Outcomes	Sperm parameters, DNA damage (TUNEL, PDA test), adverse effects		
Notes	Email sent to last author Noori (m_noori560@yahoo.com) on 06.03.2018: Asked about the SD's for sperm motility (A+B%), concentration and DNA fragmentation. Asked about allocation concealment and blinding of outcome assessment. Reminder email sent to Noori and Pourmand (n.pourmand@yahoo.com) on 22.03.2018.		

Antioxidants for male subfertility (Review)

Pourmand 2014 (Continued)

Only data on adverse events used. No reply to date (19.04.2018).

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "Block randomization was performed for controlling less probable vari ation in varicocelectomy technique or surgeon within the time of study"
		Not specified how block randomisation was performed.
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control group is no treatment after varicocelectomy
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	See appendix, none lost to follow-up
Selective reporting (re- porting bias)	Unclear risk	All the outcomes from the aim of the study and methods were reported. No protocol available.

Poveda 2013			
Methods	Randomised double-blind placebo-controlled trial		
	Duration of study: from January 2012 to March 2013		
Participants	Country: Panama		
	Population: infertile healthy men, N = 60 (quote: "60 patients completed the study", how may were ran- domised?)		
	Mean age: unclear		
	Inclusion criteria: infertile healthy men without previous treatments, non smokers, no alcoholics or drug users		
	Exclusion criteria: varicocele and leukocyte-spermia were excluded		
Interventions	L-carnitine 1 g/12 hours (n = ?)		
	versus		
	Spermotrend (Catalysis) 1 x /8 hours (n = ?)		
	versus		
	Maca extract 1 g/12 hours (n = ?)		
	versus		

Antioxidants for male subfertility (Review)

Poveda 2013 (Continued)	Placebo 1x/12 hours (n	= ?)
	Duration of treatment:	13 weeks
Outcomes	Sperm motility, sperm	concentration, normal sperm morphology
Notes	Conference abstract only.	
	Letter written and posted regarding methods and data 12.02.2014	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Pryor 1978

Duration of study: unclear
Country: UK (two centres)
Population: men with severe oligozoospermia, N = 64
Mean age: unclear
Inclusion criteria: sperm count of less than 10 million per ejaculate on each of 2 occasions immediately preceding the trial, no uncorrected varicoceles or testicular maldescent, testicular biopsy already per- formed (Johnsen 1970), no drugs taken in past 3 months which were known to affect spermatogenesis, no history of biliary disease owing to a suggestion that arginine might interfere with the metabolism of bile salts, the wives of all these men had been fully investigated with regard to fertility
Exclusion criteria: men with varicocoele
Arginine 4 g (n = 35)

Antioxidants for male subfertility (Review)

Pryor 1978 (Continued)		
	versus	
	Placebo (n = 29)	
	Duration of treatment:	12 weeks, than cross-over without intervening wash-out period
Outcomes	Total sperm motility, h	ormone levels
Notes	No data available for sperm parameters. Unable to contact author	
Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	10 withdrew reasons were given but unsure from which group, the paper stat- ed that they used ITT but data not presented.
		The study did not report the outcomes for the different phases of the trial (i.e. not separated into phase 1 phase 2). Pregnancy data are separated into phase one data but probably biochemical and will be used in biochemical pregnancy table.
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. Pregnancy not stated in the methods section as an out- come of interest but reported in the results. No protocol available.

Raigani 2014

Methods	Randomised double-blind placebo-controlled trial	
	Duration of study: unclear	
Participants	Country: Iran	
	Population: men from infertile couples with proved male factor infertility, N = 83	
	Mean age: unclear	
	Inclusion criteria: infertile men (OAT) with sperm concentrations of < 20 x 10 ⁶ mL ⁻¹ , sperm motility < 50% (grades a, b, c) and sperm normal morphology < 30%	
	Exclusion criteria: unclear	
Interventions	Folic acid 5 mg + Placebo (n = 20)	

Antioxidants for male subfertility (Review)

Raigani 2014 (Continued)				
	versus	versus		
	Folic acid 5 mg + Zinc s	Folic acid 5 mg + Zinc sulphate 220 mg (n = 21)		
	versus			
	Zinc sulphate 220 mg +	Zinc sulphate 220 mg + Placebo (n = 24)		
	versus			
	Placebo + Placebo (n = 18)			
	Duration of treatment:	16 weeks		
Outcomes	tion, sperm chromatin	motility (grade A+B+C), morphology, sperm viability, sperm mitochondrial func- status (DNA damage measured by staining methods), semen and blood fo- ioxidant capacity (TAC) and malondialdehyde (MDA) concentration		
Notes	Trial registration: IRCT138706091079N2			
	Email sent to last author Sadeghi (Sadeghi@avicenna.ac.ir) on 06.03.2018 to ask about the mean age, exclusion criteria, if there are means+SD instead of medians of the sperm concentration and sperm motility, randomisation process, dropouts/lost to follow-ups			
	Reminder email sent to Sadeghi on 22.03.2018. No reply to date (19.04.2018).			
	Data on DNA fragmentation used (means+SD), however motility/concentration in medians (IQ range) so added in data outcome 'not suitable for meta-analysis'			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "randomly allocated into four treatment groups with different supple- mentations."		
Allocation concealment (selection bias)	Unclear risk	Not mentioned		

Blinding of participants	Low risk	Quote: "Double blinded". Placebo used.
and personnel (perfor-		
mance bias)		
All outcomes		

Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Semen analysis and sperm function assays were assessed individually and blindly by two laboratory experts"
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Low risk	Reported all the outcomes from the methods and protocol; trial registration (IRCT138706091079N2)

Rolf 1999

Methods

Randomised double-blind placebo-controlled trial

Antioxidants for male subfertility (Review)

Rolf 1999 (Continued)	Duration of study: 8 we	eeks	
Participants	Country: Germany Population: men with infertility for over one year, N = 33		
	Mean age: treatment g	roup 36.1 \pm 5.0 years, control group 35.2 \pm 4.8 years	
	Inclusion criteria: asthenozoospermia (< 50% motile) diagnosed after 2 examinations, normal or re- duced sperm concentration (> 20 x 10 ⁶ per ejaculate) and without infection of access glands		
	Exclusion criteria: uncl	ear	
Interventions	Vitamin C 1000 mg + Vi	tamin E 800 mg (n = 15)	
	versus		
	Placebo (n = 16)		
	Duration of treatment:	8 weeks	
Outcomes	Primary: sperm param	eters	
	Secondary: pregnancy rate and adverse effects		
Notes	Power calculation performed.		
	Contacted author about the allocation concealment and pregnancy and adverse effects were out- comes in their protocol. Author Rolf replied saying that pregnancy and adverse effects were stated in the protocol		
	2018: progressive forward motility instead of total motility, data total sperm motility moved to out- come progressive sperm motility		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Quote: "Randomisation was performed with random numbers without further stratification by the pharmacist and the code was withheld from researchers and patients"	
Allocation concealment (selection bias)	Unclear risk	Pharmacist performing randomisation and code withheld from patients and researchers. However no mention of type of containers or envelopes	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Double - patients and researchers	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	
Incomplete outcome data (attrition bias) All outcomes	Low risk	All data reported, 2 patients withdrew from the trial: quote: "results from two patients were rejected from analysis." 1 from the treatment group due to poor compliance and 1 from the placebo group due to genital tract infection. No ITT	
Selective reporting (re- porting bias)	Unclear risk	All semen outcomes reported and author states (e-mail 22.09.09) that preg- nancy and adverse effects were set a priori in the protocol. No protocol avail- able.	

Antioxidants for male subfertility (Review)

Safarinejad 2009

Methods	Randomised double-blind placebo-controlled trial Duration of study: 56 weeks		
Participants	Country: Iran		
	Population: men with idiopathic oligoasthenoteratospermia, asthenospermia or teratospermia of 2 years duration, N = 468 (548 recruited)		
	Mean age: 31 (25 to 48)	years	
		m count > 5 x 10 ⁶ /mL, over 2 years of failed conception, no female fertility prob- sible cause for male infertility	
	Exclusion criteria: abnormal testes, history of cancer or chemotherapy, testosterone or antiandrogen use, use of selenium or N-acetylcystine supplements, abnormal hormone levels, genital disease, geni- tal inflammation or variocoele, history of genital surgery, major surgery, central nervous system injury, a known sperm defect or retrograde ejaculation. Y chromosome abnormalities, sexually transmitted disease, genitourinary infection, leukocytospermia, smoking, any environmental exposures to repro- ductive toxins. Medical, neurological or psychological problems. A history of drug or alcohol abuse, he- patobiliary disease or significant renal insufficiency. Any endocrine abnormality, a b BMI of 30 kg/m ² or over, participation in another investigational study and a likelihood of being unavailable for follow-up		
Interventions	Selenium 200 μg (n = 116)		
	versus		
	N-acetylcysteine (NAC) 600 mg (n = 118)		
	versus		
	Selenium 200 μg + N-acetylcysteine (NAC) 600 mg (n = 116)		
	versus		
	Placebo (n = 118)		
	Duration of treatment: 26 weeks or 6.5 weeks		
Outcomes	Primary outcome: sperm parameters		
	Secondary outcomes: spontaneously reported adverse events		
Notes	Power calculation performed.		
	Attempted to contact authors regarding side effect data that had not yet been added to the review of to the query of multiple comparisons. Also to ask whether data is in SD (as reported in the text) or SI as requested by statistician 24.09.2010		
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Quote: "randomisation table generated by the method of random permuted blocks. Patient randomisation numbers were allocated to each site in ascend- ing sequence in blocks."	
Allocation concealment (selection bias)	Low risk	Quote: "Assignment to treatment groups was performed using a sealed enve- lope technique."	

Antioxidants for male subfertility (Review)

Safarinejad 2009 (Continued)

Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Eligible patients were randomly assigned to double blind" Quote: "Placebo pills were coated with titanium oxide to ensure an identical appearance and smell."
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Analysed: n = 105 in selenium group (loss 11), n = 106 in placebo group (loss 12), n = 105 in N-acetylcysteine group (loss 13) and n = 104 in selenium + N-acetylcysteine group (loss 12)
		All withdrawals were accounted for in each treatment group. Withdrawal was mainly due to withdrawal of consent followed by lost to follow-up and lastly for reasons of missing data. No ITT
Selective reporting (re- porting bias)	Unclear risk	The published report includes all expected outcomes. No protocol available.

Safarinejad 2009a

Methods	Randomised double-blind controlled trial
	Duration of study: from February 2005 until October 2006, follow-up 14 months
Participants	Country: Iran
	Population: infertile men with idiopathic oligoasthenoteratospermia, N = 212 (recruited 268)
	Mean age: treatment group 28 \pm 9 years, placebo group 28 \pm 10 years
	Inclusion criteria: minimum 2 years unprotected intercourse with 2 years unwilling childlessness. male infertility diagnosed if 1 or more standard semen parameters were below cutoff levels accepted by WHO. A fertile female partner. No known medical condition that could account for infertility, testicu- lar volume 12 mL or greater. No medical therapy for at least 12 weeks before the study begins. Only pa- tients seeking medical attention for infertility were included
	Exclusion criteria: azoospermia or severe oligospermia (sperm count less than 5 million/mL. An histo- ry of epypidymo-orchitis, prostatitis, genital trauma, testicular torsion, inguinal or genital surgery. Any genital or central nervous system disease, endocrinopathy, cytotoxic drugs, immunosuppressants, an- ticonvulsives, androgens, antiandrogens, a recent history of Sexually transmitted disease. Psycholog- ical or physiological abnormalities that would impair sexual functioning or ability to produce sperm samples. Drug, alcohol or substance abuse. Liver disease, renal insufficiency or chromosome abnor- malities. occupational and environmental exposures to reproductive toxins. A BMI of 30 kg/m ² or over, participation in another investigational study and a likelihood of being unavailable for follow-up
Interventions	Coenzyme Q10 (CoQ10) 300 mg (n = 106)
	versus
	Placebo (n = 106)
	Duration of treatment: 26 weeks or 6.5 months
Outcomes	Primary outcomes: sperm parameters and testicular volume
	Secondary outcomes: adverse effects and hormone levels

Antioxidants for male subfertility (Review)

Safarinejad 2009a (Continued)

Notes

Power calculation performed.

Attempted to contact authors to ask whether data is in SD (as reported in the text) or SE, as requested by statistician 24.09.2010

Risk of bias		
Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Each eligible patient received a randomisation number, which was de- termined by a computer generated schedule. Therafter a randomisation table was generated by the method of random permuted blocks. Individuals who were geographically and operationally independent of the study investigator performed the study randomisation"
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "The clinician prescriber and the patients were blinded to the treat- ment condition. To maintain and guarantee blinding CoQ10 and placebo were identical in appearance."
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	Quote: "Participant data collected during this trial were kept confidential and locked in a secure office area. Randomisation codes were opened only after all patients had completed the whole study protocol."
Incomplete outcome data (attrition bias) All outcomes	Low risk	All patients who dropped out of the trial were accounted for - 8 from treatment group and 10 from placebo group for reasons such as withdrawal of consent, missing data and loss to follow-up.
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Safarinejad 2012

Methods	Randomised controlled trial
	Duration of study: from June 2010 to January 2011
Participants	Country: Iran
	Population: infertile men with primary infertility for at least 2 years, N = 228
	Mean age: treatment group 31 years, control group 32 years
	Inclusion criteria: history of primary infertility of more than 2 years, abnormal sperm count and motility according to WHO criteria, wife age between 20 and 40 years, documentation of fertile female partner, no known medical or surgical condition which can result in infertility
	Exclusion criteria: history of cancer chemotherapy or radiotherapy, history of genital disease such as cryptorchidism and varicocoele, history of genital surgery, BMI 30 kg/m ² or greater, any endocrinopa- thy, Y chromosome microdeletion or karyotype abnormalities, leukocytospermia (more than 106 WBC per mL), drug, alcohol or substance abuse, tobacco use, use of anticonvulsants, androgens or antian- drogens, significant liver (serum bilirubin greater than 2.0 mg/dL) or renal function (serum creatinine greater than 2.0 mg/dL) impairment, occupational and environmental exposure to reproductive toxins, severe oligozoospermia (less than 5 x 10 ⁶ /mL), azoospermia and testicular volume less than 12 mL

Antioxidants for male subfertility (Review)

Safarinejad 2012 (Continued)			
Interventions	Coenzyme Q10 (Ubiqui	inol) 200 mg (n = 114)	
	versus		
	Placebo (n = 114)		
	Duration of treatment:	26 weeks	
Outcomes	Sperm volume, sperm	density, sperm motility, sperm morphology, seminal plasma antioxidant status	
Notes	Power calculation perf	Power calculation performed	
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Low risk	Computer-generated random number table	
Allocation concealment (selection bias)	Low risk	The randomisation codes were centrally assigned by the co-ordination centre after checking the main eligibility criteria	
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	All investigators and study staff were blinded to treatment allocation during the whole study period, All of the participants were naive for treatment	
Blinding of outcome as- sessment (detection bias) All outcomes	Low risk	All investigators and study staff were blinded to treatment allocation during the whole study period, All of the participants were naive for treatment	
Incomplete outcome data	Low risk	228 were randomised of 264 eligible	
(attrition bias) All outcomes		Ubiquinol group – 13 excluded at end of treatment (3 protocol violations, 4 withdrawal of consent and 6 lost to follow-up). At 12 weeks follow-up a further 5 were lost to follow-up	
		Placebo group – 12 excluded at end of treatment (4 protocol violations, 4 with- drawal of consent, 6 lost to follow-up. At 12 weeks follow-up a further 7 were lost to follow-up	
Selective reporting (re- porting bias)	High risk	The authors do not pre-specify which outcome measures will be reported. The primary outcome is a % change from baseline at the end of the treatment peri- od	

Scott 1998

Methods	Randomised double-blind trial	
	Duration of study: 3 months and two weeks	
Participants	Country: UK	
	Population: men attending subfertility clinic with low sperm motility, N = 64 (recruited N = 69)	
	Mean age: 33.3 ± 0.64 years	
	Inclusion criteria: low sperm motility	

Antioxidants for male subfertility (Review)

Scott 1998 (Continued)	Exclusion criteria: not mentioned
Interventions	Selenium 100 μg (n = 16)
	versus
	Selenium 100 μg + Vitamin A 1 mg + Vitamin C 10 mg + Vitamin E 15 mg (n = 30)
	versus
	Placebo (n = 18)
	Duration of treatment: 3 months
Outcomes	Primary outcome: sperm parameters
	Secondary outcome: pregnancy rates
Notes	Uneven numbers, multivitamin numbers are double the other groups
	Asked author if they have separate numbers for pregnancy data. Currently have 5 pregnancies in the 2 treatment groups and none in placebo
	Furthermore; who was blinded, was the placebo identical when group 2 contained so many different vi- tamins. Was there any allocation concealment?
	Author has retired and is not able to be contacted. Data not added to table 'data for undefined or bio- chemical pregnancy'
Risk of bias	

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "As the patients entered the trial they were randomly allocated to one of three treatments, which had in turn been randomised within each block of four numbers and 'blinded' using a numeric code."
		Unclear as to why the uneven nature of the numbers in the groups i.e. 30 in multivitamin group and 16 in selenium, 18 in placebo
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind". Placebo used.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Numbers of withdrawals and reasons (non compliance) were reported
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Methods	Randomised double-blind placebo-controlled trial		
	Duration of study: from March 2015 to November 2015		
Participants	Country: Iran		
	Population: Idiopathic subfertile men, N = 114		
	Mean age:		
	Inclusion criteria: Idiopathic subfertile male with sperm rates 5 - 20 million cells/mL, and according to failure of female to conceive after one year regular and unprotected intercourse		
	Exclusion criteria: chromatically fertility disorder (Y chromosome deletions), use of zinc three months before recruitment		
Interventions	Zinc sulphate 10 mL solution of 0.5% (n = 61)		
	versus		
	Placebo 10 ml (n = 53)		
	Duration of treatment: 3 months		
Outcomes	Sperm parameters, side-effects, serum and semen plasma levels of zinc		
Notes	Trial registration: IR.IUMS.REC.1394.26155		
	Email sent to second author Norouzi (sr.norouzi@yahoo.com) on 06.03.2018 to ask if they can provide mean+SD instead of median, and if the motility is total motility or progressive motility.		
	Reply on 11.03.2018: "yes we use SD for motility and total concentration, for both of them instead of a median. Motility means group A+ B (progressive motility)"		
	New email on 12.03.2018 to ask if they can then provide mean + SD. Reply on 04.04.18 answering "In this study we used the SPSS software (SPSS, Inc., Chicago, IL, USA, version 20) for statistical analyses. After normality testing confirmed by Shapiro-wilk test, quantitative data were reported as mean ± SD.		
	Unfortunately there are some spelling and statistical errors in the final version of article. In the review process, some changes have been made in the manuscript and subtitle of the tables have been deleted So all outcome are Mean ± SD."		

Risk	of	bi	ias
------	----	----	-----

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "In the current study males were divided into groups A and B by block randomized sampling."
		Quote: "sub fertile males were assigned according to a simple computer schedule into two groups to receive zinc sulfate or placebo."
Allocation concealment (selection bias)	Low risk	Quote: "Solutions were coded from 1 to 120 according to the randomization list by hospital pharmacy. Each code was given to one participant to receive one container of solution that according to their group called participates took zinc sulfate (0.5) or placebo."
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double-blind" Quote: "Containers of zinc solution and placebo were similar, and all of them had zinc syrup label. The secretary of infertility unit did not know about the

Antioxidants for male subfertility (Review)

Sharifzadeh 2016 (Continued)

box content and patients by showing their groups label could receive the medicine."

Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "seven subjects in the zinc group withdrew because of adverse gas- trointestinal side effects, and three subjects in the zinc group and four subjects in the placebo group withdrew because of lack of motivation" Dropouts accounted for and reasons mentioned. No ITT
Selective reporting (re- porting bias)	Low risk	Reported all the outcomes from the methods section and according to the protocol: trial registration (IR.IUMS.REC.1394.26155)

Sigman 2006 Methods Randomised double-blind trial Duration of study: 24 weeks, follow-up unclear Participants Country: USA Population: infertile men aged 18 to 65 years, N = 26 Mean age: 36.2 ± 5.8 years, 35.3 ± 7.5 years Inclusion criteria: males 18 to 65 years with infertility of at least six months duration, sperm concentration of at least 5 million sperm/mL, motility of 10% to 50%, absent pyospermia and normal FSH and testosterone levels Exclusion criteria: history of post-pubertal mumps, cryptorchism, vasal or epididymal surgery, history of medication or chemotherapy. recent alcohol, chronic marijuana. Use of testosterone or steroids. Exposure to environmental toxins. Recent history of fever or diabetes, liver failure, renal failure, endocrine disorder, untreated variocoele, urogenital infection, or prior vasectomy reversal Interventions L-carnitine 2000 mg + L-acetylcarnitine 1000 mg (n = 12) versus Placebo (n = 9)Duration of treatment: 4 months Outcomes Primary outcome: sperm parameters Secondary outcomes: pregnancy rate Notes Author replied 21.09.2009 saying: Quote "The published 2006 trial is the published version of the 2003 abstract (Pryor 2003)" and giving details of randomisation and concealment. Author says he will try and find out about the 5 patients that dropped out. Why did - "5 additional patients entered the study but dropped out before completion" - when did these patients enter and were they randomised? Quote: "One of these 5 dropped out because of pregnancy three months after starting carnitine" Pryor paper excluded as it is the same study as Sigman, author also gave details of randomisation and allocation concealment, author will try to find info on 5 patients who dropped out.

Antioxidants for male subfertility (Review)

Copyright ${\ensuremath{{\odot}}}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Sigman 2006 (Continued)

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Low risk	Quote: "Patients were randomised to receive carnitine or placebo"
		Quote: "The randomisation was done by a third party a company that over- saw the trial. We sent the patient number of new recruited patients in to them, they assigned them a study number that was associated with a collection of medication/placebo."
		The author replied to randomisation query 23.09.09 saying that the protocol stated that - "treatments will be assigned randomly to a subject number. The numbers will range from 1-84 for study centre 1 and 85-168 for study centre 2. Randomisation of treatments for each centre will be done independently. One half of subject numbers will be placebo, the other half, active ingredient."
Allocation concealment (selection bias)	Low risk	Quote: "The investigators and study sites had the study medication/placebo packets identified by number only. They were blinded to what was in the med- ication/placebo packets. We were sent the code at the conclusion of the trial." The author replied to a query on allocation concealment on 23.09.09 saying that the protocol stated that - " Integrated Data Solutions, Inc. will keep the randomisation code in a separate sealed envelope for each site until the end of the study. The randomisation lists will be provided to the packaging company for packaging of the packets into patient medication boxes."
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Both the investigators and the patient were blinded to the treatment arm assignment."
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	Quote: "5 additional patients entered the study but dropped out before com- pletion. One of these dropped out because of pregnancy three months after starting carnitine." Author replied to query re drop outs, quote: "I have data on one drop out at my site - the drop out occurred after randomisation to car- nitine. The drop out occurred before the first follow-up study visit. The other four drop outs were from the other study site - I am trying to get that data for you" (23.09.09)
Selective reporting (re- porting bias)	Unclear risk	All outcomes of interest were reported. No protocol available.

Sivkov 2011

Methods	Randomised controlled open-label trial	
	Duration of study: unclear, from 2008 to 2009	
Participants	Country: Russia	
	Population: men with chronic prostatitis and abnormal fertility for more than 6 months, N = 30 $$	
	Mean age: unclear, range 18 to 40 years	

Antioxidants for male subfertility (Review)

Sivkov 2011 (Continued)

Interventions	Selznic (selenium + zinc + vitamins) (n = 15)	
	versus	
	Placebo (n = 15)	
	Duration of treatment: 3 months	
Outcomes	Sperm motility, sperm concentration	
Notes	Article in Russian, translated by Vasya Vlassov.	
	No SD available. Need to contact authors regarding methods, standard deviations, type of control and any pregnancy data. Author Vasya 17.02.14 saying that the control was placebo and SD's not given. Emailed the institution 18.02.2014 regarding methods and data, no reply as of 07.03.2013.	

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	No allocation concealment
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Quote: "Open labelled". However placebo used, might be a translation prob- lem
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Sofikitis 2016	
Methods	Randomised controlled trial
	Duration of study: unclear
Participants	Country: Greece
	Population: oligoasthenospermic infertile (OAI) men, N = 39
	Mean age: unclear
	Inclusion criteria: unclear
	Exclusion criteria: unclear

Antioxidants for male subfertility (Review)

Sofikitis 2016 (Continued)	
Interventions	Avanafil 150 mg (n = 13)
	versus
	L-carnitine 1.5 g (n = 14)
	versus
	No treatment (n = 12)
	Duration of treatment: 12 weeks
Outcomes	Sperm parameters, length of sperm midpiece (LMP), outcome of hypoosmotic swelling test (%HPST), seminal plasma citrate concentration
Notes	Abstract only.
	Email sent to Dimitriadis (helabio@yahoo.gr) on 21.02.2018 to ask for data/full text, reply the same day from the author: Quote: "This work has not been published as a full paper".
	New email sent on 26.02.2018 to ask if we could receive data (mean+SD) for the L-carnitine and placebo group.
	Reminder email sent on 22.03.2018. No reply received to date (19.04.2018).
Risk of bias	

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	High risk	Control is no treatment group
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Unclear, only abstract available

Suleiman 1996

Methods	Randomised double-blind controlled trial	
	Duration of study: 6 months, follow-up unclear	
Participants	Country: Saudi Arabia	

Antioxidants for male subfertility (Review)

Suleiman 1996 (Continued)			
	Population: asthenozo	spermic men attending a fertility centre, N = 110	
	Mean age: treatment g	roup 34.8 (27 to 52) years, control group 33.2 (22 to 45) years	
	Inclusion criteria: asthenospermic (≥ 20 x 10 ⁶ /mL). sperm motility ≤ 40%, normal sperm count, leuco- cyte concentration < 5%, normal fructose concentration, normal female Exclusion criteria: unclear		
Interventions	Vitamin E 300 mg (n = 5	52)	
	versus		
	Placebo (n = 35)		
	Duration of treatment: 6 months		
Outcomes	Primary outcome: motility and MDA concentration		
	Secondary outcome: li	ve birth, pregnancy, miscarriage	
Notes			
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "Either 100mg vitamin E or a placebo was prescribed in a random double blind fashion". Method of randomisation not stated	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants	High risk	Quote:"Double blinded". Placebo used.	
and personnel (perfor- mance bias) All outcomes		Quote: "If the semen sample improved and the patient's spouse became preg- nant, the treatment was stopped; otherwise it was continued for 6 months.	

The placebo was given for 6 months" This could suggest that the investigators or clinicians had knowledge of whether the patients were in the placebo or antioxidant group therefore this

		whether the patients were in the placebo or antioxidant group, therefore this trial was rated as high risk.
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	High risk	The exact dropout figures for each group is unclear. Quote: "A total of 110 pa- tients were enrolled in the study, but some of the patients dropped out and some left the region and failed to continue. When the experiment was termi- nated, 52 patients were found to have taken vitamin E and 35 patients to have taken the placebo." Assuming the groups were equal initially then the placebo group lost 20 men and the intervention lost 3. A drop out rate of >20%
Selective reporting (re- porting bias)	Unclear risk	All outcomes stated in the methods were reported in results. No protocol available.

Antioxidants for male subfertility (Review) Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Methods	Randomised double-bl	lind controlled trial		
Methods				
		/ears, follow-up 13 weeks		
Participants	Country: Australia			
	Population: infertile men, couple undergoing IVF, N = 60 (recruited N = 82)			
	Mean age: treatment group 37.1 \pm 5.1 years, placebo group 35.5 \pm 4.3 years			
	Inclusion criteria: men with sperm samples showing oxidative stress and a significant level of DNA frag- mentation (> 25% TUNEL positive)			
	Exclusion criteria: fema 39 years	ale partner with diminished ovarian reserve or if the female partner is aged over		
Interventions	Menevit (folate 0.5 mg mg + selenium 26 μg +	+ garlic 1000 mg + lycopene 6 mg + vitamin E 400 IU + vitamin C 100 mg + zinc 2 palm oil) (n = 40)		
	versus			
	Placebo (containing pa	alm oil) (n = 20)		
	Duraton of treatment: 3 months, prior to IVF cycle			
Outcomes	Primary outcome: emb	pryo quality		
	Secondary outcomes: pregnancy, multiple pregnancy, fertilisation rate, side effects			
Notes	Power calculation performed			
	Associate Professor Tremellen provided live birth data in December 2014 "Only one pregnancy in the Menevit arm after 13 weeks (late miscarriage 19 weeks of male infant). All other pregnan- including the twin pregnancies went on to live birth and all babies appear to be doing well fron records". There were three sets of twins in the combined antioxidants group and nil in the place group. Each twin pregnancy and live birth was counted as one event in the data analyses due to protocol specifications of the review			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Low risk	Quote:"The randomisation schedule was computer generated in blocks of six by Bayer Consumer Care Australia". Using a 2:1 ratio		
		Quote: "There were no significant differences between the active and the placebo group in terms of important baseline prognostic characteristics"		
Allocation concealment (selection bias)	Low risk	Quote: "the appropriately numbered bottles of capsules delivered to the clin- ical site without any participant knowing the treatment sequence. Patients were allocated the next numerical treatment package (one to sixty as they be came eligible for enrolment"		
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double-blind". Placebo used.		
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned		

Antioxidants for male subfertility (Review)

Tremellen 2007 (Continued)

Incomplete outcome data (attrition bias) All outcomes	Low risk	All withdrawals were accounted for, 2 from the intervention group, 4 from placebo all due to the couples not going through to embryo transfer
Selective reporting (re- porting bias)	Unclear risk	All specified outcomes are reported. No protocol available.

Wang 2010

Methods	Randomised controlled trial			
	Duration of study: from August 2007 to August 2009			
Participants	Country: China			
	Population: infertile men with asthenozoospermia, N = 135			
	Mean age: unclear, ran	ge 23 to 26 years		
	Inclusion criteria: male asthenozoospermia patients, aged 23 to 26 years old, with a history of infertility for about 1 to 10 years, and with no contraception measures after marriage at least 12 months, has nor- mal sex life, the wife's fertility is normal., semen analysis for at least twice based on WHO criteria (For- ward mobile sperm (a + b level) < 50%, and fast forward movement sperm (a level) < 25%, sperm densi- ty > 20 x 10 ⁶ /mL), tests for peripheral blood chromosome and reproductive hormones (FSH, LH, PRL, T) were normal, the tests for semen ureaplasma mycoplasma and chlamydia trachomatis were negative, semen WBC < 1 x 10 ⁶ /mL Exclusion criteria:cryptorchidism, testicular dysplasia, varicoceles, reproductive tract infection			
Interventions				
	L-carnitine 2 g + Vitamin E (n = 68)			
	Vitamin F (n = 67)			
	Vitamin E (n = 67) Duration of treatment: 3 months			
Outcomes	Pregnancy rates, adverse effects, % forward motile sperm, sperm density, % sperm normal morpholo- gy			
Notes	Article in Chinese, translated by Liu Qi.			
	E-mailed Qin (translator) regarding pregnancy and adverse event data, then may need to write to the authors. No reply to date.			
	2018: added data on progressive sperm motility			
Risk of bias				
Bias	Authors' judgement	Support for judgement		
Random sequence genera- tion (selection bias)	Unclear risk	Quote: "A total of 135 patients with asthenozoospermia were randomly divided into Groups".		
		Not mentioned		
Allocation concealment (selection bias)	Unclear risk	Not mentioned		

Antioxidants for male subfertility (Review)

Wang 2010 (Continued)		
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Low risk	22 dropouts. Numbers from each group are given but no reasons are provided for the withdrawals. ITT not used in the trial analysis
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Methods	Randomised double-blind placebo-controlled trial		
	Duration of study: from July 1997 to August 1998		
Participants	Country: the Netherlands		
	Population: fertile and subfertile men, N = 103 (recruited subfertile N = 258)		
	Mean age: 34.3 ± 3.9 years		
	Inclusion criteria for subfertile group: failure of the woman to conceive after 1 year regular unprotected intercourse and sperm concentration of 5 to 20 million/mL		
	Exclusion criteria for subfertile group: chromosomal disorders, cryptorchidism, vasectomy, use of folic acid or zinc supplements in the previous 3 months, vitamin B deficiency		
Interventions	Folic acid 5 mg (n = 22)		
	versus		
	Zinc sulphate 66 mg (n = 23)		
	versus		
	Zinc sulphate 66 mg + Folic acid 5 mg (n = 24)		
	versus		
	Placebo (n = 25)		
	Duration of treatment: 26 weeks		
Outcomes	Sperm parameters		
Notes	Data in median and range. Use of fertile and subfertile men.		
	Attempted to contact authors regarding means and standard deviations. Letter returned to sender		
Risk of bias			
Bias	Authors' judgement Support for judgement		

Antioxidants for male subfertility (Review)

Ξ

Wong 2002 (Continued)		
Random sequence genera- tion (selection bias)	Low risk	Quote: "eligible fertile and subfertile men were randomly assigned according to a simple computer-generated randomisation schedule in four blocks to re- ceive folic acid and placebo, zinc sulphate and placebo, zinc sulphate and folic acid, or placebo and placebo, which resulted in eight subgroups." "At the end of the trial, the research fellow received the randomisation list that matched the codes from the hospital pharmacy."
Allocation concealment (selection bias)	Low risk	Quote: "capsules were coded by the hospital pharmacy according to the ran- domisation list."
Blinding of participants and personnel (perfor- mance bias) All outcomes	Low risk	Quote: "Double blind" Quote: "Neither the research fellow and the participants knew whether the participants received folic acid, zinc sulphate or placebo capsules" Quote: "Folic acid and placebo capsules were yellow and identical in appear- ance. Zinc sulphate and placebo capsules were white and identical in appear- ance"
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	9 men withdrew from the subfertile arm of the trial, 1 due to side effects (gas- trointestinal) and 8 due to lack of motivation. It is unclear which treatment groups these men were randomised to
Selective reporting (re- porting bias)	Unclear risk	Outcomes reported. No protocol available.

Zalata 1998			
Methods	Randomised pilot study		
	Duration of study: unclear		
Participants	Country: Belgium		
	Population: men attending andrology clinic, N = 22		
	Mean age: unclear		
	Inclusion criteria: unclear		
	Exclusion criteria: unclear		
Interventions	Acetyl-cysteine 600 mg (n = 5)		
	versus		
	Mixture of essential fatty acid (EFA) (DHA 1 g + y-linolenic acid + arachidonic acid 100 mg) + α-toco- pherol (vitamin E) + β-carotene (n = 12)		
	versus		
	Acetylcysteine + essential fatty acid (EFA) + antioxidants (n = 5)		
	Duration of treatment: 4 to 6 months		

Antioxidants for male subfertility (Review)

Zalata 1998 (Continued)

Outcomes	Sperm parameters, DNA damage (oh8dG)	
Notes	Abstract only.	

No extractable data. Attempted to contact authors re availability of data as means, if published?, methods of randomisation and allocation concealment

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned
Allocation concealment (selection bias)	Unclear risk	Not mentioned
Blinding of participants and personnel (perfor- mance bias) All outcomes	Unclear risk	Not mentioned
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned
Incomplete outcome data (attrition bias) All outcomes	Unclear risk	Not mentioned
Selective reporting (re- porting bias)	Unclear risk	Abstract only

Zavaczki 2003

Methods	Randomised, placebo-controlled trial		
	Duration of study: 3 months		
Participants	Country: Hungary		
	Population: subfertile men, N = 20 (recruited N = 26)		
	Mean age: treatment group 29.6 years, placebo group 28.3 years		
	Inclusion criteria: unsuccessful attempt at pregnancy for over one year. A healthy female partner ex- amined by a gynaecologist. Sperm volume < 2 mL and/or sperm concentration < 20 million/mL and/or morphology ratio < 30% and/or motility < 50%. No genital tract infection, no bacteria or fungi in urine or semen. Hormones are within physiological range. Intact renal function. No excessive magnesium in- take		
	Exclusion criteria: unclear		
Interventions	Magnesium 3000 mg (n = 10)		
	versus		
	Placebo (n = 10)		

Antioxidants for male subfertility (Review)

Zavaczki 2003 (Continued)

	Duration of treatment: 90 days		
Outcomes	Primary: sperm parameters Secondary: clinical pregnancy and side effects		
Notes	Attempted to contact a	authors regarding methods of randomisation and allocation concealment	
Risk of bias			
Bias	Authors' judgement	Support for judgement	
Random sequence genera- tion (selection bias)	Unclear risk	Not mentioned	
Allocation concealment (selection bias)	Unclear risk	Not mentioned	
Blinding of participants and personnel (perfor- mance bias)	Unclear risk	Quote: "The members of Group P received the same number of placebo tablets which closely resembled the Magnerot tablets."	
All outcomes		Not mentioned	
Blinding of outcome as- sessment (detection bias) All outcomes	Unclear risk	Not mentioned	
Incomplete outcome data (attrition bias) All outcomes	Low risk	20 were randomised and 14 were analysed. Quote: "To date 26 patients have participated in the study and 20 men (10 in both groups) have completed the program of treatment. Six patients (2 in group M and 4 in group P were ex- cluded from the program, including five cases for poor compliance, since they did not attend the control meeting at the end of treatment. One patient from Group M experienced severe diarrhoea and so his treatment was halted."	
Selective reporting (re- porting bias)	Unclear risk	All sperm data for outcomes in the trial were given, however clinical pregnancy only reported in the results section and not mentioned in methods. No protocol available.	

ART: assisted reproductive technique;**BMI:** body mass index;**FSH:** follicle-stimulating hormone; **ICSI:** intracytoplasmic sperm injection; **IgG:** immunogobulin G;**ITT:** intenttion-to-treat; mg: milligram; **IQR:** interquartile range; **IU:** international unit; **IUI:** intrauterine insemination; **IVF:** in vitro fertilisation; **MDA:** malondialdehyde; **NSAID:** non-steroidal anti-inflammatory; **OAT:**oligoasthenoteratozoospermia; **PRL:** prolactin;**RoB:** risk of bias; **ROS:** reactive oxygen species; **SD:** standard deviation; **SE:** standard error; **SEM:** standard error of the mean; **TUNEL:** Terminal deoxynucleotidyl transferase dUTP nick end labeling; **WBC:** white blood cell; **WHO:** World Health Organization

Characteristics of excluded studies [ordered by study ID]

Study	Reason for exclusion
Adel 2015	Ineligible based on intervention: main intervention is oral Vitamin E. However there was also an in vitro Berberine wash added to the collected sperm in 10 random participants from both groups (treatment group with oral Vitamin E or untreated group)
Alahmar 2017	Ineligible based on study design: "prospective randomised trial", however there was no control group, only comparison before and after treatment with antioxidants

Antioxidants for male subfertility (Review)

Study	Reason for exclusion
Alizadeh 2018	Ineligible based on intervention: Curcumin Nanomicelle is a herbal product
Alsalman 2018	Ineligible based on control: subfertile men with zinc treatment versus fertile men without treat- ment
Anarte 2012	Ineligible based on study population: normozoospermic men and donors
Anarte 2013	Ineligible based on study population: normozoospermic men and donors
Azizollahi 2013a	Ineligible based on outcome: seminal antioxidant levels and endocrine parameters. Furthermore, same study population/group as Azizollahi 2013 which was already included in the 2014 update
Cai 2012	Ineligible based on study population: not subfertile men
Calogero 2015	Ineligible based on population: idiopathic infertile men, not male factor
Capece 2017	Ineligible based on intervention: treatment with myo-inositol plus herbal extracts (Tribulus Ter- restris, Alga Ecklonia Bicyclis)
Chattopadhyay 2016	Ineligible based on study design: not a randomised controlled trial
Chen 2012	Ineligible based on intervention: includes fertility drugs like tamoxifen. Group A tamoxifen + vita- min E, Group B tamoxifen
Ciftci 2009	Ineligible based on population: includes men with idiopathic infertility and normal sperm parame- ters.
Comhaire 2005	Ineligible based on study design: used non-randomised controls recruited from another unrelated trial
Ebisch 2003	Ineligible based on study population: inappropriate population, polymorphisms
Elgindy 2008	Ineligible based on study population: antioxidant given to the women
Ghafarizadeh 2018	Ineligible based on intervention: in vitro selenium, no oral intake
Ghanem 2010	Ineligible based on intervention: clomiphene + vitamin E versus placebo, fertility enhancing drug
Gulati 2015	Ineligible based on study design: prospective cohort study, not a randomised controlled trial
Gulino 2016	Ineligible based on control: healthy fertile patients with intervention or control group of healthy patients undergoing IVF for a female factor
Hafeez 2011	Ineligible based on intervention: plant extracts, herbal formulation
lacono 2014	Ineligible based on intervention: fertility enhancing drug, protocol exclusion criteria. Group A Ta- mofixfen citrate with antioxidant, group B tamoifen alone and group C placebo.
Jawad 2013	Ineligible based on study design: not randomised quote: "men were classified into groups". Num- bers of men in the groups were uneven
Kanta Goswami 2017	Ineligible based on study design: prospective study, not randomised
Keskes-Ammar 2003	Ineligible based on population: includes infertile men who are normospermic, oligospermic or azoospermic. No subpopulation with extraction data

Antioxidants for male subfertility (Review)

Study	Reason for exclusion
Kim 2010	Ineligible based on study population: female participants not men
Korosi 2017	Ineligible based on intervention: oral myo-inositol supplement with treatment of the semen with myo-inositol incubation. The control group did not receive any form of treatment (no oral, no incubation). Not able to differentiate between effect due to oral supplement or incubation
Kumar 2011	Ineligible based on intervention: used a herbo-mineral supplement
Lenzi 1993	Ineligible based on intervention: route of supplementation was intramuscular not oral
Lu 2010	Ineligible based on study population: women
Martinez-Soto 2016	Ineligible based on study population: also included infertile men with normospermic parameters. No subgroup analysis
Merino 1997	Ineligible based on intervention: pentoxifylline no longer included, fertility enhancing drug
Micic 1988	Ineligible based on intervention: pentoxifylline no longer included, fertility enhancing drug
Micic 2001	Ineligible based on study design: not randomised, 105 men in the treatment group and 35 in con- trol. Abstract only
Movahedin 2014	Ineligible based on (repetitive) study population: same study as Pourmand 2014, second author Movahedin
Nadjarzadeh 2014	Ineligible based on (repetitive) study population: exact same population, including the baseline characteristics and period of inclusion, as Nadjarzadeh 2011. Different outcome parameters (semi-nal plasma levels of antioxidant enzymes and oxidative stress)
Nashivochnikova 2014	Ineligible based on study design: no RCT, full-text received from first author by email, after transla- tion of full-text (in Russian) to English found out there was no control group.
NCT01075334	Ineligible based on no data to publish: study was terminated, not being able to recruit enough par- ticipants (contact with author)
NCT01520584	Ineligible based on no data to publish: recruiting participants not successful (contact with author)
Nematollahi-Mahani 2014	Ineligible based on outcome: endocrine parameters and seminal antioxidant level. Furthermore, same study population as Azizollahi 2013 (included in update 2014)
Niederberger 2011	Ineligible based on study design: a commentary on Ghanem 2010
Nikolova 2007	Ineligible based on study design: not randomised, allocation method is by alternation. Translated from Bulgarian by Ivan Sola. "50 of them were randomly invited to participate depending on their order of attendance to the clinic"
Pawlowicz 2001	Ineligible based on study design: not randomised
Polak 2013	Ineligible based on study population: women
Raigani 2010	Ineligible based on outcome: measurement of MTHFR genotype. Furthermore, same study popula- tion as Raigani 2014 which is an included study
Safarinejad 2011	Ineligible based on intervention: pentoxifylline no longer included, fertility enhancing drug
Safarinejad 2011a	Ineligible based on intervention: saffron, herbal not a supplement

Antioxidants for male subfertility (Review)

Study	Reason for exclusion
Singh 2016	Ineligible based on study design: not randomised, based on conference abstract
Soylemez 2012	Ineligible based on study population: not subfertile men
Stanislavov 2009	Ineligible based on study design: not randomised, the study uses alternate allocation, odd and even numbers. Appears to be a report of the study Nikolova 2007
Stanislavov 2014	Ineligible based on intervention: L-arginine combined with herbal extract
Tang 2011	Ineligible based on intervention: tamoxifen, protocol exclusion criteria (tamoxifen + Q10 versus ta- moxifen). Quote: "trials that included men taking other fertility enhancing drugs"
Verzeletti 2012	Ineligible based on intervention: Spirulina platensis (4 g) and Resveratrol (500 mg) are plant ex- tracts not antioxidant supplements
Vicari 2001	Ineligible based on control: inappropriate control (anti-inflammatory) group. Treatment is not compared to placebo or another antioxidant
Vicari 2001a	Ineligible based on control: Inappropriate comparison. The same antioxidant is compared at differ- ent times - L-carnitine + acetyl-carnitine versus L-carnitine + acetyl-carnitine
Vicari 2002	Ineligible based on control: inappropriate control (anti-inflammatory). Treatment is not compared to placebo or another antioxidant
Wang 1983	Ineligible based on intervention: pentoxifylline no longer included, fertility enhancing drug
Wang 2010a	Ineligible based on intervention: fertility enhancing drug, protocol exclusion criteria. Group A L-car- nitine + tamoxifen, Group B L-carnitine, Group C tamoxifen. No placebo or no treatment control
Wu 2012	Ineligible based on study design: probably not randomised, no mention of randomisation in the ab- stract and uneven numbers between the groups, attempted to contact authors with no reply

IVF: in vitro fertilisation; MTHFR: Methylene tetrahydrofolate reductas; RCT: randomised controlled trial

Characteristics of studies awaiting assessment [ordered by study ID]

Goswami 2015

Methods	Prospective observational study
	Duration of study: from March 2013 to April 2015
Participants	Country: India
	Population: men with idiopathic male infertility with high reactive oxygen species (ROS), N = 175
	Inclusion criteria: unclear
	Exclusion criteria: unclear
Interventions	Diet rich in antioxidants and lifestyle changes (n = 80)
	versus
	Combined oral antioxidant (n = 95)
	versus

Antioxidants for male subfertility (Review)

Goswami 2015 (Continued)	Placebo (n = 75) Duration of treatment: unclear
Outcomes	Semen parameters, antioxidant concentrations (CoQ-10, L-carnitine, zinc), plasma total antioxi- dant capacity (TAC), total glutathione (GSH), sperm DNA fragmentation (TUNEL assay)
Notes	Conference abstract only. Not clear if it is a randomised clinical trial. Email sent to authors Goswami and Chakravarty (bncirm@gmail.com; syednkabir@yahoo.com) on 20.02.2018 and 06.03.2018. No reply to date (march 2018)

Characteristics of ongoing studies [ordered by study ID]

Trial name or title	Pre treatment with antioxidants versus no treatment for male partner in couples undergoing as- sisted reproductive technology (ART) for male infertility: a randomized controlled trial.
Methods	Interventional (clinical trial)
	Design
	Randomised: permuted block randomisation, variable method of allocation concealment: sequen tially numbered, sealed, opaque envelopes
	Blinding and masking: open-label
Participants	Inclusion criteria
	Couples undergoing ART due to male factor infertility with the following parameters
	Mild Oligozoospermia 1 to 15 million/mL
	AND/OR
	 Asthenozoospermia < 32% progressive motility
	AND/OR
	 Teratozoospermia < 4% normal morphology
	Exclusion criteria
	Severe oligozoospermia < 1 million/mL
	 Taken treatment in past 3 months for male infertility Female age > 37 years
	 Female partner - moderate or severe endometriosis
Interventions	Drug: tablet Vitamin C 500 mg, capsule Vitamin E 400 mg and tablet Zinc 140 mg
	Control: no treatment
	Duration: 3 months
Outcomes	Primary
	Clinical pregnancy rate

Antioxidants for male subfertility (Review)

CTRI/2013/02/003431 (Continued)

	Secondary
	 Ongoing pregnancy rate Miscarriage rate Fertilisation rate Live birth rate Changes in sperm parameters
Starting date	February 2013
Contact information	Dr Mohan S Kamath, MS,DNB, Fellow (Reproductive Medicine) Associate Professor
	Reproductive Medicine Unit
	Christian Medical College and Hospital
	Vellore 632004
	India
	Telephone: 04162283301
	Email: dockamz@gmail.com
	Affiliation: Christian Medical College and Hospital
Notes	Email sent 26.03.14. Dr Kamath replied 3.04.14 saying that they were still in the recruitment phase and were hoping to finish the trial in 2015.
	Email sent 07.02.18. Dr Kamath replied 08.02.18 saying that they are still recruiting and hope to complete the recruitment by Mid 2018 and results should be available by the end of 2018. They have recruited approximately 150-160 participants.

DRKS00011616	
Trial name or title	Randomized, placebo-controlled, double-blind, multi-centre pilot study to investigate the effect of AM019016 on male spermatogenesis in subjects with diagnosed unspecific (idiopathic) subfertility.
Methods	Interventional (clinical trial)
	Design
	Allocation: randomised controlled trial
	Masking: blinded (patient/participant, investigator/therapist)
	Control: placebo
	Assignment: parallel
	Study design purpose: treatment
Participants	Males with minimum age of 18 years
	Inclusion criteria
	 Men with existing unfulfilled child wish Unspecific (idiopathic) subfertility diagnosed by an already existing sperm analysis (may not be older than four weeks) and whilst observing a sexual abstinence period of at least 2 days to a maximum of 7 days; according to WHO reference values (2010, 5th Edition):

Antioxidants for male subfertility (Review)

DRKS00011616 (Continued)

- < 39 million total number of spermatozoa per ejaculate sample and/or
- < 32 % progressive motile spermatozoa
- Readiness to comply with at least 2 to a maximum of 7 Days of sexual abstinence before creating a Spermogram
- · Consent to take a dietary food for three months

Exclusion criteria

- Presumed or established organic causes of subfertility
- Azoospermia, aspermia, anejaculation
- Varicocele of the testis, assessment according to medical examination discretion
- Urogenital infections such as e.g. Prostatitis, epididymitis, Orchitis, sexually transmitted diseases
 - Known relevant endocrine disorders, e.g. Hypogonadotropic hypogonadism (assessment according to Medical discretion)
 - Operational interventions in the past:
 - Orchidopexy in cryptorchid or hodentorsion, varicocele surgery, hodentrauma, pelvic, inguinal or scrotal surgical procedures
 - Any surgical intervention during the last 6 months before the start of the study and planned interventions during the study
 - Systemic disorders that could influence the outcome of the study, assessment by medical judgment (e.g. diabetes, renal failure, hepatic impairment malignancy, obesity)
 - Pesticide exposure in the past and present
 - Ingestion of substances or other forms of therapy that could influence the study result according to medical discretion, e.g.
 - Medication, e.g. Anabolic agents, sulfasalazines, alpha-blockers, cimetidine and aldosterone antagonists, androgens, 6 months before study initiation and during the study
 - Regular intake of dietary supplements / supplementary balanced diets in the last 6 months before the start of the study and during the study(with the exception of the study preparation)
 - Applied therapy to improve sperm quality in the last 6 months before the start of the study and during the study
 - Application of antioxidants in the last 6 months before study start and during the study
 - Known intolerance / allergic reactions to the ingredients of the investigational medicinal product
 - Significant changes in the patient's lifestyle, especially regarding medication intake, diet, smoking, alcohol last month study start and during the study
 - Drug, alcohol and / or drug abuse
 - Simultaneous participation in another clinical trial or participate in such an event within the last 30 days
 - Signs that the participant is expected to fail test plan (e.g. lack of co-operation)
 - Application of antioxidants in the last 6 months before study start and during the study
 - Known intolerance / allergic reactions to the ingredients of the investigational medicinal product
 - Significant changes in the patient's lifestyle, especially regarding medication intake, diet, smoking, alcohol last month Study start and during the study
 - Drug, alcohol and / or drug abuse
 - Simultaneous participation in another clinical trial or participate in such an event within the last 30 days
 - Signs that the participant is expected to fail test plan (e.g. lack of co-operation)
 - Simultaneous participation in another clinical trial or participate in such an event within the last 30 days
 - Signs that the participant is expected to fail test plan (e.g. lack of co-operation)

InterventionsDrug: Taking AM019016 (verum), dietary food, 3 capsules once a dayIngredients: Vitamin D, E, C, B12, B6, B2, Folic Acid, L-Carnithine, L-Arginine, Coenzyme Q10, Zinc,
Selenium, β-carotene, Copper, Pigrafert (combination of pine bark, grape seed, green tea extract).
Control: Taking AM019016 (placebo), 3 capsules once a day

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

DRKS00011616 (Continued) Ingredients Placebo: maltodextrin, release agent magnesium salts of feed fatty acids and dye E171 and hydropropylmethylcellulose in the capsule shell. Free of gluten and lactose. Duration: 12 weeks Outcomes Primary Parameters for the assessment of the benefit by preparation and evaluation of spermograms according to the WHO criteria (2010, 5th edition) • change in progressive motility (visit 1 vs. visit 2) Change of sperm concentration (visit 1 vs. visit 2); change of sperm morphology (visit 1 vs. visit 2); change of sperm total (visit 1 vs. visit 2) • Change in total motility (visit 1 vs. visit 2) • Change of the ejaculate volume (visit 1 vs. visit 2) • Occurrence of pregnancy during the study and about 3 months after visit 2 Global evaluation of the benefit by the physician (to visit 2) on a scale with the four assessment points "very good", "good", "moderate" and "bad" Secondary Parameters for the assessment of tolerability: Adverse events and serious adverse advents during the clinical trial Global evaluation of the tolerability by the physician and subjects using a scale with the four as-• sessment points "very good", "good", "moderate" and "bad" at final visit. Starting date July 2017 Contact information Holger Baumgraß **Urologische Praxis** Förster-Funke-Allee 104 14532 Kleinmachnow Germany +49(0)33203 58 50 holger.baumgrass@t-online.de

Trial name or title	The effect of oral vitamin D3 supplementation on spermogram quantitative and qualitative indica tors in infertile male
Methods	Interventional (clinical trial)
	Design
	Randomisation: non-randomised. Randomly by tossing coin.
	Blinding: triple-blind
	Placebo: used

Antioxidants for male subfertility (Review)

Notes

Copyright ${\small ©}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Secondary ID: S15(a)/2017

IRCT2016111830947N1 (Continued)

Assignment: parallel Purpose: treatment Participants Males. Inclusion criteria Be healthy physically and mentally • Older than 20 years and less than 45 years Body mass index is 18/5-30 • Not to intake any vitamin D3 at therapeutic doses in last 3 months · Not to intake supplementation in non-therapeutic doses in last 3 months • Not to intake medications that influence on the level of vitamin D3 includes glucocorticoids and anti convulsion drugs that influence on spermatogenesis such as cimetidine • Spirnolactone should not have be used according to urologist in last 3 months · Lack of azoospermia in spermogram Having disrupt sperm of unknown origin(idiopatice) · Lack of genital tract infection or drug treatment in this regard during the past three months according to the clinical records and according to patients saying Lack of anatomical abnormalities of the genital tract such as varicocele grade two and above • Testes and vas deferens history of surgery No contact with pesticides Heavy metals and high temperature • Not using cigarette or hookah in last 3 month • Not using alcohol or narcotic • The serum level of vitamin D3 should be less than 30 or equal to 30 Ng in litre • No disorder in prolactin levels or TSH. Exclusion criteria Not taking more than one dose of vitamin D3 The existence of some signs or symptoms which prohibit the continuous of using according to urologist and nutritionist Start taking other supplements drugs that have been banned their entry criteria during the study Interventions Drug: the supplement of vitamin D3 (each week 1 pill of supplement vitamin D3 for 8 weeks and in remaining 4 weeks 1 supplement vitamin D3 pill as a maintenance dose) Control: placebo of vitamin D3 (each week 1 pill of Placebo vitamin D3 for 8 weeks and in remaining 4 weeks? 1 pill of Placebo vitamin D3 as a maintenance dose) Duration: 12 weeks Outcomes Primary: spermogram qualitative indicators Secondary: hormonal markers related to spermatogenesis(LH? FSH? TT? FT? SHBG) Starting date February 2017 Contact information Afsaneh Talebi Iran University of Medical Sciences, School of Nursing and Midwifery Yasemi Rashid street, Valiasr street, Tehran. Iran, Islamic Republic Of 00982143651820

Antioxidants for male subfertility (Review)

IRCT2016111830947N1 (Continued)

Talebi.a@tak.iums.ac.ir / AfsanehTalebi68@gmail.com

Notes

IRCT2017012432153N1 The effects of folic acid, vitamin E, selenium on semen parameters in infertile men Trial name or title Methods Interventional (clinical trial) Design Randomisation: randomised. Sampling based on table of random numbers. Blinding: single-blind Placebo: used Assignment: parallel Purpose: treatment Participants Males. Inclusion criteria • Willingness to participate in the study • Age range 25 to 54 years Does not use of micronutrients out of study Rejection of any obstructive disorder during radiological studies and anatomical examination · Abnormal parameters be approved by two semen analysis within two weeks **Exclusion criteria** • Unwillingness to participate in the study • Azoospermia or aspermia men • Men with severe varicocele Recent urogenital infection that has been treated with antioxidants · History of allergic reactions to micronutrients Treated with the following drugs: sulfasalazine- methotrexate-Nitrofurantoin -colchicine -alpha blockers and cimetidine - spironolactone - antidepressants, beta-blocker-phenothiazine-metoclopramide-heroin- cocaine-cannabis-thiazide diuretic Interventions Drug: Selenium tablets (200 micrograms), vitamin zahravi Manufacturing Co. (400IU), folic acid tablets (5 mg) Galinuse Manufacturing Co. - all once-daily, Control: placebo daily Duration: 12 weeks Outcomes Primary Sperm count • Sperm morphology Sperm motility • White blood cell count

Antioxidants for male subfertility (Review)

Copyright ${\ensuremath{{\odot}}}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

IRCT2017012432153N1 (Continued)

Starting date	April 2017
Contact information	Azima Sara
	School of Nursing and Midwifery
	Nemazee squair, Shiraz, Iran
	009871 36474254
	Azimas@sums.ac.ir
Notes	

NCT00975115

Trial name or title	Assessment of the efficacy of dietary supplement Spermotrend in the treatment of male infertility
Methods	Interventional (clinical trial)
	Design
	Allocation: randomised
	Masking: triple-blind (participant, caregiver, investigator)
	Placebo control
	Parallel assignment
Participants	Males, 19 years to 60 years
	Inclusion criteria
	Male infertility unrelated to major testicular conditions
	Must have at least one altered seminal parameterSigned informed consent
	Exclusion criteriaHydrocele, varicocele, orchitis, epididymitis, irradiation or chemotherapy
	Previously treated and cured testicular condition
	Non-transmissible chronic diseases
	 Use of antioxidant agents within 6 months Use of vitamins within 6 months
	 Use of anti-inflammatory drugs within 6 months
	 Use of hormones prescribed by an andrologist within 6 months
	Positive serology/HIV
	Leukocytospermia
nterventions	Drug: Spermotrend (vitamins plus other antioxidants) twice a day
	Control: placebo twice a day
	Duration: 12 weeks
Outcomes	Primary

Antioxidants for male subfertility (Review)

NCT00975115 (Continued)	Parameters of seminal analysis at weeks 24
	Secondary
_	Fertilisation achievementPresence of mild or severe adverse effects
Starting date	September 2009
Contact information	Miguel Aguilar Charara, MD
	"Ramón González Coro" Gynecologic and Obstetric Hospita
	53 7 838 2626 ext 277
	Gynecologic and Obstetric Hospital
	Havana, Cuba, 10400
	miguel.aguilar@infomed.sld.cu
Notes	Email sent 08.02.2018 to miguel.aguilar@infomed.sld.cu

NCT01407432

Trial name or title	Impact of folates in the care of the male infertility (FOLFIV)
Methods	Interventional (Clinical Trial). Phase 3
	Design
	Allocation: randomised
	Intervention model: parallel assignment
	Masking: quadruple (participant, care provider, investigator, outcomes assessor)
Participants	Males, 18 years to 60 years
	Inclusion criteria
	 Couple - male is from 18 to 60 years old Couple - male presents with infertility indicating interest in <i>in vitro</i> fertilisation with or without intracytoplasmic sperm injection (IVF +/- ICSI) Couple - male is 18 to 38 years old Couple - male does not present particular factors of infertility Couple - interest in IVF +/- ICSI Couple with social insurance both members of the couple having signed the consent Exclusion criteria Aetiology of not genetic known male infertility: infertility of neoplastic origin, infertility of definitive obstructive origin Presence of a factor of feminine infertility: a definitive infertility tubal, turned out ovarian incapacity (FSH > 9 and/or CFA <= 8) Infertile men requiring fresh or frozen sperm Men or women with HIV or hepatitis B or C Men with epilepsy

Antioxidants for male subfertility (Review)

ICT01407432 (Continued)	 Men receiving anti-folic treatment Men presenting with a sensitivity to folic acid or one of the constituents of the drug Couple of which one of the partners refuses to participate in the study
Interventions	Drug: Folic acid 15 mg per day (tablets of 5 mg)
	Control: Placebo of folic acid
	Duration: 3-4 months
Outcomes	Primary
	 The rates of pregnancy in IVF +/- ICSI and spontaneous pregnancy according to the arm of treat ment
	Secondary
	 The rate of improvement of the sperm parameters with acid folic treatment The rate of improvement of the nuclear quality of gametes with acid folic treatment
	 The rate of pregnancy of couple with infertile men treated by folic acid according to the methyl ene-tetrahydrofolate reductase (MTHFR) genotype
	 The difference between the MTHFR genotype of the patients on sperm parameters according to the arm of treatment
Starting date	November 2011
Contact information	Mathieu-d'Argent E
	Service of gynaecology-obstetrics and medicine of the reproduction, Tenon Hospital - APHP
	Paris, France, 75020
Notes	Email sent 08.02.18 to emmanuelle.mathieu@aphp.fr.
	Received an answer 09.02.18 that the trial recruiting phase is completed. Submitting the results within a few weeks.

NCT01828710		
Trial name or title	Myo-inositol on human semen parameters	
	Official title: Effect of treatment with myo-inositol on human semen parameters in patients under- going In vitro fertilization cycles	
Methods	Interventional (clinical trial), phase 2/3	
	Design	
	Allocation: randomised Endpoint classification: safety/efficacy study Intervention model: parallel assignment Masking: open-label Primary purpose: screening	
Participants	Male 25 years to 65 years	
	Inclusion criteria	
	Undergoing IVF cycle, OAT	

Antioxidants for male subfertility (Review)

Cochrane Library Trusted evidence. Informed decisions. Better health.

NCT01828710 (Continued)	
	Exclusion criteria
	Not undergoing IVF cycle
Interventions	Sham arm (normospermic): 4000 mg/die of myo-inositol + 400 μ g of folic acid (phase 2)
	Active arm (OAT): myo-inositol 4000 mg/die associated to 400 μg of folic acid (phase 3)
	Placebo arm (normospermic): 400 μg of folic acid
	Duration: three months
Outcomes	Primary
	sperm concentration
Starting date	August 2012
Contact information	Palumbo MA
	Division of Obstetrics and Gynaecology/Department of Surgery
	Center of Physiopathology of Human Reproduction
	S. Bambino Hospital / University of Catania
	Catania, Italy,95010
	Other Study ID Numbers: INO-2103-GC
Notes	Email sent 07.02.18 to Gulino (docferdi@hotmail.it) to ask if this study correlates with the same

ICT01846325	
Trial name or title	The effects of administration of combined docosahexaenoic acid and vitamin E supplements or spermatogram and seminal plasma oxidative stress in infertile men with asthenozoospermia
Methods	Interventional (clinical trial)
	Design
	Allocation: randomised
	Intervention model: parallel assignment
	Masking: quadruple (participant, care provider, investigator, outcomes assessor)
Participants	Males, 20 years to 45 years
	Inclusion criteria
	 Willing to participate in the study and completing the informed consent form Should be infertile (no conception after 12 months intercourse without any contraception) age 20 to 45 years, idiopathic asthenospermia according to WHO criteria Normal hormonal profile
	Exclusion criteria
	Any infection in genitourinary (GU) tract

Antioxidants for male subfertility (Review)

NCT01846325 (Continued)	 Any anatomical abnormality in GU tract Any chronic disease during last 3 months Any surgery in GU tract Consumption of omega-3 fatty acids and/or vitamin E supplements during last 3 months
Interventions	Drug: docosahexaenoic acid (DHA)
	Groups
	Experimental: capsule DHA 460 mg + vitamin E 600 mg per day
	Active comparator: vitamin E 600 mg + placebo
	Active comparator: 460 mg DHA + placebo
	Placebo comparator: DHA-shaped placebo + vitamin E-shaped placebo
Outcomes	Primary
	Sperm motility
	Secondary
	Sperm count
	Seminal oxidative stress
Starting date	December 2013
Contact information	Dr Azita Hekmatdoost
	National Nutrition and Food Technology Institute
	a_hekmat2000@yahoo.com
Notes	Email sent 07.02.18 to a_hekmat2000@yahoo.com, reply on the same day: study completed. Not yet submitted the manuscript

NCT02310087

Trial name or title	Oral astaxanthin and semen quality, fertilization and embryo development in assisted reproduc- tion technique procedures (Astax-ART)
Methods	Interventional (clinical trial)
	Design
	Allocation: randomised
	Intervention model: parallel assignment
	Masking: triple (participant, care provider, investigator)
Participants	Males, 18 years and older
	Inclusion criteria
	 Oligoasthenozoospermia with of without teratozoospermia by WHO criteria from the year 2010 Fresh semen Female partner younger than 38 years

Antioxidants for male subfertility (Review)

ICT02310087 (Continued)	 Idiopathic or tubal infertility in female partners At least 4 oocytes retrieved in previous ovarian function in ART cycle, if previously performed 1st, 2nd or 3rd cycle of ART
	Exclusion criteria
	 Genetic indication for ART procedure Donated semen Polycystic ovary syndrome in female partner Dietary supplementation intake of antioxidants (selenium, zinc, vitamin E, vitamin C, vitamin A) in male participant in the last three months Smoking in male participant > 20 cigarettes per day
Interventions	Astaxanthin with vitamin E
	Drug: four tablets of 4 mg astaxanthin with 10 mg vitamin E (Astasan), single daily dose
	Placebo: four tablets of placebo daily taken in single daily dose
	Duration: 3 months
Outcomes	Primary
	Semen quality
	Secondary
	 Follicle stimulating hormone (FSH) Fertilization and embryo development in ART Pregnancy rates and miscarriage rates in 1st trimester after ART
Starting date	November 2014
Contact information	Bojana Pinter, MD, PhD / Senka Imamovic Kumalic, MD
	Division of Ob/Gyn, University Medical Centre Ljubljana
	Ljubljana, Slovenia, 1000
	bojana.pinter@kclj.si / senka81@gmail.com
Notes	Sent email 07.02.18 to bojana.pinter@kclj.si and senka81@gmail.com
	Received a reply on the same day from dr Pinter: still recruiting, expecting to finish the study in 2018

Males, antioxidants, and infertility trial (MOXI)
Interventional (Clinical Trial)
Design
Allocation: randomised
Intervention model: parallel assignment
Masking: triple (participant, care provider, investigator)

Antioxidants for male subfertility (Review)

NCT02421887 (Continued)

Participants

Males, 18 years and older

Inclusion criteria

Couple

- 12 or more months of infertility (primary or secondary)
- Heterosexual
- Cohabitating and able to have regular intercourse

Male

- ≥ 18 years of age
- At least one abnormal semen parameter on a semen analysis within the past 6 months: sperm concentration ≤15 Million/mL, total motility
- ≤ 40% normal morphology (Kruger) ≤ 4%DNA fragmentation (SCSA, DNA fragmentation index) >25%

Female

- - ≥18 years of age and ≤40 years of age
- For women ≥ 35 years of age, evidence of normal ovarian reserve as assessed by menstrual cycle day 3 (+/-2 days) FSH ≤10 IU/L with estradiol 70 pg/mL, AMH ≥ 1.0 ng/mL, OR antral follicle count >10 within one year prior to study initiation
- Evidence of at least one patent fallopian tube as determined by an hysterosalpingogram or laparoscopy showing at least one patent fallopian tube or a saline infusion sonogram showing spillage of contrast material
- Regular cycles defined as ≥25 days and ≤ 35 days in duration
- Evidence of ovulation including biphasic basal body temperatures, positive ovulation predictor kits, or progesterone level ≥3 ng/mL
- Regular cycles defined as ≥25 days and ≤ 35 days in duration
- Evidence of ovulation including biphasic basal body temperatures, positive ovulation predictor kits, or progesterone level ≥3 ng/mL
- Evidence of ovulation including biphasic basal body temperatures, positive ovulation predictor kits, or progesterone level ≥3 ng/mL

Exclusion criteria

Couple

- Previous sterilisation procedures (vasectomy, tubal ligation); the prior procedure may affect study outcomes
- Planning in vitro fertilisation in the next 6 months

Male

- Sperm concentration < 5 million/mL on screening semen analysis
- Current use of a medication or drug that would affect reproductive function or metabolism (see Appendix C for list)
- Current multivitamin or herb use (requires 1 month wash-out)
- Current serious medical illnesses, such as cancer, heart disease, or cirrhosis
- Current use of anticoagulants
- Untreated hypothyroidism
- Uncontrolled diabetes mellitus

Female

- · History of surgically or medically confirmed moderate or severe endometriosis
- Body mass index >35 kg/m²

NCT02421887 (Continued)	 Currently pregnant History of polycystic ovarian syndrome Current serious medical illnesses, such as cancer, heart disease, or cirrhosis History of systemic chemotherapy or pelvic radiation Current use of a medication or drug that would affect reproductive function or metabolism
Interventions	Drug: antioxidant supplement Ingredients: Vitamin C, 500 mg; Vitamin D3, 1000 IU; Vitamin E, 400 IU; Folic Acid 1000 mcg; Zinc, 20 mg; Selenium 200 mcg; Lycopene, 10 mg; Capsule: Vitamin D3, 1000 IU, L-Carnitine, 1000 mg Control: placebo
Outcomes	 Primary Live birth rate Secondary Pregnancy rate Miscarriage rate Time to pregnancy Change in semen parameters, using WHO 5 criteria Percentage of sperm with fragmented DNA
Starting date	December 2015
Contact information	Anne Z Steiner, MD University of North Carolina Heping Zhang, Principal Investigator, Yale University
Notes	Still recruiting according to the Yale/Stanford site/Penn Medicine sites, February 2018

NCT	03	11	n4	Q	98	2
ILC I	05		-	-	50	

Trial name or title	Neotililty trial: Effect of coenzyme Q10 on semen parameters in men with idiopathic infertility			
Methods	Interventional (Clinical Trial)			
	Design			
	Intervention model: single-group assignment			
	Masking: none (open-label)			
Participants	Males, 20 years to 50 years			
	Inclusion criteria			
	 Signs the informed consent form Patients will be recruited in the study if they will fulfilled the criteria of history of primary infertility of more than 2 years, abnormal sperm count and motility Age between 20 and 50 years No known medical or surgical condition which can result in infertility 			
	Exclusion criteria			
	Voluntary withdrawal			

Antioxidants for male subfertility (Review)

ICT03104998 (Continued)	
	Poor compliance of visit/treatment
	A history of cancer chemotherapy or radiotherapy A bistory of cancer chemotherapy or radiotherapy
	 A history of genital disease such as cryptorchidism and varicocele; a history of genital surgery Body mass index 30 kg/m or greater; any endocrinopathy
	 Body mass index so kg/m of greater, any endocrinopatity Y chromosome microdeletions or karyotype abnormalities
	Leukocytospermia
	 Drug or substance abuse; tobacco use;
	 Use of anticonvulsants, androgens or antiandrogens
	• Significant liver (serum bilirubin greater than 2.0 mg/dL)
	Renal function (serum creatinine greater than 2.0 mg/dL) impairment
	• Patients with severe oligozoospermia (less than 5 X 106/mL), azoospermia and testicular volume
	less than 12 mL will also be excluded from study
Interventions	Drug: coenzyme Q10 200 mg daily
	Control: placebo daily
	Duration: 26 weeks
Outcomes	Primary
	Measure the change in semen parameters after 26 weeks of coenzyme q10
	Secondary
	Adverse event
Starting date	August 2017
Contact information	Anum Siddiqui, PharmD / Masood Jawaid, MRCS,FCPS
	HillPark Hospital
	Karachi, Pakistan
	9221-34315195 anum.siddiqui@pharmevo.biz
	Sonia_naqvi@hotmail.com
Notes	
ICT03337360	

Trial name or title	The impact of a nutritional supplement (Impryl [®]) on male fertility (SUMMER)
Methods	Interventional (Clinical Trial)
	Design
	Allocation: randomised
	Intervention model: multicentre, randomised double-blind placebo-controlled clinical trial/superi- ority study
	Masking: triple (participant, care provider, investigator)
Participants	Males, 18 years to 50 years

Antioxidants for male subfertility (Review)

NCT03337360	(Continued)
	(containaca)

NCT03337360 (Continued)	Inclusion criteria						
	Couples with failure to conceive for at least 12 months and starting with EM						
	OR						
	 Couples starting with 1st cycle of IUI (with/without ovarian stimulation) 						
	OR						
	 Couples starting with 1st/2nd/3rd cycle of IVF/ICSI 						
	Furthermore						
	 Male with age 18-50 years Female partner with age 18-43 years Willing and able to give informed consent 						
	Exclusion criteria						
	 Planned or performed diagnostic testicular biopsy (TESE) or percutaneous epididymal sperm aspiration (PESA) Use of donor-, cryopreserved- or electro-ejaculated semen Ovulation induction (OI) without IUI 						
	IVF for an absolute tubal factor						
	Embryo-transfers after cryopreservation						
	Embryo-transfer after pre-implantation genetic diagnosis						
	 Known genetic abnormalities related to infertility Known urological abnormality such as a varicocele or bilateral cryptorchism 						
	Use of other vitamin supplements						
Interventions	Drug: Impryl, one tablet daily						
	Ingredients: food supplement with betaine, cystine, zinc, niacin, folic acid (di5MTHF-glucosamine), Vitamin B12 (cobalamin), Vitamin B6, Vitamin B2 (Riboflavin)						
	Control: placebo, one tablet daily						
	Duration: 6 months						
Outcomes	Primary						
	 Ongoing pregnancy rate ≥10-12 weeks of gestation 						
	Secondary						
	 Overall pregnancy rate The time between start of intervention and reaching ongoing pregnancy The time between start of fertility treatment and reaching ongoing pregnancy Change in semen parameters leading to change in treatment category Number of miscarriages Live birth rate Adverse effects Embryo fertilisation rate Embryo-utilisation rate 						
Starting date	April 2018						
Contact information	Roos Smits, MD						

Antioxidants for male subfertility (Review)

NCT03337360 (Continued)

Radboud University Nijmegen, the Netherlands, 6500HB +31 (0) 651751244 roos.smits@radboudumc.nl

Notes

ART: assisted reproductive technique;**FSH:** follicle-stimulating hormone; **ICSI:** intracytoplasmic sperm injection; **IVF:** in vitro fertilisation; **OAT:**oligoasthenoteratozoospermia; **WHO:** World Health Organization

DATA AND ANALYSES

Comparison 1. Antioxidant(s) versus placebo or no treatment

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
1 Live birth; type of antioxi- dant	7	750	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.79 [1.20, 2.67]
1.1 Carnitines	1	60	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.0 [0.24, 4.25]
1.2 Coenzyme Q10	1	60	Peto Odds Ratio (Peto, Fixed, 95% CI)	2.16 [0.53, 8.82]
1.3 Vitamin D + Calcium	1	330	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.03 [0.59, 1.80]
1.4 Vitamin E	2	140	Peto Odds Ratio (Peto, Fixed, 95% CI)	8.51 [2.36, 30.70]
1.5 Zinc	1	100	Peto Odds Ratio (Peto, Fixed, 95% CI)	3.74 [1.02, 13.74]
1.6 Combined antioxidants	1	60	Peto Odds Ratio (Peto, Fixed, 95% CI)	3.42 [1.15, 10.13]
2 Live birth; placebo or no treatment	7	750	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.79 [1.20, 2.67]
2.1 Placebo	6	650	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.65 [1.08, 2.52]
2.2 No treatment	1	100	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.74 [1.02, 13.74]
3 Live birth; IVF/ICSI	2	90	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.61 [1.27, 10.29]
4 Live birth; as-treated analy- sis	7	649	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.71 [1.13, 2.58]

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
4.1 Carnitines	1	59	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.04 [0.25, 4.41]
4.2 Coenzyme Q10	1	55	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.10 [0.51, 8.64]
4.3 Vitamin D + Calcium	1	269	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.01 [0.57, 1.81]
4.4 Vitamin E	2	117	Peto Odds Ratio (Peto, Fixed, 95% Cl)	6.44 [1.72, 24.04]
4.5 Zinc	1	97	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.67 [1.00, 13.51]
4.6 Combined antioxidants	1	52	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.34 [1.04, 10.76]
5 Clinical pregnancy; type of antioxidant	11	786	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.97 [1.91, 4.63]
5.1 Carnitines	1	60	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.0 [0.24, 4.25]
5.2 Coenzyme Q10	1	60	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.16 [0.53, 8.82]
5.3 Folic acid	1	53	Peto Odds Ratio (Peto, Fixed, 95% Cl)	0.0 [0.0, 0.0]
5.4 Magnesium	1	26	Peto Odds Ratio (Peto, Fixed, 95% Cl)	8.73 [0.17, 445.08]
5.5 N-acetylcysteine (NAC)	2	100	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.00 [0.71, 5.63]
5.6 Vitamin E	2	117	Peto Odds Ratio (Peto, Fixed, 95% Cl)	6.71 [1.98, 22.69]
5.7 Zinc	2	153	Peto Odds Ratio (Peto, Fixed, 95% Cl)	4.43 [1.39, 14.14]
5.8 Zinc + Folic acid	1	53	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.86 [0.15, 99.84]
5.9 Combined antioxidants	2	164	Peto Odds Ratio (Peto, Fixed, 95% Cl)	3.19 [1.44, 7.08]
6 Clinical pregnancy; placebo or no treatment	11	786	Peto Odds Ratio (Peto, Fixed, 95% CI)	2.97 [1.91, 4.63]
6.1 Placebo	9	626	Peto Odds Ratio (Peto, Fixed, 95% CI)	3.01 [1.81, 5.03]

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
6.2 No treatment	2	160	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.84 [1.16, 6.96]
7 Clinical pregnancy; IVF/ICSI	2	90	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.64 [0.94, 7.41]
8 Adverse events	13		Peto Odds Ratio (Peto, Fixed, 95% Cl)	Subtotals only
8.1 Miscarriage	3	247	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.74 [0.40, 7.60]
8.2 Gastrointestinal	11	948	Peto Odds Ratio (Peto, Fixed, 95% Cl)	2.51 [1.25, 5.03]
8.3 Euphoria	1	86	Peto Odds Ratio (Peto, Fixed, 95% Cl)	1.21 [0.16, 9.01]
8.4 Ectopic pregnancy	1	60	Peto Odds Ratio (Peto, Fixed, 95% Cl)	4.48 [0.07, 286.49]
9 Sperm DNA fragmentation; type of antioxidant	4	254	Mean Difference (IV, Random, 95% CI)	-3.00 [-12.61, 2.61]
9.1 Docosahexaenoic acid (DHA)	1	36	Mean Difference (IV, Random, 95% CI)	-14.10 [-23.22, -4.98]
9.2 Folic acid	1	38	Mean Difference (IV, Random, 95% CI)	-5.80 [-13.40, 1.80]
9.3 Folic acid + Zinc	1	39	Mean Difference (IV, Random, 95% CI)	-1.20 [-9.36, 6.96]
9.4 N-acetylcysteine (NAC)	1	35	Mean Difference (IV, Random, 95% CI)	3.90 [-0.42, 8.22]
9.5 Vitamin C + Vitamin E	1	64	Mean Difference (IV, Random, 95% CI)	-13.80 [-17.50, -10.10]
9.6 Zinc	1	42	Mean Difference (IV, Random, 95% CI)	1.30 [-8.62, 11.22]
10 Sperm DNA fragmentation (data not suitable for meta- analysis)			Other data	No numeric data
10.1 Folic acid		_	Other data	No numeric data
10.2 Combined antioxidants			Other data	No numeric data
11 Total sperm motility at 3 months or less; type of an- tioxidant	18		Mean Difference (IV, Random, 95% CI)	Subtotals only

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
11.1 Carnitines	5	244	Mean Difference (IV, Random, 95% CI)	11.91 [-0.85, 24.66]
11.2 Coenzyme Q10	1	47	Mean Difference (IV, Random, 95% CI)	3.61 [-6.13, 13.35]
11.3 Folic acid	1	51	Mean Difference (IV, Random, 95% CI)	8.40 [-5.81, 22.61]
11.4 Magnesium	1	20	Mean Difference (IV, Random, 95% CI)	14.5 [-6.01, 35.01]
11.5 N-acetylcysteine (NAC)	1	35	Mean Difference (IV, Random, 95% CI)	14.60 [0.32, 28.88]
11.6 PUFAs	2	64	Mean Difference (IV, Random, 95% CI)	-8.35 [-17.40, 0.69]
11.7 Selenium	1	34	Mean Difference (IV, Random, 95% CI)	14.9 [1.14, 28.66]
11.8 Vitamin C + Vitamin E	1	64	Mean Difference (IV, Random, 95% CI)	2.90 [-7.76, 13.56]
11.9 Vitamin E	1	45	Mean Difference (IV, Random, 95% CI)	18.9 [4.90, 32.90]
11.10 Zinc	2	76	Mean Difference (IV, Random, 95% CI)	15.37 [-5.14, 35.88]
11.11 Zinc + Folic acid	1	54	Mean Difference (IV, Random, 95% CI)	6.80 [-7.57, 21.17]
11.12 Zinc + Vitamin E	1	20	Mean Difference (IV, Random, 95% CI)	26.0 [12.85, 39.15]
11.13 Zinc + Vitamin E + Vita- min C	1	22	Mean Difference (IV, Random, 95% CI)	26.0 [12.62, 39.38]
11.14 Combined antioxidants	4	383	Mean Difference (IV, Random, 95% CI)	12.43 [8.39, 16.46]
12 Total sperm motility at 3 months or less (data not suit- able for meta analysis)			Other data	No numeric data
12.1 Carnitines			Other data	No numeric data
12.3 Folic acid			Other data	No numeric data
12.4 Folic acid + Zinc			Other data	No numeric data
12.5 Vitamin E			Other data	No numeric data
12.6 Zinc			Other data	No numeric data

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
12.7 Combined antioxidants			Other data	No numeric data
13 Total sperm motility at 6 months; type of antioxidant	13		Mean Difference (IV, Random, 95% CI)	Subtotals only
13.1 Carnitines	3	136	Mean Difference (IV, Random, 95% CI)	11.73 [1.87, 21.60]
13.2 Coenzyme Q10	3	479	Mean Difference (IV, Random, 95% CI)	6.59 [1.80, 11.37]
13.3 Folic acid	1	51	Mean Difference (IV, Random, 95% CI)	1.70 [-8.49, 11.89]
13.4 N-acetylcysteine (NAC)	1	211	Mean Difference (IV, Random, 95% CI)	1.90 [1.20, 2.60]
13.5 Selenium	1	211	Mean Difference (IV, Random, 95% CI)	3.20 [2.50, 3.90]
13.6 Selenium + N-acetylcys- teine (NAC)	1	210	Mean Difference (IV, Random, 95% CI)	6.30 [5.60, 7.00]
13.7 Vitamin D + Calcium	1	260	Mean Difference (IV, Random, 95% CI)	-4.0 [-9.57, 1.57]
13.8 Vitamin E	2	132	Mean Difference (IV, Random, 95% CI)	11.20 [4.70, 17.70]
13.9 Zinc	1	57	Mean Difference (IV, Random, 95% CI)	0.0 [-10.19, 10.19]
13.10 Zinc + Folic acid	1	54	Mean Difference (IV, Random, 95% CI)	2.60 [-8.82, 14.02]
13.11 Combined antioxidants	2	229	Mean Difference (IV, Random, 95% CI)	9.35 [3.19, 15.51]
14 Total sperm motility at 6 months(data not suitable for meta analysis)			Other data	No numeric data
14.1 Carnitines			Other data	No numeric data
14.2 Folic acid			Other data	No numeric data
14.3 Zinc			Other data	No numeric data
14.4 Zinc + Folic acid			Other data	No numeric data
14.5 Combined antioxidants			Other data	No numeric data
15 Total sperm motility at 9 months or more; type of an- tioxidant	5		Mean Difference (IV, Random, 95% CI)	Subtotals only

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	itle No. of studies No. of participants		Statistical method	Effect size		
15.1 Carnitines			Mean Difference (IV, Random, 95% CI)	8.54 [3.01, 14.07]		
15.2 Coenzyme Q10	3	479	Mean Difference (IV, Random, 95% CI)	1.90 [-1.56, 5.36]		
15.3 Vitamin E	1	45	Mean Difference (IV, Random, 95% CI)	2.20 [-8.48, 12.88]		
16 Total sperm motility over time	26		Mean Difference (IV, Random, 95% CI)	Subtotals only		
16.1 Total sperm motility at 3 months or less	18	1105	Mean Difference (IV, Random, 95% CI)	10.19 [4.35, 16.04]		
16.2 Total sperm motility at 6 months	13	1768	Mean Difference (IV, Random, 95% CI)	6.00 [3.92, 8.09]		
16.3 Total sperm motility at 9 months or more	5	583	Mean Difference (IV, Random, 95% CI)	3.29 [0.36, 6.23]		
17 Progressive sperm motili- ty at 3 months or less; type of antioxidant	14		Mean Difference (IV, Random, 95% CI)	Subtotals only		
17.1 Carnitines	3	199	Mean Difference (IV, Random, 95% CI)	20.63 [19.40, 21.87]		
17.2 Coenzyme Q10	1	47	Mean Difference (IV, Random, 95% CI)	4.60 [-3.54, 12.74]		
17.3 Docosahexaenoic acid (DHA)	1	36	Mean Difference (IV, Random, 95% CI)	-6.60 [-8.57, -4.63]		
17.4 Folic acid	2	81	Mean Difference (IV, Random, 95% CI)	5.68 [-5.02, 16.38]		
17.5 N-acetylcysteine (NAC)	1	60	Mean Difference (IV, Random, 95% CI)	3.80 [-1.03, 8.63]		
17.6 PUFAs	1	44	Mean Difference (IV, Random, 95% CI)	6.40 [4.83, 7.97]		
17.7 Vitamin C	2	145	Mean Difference (IV, Random, 95% CI)	16.03 [-3.90, 35.95]		
17.8 Vitamin C + Vitamin E	1	31	Mean Difference (IV, Random, 95% CI)	0.20 [-9.77, 10.17]		
17.9 Zinc	2	157	Mean Difference (IV, Random, 95% CI)	1.14 [-3.37, 5.64]		
17.10 Zinc + Folic acid 1 54		54	Mean Difference (IV, Random, 95% CI)	3.80 [-13.66, 21.26]		

Antioxidants for male subfertility (Review)

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size		
17.11 Combined antioxidants	1 180		Mean Difference (IV, Random, 95% CI)	15.20 [13.62, 16.78]		
18 Progressive sperm motil- ity at 3 months (data not us- able for meta-analysis)			Other data	No numeric data		
18.1 Combined antioxidants			Other data	No numeric data		
19 Progressive sperm motil- ity at 6 months; type of an- tioxidant	5		Mean Difference (IV, Random, 95% CI)	Subtotals only		
19.1 Carnitines	1	59	Mean Difference (IV, Random, 95% CI)	15.94 [11.01, 20.87]		
19.2 Coenzyme Q10	1	60	Mean Difference (IV, Random, 95% CI)	5.0 [2.13, 7.87]		
19.3 Folic acid	2	81	Mean Difference (IV, Random, 95% CI)	-1.77 [-10.21, 6.67]		
19.4 Vitamin D + Calcium	1	260	Mean Difference (IV, Random, 95% CI)	-4.0 [-9.59, 1.59]		
19.5 Zinc	1	57	Mean Difference (IV, Random, 95% CI)	2.0 [-13.56, 17.56]		
19.6 Zinc + Folic acid	1	54	Mean Difference (IV, Random, 95% CI)	2.70 [-14.58, 19.98]		
20 Progessive sperm motility at 6 months (data not usable for meta-analysis)			Other data	No numeric data		
20.1 Combined antioxidants			Other data	No numeric data		
21 Progressive sperm motili- ty at 9 months or more; type of antioxidant	2		Mean Difference (IV, Random, 95% CI)	Subtotals only		
21.1 Carnitines	1	59	Mean Difference (IV, Random, 95% CI)	7.77 [2.68, 12.87]		
21.2 Coenzyme Q10	1	60	Mean Difference (IV, Random, 95% CI)	-0.90 [-2.68, 0.88]		
22 Progressive sperm motili- ty over time	15		Mean Difference (IV, Random, 95% CI)	Subtotals only		
22.1 Progressive sperm motility at 3 months or less	13	884	Mean Difference (IV, Random, 95% CI)	9.75 [5.26, 14.24]		
22.2 Progressive sperm motility at 6 months	5	521	Mean Difference (IV, Random, 95% CI)	6.11 [0.57, 11.66]		

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	come or subgroup title No. of studies No. of par pants		Statistical method	Effect size
22.3 Progressive sperm motility at 9 months or more	2	119	Mean Difference (IV, Random, 95% CI)	4.64 [-1.67, 10.95]
23 Sperm concentration at 3 months or less; type of an- tioxidant	21		Mean Difference (IV, Random, 95% CI)	Subtotals only
23.1 Carnitines	4	247	Mean Difference (IV, Random, 95% CI)	10.43 [0.99, 19.87]
23.2 Coenzyme Q10	1	47	Mean Difference (IV, Random, 95% CI)	-0.10 [-12.37, 12.17]
23.3 Folic acid	2	81	Mean Difference (IV, Random, 95% CI)	8.54 [-22.31, 39.39]
23.4 Magnesium	1	20	Mean Difference (IV, Random, 95% CI)	5.20 [-2.61, 13.01]
23.5 N-acetylcysteine (NAC)	2	95	Mean Difference (IV, Random, 95% CI)	4.59 [-0.27, 9.46]
23.6 PUFAs	3	108	Mean Difference (IV, Random, 95% CI)	3.44 [1.70, 5.17]
23.7 Selenium	1	25	Mean Difference (IV, Random, 95% CI)	21.20 [-11.43, 53.83]
23.8 Vitamin C	1	115	Mean Difference (IV, Random, 95% CI)	9.70 [0.09, 19.31]
23.9 Vitamin C + Vitamin E	2	95	Mean Difference (IV, Random, 95% CI)	1.36 [-10.01, 12.72]
23.10 Vitamin E	1	45	Mean Difference (IV, Random, 95% CI)	18.9 [3.92, 33.88]
23.11 Zinc	2	157	Mean Difference (IV, Random, 95% CI)	8.75 [2.25, 15.24]
23.12 Zinc + Folic acid	1	54	Mean Difference (IV, Random, 95% CI)	18.0 [1.11, 34.89]
23.13 Combined antioxidants	3	344	Mean Difference (IV, Random, 95% CI)	6.71 [-1.91, 15.33]
24 Sperm concentration at 3 months or less (data not suit- able for meta analysis)			Other data	No numeric data
24.1 Carnitines			Other data	No numeric data
24.2 Vitamin E			Other data	No numeric data
24.3 Folic acid			Other data	No numeric data

Antioxidants for male subfertility (Review)

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
24.4 Zinc			Other data	No numeric data
24.5 Folic acid + Zinc			Other data	No numeric data
24.6 Combined antioxidants			Other data	No numeric data
25 Sperm concentration at 6 months; type of antioxidant	11		Mean Difference (IV, Random, 95% CI)	Subtotals only
25.1 Carnitines	2	115	Mean Difference (IV, Random, 95% CI)	2.60 [-3.13, 8.33]
25.2 Coenzyme Q10	3	479	Mean Difference (IV, Random, 95% CI)	6.87 [1.18, 12.55]
25.3 Folic acid	2	81	Mean Difference (IV, Random, 95% CI)	2.44 [-37.87, 42.75]
25.4 N-acetylcysteine (NAC)	1	211	Mean Difference (IV, Random, 95% CI)	3.30 [1.80, 4.80]
25.5 Selenium	1	211	Mean Difference (IV, Random, 95% CI)	4.10 [2.45, 5.75]
25.6 Selenium + N-acetylcys- teine (NAC)	1	210	Mean Difference (IV, Random, 95% CI)	8.60 [6.89, 10.31]
25.7 Vitamin E	1	45	Mean Difference (IV, Random, 95% CI)	5.90 [-10.83, 22.63]
25.8 Zinc	1	57	Mean Difference (IV, Random, 95% CI)	9.70 [-7.00, 26.40]
25.9 Zinc + Folic acid	1	54	Mean Difference (IV, Random, 95% CI)	17.70 [-1.88, 37.28]
25.10 Combined antioxidants	2	229	Mean Difference (IV, Random, 95% CI)	13.68 [8.06, 19.31]
26 Sperm concentration at 6 months(data not suitable for meta analysis)			Other data	No numeric data
26.1 Carnitines			Other data	No numeric data
26.2 Folic acid			Other data	No numeric data
26.3 Zinc			Other data	No numeric data
26.4 Zinc + Folic acid			Other data	No numeric data
26.5 Vitamin D + Calcium			Other data	No numeric data
27 Sperm concentration at 9 months; type of antioxidant	5		Mean Difference (IV, Random, 95% CI)	Subtotals only

Antioxidants for male subfertility (Review)

=

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
27.1 Carnitines	1	59	Mean Difference (IV, Random, 95% CI)	4.17 [-1.71, 10.06]
27.2 Coenzyme Q10	3	479	Mean Difference (IV, Random, 95% Cl)	2.74 [-1.57, 7.05]
27.3 Vitamin E	1	45	Mean Difference (IV, Random, 95% Cl)	11.40 [-2.56, 25.36]
28 Sperm concentration over time	26		Mean Difference (IV, Random, 95% Cl)	Subtotals only
28.1 Sperm concentration at 3 months or less	20	1244	Mean Difference (IV, Random, 95% Cl)	7.51 [4.23, 10.79]
28.2 Sperm concentration 6 months	11	1430	Mean Difference (IV, Random, 95% Cl)	7.49 [4.76, 10.23]
28.3 Sperm concentration at 9 months or more	5	583	Mean Difference (IV, Random, 95% Cl)	3.61 [0.17, 7.06]

Analysis 1.1. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 1 Live birth; type of antioxidant.

Study or subgroup	Antioxidant	Placebo or no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% Cl		Peto, Fixed, 95% CI
1.1.1 Carnitines					
Balercia 2005	2/15	1/5		2.12%	0.61[0.04,9.64]
Balercia 2005	2/15	1/5		2.12%	0.61[0.04,9.64]
Balercia 2005	5/15	1/5		3.48%	1.83[0.21,15.73]
Subtotal (95% CI)	45	15		7.72%	1[0.24,4.25]
Total events: 9 (Antioxidant), 3 (Plac	ebo or no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.55, df	f=2(P=0.76); I ² =0%				
Test for overall effect: Not applicable	e				
1.1.2 Coenzyme Q10					
Balercia 2009	6/30	3/30		8.17%	2.16[0.53,8.82]
Subtotal (95% CI)	30	30		8.17%	2.16[0.53,8.82]
Total events: 6 (Antioxidant), 3 (Plac	ebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.08(P=0.28	3)				
1.1.3 Vitamin D + Calcium					
Blomberg Jensen 2018	30/166	29/164		51.07%	1.03[0.59,1.8]
Subtotal (95% CI)	166	164	•	51.07%	1.03[0.59,1.8]
Total events: 30 (Antioxidant), 29 (P	lacebo or no treatmei	nt)			
Heterogeneity: Not applicable					
Test for overall effect: Z=0.09(P=0.93	3)				
		lacebo/no treatm 0.01	0.1 1 10 1	¹⁰⁰ Favours antioxidant	

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant	Placebo or no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% Cl		Peto, Fixed, 95% Cl
1.1.4 Vitamin E					
Kessopoulou 1995	1/15	0/15		1.05%	7.39[0.15,372.38]
Suleiman 1996	9/55	0/55		8.76%	8.66[2.23,33.64]
Subtotal (95% CI)	70	70		9.81%	8.51[2.36,30.7]
Total events: 10 (Antioxidant), 0 (Pla	acebo or no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.01, d	f=1(P=0.94); I ² =0%				
Test for overall effect: Z=3.27(P=0)					
1.1.5 Zinc					
Omu 1998	8/50	2/50		9.55%	3.74[1.02,13.74]
Subtotal (95% CI)	50	50		9.55%	3.74[1.02,13.74]
Total events: 8 (Antioxidant), 2 (Plac	ebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.99(P=0.05	5)				
1.1.6 Combined antioxidants					
Tremellen 2007	20/40	4/20		13.68%	3.42[1.15,10.13]
Subtotal (95% CI)	40	20		13.68%	3.42[1.15,10.13]
Total events: 20 (Antioxidant), 4 (Pla	acebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=2.22(P=0.03	3)				
Total (95% CI)	401	349		100%	1.79[1.2,2.67]
Total events: 83 (Antioxidant), 41 (P				100%	1.79[1.2,2.07]
Heterogeneity: Tau ² =0; Chi ² =13.28,					
Test for overall effect: Z=2.83(P=0)	ar-o(r-0.1), r -39.74%				
Test for subgroup differences: Chi ² =	$12.72 df = 1 (P = 0.02) l^2$	-60 600%			
				<u>.</u>	
	Favours pl	acebo/no treatm 0.01	0.1 1 10 10	⁰ Favours antioxidant	

Analysis 1.2. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 2 Live birth; placebo or no treatment.

Study or subgroup	Antioxidant	Placebo/No treatment	Peto Od	ds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixe	d, 95% CI		Peto, Fixed, 95% Cl
1.2.1 Placebo						
Balercia 2005	2/15	1/5			2.12%	0.61[0.04,9.64]
Balercia 2005	2/15	1/5			2.12%	0.61[0.04,9.64]
Balercia 2005	5/15	1/5		+	3.48%	1.83[0.21,15.73]
Balercia 2009	6/30	3/30		•	8.17%	2.16[0.53,8.82]
Blomberg Jensen 2018	30/166	29/164	-	-	51.07%	1.03[0.59,1.8]
Kessopoulou 1995	1/15	0/15			1.05%	7.39[0.15,372.38]
Suleiman 1996	9/55	0/55			- 8.76%	8.66[2.23,33.64]
Tremellen 2007	20/40	4/20			13.68%	3.42[1.15,10.13]
Subtotal (95% CI)	351	299		◆	90.45%	1.65[1.08,2.52]
Total events: 75 (Antioxidant), 3	39 (Placebo/No treatment)					
Heterogeneity: Tau ² =0; Chi ² =11	9, df=7(P=0.1); l ² =41.19%					
Test for overall effect: Z=2.33(P	=0.02)					
	Favours p	lacebo/no treatm	0.01 0.1 1	10	¹⁰⁰ Favours antioxidant	

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant	Placebo/No treatment		Peto Odds Ratio			Weight	Peto Odds Ratio	
	n/N	n/N		Peto	, Fixed, 95	% CI			Peto, Fixed, 95% Cl
1.2.2 No treatment									
Omu 1998	8/50	2/50				•		9.55%	3.74[1.02,13.74]
Subtotal (95% CI)	50	50						9.55%	3.74[1.02,13.74]
Total events: 8 (Antioxidant), 2 (F	lacebo/No treatment)								
Heterogeneity: Not applicable									
Test for overall effect: Z=1.99(P=0	0.05)								
Total (95% CI)	401	349			•			100%	1.79[1.2,2.67]
Total events: 83 (Antioxidant), 41	(Placebo/No treatment)								
Heterogeneity: Tau ² =0; Chi ² =13.2	8, df=8(P=0.1); I ² =39.74%	5							
Test for overall effect: Z=2.83(P=0))								
Test for subgroup differences: Ch	i²=1.37, df=1 (P=0.24), I²=	27.14%							
	Favours p	lacebo/no treatm	0.01	0.1	1	10	100	Favours antioxidant	

Analysis 1.3. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 3 Live birth; IVF/ICSI.

Study or subgroup	Antioxidant	Placebo/no treatm	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% CI		Peto, Fixed, 95% Cl
Kessopoulou 1995	1/15	0/15		7.13%	7.39[0.15,372.38]
Tremellen 2007	20/40	4/20		92.87%	3.42[1.15,10.13]
Total (95% CI)	55	35	-	100%	3.61[1.27,10.29]
Total events: 21 (Antioxidant), 4	(Placebo/no treatm)				
Heterogeneity: Tau ² =0; Chi ² =0.14	l, df=1(P=0.71); l ² =0%				
Test for overall effect: Z=2.4(P=0.	02)				

Favours placebo/no treatm 0.01 0.1 1 10 100 Favours antioxidant

Analysis 1.4. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 4 Live birth; as-treated analysis.

Study or subgroup	Antioxidant Placebo or Peto Odds Ratio no treatment			Weight	Peto Odds Ratio			
	n/N	n/N		Peto, Fixed, 959	% CI			Peto, Fixed, 95% Cl
1.4.1 Carnitines								
Balercia 2005	2/15	1/5					2.23%	0.61[0.04,9.64]
Balercia 2005	2/15	1/5					2.23%	0.61[0.04,9.64]
Balercia 2005	5/14	1/5					3.72%	1.99[0.23,16.9]
Subtotal (95% CI)	44	15		\rightarrow	-		8.17%	1.04[0.25,4.41]
Total events: 9 (Antioxidant), 3 (Placebo or no treatment)							
Heterogeneity: Tau ² =0; Chi ² =0.64	4, df=2(P=0.72); I ² =0%							
Test for overall effect: Z=0.06(P=	0.95)							
1.4.2 Coenzyme Q10								
Balercia 2009	6/28	3/27					8.48%	2.1[0.51,8.64]
Subtotal (95% CI)	28	27					8.48%	2.1[0.51,8.64]
	Favours p	lacebo/no treatm	0.01 0	.1 1	10	100	Favours antioxidant	

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Antioxidant	Placebo or no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% CI		Peto, Fixed, 95% Cl
Total events: 6 (Antioxidant), 3 (Place	ebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.02(P=0.31))				
1.4.3 Vitamin D + Calcium					
Blomberg Jensen 2018	30/136	29/133		51.12%	1.01[0.57,1.81]
Subtotal (95% CI)	136	133	•	51.12%	1.01[0.57,1.81]
Total events: 30 (Antioxidant), 29 (Pla	acebo or no treatmen	t)			
Heterogeneity: Not applicable					
Test for overall effect: Z=0.05(P=0.96))				
1.4.4 Vitamin E					
Kessopoulou 1995	1/15	0/15		1.11%	7.39[0.15,372.38]
Suleiman 1996	9/52	0/35	·	8.68%	6.33[1.56,25.63]
Subtotal (95% CI)	67	50		9.79%	6.44[1.72,24.04]
Total events: 10 (Antioxidant), 0 (Plac	cebo or no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.01, df=	=1(P=0.94); I ² =0%				
Test for overall effect: Z=2.77(P=0.01))				
1.4.5 Zinc					
Omu 1998	8/49	2/48	+	10.02%	3.67[1,13.51]
Subtotal (95% CI)	49	48		10.02%	3.67[1,13.51]
Total events: 8 (Antioxidant), 2 (Place	ebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.96(P=0.05))				
1.4.6 Combined antioxidants					
Tremellen 2007	20/36	4/16		12.42%	3.34[1.04,10.76]
Subtotal (95% CI)	36	16		12.42%	3.34[1.04,10.76]
Total events: 20 (Antioxidant), 4 (Plac	cebo or no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=2.02(P=0.04))				
Total (95% CI)	360	289	•	100%	1.71[1.13,2.58]
Total events: 83 (Antioxidant), 41 (Pla	acebo or no treatmen	t)			
Heterogeneity: Tau ² =0; Chi ² =10.8, df=	=8(P=0.21); I ² =25.9%				
Test for overall effect: Z=2.55(P=0.01))				
Test for subgroup differences: Chi ² =1	0.15, df=1 (P=0.07), I ²	=50.73%			
	Favours pl	acebo/no treatm 0.01	0.1 1 10	100 Favours antioxidant	

Favours placebo/no treatm 0.01 0.1 1 10 100 Favours antioxidant

Analysis 1.5. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 5 Clinical pregnancy; type of antioxidant.

Study or subgroup	Antioxidant	Placebo/no treatment		Peto	Odds I	Ratio		Weight	Peto Odds Ratio
	n/N	n/N		Peto, F	ixed,	95% CI			Peto, Fixed, 95% Cl
1.5.1 Carnitines									
Balercia 2005	5/15	1/5		-	+			4.26%	1.83[0.21,15.73]
Balercia 2005	2/15	1/5			+			2.59%	0.61[0.04,9.64]
	Favours p	lacebo/no treatm	0.002	0.1	1	10	500	Favours antioxidant	

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant	Placebo/no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% Cl		Peto, Fixed, 95% CI
Balercia 2005	2/15	1/5		2.59%	0.61[0.04,9.6
Subtotal (95% CI)	45	15	-	9.43%	1[0.24,4.2
Total events: 9 (Antioxidant), 3 (Placebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.5	5, df=2(P=0.76); I ² =0%				
Test for overall effect: Not applie	cable				
1.5.2 Coenzyme Q10					
Balercia 2009	6/30	3/30	++	9.99%	2.16[0.53,8.82
Subtotal (95% CI)	30	30	-	9.99%	2.16[0.53,8.82
Total events: 6 (Antioxidant), 3 (Placebo/no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.08(P=	-0.28)				
1.5.3 Folic acid					
Azizollahi 2013	0/40	0/13			Not estimabl
Subtotal (95% CI)	40	13			Not estimabl
Total events: 0 (Antioxidant), 0 (Placebo/no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Not applie	cable				
1.5.4 Magnesium					
Zavaczki 2003	1/12	0/14		1.28%	8.73[0.17,445.08
Subtotal (95% CI)	12	14		1.28%	8.73[0.17,445.08
Total events: 1 (Antioxidant), 0 (Placebo/no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.08(P=	=0.28)				
1.5.5 N-acetylcysteine (NAC)					
Attallah 2013	6/30	4/30		10.88%	1.6[0.42,6.16
Barekat 2016	5/20	2/20	++	7.61%	2.75[0.55,13.79
Subtotal (95% CI)	50	50	•	18.49%	2[0.71,5.63
Total events: 11 (Antioxidant), 6	(Placebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.2	6, df=1(P=0.61); l ² =0%				
Test for overall effect: Z=1.32(P=	=0.19)				
1.5.6 Vitamin E					
Kessopoulou 1995	1/15	0/15		1.28%	7.39[0.15,372.38
Suleiman 1996	11/52	0/35		12.01%	6.64[1.84,23.93
Subtotal (95% CI)	67	50	-	13.29%	6.71[1.98,22.69
Total events: 12 (Antioxidant), 0	(Placebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0, o	df=1(P=0.96); l ² =0%				
Test for overall effect: Z=3.06(P=	=0)				
1.5.7 Zinc					
Azizollahi 2013	1/40	0/13		0.95%	3.76[0.04,357.94
Omu 1998	10/50	2/50	_ -	13.7%	4.48[1.35,14.88
Subtotal (95% CI)	90	63	•	14.65%	4.43[1.39,14.14
Total events: 11 (Antioxidant), 2	(Placebo/no treatment)				-
Heterogeneity: Tau ² =0; Chi ² =0.0					
Test for overall effect: Z=2.51(P=					
· ·					

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant	Placebo/no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% Cl		Peto, Fixed, 95% CI
1.5.8 Zinc + Folic acid					
Azizollahi 2013	2/40	0/13		1.87%	3.86[0.15,99.84]
Subtotal (95% CI)	40	13		1.87%	3.86[0.15,99.84]
Total events: 2 (Antioxidant), 0 (Pl	lacebo/no treatment)				
Heterogeneity: Not applicable					
Test for overall effect: Z=0.81(P=0.	.42)				
1.5.9 Combined antioxidants					
Busetto 2018	10/52	2/52		13.77%	4.45[1.34,14.73]
Tremellen 2007	21/40	6/20	↓	17.24%	2.44[0.84,7.13]
Subtotal (95% CI)	92	72	◆	31.01%	3.19[1.44,7.08]
Total events: 31 (Antioxidant), 8 (A	Placebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =0.53,	, df=1(P=0.46); I ² =0%				
Test for overall effect: Z=2.85(P=0))				
Total (95% CI)	466	320	•	100%	2.97[1.91,4.63]
Total events: 83 (Antioxidant), 22	(Placebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =6.8, o	df=13(P=0.91); I ² =0%				
Test for overall effect: Z=4.8(P<0.0	0001)				
Test for subgroup differences: Chi	i ² =5.45, df=1 (P=0.61), l ²	=0%			
	Favours p	lacebo/no treatm 0.0	002 0.1 1 10 50	 Favours antioxidant 	

Analysis 1.6. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 6 Clinical pregnancy; placebo or no treatment.

Study or subgroup	Antioxidant	Placebo/No treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% Cl		Peto, Fixed, 95% Cl
1.6.1 Placebo					
Azizollahi 2013	1/40	0/13		0.95%	3.76[0.04,357.94]
Azizollahi 2013	2/40	0/13		- 1.87%	3.86[0.15,99.84]
Azizollahi 2013	0/40	0/13			Not estimable
Balercia 2005	5/15	1/5		4.26%	1.83[0.21,15.73]
Balercia 2005	2/15	1/5		2.59%	0.61[0.04,9.64]
Balercia 2005	2/15	1/5		2.59%	0.61[0.04,9.64]
Balercia 2009	6/30	3/30		9.99%	2.16[0.53,8.82]
Barekat 2016	5/20	2/20	+	7.61%	2.75[0.55,13.79]
Busetto 2018	10/52	2/52		13.77%	4.45[1.34,14.73]
Kessopoulou 1995	1/15	0/15		1.28%	7.39[0.15,372.38]
Suleiman 1996	11/52	0/35		12.01%	6.64[1.84,23.93]
Tremellen 2007	21/40	6/20	+	17.24%	2.44[0.84,7.13]
Zavaczki 2003	1/12	0/14		1.28%	8.73[0.17,445.08]
Subtotal (95% CI)	386	240	•	75.42%	3.01[1.81,5.03]
Total events: 67 (Antioxidant), 16	(Placebo/No treatment)			
Heterogeneity: Tau ² =0; Chi ² =5.54,	df=11(P=0.9); I ² =0%				
Test for overall effect: Z=4.23(P<0.	.0001)				
1.6.2 No treatment					
Attallah 2013	6/30	4/30		10.88%	1.6[0.42,6.16]

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant	Placebo/No treatment	Peto Od	ds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixe	d, 95% CI		Peto, Fixed, 95% CI
Omu 1998	10/50	2/50			13.7%	4.48[1.35,14.88]
Subtotal (95% CI)	80	80		•	24.58%	2.84[1.16,6.96]
Total events: 16 (Antioxidant)	, 6 (Placebo/No treatment)					
Heterogeneity: Tau ² =0; Chi ² =1	1.25, df=1(P=0.26); l ² =19.85%)				
Test for overall effect: Z=2.29((P=0.02)					
Total (95% CI)	466	320		•	100%	2.97[1.91,4.63]
Total events: 83 (Antioxidant)	, 22 (Placebo/No treatment)					
Heterogeneity: Tau ² =0; Chi ² =6	5.8, df=13(P=0.91); I ² =0%					
Test for overall effect: Z=4.8(P	2<0.0001)					
Test for subgroup differences	: Chi ² =0.01, df=1 (P=0.91), I ² =	:0%				
	Favours pl	acebo/no treatm 0.02	1 0.1 1	10 10	⁰⁰ Favours antioxidant	

Analysis 1.7. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 7 Clinical pregnancy; IVF/ICSI.

Study or subgroup	Antioxidant	Placebo/no treatment		Peto	Odds Ratio		Weight	Peto Odds Ratio
	n/N	n/N		Peto,	Fixed, 95% CI			Peto, Fixed, 95% Cl
Kessopoulou 1995	1/15	0/15			+	\rightarrow	6.93%	7.39[0.15,372.38]
Tremellen 2007	21/40	6/20			+		93.07%	2.44[0.84,7.13]
Total (95% CI)	55	35					100%	2.64[0.94,7.41]
Total events: 22 (Antioxidant),	6 (Placebo/no treatment)							
Heterogeneity: Tau ² =0; Chi ² =0	.28, df=1(P=0.59); I ² =0%							
Test for overall effect: Z=1.84(F	P=0.07)							
	Favours pl	acebo/no treatm	0.01	0.1	1 10	100	Favours antioxidant	

Analysis 1.8. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 8 Adverse events.

Study or subgroup	Antioxidant	Placebo/no treatment	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% CI		Peto, Fixed, 95% Cl
1.8.1 Miscarriage					
Omu 1998	1/50	0/50		14.2%	7.39[0.15,372.38]
Suleiman 1996	2/52	0/35		26.99%	5.43[0.32,93.28]
Tremellen 2007	3/40	2/20		58.81%	0.72[0.11,4.97]
Subtotal (95% CI)	142	105		100%	1.74[0.4,7.6]
Total events: 6 (Antioxidant), 2 (Pla	cebo/no treatment)				
Heterogeneity: Tau ² =0; Chi ² =1.93, o	df=2(P=0.38); I ² =0%				
Test for overall effect: Z=0.73(P=0.4	16)				
1.8.2 Gastrointestinal					
Busetto 2018	4/52	0/52	· · · · · · · · · · · · · · · · · · ·	12.31%	7.85[1.07,57.35]
Cavallini 2004	2/39	2/47	+	12.12%	1.21[0.16,9.01]
Gamidov 2017	0/38	0/38			Not estimable
Gopinath 2013	4/89	4/36	· · · · · · · · · · · · · · · · · · ·	19.62%	0.33[0.07,1.62]
	Fa	vours antioxidant	0.01 0.1 1 10 100	Favours placebo/no t	treatm

Study or subgroup	Antioxidant	Placebo/no treatment		Peto Od	ds Ratio		Weight	Peto Odds Ratio
	n/N	n/N		Peto, Fixe	d, 95% CI			Peto, Fixed, 95% CI
Kessopoulou 1995	0/15	1/15	◀──	+			3.17%	0.14[0,6.82]
Pourmand 2014	5/50	0/50					15.21%	8.04[1.34,48.12]
Safarinejad 2009a	0/106	0/106						Not estimable
Sharifzadeh 2016	7/61	0/53				_	20.9%	7.2[1.56,33.11]
Sigman 2006	0/12	0/9						Not estimable
Tremellen 2007	3/40	0/20			•		8.16%	4.72[0.41,54.32]
Zavaczki 2003	2/10	1/10			+		8.51%	2.11[0.19,23.05]
Subtotal (95% CI)	512	436			•		100%	2.51[1.25,5.03]
Total events: 27 (Antioxidant), 8 (Pla	cebo/no treatment)							
Heterogeneity: Tau ² =0; Chi ² =13.92, d	f=7(P=0.05); I ² =49.71	%						
Test for overall effect: Z=2.58(P=0.01))							
1.8.3 Euphoria								
Cavallini 2004	2/39	2/47			+		100%	1.21[0.16,9.01]
Subtotal (95% CI)	39	47					100%	1.21[0.16,9.01]
Total events: 2 (Antioxidant), 2 (Place	ebo/no treatment)							
Heterogeneity: Not applicable								
Test for overall effect: Z=0.19(P=0.85))							
1.8.4 Ectopic pregnancy								
Tremellen 2007	1/40	0/20					100%	4.48[0.07,286.49]
Subtotal (95% CI)	40	20					100%	4.48[0.07,286.49]
Total events: 1 (Antioxidant), 0 (Place	ebo/no treatment)							
Heterogeneity: Not applicable								
Test for overall effect: Z=0.71(P=0.48))							
Test for subgroup differences: Chi ² =0	.68, df=1 (P=0.88), I ² =	=0%						
	Fa	vours antioxidant	0.01	0.1 1	10	100 F	avours placebo/no	treatm

Analysis 1.9. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 9 Sperm DNA fragmentation; type of antioxidant.

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% Cl
1.9.1 Docosahexaenoic acid (DHA)							
Martinez-Soto 2010	21	11 (9.8)	15	25.1 (16)	+	15.36%	-14.1[-23.22,-4.98]
Subtotal ***	21		15		•	15.36%	-14.1[-23.22,-4.98]
Heterogeneity: Tau ² =0; Chi ² =0, df=0(P<0.0001	.); I ² =100%					
Test for overall effect: Z=3.03(P=0)							
1.9.2 Folic acid							
Raigani 2014	20	33.1 (8.2)	18	38.9 (14.5)	-+	16.47%	-5.8[-13.4,1.8]
Subtotal ***	20		18		•	16.47%	-5.8[-13.4,1.8]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.5(P=0.13)							
1.9.3 Folic acid + Zinc							
Raigani 2014	21	37.7 (10.9)	18	38.9 (14.5)	_ _	16.06%	-1.2[-9.36,6.96]
Subtotal ***	21		18		• • • • •	16.06%	-1.2[-9.36,6.96]
			Favou	rs antioxidant	-50 -25 0 25 50	Favours pla	cebo/no treatm

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
Heterogeneity: Tau ² =0; Chi ² =0, df=	D(P<0.0001	.); I ² =100%					
Test for overall effect: Z=0.29(P=0.7	7)						
1.9.4 N-acetylcysteine (NAC)							
Barekat 2016	15	89.8 (5.4)	20	85.9 (7.6)	+-	18.53%	3.9[-0.42,8.22]
Subtotal ***	15		20		•	18.53%	3.9[-0.42,8.22]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.77(P=0.0	18)						
1.9.5 Vitamin C + Vitamin E							
Greco 2005	32	9.1 (7.2)	32	22.9 (7.9)	+	18.82%	-13.8[-17.5,-10.1]
Subtotal ***	32		32		•	18.82%	-13.8[-17.5,-10.1]
Heterogeneity: Not applicable							
Test for overall effect: Z=7.3(P<0.00	001)						
1.9.6 Zinc							
Raigani 2014	24	40.2 (18.3)	18	38.9 (14.5)	_ +	14.76%	1.3[-8.62,11.22]
Subtotal ***	24		18		•	14.76%	1.3[-8.62,11.22]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.26(P=0.8	3)						
Total ***	133		121		•	100%	-5[-12.61,2.61]
Heterogeneity: Tau ² =76.55; Chi ² =43	3.69, df=5(P<0.0001); I ² =88.	55%				
Test for overall effect: Z=1.29(P=0.2	2)						
Test for subgroup differences: Chi ²	=43.69, df=	=1 (P<0.0001), I ² =	88.55%				
			Favou	rs antioxidant	50 -25 0 25	50 Favours pla	cebo/no treatm

Favours antioxidant-50-2502550Favours placebo/no treatm

Analysis 1.10. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 10 Sperm DNA fragmentation (data not suitable for meta-analysis).

Study	Study Intervention Control								
	Foli	c acid							
Boonyarangkul 2015	Folic acid DNA tail length, COMET assay 3 month:	Placebo DNA tail length, COMET assay 3 month:	Not provided						
	Mean = 4.04 (n = 15) SE = 0.94 6 month:	Mean = 10.08 (n = 15) SE = 3.39 6 month:							
	Mean = 6.01 SE = 1.49	Mean = 8.69 SE = 4.28							
	Combined	antioxidants							
Gamidov 2017	SpermActin-forte (acetyl-L-carnitine, L-carnitine fumarate and alpha-lipoic acid) Median = 24 (18.2 - 28.6) (n = 38) Median (interquartile range)	No treatment Median 20.3 (12.7 - 21.5) (n = 38) Median (interquartile range)	Not provided						
Gamidov 2017	SpermActin-forte + Vitamin complex 'Man's formula' Median = 25 (20.5 - 29.2) (n = 38) Median (interquartile range)	No treatment Median 20.3 (12.7 - 21.5) (n = 38) Median (interquartile range)	Not provided						

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Analysis 1.11. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 11 Total sperm motility at 3 months or less; type of antioxidant.

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
1.11.1 Carnitines							
Balercia 2005	15	59.9 (8)	5	44.6 (7.7)		15.1%	15.3[7.43,23.17]
Balercia 2005	14	55.1 (10.2)	5	44.6 (7.7)		14.93%	10.5[1.89,19.11]
Balercia 2005	15	56.5 (11.6)	5	44.6 (7.7)		14.85%	11.9[2.96,20.84]
Dimitriadis 2010	26	35.6 (15.5)	22	24.7 (10.8)		15.19%	10.9[3.43,18.37]
Lenzi 2003	43	11 (15.5)	43	8.8 (10.8)	-+-	15.54%	2.2[-3.45,7.85]
Peivandi 2010	15	48.3 (0.2)	15	17 (0.1)	•	16.02%	31.3[31.21,31.39]
Sigman 2006	12	28.6 (38.1)	9	37.6 (33)		8.36%	-9[-39.49,21.49]
Subtotal ***	140		104		•	100%	11.91[-0.85,24.66]
Heterogeneity: Tau ² =264.15; Chi ² =	193.59, df=	6(P<0.0001); I ² =9	96.9%				
Test for overall effect: Z=1.83(P=0.0	07)						
1.11.2 Coenzyme Q10							
Nadjarzadeh 2011	23	41.9 (15.6)	24	38.3 (18.4)		100%	3.61[-6.13,13.35]
Subtotal ***	23		24		•	100%	3.61[-6.13,13.35]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.73(P=0.4	47)						
1.11.3 Folic acid							
Azizollahi 2013	26	53.3 (15.3)	25	44.9 (33)		100%	8.4[-5.81,22.61]
Subtotal ***	26		25		-	100%	8.4[-5.81,22.61]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.16(P=0.2	25)						
1.11.4 Magnesium							
Zavaczki 2003	10	33.5 (29.8)	10	19 (14.4)		100%	14.5[-6.01,35.01]
Subtotal ***	10		10			100%	14.5[-6.01,35.01]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.39(P=0.3	17)						
1.11.5 N-acetylcysteine (NAC)							
Barekat 2016	15	58.2 (20.9)	20	43.6 (21.9)		100%	14.6[0.32,28.88]
Subtotal ***	15		20		•	100%	14.6[0.32,28.88]
Heterogeneity: Not applicable Test for overall effect: Z=2(P=0.05)							
1.11.6 PUFAs							
Conquer 2000	9	39.4 (24.3)	5	47.2 (18.6)	+	15.81%	-7.8[-30.56,14.96]
Conquer 2000	10	32 (16.1)	4	47.2 (18.6)		18.96%	-15.2[-35.98,5.58]
Martinez-Soto 2010	21	41.5 (18.7)	15	48 (15.5)		65.23%	-6.5[-17.7,4.7]
Subtotal ***	40		24		•	100%	-8.35[-17.4,0.69]
Heterogeneity: Tau ² =0; Chi ² =0.52,	df=2(P=0.7	7); I ² =0%					
Test for overall effect: Z=1.81(P=0.0	07)						
1.11.7 Selenium							
Scott 1998	16	30.2 (22.8)	18	15.3 (17.4)		100%	14.9[1.14,28.66]
Subtotal ***	16		18		\bullet	100%	14.9[1.14,28.66]
Heterogeneity: Tau ² =0; Chi ² =0, df=	0/P<0.0001	$1) \cdot 1^2 = 100\%$					

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Antioxidant		Placebo/no treatment		Mean Difference	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% Cl
Test for overall effect: Z=2.12(P=0.03)							
1.11.8 Vitamin C + Vitamin E							
Greco 2005	32	41.6 (22)	32	38.7 (21.5)		100%	2.9[-7.76,13.5
Subtotal ***	32		32		•	100%	2.9[-7.76,13.5
Heterogeneity: Not applicable							
Test for overall effect: Z=0.53(P=0.59)							
1.11.9 Vitamin E							
Ener 2016	22	61.4 (18.3)	23	42.5 (28.7)		100%	18.9[4.9,32.
Subtotal ***	22		23			100%	18.9[4.9,32.
Heterogeneity: Not applicable							
Test for overall effect: Z=2.65(P=0.01)							
1.11.10 Zinc							
Azizollahi 2013	32	48.9 (27.7)	25	44.9 (33)		45.87%	4[-12.11,20.1
Omu 2008	11	49 (12)	8	24 (12)	_ _	54.13%	25[14.07,35.9
Subtotal ***	43		33			100%	15.37[-5.14,35.8
Heterogeneity: Tau ² =171.19; Chi ² =4.4	7, df=1(P=0.03); I ² =77.64	%				
Test for overall effect: Z=1.47(P=0.14)							
1.11.11 Zinc + Folic acid							
Azizollahi 2013	29	51.7 (17.2)	25	44.9 (33)		100%	6.8[-7.57,21.1
Subtotal ***	29		25		-	100%	6.8[-7.57,21.1
Heterogeneity: Not applicable							
Test for overall effect: Z=0.93(P=0.35)							
1.11.12 Zinc + Vitamin E							
Omu 2008	12	50 (18)	8	24 (12)		100%	26[12.85,39.1
Subtotal ***	12		8		-	100%	26[12.85,39.1
Heterogeneity: Not applicable							
Test for overall effect: Z=3.88(P=0)							
1.11.13 Zinc + Vitamin E + Vitamin C							
Omu 2008	14	50 (20)	8	24 (12)		100%	26[12.62,39.3
Subtotal ***	14		8		-	100%	26[12.62,39.3
Heterogeneity: Not applicable Test for overall effect: Z=3.81(P=0)							
1.11.14 Combined antioxidants	•			40.1 (10.0)		04 6 - * /	
Gopinath 2013	43	50.1 (11.3)	18	42.1 (10.6)		21.89%	8[2.05,13.9
Gopinath 2013	46	51.6 (13)	18	42.1 (10.6)		21.12%	9.5[3.33,15.6
Morgante 2010	90 20	40.3 (6.4)	90	25.1 (4.2)		39.25%	15.2[13.62,16.7
Scott 1998	30	27 (20.3)	18	15.3 (17.4)		10.41%	11.7[0.87,22.5
Sivkov 2011 Subtotal ***	15 224	38.3 (20.3)	15	18 (17.4)		7.33%	20.3[6.77,33.8
	224	-0.07).12-54.000	159			100%	12.43[8.39,16.4
Heterogeneity: Tau ² =10.15; Chi ² =8.82 Test for overall effect: Z=6.04(P<0.000		-0.07);1=54.639	U				
		-1 (D=0) 12-00 01	04				
Test for subgroup differences: Chi ² =34	+. <i>11</i> , af=	-1 (8-0), 1-=62.61	.70		-50 -25 0 25 50		

Antioxidants for male subfertility (Review) Copyright @ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Analysis 1.12. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 12 Total sperm motility at 3 months or less (data not suitable for meta analysis).

Total sperm motility at 3 months or less (data not suitable for meta analysis)

Study	Intervention	Control	P value
	Carn	itines	
Cavallini 2004	L-carnitine + Acetyl-carnitine Median = 22.3 (n = 39) Interquartile range = 28.4 - 15.2	Placebo Median = 14.0 (n = 47) Interquartile range = 17.4 - 5.1	Not provided
	Foli	c acid	
Raigani 2014	Folic acid Median = 35 (15 - 50) (n = 20) Median (25th - 75h percentile) 16 weeks	Placebo Median = 35 (21 - 42.5) (n = 18) Median (25th - 75h percentile) 16 weeks	Not provided
	Folic ac	id + Zinc	
Raigani 2014	Folic acid + Zinc Median = 35 (26.3 - 50) (n = 21) Median (25th - 75h percentile) 16 weeks	Placebo Median = 35 (21 - 42.5) (n = 18) Median (25th - 75h percentile) 16 weeks	Not provided
	Vita	min E	
Kessopoulou 1995	Vitamin E Median = 7 (n = 15) Min/max = -27 - 34	Placebo Median = 7 (n = 15) Min/max = -33 - 36	Not provided
	Z	inc	
Raigani 2014	Zinc Median = 35 (17 - 50) (n = 24) Median (25th - 75h percentile) 16 weeks	Placebo Median = 35 (21 - 42.5) (n = 18) Median (25th - 75h percentile) 16 weeks	Not provided
	Combined	antioxidants	
Galatioto 2008	N-acetylcysteine (NAC) 600 mg + vita- mins-minerals % of motile sperm (Class A WHO) = 58% (n = 20)	No treatment % of motile sperm (Class A WHO) = 51% (n = 22)	P = 0.847

Analysis 1.13. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 13 Total sperm motility at 6 months; type of antioxidant.

Study or subgroup	Antioxidant		Placebo/no treatment		Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
1.13.1 Carnitines							
Balercia 2005	14	61 (9)	5	43.4 (9.9)		21.74%	17.6[7.72,27.48]
Balercia 2005	15	60.4 (10.5)	5	43.4 (9.9)		21.45%	17[6.82,27.18]
Balercia 2005	15	64.5 (8.4)	5	43.4 (9.9)		21.94%	21.1[11.43,30.77]
Lenzi 2004	30	31.1 (13.5)	26	29.6 (9.5)	_ _	25.16%	1.5[-4.56,7.56]
Sigman 2006	12	32.3 (24.2)	9	40 (33) -		9.71%	-7.7[-33.24,17.84]
Subtotal ***	86		50		-	100%	11.73[1.87,21.6]
Heterogeneity: Tau ² =91.19; Chi ² =18.5	57, df=4(I	P=0); I ² =78.46%					
Test for overall effect: Z=2.33(P=0.02)							
1.13.2 Coenzyme Q10							
Balercia 2009	30	39.4 (6.8)	30	34.9 (8)		29.2%	4.5[0.74,8.26]
Safarinejad 2009a	98	27.6 (2.2)	96	23.1 (2.1)		35.41%	4.5[3.89,5.11]
Safarinejad 2012	112	35.8 (2.7)	113	25.4 (2.1)	•	35.39%	10.4[9.77,11.03]
Subtotal ***	240		239		•	100%	6.59[1.8,11.37]
Heterogeneity: Tau ² =16.75; Chi ² =176.	.67, df=2	(P<0.0001); l ² =98	3.87%				
Test for overall effect: Z=2.7(P=0.01)							

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Antioxidant		Placebo/no treatment		Mean Difference	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	Random, 95% CI		Random, 95% CI
1.13.3 Folic acid							
Azizollahi 2013	26	51.5 (10.2)	25	49.8 (24)		100%	1.7[-8.49,11.8
Subtotal ***	26	()	25			100%	1.7[-8.49,11.8
Heterogeneity: Tau ² =0; Chi ² =0, df=0($1) \cdot 1^2 = 100\%$	25			20070	2.11 0110,2210
Test for overall effect: Z=0.33(P=0.74)		.,,. 20070					
1.13.4 N-acetylcysteine (NAC)							
Safarinejad 2009	105	24.8 (2.9)	106	22.9 (2.2)	+	100%	1.9[1.2,2.
Subtotal ***	105		106		•	100%	1.9[1.2,2.
Heterogeneity: Not applicable							
Test for overall effect: Z=5.36(P<0.00	01)						
1.13.5 Selenium							
Safarinejad 2009	105	26.1 (2.9)	106	22.9 (2.2)	+	100%	3.2[2.5,3.
Subtotal ***	105		106		+	100%	3.2[2.5,3.
Heterogeneity: Not applicable							
Test for overall effect: Z=9.02(P<0.00	01)						
1.13.6 Selenium + N-acetylcysteine	e (NAC)						
Safarinejad 2009	104	29.2 (2.9)	106	22.9 (2.2)	+	100%	6.3[5.6
Subtotal ***	104		106		•	100%	6.3[5.6,
Heterogeneity: Not applicable							
Test for overall effect: Z=17.71(P<0.0	001)						
1.13.7 Vitamin D + Calcium							
Blomberg Jensen 2018	129	41 (22.7)	131	45 (23.1)		100%	-4[-9.57,1.5
Subtotal ***	129		131		•	100%	-4[-9.57,1.5
Heterogeneity: Not applicable							
Test for overall effect: Z=1.41(P=0.16))						
1.13.8 Vitamin E							
Ener 2016	22	60.1 (16.1)	23	55 (26.9)		22.81%	5.1[-7.79,17.9
Suleiman 1996	52	48.9 (15.5)	35	35.9 (12.8)		77.19%	13[7.02,18.9
Subtotal ***	74		58		-	100%	11.2[4.7,17.
Heterogeneity: Tau ² =4.93; Chi ² =1.19, Test for overall effect: Z=3.38(P=0)	df=1(P=	0.28); I ² =15.81%					
1.13.9 Zinc							
Azizollahi 2013	32	49.8 (11.3)	25	49.8 (24)		100%	0[-10.19,10.1
Subtotal ***	32		25			100%	0[-10.19,10.1
Heterogeneity: Not applicable					T		,2012
Test for overall effect: Not applicable	•						
1.13.10 Zinc + Folic acid							
Azizollahi 2013	29	52.4 (17.8)	25	49.8 (24)		100%	2.6[-8.82,14.0
Subtotal ***	29		25	·		100%	2.6[-8.82,14.0
Heterogeneity: Not applicable							-
Test for overall effect: Z=0.45(P=0.66))						
1.13.11 Combined antioxidants							

Antioxidants for male subfertility (Review)

Study or subgroup	up Antioxidan		Placebo/no treatment		Mean Difference	Weight	Mean Difference	
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI	
Busetto 2018	52	39 (8)	52	34.6 (7.1)	-	38.78%	4.4[1.49,7.31]	
Gopinath 2013	43	55.8 (11.9)	18	44.1 (9.5)		31.25%	11.7[6.04,17.36]	
Gopinath 2013	46	57.4 (14.6)	18	44.1 (9.5)	_ 	29.98%	13.3[7.2,19.4]	
Subtotal ***	141		88		•	100%	9.35[3.19,15.51]	
Heterogeneity: Tau ² =23.28; C	hi²=9.82, df=2(P	=0.01); l ² =79.63%	6					
Test for overall effect: Z=2.97	(P=0)							
Test for subgroup differences	s: Chi²=101.11, df	f=1 (P<0.0001), I ²	=90.11%					
		Favo	urs place	bo/no treatm -40	-20 0 20	⁴⁰ Favours ant	ioxidant	

Analysis 1.14. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 14 Total sperm motility at 6 months(data not suitable for meta analysis).

	Total sperm motility at 6 month	s(data not suitable for meta analysis)	
Study	Intervention	Control	P value
	Ca	rnitines	
Cavallini 2004	L-carnitine + Acetyl-carnitine	Placebo	Not provided
	Median = 23.6 (n = 39)	Median = 13.2 (n = 47)	
	Interquartile range = 28.9 - 16.0	Interquartile range = 18.6 - 9.0	
	Fa	lic acid	
Wong 2002	Folic acid	Placebo	Not provided
	Median = 35 (n = 22)	Median = 30 (n = 25)	
	Range = 5 - 65	Range = 5 - 80	
		Zinc	
Wong 2002	Zinc	Placebo	Not provided
	Median = 35 (n = 23)	Median = 30 (n = 25)	
	Range = 10 - 65	Range = 5 - 80	
	Zinc +	Folic acid	
Wong 2002	Zinc + Folic acid	Placebo	Not provided
	Median = 35 (n = 24)	Median = 30 (n = 25)	
	Range 5 - 70	Range = 5 - 80	
	Combine	d antioxidants	
Micic 2017	Proxeed Plus	Placebo	Not provided
	Median = 31.0 (20.0 - 41.0) (n = 125)	Median 29.0 (15.5 - 35.5) (n = 50)	
	Median (interquartile range)	Median (interquartile range)	
	Progressive sperm motility	Progressive sperm motility	

Analysis 1.15. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 15 Total sperm motility at 9 months or more; type of antioxidant.

Study or subgroup	Antioxidant		Placebo/no treatment		Mean Difference		Weight	Mean Difference	
	Ν	Mean(SD)	Ν	Mean(SD)		Random, 95% Cl		Random, 95% CI	
1.15.1 Carnitines									
Balercia 2005	15	54.3 (9)	5	42.7 (10)			31.36%	11.6[1.72,21.48]	
Balercia 2005	15	50.6 (5.7)	5	42.7 (10)			35.93%	7.9[-1.33,17.13]	
Balercia 2005	14	49 (7.8)	5	42.7 (10)			32.71%	6.3[-3.37,15.97]	
Subtotal ***	44		15				100%	8.54[3.01,14.07]	
Heterogeneity: Tau ² =0; Chi ² =0.59, d	f=2(P=0.7	4); l ² =0%							
Test for overall effect: Z=3.02(P=0)									
1.15.2 Coenzyme Q10									
		Favo	urs place	bo/no treatm	-20 -	10 0 10 20	Favours ant	ioxidant	

Antioxidants for male subfertility (Review)

Study or subgroup	p Antioxidant Placebo/no Mean Difference treatment		Weight	Mean Difference			
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
Balercia 2009	30	33 (6.3)	30	35.3 (8)		26.35%	-2.3[-5.94,1.34]
Safarinejad 2009a	98	24.2 (2.1)	96	22.8 (2.2)	-	36.82%	1.4[0.79,2.01]
Safarinejad 2012	112	31.2 (2.4)	113	25.8 (2.2)		36.83%	5.4[4.8,6]
Subtotal ***	240		239		•	100%	1.9[-1.56,5.36]
Heterogeneity: Tau ² =8.35; Chi ² =93.	67, df=2(P	<0.0001); I ² =97.8	6%				
Test for overall effect: Z=1.08(P=0.2	.8)						
1.15.3 Vitamin E							
Ener 2016	22	59.3 (16.2)	23	57.1 (20.2)		100%	2.2[-8.48,12.88]
Subtotal ***	22		23			100%	2.2[-8.48,12.88]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.4(P=0.69))						
Test for subgroup differences: Chi ²	=4.06, df=1	L (P=0.13), I ² =50.6	68%				
		Favo	urs place	bo/no treatm	-20 -10 0 10 20	Favours ant	ioxidant

Analysis 1.16. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 16 Total sperm motility over time.

Study or subgroup	Ant	Antioxidant Placebo/no Mean Difference treatment		Weight	Mean Difference		
	Ν	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% CI
1.16.1 Total sperm motility a	t 3 months or	less					
Attallah 2013	30	22.5 (11)	30	18.7 (7.8)	+	4.52%	3.8[-1.03,8.63]
Azizollahi 2013	26	53.3 (15.3)	9	44.9 (33)	— — 	2.77%	8.4[-13.95,30.75]
Azizollahi 2013	29	51.7 (17.2)	8	44.9 (33)		2.64%	6.8[-16.91,30.51]
Azizollahi 2013	32	48.9 (27.7)	8	44.9 (33)	<u>+</u>	2.53%	4[-20.8,28.8]
Balercia 2005	15	59.9 (8)	5	44.6 (7.7)	│ _ + _	4.3%	15.33[7.45,23.21]
Balercia 2005	15	56.5 (11.6)	5	44.6 (7.7)	— • – •	4.2%	11.9[2.96,20.84]
Balercia 2005	14	55.1 (10.2)	5	44.6 (7.7)	+_	4.23%	10.5[1.89,19.11]
Barekat 2016	15	58.2 (20.9)	20	43.6 (21.9)	— • — • — •	3.65%	14.6[0.32,28.88]
Conquer 2000	9	39.4 (24.3)	5	47.2 (18.6)	+	2.73%	-7.8[-30.56,14.96]
Conquer 2000	10	32 (16.1)	4	47.2 (18.6)		2.93%	-15.2[-35.98,5.58]
Dimitriadis 2010	26	35.6 (15.5)	22	24.7 (10.8)		4.33%	10.9[3.43,18.37]
Ener 2016	22	61.4 (18.3)	23	42.5 (28.7)		3.68%	18.9[4.9,32.9]
Gopinath 2013	46	51.6 (13)	18	42.1 (10.6)	-+-	4.43%	9.5[3.33,15.67]
Gopinath 2013	43	50.1 (11.3)	18	42.1 (10.6)		4.45%	8[2.05,13.95]
Greco 2005	32	41.6 (22)	32	38.7 (21.5)		4.04%	2.9[-7.76,13.56]
Lenzi 2003	43	11 (15.5)	43	8.8 (10.8)	- - -	4.47%	2.2[-3.45,7.85]
Martinez-Soto 2010	21	41.5 (18.7)	15	48 (15.5)	+	3.98%	-6.5[-17.7,4.7]
Morgante 2010	90	40.3 (6.4)	90	25.1 (4.2)	+	4.65%	15.2[13.62,16.78]
Nadjarzadeh 2011	23	41.9 (15.6)	24	38.3 (18.4)	_ +	4.13%	3.6[-6.14,13.34]
Omu 2008	11	49 (12)	3	24 (12)		3.53%	25[9.68,40.32]
Omu 2008	14	50 (20)	2	24 (12)	+	3.05%	26[6.34,45.66]
Omu 2008	12	50 (18)	3	24 (12)	·	3.35%	26[9.03,42.97]
Peivandi 2010	15	48.3 (0.2)	15	17 (0.1)	•	4.66%	31.3[31.21,31.39]
Scott 1998	16	30.2 (22.8)	9	15.3 (12.3)		3.7%	14.9[1.14,28.66]
Scott 1998	30	27 (20.3)	9	15.3 (12.3)	-	4.02%	11.7[0.87,22.53]
Sigman 2006	12	28.6 (38.1)	9	37.6 (33)		2.06%	-9[-39.49,21.49]
Zavaczki 2003	10	33.5 (29.8)	10	19 (14.4)		2.96%	14.5[-6.01,35.01]
		Favo	urs place	bo/no treatm	-50 -25 0 25 50	Favours and	ioxidant

Cochrane Database of Systematic Reviews

Study or subgroup	Antioxidant			cebo/no eatment	Mean Difference	Weight	Mean Difference	
	N	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% CI	
Subtotal ***	661		444		•	100%	10.19[4.35,16.04]	
Heterogeneity: Tau ² =190.69; Chi ²	=993.76, df=	=26(P<0.0001); I ² :	=97.38%					
Test for overall effect: Z=3.42(P=0)							
1.16.2 Total sperm motility at 6	months							
Azizollahi 2013	26	51.5 (10.2)	9	49.8 (14.4)	_ _	2.8%	1.7[-8.49,11.89]	
Azizollahi 2013	29	52.4 (17.8)	8	49.8 (13.6)	+	2.39%	2.6[-8.84,14.04]	
Azizollahi 2013	32	49.8 (11.3)	8	49.8 (13.6)	<u> </u>	2.8%	0[-10.21,10.21]	
Balercia 2005	14	61.1 (9.1)	5	43.4 (9.9)		2.91%	17.7[7.8,27.6]	
Balercia 2005	15	60.4 (10.5)	5	43.4 (9.9)		2.81%	17[6.82,27.18]	
Balercia 2005	15	64.5 (8.4)	5	43.4 (9.9)	— ,	3.01%	21.1[11.44,30.76]	
Balercia 2009	30	39.4 (6.8)	30	34.9 (8)	-+-	6.64%	4.5[0.74,8.26]	
Blomberg Jensen 2018	129	41 (22.7)	131	45 (23.1)	-+-	5.28%	-4[-9.57,1.57]	
Busetto 2018	52	31.7 (8.2)	52	32.6 (9.2)	+	6.94%	-0.9[-4.25,2.45]	
Ener 2016	22	60.1 (16.1)	23	55 (26.9)		2%	5.1[-7.79,17.99]	
Gopinath 2013	46	57.4 (14.6)	18	44.1 (9.5)		4.92%	13.3[7.21,19.39]	
Gopinath 2013	43	55.8 (11.9)	18	44.1 (9.5)		5.22%	11.7[6.05,17.35]	
Lenzi 2004	30	31.1 (13.5)	26	29.6 (9.5)	_ +	4.94%	1.5[-4.56,7.56]	
Safarinejad 2009	105	26.1 (2.9)	36	22.9 (2.2)	•	8.32%	3.2[2.29,4.11]	
Safarinejad 2009	104	29.2 (2.9)	35	22.9 (2.2)	•	8.32%	6.3[5.38,7.22]	
Safarinejad 2009	105	24.8 (2.9)	35	22.9 (2.2)	•	8.32%	1.9[0.98,2.82]	
Safarinejad 2009a	98	27.6 (2.2)	96	23.1 (2.1)	•	8.4%	4.5[3.89,5.11]	
Safarinejad 2012	112	35.8 (2.7)	113	25.4 (2.1)	•	8.39%	10.4[9.77,11.03]	
Sigman 2006	12	32.3 (24.2)	9	40 (33)	+	0.62%	-7.7[-33.24,17.84]	
Suleiman 1996	52	48.9 (15.5)	35	35.9 (12.8)		4.99%	13[7.02,18.98]	
Subtotal ***	1071		697		♦	100%	6[3.92,8.09]	
Heterogeneity: Tau ² =13.4; Chi ² =3	91.52, df=19)(P<0.0001); I ² =9	5.15%					
Test for overall effect: Z=5.64(P<0								
1.16.3 Total sperm motility at 9	months or	more						
Balercia 2005	15	54.3 (9)	5	42.7 (10)	_ - +	6.67%	11.6[1.72,21.48]	
Balercia 2005	15	50.6 (5.7)	5	42.7 (10)	+	7.38%	7.9[-1.33,17.13]	
Balercia 2005	14	49 (7.8)	5	42.7 (10)	++	6.88%	6.3[-3.37,15.97]	
Balercia 2009	30	32.9 (6.3)	30	35.3 (8)	+	19.2%	-2.4[-6.04,1.24]	
Ener 2016	22	59.3 (16.2)	23	57.1 (20.2)	_ +	5.91%	2.2[-8.48,12.88]	
Safarinejad 2009a	98	24.2 (2.1)	96	22.8 (2.2)	•	26.98%	1.4[0.79,2.01]	
Safarinejad 2012	112	31.2 (2.4)	113	25.8 (2.2)		26.98%	5.4[4.8,6]	
Subtotal ***	306		277		•	100%	3.29[0.36,6.23]	
Heterogeneity: Tau ² =8.21; Chi ² =9	8.01, df=6(P	<0.0001); I ² =93.8	8%					
Test for overall effect: Z=2.2(P=0.0	03)							
		Favo	urs place	bo/no treatm	-50 -25 0 25 50	Favours ant	ioxidant	

Analysis 1.17. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 17 Progressive sperm motility at 3 months or less; type of antioxidant.

Study or subgroup	Antioxidant		Placebo/no treatment		Mean Difference					Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)		Rand	om, 95	% CI			Random, 95% Cl
1.17.1 Carnitines									1		
	Favours placebo/no treatm		ebo/no treatm	-50	-50 -25 0 25 50		Favours antioxidant				

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
Balercia 2005	15	34.9 (9.2)	5	22.3 (7.8)		2.15%	12.6[4.33,20.8]
Balercia 2005	14	33.9 (8.4)	5	22.3 (7.8)		2.22%	11.6[3.47,19.73
Balercia 2005	15	38.9 (7.1)	5	22.3 (7.8)		2.45%	16.6[8.88,24.32
Mehni 2014	51	24.6 (1.5)	59	3.3 (2.7)		43.58%	21.3[20.5,22.1
Peivandi 2010	15	30 (0.2)	15	9 (0.9)		49.61%	21[20.53,21.47
Subtotal ***	110		89		•	100%	20.63[19.4,21.87
Heterogeneity: Tau ² =0.75; Chi ² =10.	87, df=4(P	=0.03); l ² =63.2%					
Test for overall effect: Z=32.69(P<0.	0001)						
1.17.2 Coenzyme Q10							
Nadjarzadeh 2011	23	28.9 (14.8)	24	24.3 (13.6)		100%	4.6[-3.54,12.74
Subtotal ***	23		24		•	100%	4.6[-3.54,12.74
Heterogeneity: Not applicable							
Test for overall effect: Z=1.11(P=0.2	7)						
1.17.3 Docosahexaenoic acid (DH	A)						
Martinez-Soto 2010	21	37.8 (3.2)	15	44.4 (2.8)	+	100%	-6.6[-8.57,-4.63
Subtotal ***	21		15		•	100%	-6.6[-8.57,-4.63
Heterogeneity: Not applicable							
Test for overall effect: Z=6.57(P<0.0	001)						
1.17.4 Folic acid							
Azizollahi 2013	26	48.6 (32.6)	25	34.1 (36.5)		27.7%	14.5[-4.52,33.5
Boonyarangkul 2015	15	20.4 (15.4)	15	18.1 (13.4)	-	72.3%	2.3[-8.03,12.63
Subtotal ***	41	()	40			100%	5.68[-5.02,16.38
Heterogeneity: Tau ² =13.45; Chi ² =1.		=0.27): l ² =18.07%	b				, , , , , , , , , , , , , , , , , , , ,
Test for overall effect: Z=1.04(P=0.3							
1.17.5 N-acetylcysteine (NAC)							
Attallah 2013	30	22.5 (11)	30	18.7 (7.8)		100%	3.8[-1.03,8.63
Subtotal ***	30		30			100%	3.8[-1.03,8.63
Heterogeneity: Tau ² =0; Chi ² =0, df=0)(P<0.0001	L): ² =100%			•		
Test for overall effect: Z=1.54(P=0.1							
1.17.6 PUFAs							
Haghighian 2015	23	33.5 (2.9)	21	27.1 (2.4)	+	100%	6.4[4.83,7.9]
Subtotal ***	23	00.0 (2.0)	21	(1)	•	100%	6.4[4.83,7.97
Heterogeneity: Not applicable							
Test for overall effect: Z=8(P<0.000)	L)						
1.17.7 Vitamin C							
Cyrus 2015	46	54.5 (18.3)	69	44.9 (21.4)	-	48.48%	9.6[2.29,16.9]
Dawson 1990	10	51 (22.1)	5	49 (25.3)		27.47%	2[-24.07,28.0]
Dawson 1990	10	94 (32)	5	49 (25.3)	- _	24.05%	45[15.25,74.75
Subtotal ***	66	31(32)	79			100%	16.03[-3.9,35.95
Heterogeneity: Tau ² =199.24; Chi ² =5		P=0.06)· 12=64 38				20070	_0.001 0.0,00.00
Test for overall effect: Z=1.58(P=0.1		,	, ,				
1.17.8 Vitamin C + Vitamin E							
Rolf 1999	15	34.1 (11.8)	16	33.9 (16.3)		100%	0.2[-9.77,10.1]
Subtotal ***		JT.1 (11.0)		55.5 (10.5)	-		
Sublotal	15		16			100%	0.2[-9.77,10.17

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
Heterogeneity: Not applicable							
Test for overall effect: Z=0.04(P=0.97))						
1.17.9 Zinc							
Azizollahi 2013	32	40.8 (35.6)	25	34.1 (36.5)	+	5.69%	6.7[-12.19,25.59]
Sharifzadeh 2016	51	25.5 (11.1)	49	24.7 (12.5)	+	94.31%	0.8[-3.84,5.44]
Subtotal ***	83		74		•	100%	1.14[-3.37,5.64]
Heterogeneity: Tau ² =0; Chi ² =0.35, df	=1(P=0.5	5); I ² =0%					
Test for overall effect: Z=0.49(P=0.62)							
1.17.10 Zinc + Folic acid							
Azizollahi 2013	29	37.9 (27.5)	25	34.1 (36.5)		100%	3.8[-13.66,21.26]
Subtotal ***	29		25		-	100%	3.8[-13.66,21.26]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.43(P=0.67)							
1.17.11 Combined antioxidants							
Morgante 2010	90	40.3 (6.4)	90	25.1 (4.2)	+	100%	15.2[13.62,16.78]
Subtotal ***	90		90		•	100%	15.2[13.62,16.78]
Heterogeneity: Not applicable							
Test for overall effect: Z=18.84(P<0.0	001)						
Test for subgroup differences: Chi ² =6	34.89, d	f=1 (P<0.0001), I ²	=98.42%				
		Favo	urs place	bo/no treatm	-50 -25 0 25 50	Favours ant	ioxidant

Analysis 1.18. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 18 Progressive sperm motility at 3 months (data not usable for meta-analysis).

Progressive sperm motility at 3 months (data not usable for meta-analysis)

Study	Intervention	Control	P value											
	Combined antioxidants													
Gamidov 2017	SpermActin-forte + Vitamin complex 'Man's formula' Median = 36.5 (26 - 47) (n = 38) Median (interquartile range)	No treatment Median = 34.5 (27 - 40) (n = 38) Median (interquartile range)	Not provided											
Gamidov 2017	SpermActin-forte (acetyl-L-carnitine, L-carnitine fumarate and alpha-lipoic acid) Median = 30.5 (26 - 37) (n = 38) Median (interquartile range)	No treatment Median = 34.5 (27 - 40) (n = 38) Median (interquartile range)	Not provided											
Micic 2017	Proxeed Plus Median = 30.0 (12.0 - 39.0) (n = 125) Median (interquartile range)	Placebo Median 28.5 (11.5 - 32.0) (n = 50) Median (interquartile range)	Not provided											

Analysis 1.19. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 19 Progressive sperm motility at 6 months; type of antioxidant.

Study or subgroup	An	Antioxidant Placebo/no treatment			Mean Difference				Weight Mean D	ifference	
	Ν	Mean(SD)	Ν	Mean(SD)		Rai	ndom, 95%	6 CI		Randor	n, 95% Cl
1.19.1 Carnitines					1	I					
		Favo	ours plac	ebo/no treatm	-100	-50	0	50	100	Favours antioxidant	

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup Antioxidant Placebo/no treatment			Mean Difference	Weight	Mean Difference	
Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
15	43.8 (7.1)	5	24 (8.5)	-	35.57%	19.8[11.53,28.07]
15	37.5 (9.2)	5	24 (8.5)		31.53%	13.5[4.71,22.29]
14	38.1 (8.2)	5	24 (8.5)	-#-	32.9%	14.1[5.5,22.7]
44		15		•	100%	15.94[11.01,20.87]
f=2(P=0.5	2); I ² =0%					
001)						
30	15.1 (7.3)	30	10.1 (3.3)	+	100%	5[2.13,7.87]
30		30		♦	100%	5[2.13,7.87]
26	40 (25)	25	40.3 (34)	_ #	26.37%	-0.3[-16.73,16.13]
15	15 (10.1)	15	17.3 (16.6)		73.63%	-2.3[-12.13,7.53]
41		40			100%	-1.77[-10.21,6.67]
f=1(P=0.8	4); I ² =0%					
3)						
129	31 (23)	131	35 (23)	+	100%	-4[-9.59,1.59]
129		131		•	100%	-4[-9.59,1.59]
32	42.3 (23.2)	25	40.3 (34)		100%	2[-13.56,17.56]
32		25		+	100%	2[-13.56,17.56]
29	43 (30.2)	25	40.3 (34)		100%	2.7[-14.58,19.98]
29		25		-	100%	2.7[-14.58,19.98]
5)						
31.49, df=	1 (P<0.0001), I ² =	84.12%				
	15 15 14 44 f=2(P=0.5 001) 30 30 30 30 30 30 30 30 30 30 30 30 30	$15 43.8 (7.1) 15 37.5 (9.2) 14 38.1 (8.2) 44 f=2(P=0.52); I^2=0\% 001) 30 15.1 (7.3) 30 26 40 (25) 15 15 (10.1) 41 f=1(P=0.84); I^2=0\% 3) 129 31 (23) 129 31 (23) 129 31 (23) 129 31 (23) 129 32 42.3 (23.2) 32 32 5) 5) 50 50 50 50 50 50$	15 43.8 (7.1) 5 15 37.5 (9.2) 5 14 38.1 (8.2) 5 44 15 f=2(P=0.52); 1 ² =0% 30 30 15.1 (7.3) 30 30 15.1 (7.3) 30 30 15.1 (7.3) 30 30 15.1 (7.3) 30 30 15.1 (10.1) 15 41 40 f=1(P=0.84); 1 ² =0% 31 31 129 131 129 31 (23) 131 32 42.3 (23.2) 25 32 42.3 (23.2) 25 32 43 (30.2) 25 29 43 (30.2) 25 29 29 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$15 43.8 (7.1) 5 24 (8.5) \\ 15 37.5 (9.2) 5 24 (8.5) \\ 14 38.1 (8.2) 5 24 (8.5) \\ 44 15 \\ = 2(P=0.52); l^2=0\% \\ 001) \\ 30 15.1 (7.3) 30 10.1 (3.3) \\ 30 30 30 \\ 26 40 (25) 25 40.3 (34) \\ 15 15 (10.1) 15 17.3 (16.6) \\ 41 40 \\ = 1(P=0.84); l^2=0\% \\ 3) \\ 129 131 35 (23) \\ 129 131 \\ 32 25 \\ 33 \\ 29 43 (30.2) 25 40.3 (34) \\ 32 25 \\ 31 \\ 44 40 \\ 45 \\ 41 40 \\ 46 \\ 41 \\ 40 \\ 40 \\ 41 \\ 40 \\ 40 \\ 41 \\ 40 \\ 40$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Analysis 1.20. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 20 Progessive sperm motility at 6 months (data not usable for meta-analysis).

Progessive sperm motility at 6 months (data not usable for meta-analysis)									
Study Intervention Control P value									
Combined antioxidants									
Micic 2017	Proxeed Plus Median = 31.0 (20.0 - 41.0) (n = 125) Median (interquartile range)	Placebo Median 29.0 (15.5 - 35.5) (n = 50) Median (interquartile range)	Not provided						

Antioxidants for male subfertility (Review)

Analysis 1.21. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 21 Progressive sperm motility at 9 months or more; type of antioxidant.

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
1.21.1 Carnitines							
Balercia 2005	15	30.2 (7.8)	5	23.2 (9)		33.34%	7[-1.82,15.82]
Balercia 2005	14	28.5 (8.3)	5	23.2 (9)		31.97%	5.3[-3.71,14.31]
Balercia 2005	15	34 (7)	5	23.2 (9)	-#-	34.69%	10.8[2.15,19.45]
Subtotal ***	44		15		•	100%	7.77[2.68,12.87]
Heterogeneity: Tau ² =0; Chi ² =0.7	9, df=2(P=0.6	7); I ² =0%					
Test for overall effect: Z=2.99(P=	0)						
1.21.2 Coenzyme Q10							
Balercia 2009	30	10.1 (3.2)	30	11 (3.8)	+	100%	-0.9[-2.68,0.88]
Subtotal ***	30		30		•	100%	-0.9[-2.68,0.88]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.99(P=	0.32)						
Test for subgroup differences: Cl	hi²=9.93, df=1	. (P=0), I ² =89.93%	6				
		Favo	urs place	bo/no treatm -100	-50 0 50	¹⁰⁰ Favours ant	ioxidant

Analysis 1.22. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 22 Progressive sperm motility over time.

Study or subgroup	Ant	ioxidant		cebo/no atment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
1.22.1 Progressive sperm m	otility at 3 mor	ths or less					
Attallah 2013	30	22.5 (11)	30	18.7 (7.8)	+	6.96%	3.8[-1.03,8.63]
Azizollahi 2013	26	48.6 (32.6)	9	34.1 (21.9)	++	3.21%	14.5[-4.52,33.52]
Azizollahi 2013	32	40.8 (35.6)	8	34.1 (20.6)		3.24%	6.7[-12.17,25.57]
Azizollahi 2013	29	37.9 (27.5)	8	34.1 (20.6)	 +	3.54%	3.8[-13.63,21.23]
Balercia 2005	15	34.9 (9.2)	5	22.3 (7.8)	-+-	6.03%	12.6[4.33,20.87]
Balercia 2005	14	33.9 (8.4)	5	22.3 (7.8)	-+-	6.07%	11.6[3.47,19.73]
Balercia 2005	15	38.9 (7.1)	5	22.3 (7.8)	-+-	6.19%	16.6[8.88,24.32]
Boonyarangkul 2015	15	20.4 (15.4)	15	18.1 (13.4)	-+	5.41%	2.3[-8.03,12.63]
Cyrus 2015	46	54.5 (18.3)	69	44.9 (21.4)	-	6.31%	9.6[2.29,16.91]
Dawson 1990	10	94 (32)	5	49 (25.3)	·	1.75%	45[15.25,74.75]
Dawson 1990	10	51 (22.1)	5	49 (25.3)		2.13%	2[-24.07,28.07]
Haghighian 2015	23	33.5 (2.9)	21	27.1 (2.4)	•	7.5%	6.4[4.83,7.97]
Martinez-Soto 2010	21	37.8 (3.2)	15	44.4 (2.8)	*	7.46%	-6.6[-8.57,-4.63]
Mehni 2014	51	24.6 (1.5)	59	3.3 (2.7)	+	7.55%	21.3[20.5,22.1]
Morgante 2010	90	40.3 (6.4)	90	25.1 (4.2)	•	7.5%	15.2[13.62,16.78]
Nadjarzadeh 2011	23	28.9 (14.8)	24	24.3 (13.6)	-+-	6.07%	4.6[-3.54,12.74]
Peivandi 2010	15	30 (0.2)	15	9 (0.9)	•	7.57%	21[20.53,21.47]
Rolf 1999	15	34.1 (11.8)	16	33.9 (16.3)	-	5.51%	0.2[-9.77,10.17]
Subtotal ***	480		404		•	100%	9.75[5.26,14.24]
Heterogeneity: Tau ² =69.33; C	hi²=1113.92, df=	17(P<0.0001); I ² :	=98.47%				
Test for overall effect: Z=4.25	(P<0.0001)						
			Favou	rs antioxidant -100	-50 0 50	100 Fayours pla	cebo/no treatm

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Ant	ioxidant		icebo/no eatment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
1.22.2 Progressive sperm mot	ility at 6 mor	nths					
Azizollahi 2013	32	42.3 (23.2)	8	40.3 (19.2)		7.34%	2[-13.54,17.54]
Azizollahi 2013	26	40 (25)	9	40.3 (20.4)	_ 	6.87%	-0.3[-16.73,16.13]
Azizollahi 2013	29	43 (30.2)	8	40.3 (19.2)		6.47%	2.7[-14.56,19.96]
Balercia 2005	15	43.8 (7.1)	5	24 (8.5)	-+-	12.51%	19.8[11.53,28.07]
Balercia 2005	15	37.5 (9.2)	5	24 (8.5)	-+-	12.08%	13.5[4.71,22.29]
Balercia 2005	14	38.1 (8.2)	5	24 (8.5)		12.23%	14.1[5.5,22.7]
Balercia 2009	30	15.1 (7.3)	30	10.1 (3.3)	+	16.56%	5[2.13,7.87]
Blomberg Jensen 2018	129	31 (23)	131	35 (23)	-+	14.73%	-4[-9.59,1.59]
Boonyarangkul 2015	15	15 (10.1)	15	17.3 (16.6)	-+-	11.22%	-2.3[-12.13,7.53]
Subtotal ***	305		216		•	100%	6.11[0.57,11.66]
Heterogeneity: Tau ² =46.24; Chi ²	² =32.84, df=8(P<0.0001); I ² =75.	64%				
Test for overall effect: Z=2.16(P=	=0.03)						
1.22.3 Progressive sperm mot	ility at 9 mor	ths or more					
Balercia 2005	15	30.2 (7.8)	5	23.2 (9)	+	21.41%	7[-1.82,15.82]
Balercia 2005	14	28.5 (8.3)	5	23.2 (9)		21.03%	5.3[-3.71,14.31]
Balercia 2005	15	34 (7)	5	23.2 (9)		21.77%	10.8[2.15,19.45]
Balercia 2009	30	10.1 (3.2)	30	11 (3.8)		35.79%	-0.9[-2.68,0.88]
Subtotal ***	74		45		•	100%	4.64[-1.67,10.95]
Heterogeneity: Tau ² =28.11; Chi ²	² =10.72, df=3(P=0.01); I ² =72.02	%				
Test for overall effect: Z=1.44(P=	=0.15)						
Test for subgroup differences: C	chi²=1.99, df=1	L (P=0.37), I ² =0%					

Analysis 1.23. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 23 Sperm concentration at 3 months or less; type of antioxidant.

Study or subgroup	Ant	ioxidant		cebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI
1.23.1 Carnitines							
Balercia 2005	15	39.3 (18.1)	5	31.4 (12.9)	++	13.67%	7.9[-6.65,22.45]
Balercia 2005	15	41 (17.3)	5	31.4 (12.9)	++	13.82%	9.6[-4.7,23.9]
Balercia 2005	14	36.9 (19.7)	5	31.4 (12.9)		13.21%	5.5[-9.81,20.81]
Dimitriadis 2010	26	15.4 (6.7)	22	16.3 (7)	+	19.57%	-0.9[-4.8,3]
Mehni 2014	51	9.3 (1.7)	59	0.8 (1.8)	•	20.23%	8.5[7.85,9.15]
Peivandi 2010	15	46 (3.6)	15	16.5 (7.3)	-+-	19.5%	29.5[25.39,33.61]
Subtotal ***	136		111		◆	100%	10.43[0.99,19.87]
Heterogeneity: Tau ² =114.47; Chi ² =1	.22.45, df=	5(P<0.0001); I ² =9	95.92%				
Test for overall effect: Z=2.17(P=0.0)	3)						
1.23.2 Coenzyme Q10							
Nadjarzadeh 2011	23	16.1 (12.9)	24	16.2 (27.7)		100%	-0.1[-12.37,12.17]
Subtotal ***	23		24		\bullet	100%	-0.1[-12.37,12.17]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.02(P=0.9)	9)						
1.23.3 Folic acid							
		Favo	urs place	bo/no treatm -5	0 -25 0 25	⁵⁰ Favours ant	ioxidant

Antioxidants for male subfertility (Review)

Study or subgroup	Ant	ioxidant		cebo/no atment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
Azizollahi 2013	26	46.8 (42.3)	25	24.6 (22)		57.04%	22.2[3.8,40.
Boonyarangkul 2015	15	66.6 (29.8)	15	76.2 (50.7)		42.96%	-9.6[-39.36,20.1
Subtotal ***	41		40			100%	8.54[-22.31,39.3
Heterogeneity: Tau ² =346.25; Chi ² =3.1	.7, df=1(P=0.07); I ² =68.48	%				
Test for overall effect: Z=0.54(P=0.59)							
1.23.4 Magnesium							
Zavaczki 2003	10	16.1 (10.2)	10	10.9 (7.4)		100%	5.2[-2.61,13.0
Subtotal ***	10		10		◆	100%	5.2[-2.61,13.0]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.3(P=0.19)							
1.23.5 N-acetylcysteine (NAC)							
Attallah 2013	30	36.6 (9.2)	30	31.9 (10.6)	+	93.82%	4.7[-0.32,9.7]
Barekat 2016	15	45.4 (27.5)	20	42.4 (31.4)		6.18%	3[-16.57,22.5]
Subtotal ***	45		50		◆	100%	4.59[-0.27,9.4
Heterogeneity: Tau²=0; Chi²=0.03, df=	=1(P=0.8	7); I ² =0%					
Test for overall effect: Z=1.85(P=0.06)							
1.23.6 PUFAs							
Conquer 2000	10	44.6 (41.1)	5	43.1 (40.5)		- 0.16%	1.5[-42.19,45.1
Conquer 2000	9	37.8 (36.9)	4	43.1 (40.5) —	+	0.14%	-5.3[-51.74,41.1
Haghighian 2015	23	26.4 (3.2)	21	22.9 (2.7)	+	98.71%	3.5[1.76,5.2
Martinez-Soto 2010	21	29.1 (26.4)	15	30.5 (26.2)		0.99%	-1.4[-18.82,16.0
Subtotal ***	63		45		•	100%	3.44[1.7,5.1]
Heterogeneity: Tau²=0; Chi²=0.44, df=	=3(P=0.9	3); I ² =0%					
Test for overall effect: Z=3.89(P=0)							
1.23.7 Selenium							
Scott 1998	16	48.7 (35.2)	9	27.5 (42.4)		100%	21.2[-11.43,53.83
Subtotal ***	16		9			100%	21.2[-11.43,53.83
Heterogeneity: Not applicable							
Test for overall effect: Z=1.27(P=0.2)							
1.23.8 Vitamin C							
Cyrus 2015	46	58.4 (24.3)	69	48.7 (27.8)		100%	9.7[0.09,19.3
Subtotal ***	46		69		•	100%	9.7[0.09,19.3
Heterogeneity: Not applicable							
Test for overall effect: Z=1.98(P=0.05)							
1.23.9 Vitamin C + Vitamin E							
Greco 2005	32	27.5 (24.6)	32	20.3 (21.2)	+ ∎	49.63%	7.2[-4.05,18.4
Rolf 1999	15	20.6 (13.5)	16	25 (17.8)	— — —	50.37%	-4.4[-15.48,6.6
Subtotal ***	47		48		-	100%	1.36[-10.01,12.7
Heterogeneity: Tau ² =34.83; Chi ² =2.07	, df=1(P	=0.15); I ² =51.76%	, D				
Test for overall effect: Z=0.23(P=0.82)							
1.23.10 Vitamin E							
Ener 2016	22	49.5 (27.9)	23	30.6 (23)		100%	18.9[3.92,33.8
Subtotal ***	22		23			100%	18.9[3.92,33.8
Heterogeneity: Not applicable							

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Study or subgroup	Antioxidant			icebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI
Test for overall effect: Z=2.47(P=0.01	.)						
1.23.11 Zinc							
Azizollahi 2013	32	41.5 (40.2)	25	24.6 (22)		14.17%	16.9[0.52,33.28
Sharifzadeh 2016	51	17.2 (13.5)	49	9.8 (8.9)		85.83%	7.4[2.93,11.87
Subtotal ***	83		74		•	100%	8.75[2.25,15.24
Heterogeneity: Tau ² =7.6; Chi ² =1.2, d	f=1(P=0.2	27); l ² =16.84%					
Test for overall effect: Z=2.64(P=0.01	.)						
1.23.12 Zinc + Folic acid							
Azizollahi 2013	29	42.6 (39.9)	25	24.6 (22)		100%	18[1.11,34.89
Subtotal ***	29		25			100%	18[1.11,34.89
Heterogeneity: Not applicable							
Test for overall effect: Z=2.09(P=0.04)						
1.23.13 Combined antioxidants							
Gopinath 2013	43	24.9 (7)	18	14.9 (5.9)	+	29.77%	10[6.56,13.44
Gopinath 2013	46	26.4 (8.9)	18	14.9 (5.9)	-	29.51%	11.5[7.75,15.25
Morgante 2010	90	18.2 (3.5)	90	19.1 (3)	•	31.13%	-0.9[-1.85,0.05
Scott 1998	30	34 (34.5)	9	27.5 (30)		9.59%	6.5[-16.66,29.66
Subtotal ***	209		135		•	100%	6.71[-1.91,15.33
Heterogeneity: Tau ² =61.89; Chi ² =71.	01, df=3(P<0.0001); I ² =95.	.78%				
Test for overall effect: Z=1.53(P=0.13	:)						
Test for subgroup differences: Chi ² =	13.93, df=	=1 (P=0.31), I ² =13	8.84%				
Test for subgroup differences: Chi ² =	13.93, df=			bo/no treatm -5	0 -25 0 25 5	50 Favours ant	ioxidant

Analysis 1.24. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 24 Sperm concentration at 3 months or less (data not suitable for meta analysis).

Sperm concentration at 3 months or less (data not suitable for meta analysis)

Study	Intervention	Control	P value
	Ca	arnitines	
Cavallini 2004	L-carnitine + Acetyl-carnitine Median = 20.9 (n = 39) Interquartile range = 25.6 - 14.8	Placebo Median = 12.3 (n = 47) Interquartile range = 16.0 - 9.1	Not provided
Lenzi 2003	L-carnitine Mean = 9 (1st phase data) (n = 43) No SD given	Placebo Mean = 5.3 (n = 43) No SD given	P = 0.03
	v	itamin E	
Kessopoulou 1995	Vitamin E Median = -15 (n = 15) Min/max = -58 - 59	Placebo Median = 0 (n = 15) Min/max = -37 - 160	Not provided
	F	olic acid	
Raigani 2014	Folic acid Median 15 (9.7 - 24) (n = 20) Median (25th - 75th percentile) 16 weeks	Placebo Median 12 (7.5 - 27.3) Median (25th - 75th percentile) 16 weeks	Not provided
		Zinc	
Raigani 2014	Zinc Median 13.2 (7 - 27) (n = 24) Median (25th - 75th percentile) 16 weeks	Placebo Median 12 (7.5 - 27.3) Median (25th - 75th percentile) 16 weeks	Not provided
	Folic	: acid + Zinc	
Raigani 2014	Folic acid + Zinc Median 10.5 (8.06 - 17.7) (n = 21)	Placebo Median 12 (7.5 - 27.3)	Not provided

Sperm concentration at 3 months or less (data not suitable for meta analysis)								
Study	Intervention	Control	P value					
	Median (25th - 75th percentile) 16 weeks	Median (25th - 75th percentile) 16 weeks						
	Combined	antioxidants						
Gamidov 2017	SpermActin-forte (acetyl-L-carnitine, L-carnitine fumarate and alpha-lipoic acid) Median = 26.5 (2.3 - 48) Median (interquartile range)	No treatment Median = 22 (11.5 - 26.6) Median (interquartile range)	Not provided					
Gamidov 2017	SpermActin-forte + Vitamin complex 'Man's formula' Median = 23.5 (10 -34.5) (n = 38) Median (interquartile range)	No treatment Median = 22 (11.5 - 26.6) (n = 38) Median (interquartile range)	Not provided					

Analysis 1.25. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 25 Sperm concentration at 6 months; type of antioxidant.

		•			<i>,</i> , ,		
Study or subgroup	An	tioxidant		acebo/no eatment	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI
1.25.1 Carnitines							
Balercia 2005	15	45.5 (21.4)	5	33.7 (14.4)		11.86%	11.8[-4.83,28.43]
Balercia 2005	15	39.6 (20)	5	33.7 (14.4)		12.53%	5.9[-10.28,22.08]
Balercia 2005	14	37.4 (16.4)	5	33.7 (14.4)		14.07%	3.7[-11.57,18.97]
Lenzi 2004	30	22.1 (9.1)	26	22.2 (17)		61.54%	-0.1[-7.4,7.2]
Subtotal ***	74		41		•	100%	2.6[-3.13,8.33]
Heterogeneity: Tau ² =0; Chi ² =1.88,	df=3(P=0.6	5); I ² =0%					
Test for overall effect: Z=0.89(P=0.3	37)						
1.25.2 Coenzyme Q10							
Balercia 2009	30	44.9 (19.3)	30	46.4 (19.8)	+	18.39%	-1.5[-11.39,8.39]
Safarinejad 2009a	98	26.4 (4.4)	96	20.8 (4.3)	-	40.78%	5.6[4.38,6.82]
Safarinejad 2012	112	28.7 (4.6)	113	16.8 (4.4)	-	40.83%	11.9[10.72,13.08]
Subtotal ***	240		239		•	100%	6.87[1.18,12.55]
Heterogeneity: Tau ² =20.22; Chi ² =5	7.08, df=2(P<0.0001); I ² =96	.5%				
Test for overall effect: Z=2.37(P=0.0	02)						
1.25.3 Folic acid							
Azizollahi 2013	26	49.1 (16.8)	25	29.9 (6.6)		60.1%	19.2[12.24,26.16]
Boonyarangkul 2015	15	53.3 (22.8)	15	76.1 (70.8)		39.9%	-22.8[-60.44,14.84]
Subtotal ***	41		40			100%	2.44[-37.87,42.75]
Heterogeneity: Tau ² =691.29; Chi ² = Test for overall effect: Z=0.12(P=0.9		P=0.03); I ² =78.38	3%				
1.25.4 N-acetylcysteine (NAC)							
Safarinejad 2009	105	26.8 (5.3)	106	23.5 (5.8)	+	100%	3.3[1.8,4.8]
Subtotal ***	105		106		•	100%	3.3[1.8,4.8]
Heterogeneity: Tau ² =0; Chi ² =0, df=	0(P<0.000	1); I ² =100%					
Test for overall effect: Z=4.31(P<0.0	0001)						
1.25.5 Selenium							
Safarinejad 2009	105	27.6 (6.4)	106	23.5 (5.8)	+	100%	4.1[2.45,5.75]
Subtotal ***	105		106		•	100%	4.1[2.45,5.75]
Heterogeneity: Not applicable							
		Favo	ours place	ebo/no treatm	-20 -10 0 10 20	Favours ant	ioxidant

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

		tre	cebo/no atment	Mean Difference	Weight	Mean Difference
Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
01)						
e (NAC)						
104	32.1 (6.8)	106	23.5 (5.8)	+	100%	8.6[6.89,10.31]
104		106		•	100%	8.6[6.89,10.31]
01)						
22	53.9 (22)	23	48 (34.2)		- 100%	5.9[-10.83,22.63]
22		23			100%	5.9[-10.83,22.63]
)						
32	39.6 (30.5)	25	29.9 (33)		100%	9.7[-7,26.4]
32		25			100%	9.7[-7,26.4]
)						
29	47.6 (40.4)	25	29.9 (33)		100%	17.7[-1.88,37.28]
29		25			100%	17.7[-1.88,37.28]
)						
52	51.4 (13.9)	52	43.7 (13.6)	 − ∎ −	32.25%	7.7[2.41,12.99]
43	31.7 (9.7)	18	15.9 (7.7)		- 34.68%	15.8[11.21,20.39]
46	33.2 (12.4)	18	15.9 (7.7)		- 33.07%	17.3[12.25,22.35]
141		88		•	100%	13.68[8.06,19.31]
9, df=2(P	=0.02); l ² =73.98%	6				
01)						
34.67, df=	=1 (P<0.0001), I ² =	74.04%				
	104 101) 22 22 22 32 32 32 32 32 32 32	e (NAC) 104 32.1 (6.8) 104 104 101) 22 53.9 (22) 22 32 339.6 (30.5) 32 32 32 39.6 (30.5) 32 32 32 30 47.6 (40.4) 29 47.6 (40.4) 29 43 31.7 (9.7) 46 33.2 (12.4) 141 9, df=2(P=0.02); l ² =73.989 101 34.67, df=1 (P<0.0001), l ² =	e (NAC) 104 32.1 (6.8) 106 104 106 104 106 101) 22 53.9 (22) 23 22 23 32 39.6 (30.5) 25 32 39.6 (30.5) 25 32 25 32 25 32 39.6 (30.5) 25 32 25 32 25 32 39.6 (30.5) 25 32 25 32 39.6 (30.5) 25 32 39.6 (30.5) 25 32 39 25 33 31.7 (9.7) 18 46 33.2 (12.4) 18 141 88 9 9 df=2(P=0.02); l ² =73.98% 101	e (NAC) 104 32.1 (6.8) 106 23.5 (5.8) 104 106 101) 22 53.9 (22) 23 48 (34.2) 22 23 32 39.6 (30.5) 25 29.9 (33) 32 25 29 47.6 (40.4) 25 29.9 (33) 29 47.6 (40.4) 25 29.9 (33) 29 25 52 51.4 (13.9) 52 43.7 (13.6) 43 31.7 (9.7) 18 15.9 (7.7) 46 33.2 (12.4) 18 15.9 (7.7) 141 88 9, df=2(P=0.02); l ² =73.98% 101	e (NAC) 104 $32.1 (6.8)$ 106 $23.5 (5.8)104$ 106104 10610122 $53.9 (22)$ 23 $48 (34.2)22$ 2332 $39.6 (30.5)$ 25 $29.9 (33)32$ $39.6 (30.5)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 25 $29.9 (33)29$ $47.6 (40.4)$ 155 $29.9 (33)29$ $47.6 (40.4)$ 455 $29.9 (33)29$ $47.6 (40.4)$ 455 $29.9 (33)46$ $33.2 (12.4)$ 18 $15.9 (7.7)46$ $33.2 (12.4)$ 18 $15.9 (7.7)141$ $889, df=2(P=0.02); l^2=73.98\%(01)34.67, df=1 (P<0.0001), l^2=74.04\%$	e (NAC) 104 32.1 (6.8) 106 23.5 (5.8) 104 106 106 100% 109% 100%

Analysis 1.26. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 26 Sperm concentration at 6 months(data not suitable for meta analysis).

Sperm concentration at 6 months(data not suitable for meta analysis)

Study	Intervention	Control	P value
		Carnitines	
Cavallini 2004	L-carnitine + Acetyl-carniitne Median = 20.6 (n = 39) Interquartile range = 24.9 - 15.1	Placebo Median = 10.9 (n = 47) Interquartile range = 15.1 - 9.0	Not provided
		Folic acid	
Wong 2002	Folic acid Median = 14 (n = 22) Range = 0.9 - 130	Placebo Median = 9 (n = 25) Range = 0.8 - 80	Not provided
		Zinc	
Wong 2002	Zinc Median = 16 (n = 23)	Placebo Median = 9 (n = 25)	Not provided

Antioxidants for male subfertility (Review)

	Sperm concentration at 6 mon	ths(data not suitable for meta analysis)	
Study	Intervention	Control	P value
	Range = 0.6 - 80	Range = 0.8 - 80	
	Zine	: + Folic acid	
Wong 2002	Zinc + Folic acid	Placebo	Not provided
	Median = 12 (n = 24)	Median = 9 (n = 25)	
	Range = 0.5 - 180	Range = 0.8 - 80	
	Vitam	in D + Calcium	
Blomberg Jensen 2018	Vitamin D + Calcium	Placebo	Not provided
-	Median = 12.8 (n = 133)	Median = 13.3 (n = 136)	
	25th, 75th percentiles = 3.4, 32.3	25th, 75th percentiles = 4.2, 38.5	
	At 5 months.	At 5 months	

Analysis 1.27. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 27 Sperm concentration at 9 months; type of antioxidant.

Study or subgroup		ours place- no treatm		acebo/no eatment	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
1.27.1 Carnitines							
Balercia 2005	15	31.2 (8.6)	5	30.1 (9.3)		40.57%	1.1[-8.14,10.34]
Balercia 2005	15	39.4 (13.9)	5	30.1 (9.3)		29.88%	9.3[-1.47,20.07]
Balercia 2005	14	33.3 (13.6)	5	30.1 (9.3)		29.56%	3.2[-7.63,14.03]
Subtotal ***	44		15			100%	4.17[-1.71,10.06]
Heterogeneity: Tau ² =0; Chi ² =1.33, d	f=2(P=0.5	2); I ² =0%					
Test for overall effect: Z=1.39(P=0.1)	6)						
1.27.2 Coenzyme Q10							
Balercia 2009	30	44.2 (20.4)	30	49.6 (20.5)		12.5%	-5.4[-15.75,4.95]
Safarinejad 2009a	98	22.8 (3.8)	96	21.2 (3.8)	=	43.71%	1.6[0.53,2.67]
Safarinejad 2012	112	22.4 (4.2)	113	16.2 (3.7)	-	43.79%	6.2[5.17,7.23]
Subtotal ***	240		239			100%	2.74[-1.57,7.05]
Heterogeneity: Tau ² =10.74; Chi ² =39	.85, df=2(P<0.0001); I ² =94	.98%				
Test for overall effect: Z=1.25(P=0.2	1)						
1.27.3 Vitamin E							
Ener 2016	22	58.6 (20.2)	23	47.2 (27.2)		100%	11.4[-2.56,25.36]
Subtotal ***	22		23			100%	11.4[-2.56,25.36]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.6(P=0.11))						
Test for subgroup differences: Chi ² =	=1.38, df=1	L (P=0.5), I ² =0%					
		Favo	ours place	ebo/no treatm -2	0 -10 0 10	²⁰ Favours ant	ioxidant

Analysis 1.28. Comparison 1 Antioxidant(s) versus placebo or no treatment, Outcome 28 Sperm concentration over time.

Study or subgroup	Ant	ioxidant		cebo/no atment		Mea	an Differer	nce		Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)		Ran	idom, 95%	CI			Random, 95% CI
1.28.1 Sperm concentration	at 3 months or	less									
Attallah 2013	30	36.6 (9.2)	30	31.9 (10.6)			+-			5.78%	4.7[-0.32,9.72]
Azizollahi 2013	26	46.8 (42.3)	9	24.6 (13.2)						2.15%	22.2[3.8,40.6]
		Favo	urs place	bo/no treatm	-40	-20	0	20	40	Favours antioxi	dant

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

N Azizollahi 2013 29 Azizollahi 2013 32 Balercia 2005 15 Balercia 2005 14 Barekat 2016 15 Boonyarangkul 2015 15 Conquer 2000 10 Cyrus 2015 46 Dimitriadis 2010 26 Ener 2016 22 Gopinath 2013 46 Gopinath 2013 43 Greco 2005 32 Haghighian 2015 33 Martinez-Soto 2010 21 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Soctt 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=27 Test for overall effect: Z=4.49(P<0.0001) Subtotal *** 680 Balercia 2005 15 Balercia 2005 1	Mean(SD) 42.6 (39.9) 41.5 (40.2) 39.3 (18.1) 41 (17.3) 36.9 (19.7) 45.4 (27.5) 66.6 (29.8) 44.6 (41.1) 58.4 (24.3) 15.4 (6.7) 49.5 (27.9) 26.4 (8.9) 24.9 (7) 27.5 (24.6) 26.4 (3.2) 29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2) 4(P<0.0001); I ² = 4	N 8 5 5 20 15 9 69 22 23 18 18 32 21 15 59 90 24 15 59 90 24 15 59 90 24 15 59 90 24 15 59 90 24 25 59 90 24 25 59 90 25 59 90 26 20 20 20 20 20 20 20 20 20 20	Mean(SD) 24.6 (12.4) 24.6 (12.4) 31.4 (12.9) 31.4 (12.9) 31.4 (12.9) 42.4 (31.4) 76.2 (50.7) 43.1 (40.5) 48.7 (27.8) 16.3 (7) 30.6 (23) 14.9 (5.9) 20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4) 10.9 (7.4)	Random, 95% CI	2.41% 2.51% 2.88% 2.94% 2.72% 1.97% 1.03% 6.19% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85% 100%	Random, 95% CI 18[1.13,34.87 16.9[0.53,33.27 7.9]-6.65,22.45 9.6[-4.7,23.9 5.5[-9.81,20.81 3[-16.57,22.57 -9.6[-39.36,20.16 1.5[-35.23,38.23 9.7[0.09,19.31 -0.9[-4.8,3 18.9[3.92,33.88 11.5[7.75,15.25 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01 7.51[4.23,10.79
Azizollahi 2013 32 Balercia 2005 15 Balercia 2005 14 Barekat 2016 15 Boonyarangkul 2015 10 Conquer 2000 10 Cyrus 2015 46 Dimitriadis 2010 22 Gopinath 2013 43 Gopinath 2013 43 Goreco 2005 32 Haghighian 2015 33 Martinez-Soto 2010 21 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, d=2-2 Test for overall effect: Z=4.49(P<0.0001) 21 Azizollahi 2013 29 Azizollahi 2013 29 Azizollahi 2013 21 Azizollahi 2013 21 Balercia 2005 15 Balercia 2005 14 Balercia 2005 14 Balercia 2005 14	$\begin{array}{c} 41.5 (40.2) \\ 39.3 (18.1) \\ 41 (17.3) \\ 36.9 (19.7) \\ 45.4 (27.5) \\ 66.6 (29.8) \\ 44.6 (41.1) \\ 58.4 (24.3) \\ 15.4 (6.7) \\ 49.5 (27.9) \\ 26.4 (8.9) \\ 24.9 (7) \\ 27.5 (24.6) \\ 26.4 (3.2) \\ 29.1 (4.5) \\ 9.3 (1.7) \\ 18.2 (3.5) \\ 16.1 (12.9) \\ 46 (3.6) \\ 20.6 (13.5) \\ 48.7 (35.2) \\ 16.1 (10.2) \end{array}$	8 5 20 15 9 69 22 23 18 18 32 21 15 59 90 24 15 16 18 10 554	$\begin{array}{c} 24.6 (12.4) \\ 31.4 (12.9) \\ 31.4 (12.9) \\ 31.4 (12.9) \\ 42.4 (31.4) \\ 76.2 (50.7) \\ 43.1 (40.5) \\ 48.7 (27.8) \\ 16.3 (7) \\ 30.6 (23) \\ 14.9 (5.9) \\ 14.9 (5.9) \\ 20.3 (21.2) \\ 22.9 (2.7) \\ 30.5 (4.9) \\ 0.8 (1.8) \\ 19.1 (3) \\ 16.2 (27.7) \\ 16.5 (7.3) \\ 25 (17.8) \\ 27.5 (42.4) \end{array}$		2.51% 2.88% 2.94% 2.72% 1.97% 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.65% 3.45% 6.66% 3.45% 6.06% 3.79% 1.28% 4.85%	$\begin{array}{c} 16.9[0.53,33.27\\ 7.9[-6.65,22.45\\ 9.6[-4.7,23.9\\ 5.5[-9.81,20.81\\ 3[-16.57,22.57\\ -9.6[-39.36,20.16\\ 1.5[-35.23,38.23\\ 9.7[0.09,19.31\\ -0.9[-4.8,3\\ 18.9[3.92,33.88\\ 11.5[7.75,15.25\\ 10[6.56,13.44\\ 7.2[-4.05,18.45\\ 3.5[1.76,5.24\\ -1.4[-4.54,1.74\\ 8.5[7.85,9.15\\ -0.9[-1.85,0.05\\ -0.1[-12.37,12.17\\ 29.5[25.39,33.61]\\ -4.4[-15.48,6.68\\ 21.2[-4.9,47.3\\ 5.2[-2.61,13.01\\ -1.4[-4.54,1.74\\ -1.4[-4.54,1.54]\\ -1.4[-4.54,1.54]\\ -1.4[-15.48,6.68]\\ -1.4[-15.48,6.68\\ -1.2[-4.9,47.3\\ -1.2[-4.9,47.3]\\ -5.2[-2.61,13.01\\ -1.4[-2.51,13.01\\ -$
Balercia 2005 Balercia 2005 Balercia 2005 Banekat 2016 Banekat 2016 Boonyarangkul 2015 Conquer 2000 Cyrus 2015 Conquer 2016 Copinath 2013 Gopinath 2013 Gopinath 2013 Greco 2005 Haghighian 2015 Martinez-Soto 2010 Madjarzadeh 2011 Peivandi 2010 Nadjarzadeh 2011 Peivandi 2010 Subtotal *** Azizollahi 2013 Azizollahi 2013 Azizollahi 2013 Balercia 2005 Balercia	$\begin{array}{c} 39.3(18.1)\\ 41(17.3)\\ 36.9(19.7)\\ 45.4(27.5)\\ 66.6(29.8)\\ 44.6(41.1)\\ 58.4(24.3)\\ 15.4(6.7)\\ 49.5(27.9)\\ 26.4(8.9)\\ 24.9(7)\\ 27.5(24.6)\\ 26.4(3.2)\\ 29.1(4.5)\\ 9.3(1.7)\\ 18.2(3.5)\\ 16.1(12.9)\\ 46(3.6)\\ 20.6(13.5)\\ 48.7(35.2)\\ 16.1(10.2)\\ \end{array}$	5 5 20 15 9 69 22 23 18 18 32 21 15 59 90 24 15 16 18 10 554	31.4 (12.9) 31.4 (12.9) 31.4 (12.9) 42.4 (31.4) 76.2 (50.7) 43.1 (40.5) 48.7 (27.8) 16.3 (7) 30.6 (23) 14.9 (5.9) 20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		2.88% 2.94% 2.72% 1.97% 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.65% 3.45% 6.66% 3.45% 6.06% 3.79% 1.28% 4.85%	7.9[-6.65,22.4! 9.6[-4.7,23.9 5.5[-9.81,20.8: 3[-16.57,22.57 -9.6[-39.36,20.10 1.5[-35.23,38.22 9.7[0.09,19.3: -0.9[-4.8,3 18.9[3.92,33.84 11.5[7.75,15.29 10[6.56,13.44 7.2[-4.05,18.4! 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.19 -0.9[-1.85,0.00 -0.1[-12.37,12.17 29.5[25.39,33.6] -4.4[-15.48,6.64 21.2[-4.9,47.3 5.2[-2.61,13.01]
Balercia 2005 Balercia 2005 Balercia 2005 Banekat 2016 Boonyarangkul 2015 Conquer 2000 Cyrus 2015 Conquer 2010 Cyrus 2016 Copinath 2013 Gopinath 2013 Gopinath 2013 Greco 2005 Haghighian 2015 Martinez-Soto 2010 Mehni 2014 Morgante 2010 Nadjarzadeh 2011 Peivandi 2010 Stott 1998 Scott 1998 Scott 1998 Stottotal *** Azizollahi 2013 Azizollahi 2013 Palercia 2005 Balercia 2005 Bale	$\begin{array}{c} 41(17.3)\\ 36.9(19.7)\\ 45.4(27.5)\\ 66.6(29.8)\\ 44.6(41.1)\\ 58.4(24.3)\\ 15.4(6.7)\\ 49.5(27.9)\\ 26.4(8.9)\\ 24.9(7)\\ 27.5(24.6)\\ 26.4(3.2)\\ 29.1(4.5)\\ 9.3(1.7)\\ 18.2(3.5)\\ 16.1(12.9)\\ 46(3.6)\\ 20.6(13.5)\\ 48.7(35.2)\\ 16.1(10.2)\\ \end{array}$	5 5 20 15 9 69 22 23 18 18 32 21 15 59 90 24 15 16 18 10 5 56 4	31.4 (12.9) 31.4 (12.9) 42.4 (31.4) 76.2 (50.7) 43.1 (40.5) 48.7 (27.8) 16.3 (7) 30.6 (23) 14.9 (5.9) 14.9 (5.9) 20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		2.94% 2.72% 1.97% 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.65% 3.45% 6.06% 3.45% 1.28% 4.85%	9.6[-4.7,23.5] 5.5[-9.81,20.81] 3[-16.57,22.57] -9.6[-39.36,20.16] 1.5[-35.23,38.22] 9.7[0.09,19.33] -0.9[-4.8,3] 18.9[3.92,33.86] 11.5[7.75,15.26] 10[6.56,13.44] 7.2[-4.05,18.46] 3.5[1.76,5.24] -1.4[-4.54,1.74] 8.5[7.85,9.15] -0.9[-1.85,0.06] -0.1[-12.37,12.17] 29.5[25.39,33.61] -4.4[-15.48,6.66] 21.2[-4.9,47.3] 5.2[-2.61,13.01]
Balercia 2005 Balercia 2005 Barekat 2016 Boonyarangkul 2015 Conquer 2000 Cyrus 2015 Conjuer 2016 Copinath 2013 Gopinath 2013 Gopinath 2015 Gopinath 2014 Morgante 2010 Nadjarzadeh 2011 Peivandi 2010 Rolf 1999 Scott 1998 Scott 1998 Heterogeneity: Tau²=41.74; Chi²=453.49, degat Heterogeneity: Tau²=41.74; Chi²=453.49, degat Heterogeneity: Tau²=41.74; Chi²=453.49, degat Azizollahi 2013 Azizollahi 2013 Balercia 2005 Balercia 2005 Balercia 2005 Balercia 2009 Balercia 2009 Balercia 2009 Balercia 2009 Balercia 2009 Balercia 2009 Balercia 2005 Balercia 2	$\begin{array}{c} 36.9(19.7)\\ 45.4(27.5)\\ 66.6(29.8)\\ 44.6(41.1)\\ 58.4(24.3)\\ 15.4(6.7)\\ 49.5(27.9)\\ 26.4(8.9)\\ 24.9(7)\\ 27.5(24.6)\\ 26.4(3.2)\\ 29.1(4.5)\\ 9.3(1.7)\\ 18.2(3.5)\\ 16.1(12.9)\\ 46(3.6)\\ 20.6(13.5)\\ 48.7(35.2)\\ 16.1(10.2)\\ \end{array}$	5 20 15 9 69 22 23 18 32 21 15 59 90 24 15 16 18 10 5 56 4	31.4 (12.9) 42.4 (31.4) 76.2 (50.7) 43.1 (40.5) 48.7 (27.8) 16.3 (7) 30.6 (23) 14.9 (5.9) 14.9 (5.9) 20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		2.72% 1.97% 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.45% 1.28% 4.85%	5.5[-9.81,20.81 3[-16.57,22.57 -9.6[-39.36,20.16 1.5[-35.23,38.23 9.7[0.09,19.31 -0.9[-4.8,3] 18.9[3.92,33.86] 11.5[7.75,15.25] 10[6.56,13.44] 7.2[-4.05,18.45] 3.5[1.76,5.24] -1.4[-4.54,1.74] 8.5[7.85,9.15] -0.9[-1.85,0.05] -0.1[-12.37,12.17] 29.5[25.39,33.61] -4.4[-15.48,6.66] 21.2[-4.9,47.3] 5.2[-2.61,13.01]
Barekat 2016 15 Boonyarangkul 2015 16 Conquer 2000 20 Cyrus 2015 20 Dimitriadis 2010 20 Ener 2016 20 Gopinath 2013 43 Gopinath 2013 43 Greco 2005 20 Haghighian 2015 21 Martinez-Soto 2010 21 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 80 Heterogeneity: Tau ² =41.74; Chi ² =453.47 J Test for overall effect: Z=4.49(P<0.0001) 21 Azizollahi 2013 20 Azizollahi 2013 20 Azizollahi 2013 20 Balercia 2005 15 Balercia 2005 15 Balercia 2009 16 Balercia 2009 16	$\begin{array}{c} 45.4\ (27.5)\\ 66.6\ (29.8)\\ 44.6\ (41.1)\\ 58.4\ (24.3)\\ 15.4\ (6.7)\\ 49.5\ (27.9)\\ 26.4\ (8.9)\\ 24.9\ (7)\\ 27.5\ (24.6)\\ 26.4\ (3.2)\\ 29.1\ (4.5)\\ 9.3\ (1.7)\\ 18.2\ (3.5)\\ 16.1\ (12.9)\\ 46\ (3.6)\\ 20.6\ (13.5)\\ 48.7\ (35.2)\\ 16.1\ (10.2)\\ \end{array}$	20 15 9 69 22 23 18 32 21 15 59 90 24 15 16 18 10 554	$\begin{array}{c} 42.4 \ (31.4) \\ 76.2 \ (50.7) \\ 43.1 \ (40.5) \\ 48.7 \ (27.8) \\ 16.3 \ (7) \\ 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		 1.97% 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85% 	3[-16.57,22.57 -9.6[-39.36,20.16 1.5[-35.23,38.23 9.7[0.09,19.31 -0.9[-4.8,3 18.9[3.92,33.88 11.5[7.75,15.25 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61] -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01]
Boonyarangkul 2015 15 Conquer 2000 26 Cyrus 2015 26 Dimitriadis 2010 26 Ener 2016 27 Gopinath 2013 27 Gopinath 2013 23 Greco 2005 32 Haghighian 2015 23 Martinez-Soto 2010 21 Morgante 2010 20 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 16 Subtotal *** 880 Heterogeneity: Tau ² =41.74; Chi ² =453.49, Jefeer Test for overall effect: Z=4.49(P<0.001) 15 Azizollahi 2013 20 Azizollahi 2013 20 Balercia 2005 15 Balercia 2005 14 Balercia 2005 14 Balercia 2009 30 Bandri 2019 30	$\begin{array}{c} 66.6 (29.8) \\ 44.6 (41.1) \\ 58.4 (24.3) \\ 15.4 (6.7) \\ 49.5 (27.9) \\ 26.4 (8.9) \\ 24.9 (7) \\ 27.5 (24.6) \\ 26.4 (3.2) \\ 29.1 (4.5) \\ 9.3 (1.7) \\ 18.2 (3.5) \\ 16.1 (12.9) \\ 46 (3.6) \\ 20.6 (13.5) \\ 48.7 (35.2) \\ 16.1 (10.2) \end{array}$	15 9 69 22 23 18 32 21 15 59 90 24 15 16 18 10 564	$\begin{array}{c} 76.2 \ (50.7) \\ 43.1 \ (40.5) \\ 48.7 \ (27.8) \\ 16.3 \ (7) \\ 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		 1.03% 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85% 	-9.6[-39.36,20.16 1.5[-35.23,38.23 9.7[0.09,19.31 -0.9[-4.8,3 18.9[3.92,33.86 11.5[7.75,15.25 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Conjuer 2000 10 Cyrus 2015 46 Dimitriadis 2010 26 Ener 2016 22 Gopinath 2013 46 Gopinath 2013 43 Greco 2005 32 Haghighian 2015 23 Martinez-Soto 2010 21 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=2 Test for overall effect: Z=4.49(P<0.0001)	$\begin{array}{c} 44.6 \ (41.1) \\ 58.4 \ (24.3) \\ 15.4 \ (6.7) \\ 49.5 \ (27.9) \\ 26.4 \ (8.9) \\ 24.9 \ (7) \\ 27.5 \ (24.6) \\ 26.4 \ (3.2) \\ 29.1 \ (4.5) \\ 9.3 \ (1.7) \\ 18.2 \ (3.5) \\ 16.1 \ (12.9) \\ 46 \ (3.6) \\ 20.6 \ (13.5) \\ 48.7 \ (35.2) \\ 16.1 \ (10.2) \end{array}$	9 69 22 23 18 32 21 15 59 90 24 15 16 18 10 564	$\begin{array}{c} 43.1 \ (40.5) \\ 48.7 \ (27.8) \\ 16.3 \ (7) \\ 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		 0.71% 4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85% 	1.5[-35.23,38.23 9.7[0.09,19.31 -0.9[-4.8,3] 18.9[3.92,33.86] 11.5[7.75,15.25] 10[6.56,13.44] 7.2[-4.05,18.45] 3.5[1.76,5.24] -1.4[-4.54,1.74] 8.5[7.85,9.15] -0.9[-1.85,0.05] -0.1[-12.37,12.17] 29.5[25.39,33.61] -4.4[-15.48,6.66] 21.2[-4.9,47.3] 5.2[-2.61,13.01]
Cyrus 201546Dimitriadis 201026Ener 201622Gopinath 201343Goro 200532Haghighian 201521Martinez-Soto 201021Morgante 201090Nadjarzadeh 201123Peivandi 201015Scott 199816Zavaczki 200310Subtotal ***80Heterogeneity: Tau ² =41.74; Chi ² =453.49, dF=2Test for overall effect: Z=4.49(P<0.0001)	58.4 (24.3) $15.4 (6.7)$ $49.5 (27.9)$ $26.4 (8.9)$ $24.9 (7)$ $27.5 (24.6)$ $26.4 (3.2)$ $29.1 (4.5)$ $9.3 (1.7)$ $18.2 (3.5)$ $16.1 (12.9)$ $46 (3.6)$ $20.6 (13.5)$ $48.7 (35.2)$ $16.1 (10.2)$	69 22 23 18 32 21 15 59 90 24 15 16 18 10 564	$\begin{array}{c} 48.7 \ (27.8) \\ 16.3 \ (7) \\ 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		4.25% 6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.65% 3.45% 6.06% 3.45% 6.06% 3.79% 1.28% 4.85%	9.7[0.09,19.31 -0.9[-4.8,3 18.9[3.92,33.86 11.5[7.75,15.25 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61] -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01]
Dimitriadis 2010 26 Ener 2016 22 Gopinath 2013 46 Gopinath 2013 43 Greco 2005 32 Haghighian 2015 23 Martinez-Soto 2010 21 Mehni 2014 51 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scottl 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=27 Test for overall effect: Z=4.49(P<0.0001)	15.4 (6.7) $49.5 (27.9)$ $26.4 (8.9)$ $24.9 (7)$ $27.5 (24.6)$ $26.4 (3.2)$ $29.1 (4.5)$ $9.3 (1.7)$ $18.2 (3.5)$ $16.1 (12.9)$ $46 (3.6)$ $20.6 (13.5)$ $48.7 (35.2)$ $16.1 (10.2)$	22 23 18 32 21 15 59 90 24 15 16 18 10 564	$\begin{array}{c} 16.3 \ (7) \\ 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		6.11% 2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	-0.9[-4.8,3] 18.9[3.92,33.86] 11.5[7.75,15.25] 10[6.56,13.44] 7.2[-4.05,18.45] 3.5[1.76,5.24] -1.4[-4.54,1.74] 8.5[7.85,9.15] -0.9[-1.85,0.05] -0.1[-12.37,12.17] 29.5[25.39,33.61] -4.4[-15.48,6.66] 21.2[-4.9,47.3] 5.2[-2.61,13.01]
Ener 2016 22 Gopinath 2013 46 Gopinath 2013 43 Greco 2005 32 Haghighian 2015 23 Martinez-Soto 2010 21 Mehni 2014 51 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scottl 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=27 Test for overall effect: Z=4.49(P<0.0001)	49.5 (27.9) 26.4 (8.9) 24.9 (7) 27.5 (24.6) 26.4 (3.2) 29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	23 18 32 21 15 59 90 24 15 16 18 10 564	$\begin{array}{c} 30.6 \ (23) \\ 14.9 \ (5.9) \\ 14.9 \ (5.9) \\ 20.3 \ (21.2) \\ 22.9 \ (2.7) \\ 30.5 \ (4.9) \\ 0.8 \ (1.8) \\ 19.1 \ (3) \\ 16.2 \ (27.7) \\ 16.5 \ (7.3) \\ 25 \ (17.8) \\ 27.5 \ (42.4) \end{array}$		2.79% 6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	18.9[3.92,33.84 11.5[7.75,15.25 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.64 21.2[-4.9,47.3 5.2[-2.61,13.01
Gopinath 201346Gopinath 201333Greco 200532Haghighian 201533Martinez-Soto 201021Mehni 201451Morgante 201090Nadjarzadeh 201123Peivandi 201015Rolf 199915Scott 199816Zavaczki 200310Subtotal ***80Heterogeneity: Tau ² =41.74; Chi ² =453.494=20Test for overall effect: Z=4.49(P<0.0001)	26.4 (8.9) 24.9 (7) 27.5 (24.6) 26.4 (3.2) 29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	18 32 21 15 59 90 24 15 16 18 10 564	14.9 (5.9) 14.9 (5.9) 20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.15% 6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	11.5[7.75,15.29 10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.19 -0.9[-1.85,0.09 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Gopinath 2013 43 Gopinath 2013 32 Haghighian 2015 33 Martinez-Soto 2010 21 Mehni 2014 51 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, dependent Test for overall effect: Z=4.49(P<0.0001)	$\begin{array}{c} 24.9 \ (7) \\ 27.5 \ (24.6) \\ 26.4 \ (3.2) \\ 29.1 \ (4.5) \\ 9.3 \ (1.7) \\ 18.2 \ (3.5) \\ 16.1 \ (12.9) \\ 46 \ (3.6) \\ 20.6 \ (13.5) \\ 48.7 \ (35.2) \\ 16.1 \ (10.2) \end{array}$	18 32 21 15 59 90 24 15 16 18 10 564	14.9 (5.9) $20.3 (21.2)$ $22.9 (2.7)$ $30.5 (4.9)$ $0.8 (1.8)$ $19.1 (3)$ $16.2 (27.7)$ $16.5 (7.3)$ $25 (17.8)$ $27.5 (42.4)$		6.23% 3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	10[6.56,13.44 7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Greco 2005 32 Haghighian 2015 23 Martinez-Soto 2010 21 Mehni 2014 51 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=2 Test for overall effect: Z=4.49(P<0.0001)	27.5 (24.6) 26.4 (3.2) 29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	32 21 15 59 90 24 15 16 18 10 564	20.3 (21.2) 22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		3.74% 6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	7.2[-4.05,18.45 3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Haghighian 201523Martinez-Soto 201021Mehni 201451Morgante 201090Nadjarzadeh 201123Peivandi 201015Rolf 199915Scott 199816Zavaczki 200310Subtotal ***680Heterogeneity: Tau ² =41.74; Chi ² =453.49, dF=2-Test for overall effect: Z=4.49(P<0.0001)	26.4 (3.2) 29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	21 15 59 90 24 15 16 18 10 564	22.9 (2.7) 30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.57% 6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	3.5[1.76,5.24 -1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Martinez-Soto 2010 21 Mehni 2014 51 Morgante 2010 90 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=2 Test for overall effect: Z=4.49(P<0.0001) 1.28.2 Sperm concentration 6 months Azizollahi 2013 29 Azizollahi 2013 22 Azizollahi 2013 26 Balercia 2005 15 Balercia 2005 14 Balercia 2009 30 Boonyarangkul 2015 15	29.1 (4.5) 9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	15 59 90 24 15 16 18 10 564	30.5 (4.9) 0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.3% 6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	-1.4[-4.54,1.74 8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Mehni 201451Morgante 201090Nadjarzadeh 201123Peivandi 201015Rolf 199915Scott 199810Zavaczki 200380Heterogeneity: Tau²=41.74; Chi²=453.49, d=22Test for overall effect: Z=4.49(P<0.0001)	9.3 (1.7) 18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	59 90 24 15 16 18 10 564	0.8 (1.8) 19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.67% 6.65% 3.45% 6.06% 3.79% 1.28% 4.85%	8.5[7.85,9.15 -0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Morgante 201090Nadjarzadeh 201123Peivandi 201015Rolf 199915Scott 199810Zavaczki 200310Subtotal ***80Heterogeneity: Tau ² =41.74; Chi ² =453.49, degeTest for overall effect: Z=4.49(P<0.0001)	18.2 (3.5) 16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	90 24 15 16 18 10 564	19.1 (3) 16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.65% 3.45% 6.06% 3.79% ↓ 1.28% 4.85%	-0.9[-1.85,0.05 -0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Nadjarzadeh 2011 23 Nadjarzadeh 2011 23 Peivandi 2010 15 Rolf 1999 15 Scott 1998 16 Zavaczki 2003 10 Subtotal *** 680 Heterogeneity: Tau ² =41.74; Chi ² =453.49, df=2- Test for overall effect: Z=4.49(P<0.0001)	16.1 (12.9) 46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	24 15 16 18 10 564	16.2 (27.7) 16.5 (7.3) 25 (17.8) 27.5 (42.4)		3.45% 6.06% 3.79% 1.28% 4.85%	-0.1[-12.37,12.17 29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Perivandi 201015Rolf 199915Scott 199816Zavaczki 200310Subtotal ***680Heterogeneity: Tau²=41.74; Chi²=453.49, df=2.Test for overall effect: Z=4.49(P<0.0001)	46 (3.6) 20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	15 16 18 10 564	16.5 (7.3) 25 (17.8) 27.5 (42.4)		6.06% 3.79% 1.28% 4.85%	29.5[25.39,33.61 -4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Rolf 199915Scott 199816Zavaczki 200310Subtotal ***680Heterogeneity: Tau ² =41.74; Chi ² =453.49, dF=24Test for overall effect: Z=4.49(P<0.0001)	20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	16 18 10 564	25 (17.8) 27.5 (42.4)		3.79% 1.28% 4.85%	-4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Scott 199816Zavaczki 200310Subtotal ***680Heterogeneity: Tau²=41.74; Chi²=453.49, df=2-Test for overall effect: Z=4.49(P<0.0001)	20.6 (13.5) 48.7 (35.2) 16.1 (10.2)	18 10 564	25 (17.8) 27.5 (42.4)		 ▶ 1.28% 4.85% 	-4.4[-15.48,6.68 21.2[-4.9,47.3 5.2[-2.61,13.01
Zavaczki 200310Subtotal ***80Heterogeneity: Tau²=41.74; Chi²=453.49, d=24Test for overall effect: Z=4.49(P<0.0001)	48.7 (35.2) 16.1 (10.2)	10 564	27.5 (42.4)		4.85%	21.2[-4.9,47.3 5.2[-2.61,13.0]
Subtotal ***68Heterogeneity: Tau ² =41.74; Chi ² =453.49, JTest for overall effect: Z=4.49(P<0.0001)	16.1 (10.2)	564		•		5.2[-2.61,13.0]
Heterogeneity: Tau²=41.74; Chi²=453.49, df=2-Test for overall effect: Z=4.49(P<0.0001)				•	100%	
Heterogeneity: Tau²=41.74; Chi²=453.49, df=2-Test for overall effect: Z=4.49(P<0.0001)	4(P<0.0001); l ² =9	94.71%				
Azizollahi 201329Azizollahi 201332Azizollahi 201326Balercia 200515Balercia 200514Balercia 200930Boonyarangkul 201515						
Azizollahi 201332Azizollahi 201326Balercia 200515Balercia 200514Balercia 200930Boonyarangkul 201515						
Azizollahi 201326Balercia 200515Balercia 200514Balercia 200930Boonyarangkul 201515	47.6 (40.4)	8	29.9 (18.7)	+	1.65%	17.7[-1.88,37.28
Balercia 200515Balercia 200515Balercia 200514Balercia 200930Boonyarangkul 201515	39.6 (30.5)	8	29.9 (18.7)		2.15%	9.7[-7,26.4
Balercia 2005 15 Balercia 2005 14 Balercia 2009 30 Boonyarangkul 2015 15	49.1 (16.8)	9	29.9 (19.8)		2.69%	19.2[4.74,33.66
Balercia 2005 14 Balercia 2009 30 Boonyarangkul 2015 15	45.5 (21.4)	5	33.7 (14.4)		2.16%	11.8[-4.83,28.43
Balercia 200930Boonyarangkul 201515	39.6 (20)	5	33.7 (14.4)		2.26%	5.9[-10.28,22.08
Boonyarangkul 2015 15	37.4 (16.4)	5	33.7 (14.4)		2.47%	3.7[-11.57,18.97
	44.9 (19.3)	30	46.4 (19.8)	+	4.46%	-1.5[-11.39,8.39
Busetto 2018 52	53.3 (22.8)	15	76.1 (70.8)	← +	0.5%	-22.8[-60.44,14.84
Duscilo 2010 52	40.8 (18.2)	52	41.4 (17.9)		6.35%	-0.6[-7.54,6.34
Ener 2016 22	53.9 (22)	23	48 (34.2)		2.14%	5.9[-10.83,22.63
Gopinath 2013 46	33.2 (12.4)	18	15.9 (7.7)	-+	7.85%	17.3[12.25,22.35
Gopinath 2013 43	31.7 (9.7)	18	15.9 (7.7)	-+	8.24%	15.8[11.21,20.39
Lenzi 2004 30	22.1 (9.1)	26	22.2 (17)	-+	6.08%	-0.1[-7.4,7.2
Safarinejad 2009 105	26.8 (5.3)	35	23.5 (5.8)	-	10.04%	3.3[1.13,5.4]
Safarinejad 2009 104	32.1 (6.8)	35	23.5 (5.8)	+	9.95%	8.6[6.28,10.92
Safarinejad 2009 105	27.6 (6.4)	36	23.5 (5.8)	+	9.99%	4.1[1.84,6.36
Safarinejad 2009a 98	26.4 (4.4)	96	20.8 (4.3)	+	10.5%	5.6[4.38,6.82
Safarinejad 2012 112	28.7 (4.6)	113	16.8 (4.4)	+	10.51%	11.9[10.72,13.08
Subtotal *** 893		537		•	100%	7.49[4.76,10.23
Heterogeneity: Tau ² =18.18; Chi ² =131.48, df=1 [:] Test for overall effect: Z=5.37(P<0.0001)	7(P<0.0001); l ² =8	87.07%				
1.28.3 Sperm concentration at 9 months or						

Antioxidants for male subfertility (Review)

Study or subgroup	Ant	ioxidant		cebo/no atment		Mear	n Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)		Rand	lom, 95% CI		Random, 95% CI
Balercia 2005	15	39.4 (13.9)	5	30.1 (9.3)	_		+	7.75%	9.3[-1.47,20.07]
Balercia 2005	15	31.2 (8.6)	5	30.1 (9.3)		-		9.67%	1.1[-8.14,10.34]
Balercia 2005	14	33.3 (13.6)	5	30.1 (9.3)		-		7.68%	3.2[-7.63,14.03]
Balercia 2009	30	44.2 (20.4)	30	49.6 (20.5)			•	8.22%	-5.4[-15.75,4.95]
Ener 2016	22	58.6 (20.2)	23	47.2 (27.2)			+	5.12%	11.4[-2.56,25.36]
Safarinejad 2009a	98	22.8 (3.8)	96	21.2 (3.8)			•	30.76%	1.6[0.53,2.67]
Safarinejad 2012	112	22.4 (4.2)	113	16.2 (3.7)			-	30.81%	6.2[5.17,7.23]
Subtotal ***	306		277				•	100%	3.61[0.17,7.06]
Heterogeneity: Tau ² =9.76; Chi	² =42.28, df=6(P4	<0.0001); I ² =85.8	1%						
Test for overall effect: Z=2.06(P=0.04)								
		Favo	urs place	bo/no treatm	-40	-20	0 20	40 Favours ant	ioxidant

Comparison 2. Head-to-head antioxidant(s)

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
1 Live birth; type of antioxidant	1		Peto Odds Ratio (Peto, Fixed, 95% CI)	Subtotals only
1.1 L-carnitine vs L-acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.0 [0.13, 7.92]
1.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	0.34 [0.06, 1.79]
1.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	0.34 [0.06, 1.79]
2 Clinical pregnancy; type of antioxi- dant	2		Peto Odds Ratio (Peto, Fixed, 95% CI)	Subtotals only
2.1 L-carnitine vs L-acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	1.0 [0.13, 7.92]
2.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	0.34 [0.06, 1.79]
2.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Peto Odds Ratio (Peto, Fixed, 95% CI)	0.34 [0.06, 1.79]
2.4 Vitamin D + Calcium vs Vitamin E + Vitamin C	1	86	Peto Odds Ratio (Peto, Fixed, 95% CI)	5.13 [1.21, 21.79]
3 Total sperm motility at 3 months or less; type of antioxidant	8		Mean Difference (IV, Random, 95% CI)	Subtotals only
3.1 Docosahexaenoic acid (DHA) 400 mg vs Docosahexaenoic acid 800 mg	1	19	Mean Difference (IV, Random, 95% CI)	7.40 [-11.35, 26.15]
3.2 Ethylcysteine vs Vitamin E	1	10	Mean Difference (IV, Random, 95% CI)	-1.90 [-41.97, 38.17]

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
3.3 L-acetyl carnitine + L-carnitine vs Vitamin E + Vitamin C	1	138	Mean Difference (IV, Random, 95% CI)	23.10 [20.14, 26.06]
3.4 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	3.40 [-3.73, 10.53]
3.5 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	4.80 [-1.76, 11.36]
3.6 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	1.40 [-6.42, 9.22]
3.7 Selenium vs combined antioxi- dants	1	46	Mean Difference (IV, Random, 95% CI)	3.20 [-10.13, 16.53]
3.8 Vitamin C 200mg vs Vitamin C 1000mg	1	20	Mean Difference (IV, Random, 95% CI)	-43.0 [-67.10, -18.90]
3.9 Zinc vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-4.40 [-14.21, 5.41]
3.10 Zinc vs Zinc + Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-2.80 [-12.90, 7.30]
3.11 Zinc + Folic acid vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-0.60 [-7.73, 6.53]
3.12 Zinc vs Zinc + Vitamin E	1	18	Mean Difference (IV, Random, 95% CI)	-1.0 [-13.00, 13.00]
3.13 Zinc vs Zinc + Vitamin E + Vita- min C	1	12	Mean Difference (IV, Random, 95% CI)	-1.0 [-19.66, 17.66]
3.14 Zinc + Vitamin E vs Zinc + Vita- min E + Vitamin C	1	18	Mean Difference (IV, Random, 95% CI)	0.0 [-18.97, 18.97]
4 Total sperm motility at 6 months; type of antioxidant	3		Mean Difference (IV, Random, 95% CI)	Subtotals only
4.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	4.10 [-2.70, 10.90]
4.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	3.40 [-2.87, 9.67]
4.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	-0.70 [-7.73, 6.33]
4.4 N-acetylcysteine (NAC) vs Seleni- um + N-acetylcysteine (NAC)	1	234	Mean Difference (IV, Random, 95% CI)	-4.40 [-5.14, -3.66]
4.5 Selenium vs N-acetylcysteine (NAC)	1	234	Mean Difference (IV, Random, 95% CI)	1.30 [0.56, 2.04]

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size	
4.6 Selenium vs Selenium + N-acetyl- cysteine (NAC)	1	232	Mean Difference (IV, Random, 95% CI)	-3.10 [-3.85, -2.35]	
4.7 Zinc vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-1.70 [-6.42, 3.02]	
4.8 Zinc + Folic acid vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	0.90 [-5.46, 7.26]	
4.9 Zinc vs Zinc + Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-2.60 [-9.13, 3.93]	
5 Total sperm motility at 6 months (data not suitable for meta analysis)			Other data	No numeric data	
5.1 Folic acid vs Zinc + Folic acid			Other data	No numeric data	
5.2 Zinc vs Folic acid			Other data	No numeric data	
5.3 Zinc vs Zinc + Folic acid			Other data	No numeric data	
6 Total sperm motility at 9 months or more; type of antioxidant	1		Mean Difference (IV, Random, 95% CI)	Subtotals only	
6.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	3.70 [-1.69, 9.09]	
6.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	5.30 [-0.73, 11.33]	
6.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	1.60 [-3.29, 6.49]	
7 Progessive sperm motility at 3 months or less; type of antioxidant	5		Mean Difference (IV, Random, 95% CI)	Subtotals only	
7.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	4.0 [-1.88, 9.88]	
7.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	5.0 [-0.68, 10.68]	
7.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	1.0 [-5.41, 7.41]	
7.4 L-acetyl carnitine + L-carnitine vs Vitamin E + Vitamin C	1	138	Mean Difference (IV, Random, 95% CI)	13.30 [11.21, 15.39]	
7.5 L-carnitine vs Vitamin E + Vitamin C	1	63	Mean Difference (IV, Random, 95% CI)	30.50 [27.70, 33.30]	
7.6 L-carnitine + Vitamin E vs Vitamin E	1	113	Mean Difference (IV, Random, 95% CI)	14.10 [10.11, 18.09]	

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
7.7 Vitamin D + Calcium vs Vitamin E + Vitamin C	1	86	Mean Difference (IV, Random, 95% CI)	6.90 [5.38, 8.42]
8 Progressive sperm motility at 6 months; type of antioxidant	1		Mean Difference (IV, Random, 95% CI)	
8.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	6.30 [0.42, 12.18]
8.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	5.70 [0.10, 11.30]
8.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	-0.60 [-6.93, 5.73]
9 Progressive sperm motility at 9 months; type of antioxidant	1		Mean Difference (IV, Random, 95% CI)	Subtotals only
9.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	3.80 [-1.50, 9.10]
9.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	5.50 [-0.11, 11.11]
9.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	29	Mean Difference (IV, Random, 95% CI)	1.70 [-4.17, 7.57]
10 Sperm concentration at 3 months or less; type of antioxidant	7		Mean Difference (IV, Random, 95% CI)	Subtotals only
10.1 Docosahexaenoic acid (DHA) 400 mg vs Docosahexaenoic acid (DHA) 800 mg	1	19	Mean Difference (IV, Random, 95% CI)	-6.80 [-41.87, 28.27]
10.2 Ethylcysteine vs Vitamin E	1	10	Mean Difference (IV, Random, 95% CI)	2.20 [-16.65, 21.05]
10.3 L-carnitine vs Vitamin E + Vita- min C	1	63	Mean Difference (IV, Random, 95% CI)	15.5 [12.49, 18.51]
10.4 L-carnitine + Vitamin E vs Vita- min E	1	113	Mean Difference (IV, Random, 95% CI)	1.90 [-10.52, 14.32]
10.5 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	1.70 [-10.97, 14.37]
10.6 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	4.10 [-9.17, 17.37]
10.7 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	2.40 [-11.14, 15.94]
10.8 Selenium vs combined antioxi- dants	1	46	Mean Difference (IV, Random, 95% CI)	14.70 [-6.51, 35.91]

Antioxidants for male subfertility (Review)

Cochrane Database of Systematic Reviews

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
10.9 Zinc vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-5.30 [-23.38, 12.78]
10.10 Zinc + Folic acid vs Folic acid	1	80	80 Mean Difference (IV, Random, 95% CI)	
10.11 Zinc vs Zinc + Folic acid	1	80	80 Mean Difference (IV, Random, 95% CI)	
11 Sperm concentration at 6 months; type of antioxidant	3		Mean Difference (IV, Random, 95% CI)	Subtotals only
11.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	5.90 [-8.92, 20.72]
11.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	8.10 [-5.54, 21.74]
11.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	2.20 [-10.89, 15.29]
11.4 N-acetylcysteine (NAC) vs Seleni- um + N-acetylcysteine (NAC)	1	234	Mean Difference (IV, Random, 95% CI)	-5.30 [-6.86, -3.74]
11.5 Selenium vs N-acetylcysteine (NAC)	1	234	Mean Difference (IV, Random, 95% CI)	0.80 [-0.71, 2.31]
11.6 Selenium vs Selenium + N- acetylcysteine (NAC)	1	232	Mean Difference (IV, Random, 95% CI)	-4.5 [-6.20, -2.80]
11.7 Zinc vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-9.5 [-20.29, 1.29]
11.8 Zinc + Folic acid vs Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-1.5 [-15.06, 12.06]
11.9 Zinc vs Zinc + Folic acid	1	80	Mean Difference (IV, Random, 95% CI)	-8.0 [-23.69, 7.69]
12 Sperm concentration at 6 months (data not suitable for meta analysis)			Other data	No numeric data
12.1 Zinc vs Folic acid			Other data	No numeric data
12.2 Zinc vs Zinc + Folic acid			Other data	No numeric data
12.3 Folic acid vs Zinc + Folic acid			Other data	No numeric data
13 Sperm concentration at 9 months or more; type of antioxidant	1		Mean Difference (IV, Random, 95% CI)	Subtotals only
13.1 L-carnitine vs L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	8.2 [-0.07, 16.47]

Antioxidants for male subfertility (Review)

Outcome or subgroup title	No. of studies	No. of partici- pants	Statistical method	Effect size
13.2 L-carnitine vs L-carnitine + L- acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	6.10 [-3.74, 15.94]
13.3 L-acetyl carnitine vs L-carnitine + L-acetyl carnitine	1	30	Mean Difference (IV, Random, 95% CI)	-2.10 [-10.24, 6.04]

Analysis 2.1. Comparison 2 Head-to-head antioxidant(s), Outcome 1 Live birth; type of antioxidant.

Study or subgroup	Antioxidant A	Antioxidant B	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% CI		Peto, Fixed, 95% CI
2.1.1 L-carnitine vs L-acetyl carn	itine				
Balercia 2005	2/15	2/15		100%	1[0.13,7.92]
Subtotal (95% CI)	15	15		100%	1[0.13,7.92]
Total events: 2 (Antioxidant A), 2 (A	Antioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Not applicab	ole				
2.1.2 L-carnitine vs L-carnitine +	L-acetyl carnitine				
Balercia 2005	2/15	5/15		100%	0.34[0.06,1.79]
Subtotal (95% CI)	15	15		100%	0.34[0.06,1.79]
Total events: 2 (Antioxidant A), 5 (A	Antioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.27(P=0.2	2)				
2.1.3 L-acetyl carnitine vs L-carn	itine + L-acetyl carni	tine			
Balercia 2005	2/15	5/15		100%	0.34[0.06,1.79]
Subtotal (95% CI)	15	15		100%	0.34[0.06,1.79]
Total events: 2 (Antioxidant A), 5 (A	Antioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.27(P=0.2	2)				
Test for subgroup differences: Chi ²	² =0.79, df=1 (P=0.67), I	2=0%			
	Fav	ours antioxidant B 0.0	01 0.1 1 10	¹⁰⁰ Favours antioxidant A	

Analysis 2.2. Comparison 2 Head-to-head antioxidant(s), Outcome 2 Clinical pregnancy; type of antioxidant.

Study or subgroup	Antioxidant A	Antioxidant B		Peto	Odds Ra	tio		Weight	Peto Odds Ratio
	n/N	n/N		Peto,	Fixed, 95	% CI			Peto, Fixed, 95% CI
2.2.1 L-carnitine vs L-acetyl ca	arnitine								
Balercia 2005	2/15	2/15			-			100%	1[0.13,7.92]
Subtotal (95% CI)	15	15						100%	1[0.13,7.92]
Total events: 2 (Antioxidant A), 2	2 (Antioxidant B)								
Heterogeneity: Not applicable									
Test for overall effect: Not appli	cable								
2.2.2 L-carnitine vs L-carnitine	e + L-acetyl carnitine								
Balercia 2005	2/15	5/15			-	1	1	100%	0.34[0.06,1.79]
	Fav	ours antioxidant B	0.01	0.1	1	10	100	Favours antioxidant A	

Antioxidants for male subfertility (Review)

Study or subgroup	Antioxidant A	Antioxidant B	Peto Odds Ratio	Weight	Peto Odds Ratio
	n/N	n/N	Peto, Fixed, 95% CI		Peto, Fixed, 95% Cl
Subtotal (95% CI)	15	15		100%	0.34[0.06,1.79]
Total events: 2 (Antioxidant A), 5 (An	tioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.27(P=0.2)					
2.2.3 L-acetyl carnitine vs L-carnit	ine + L-acetyl carni	tine			
Balercia 2005	2/15	5/15		100%	0.34[0.06,1.79]
Subtotal (95% CI)	15	15		100%	0.34[0.06,1.79]
Total events: 2 (Antioxidant A), 5 (An	tioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Z=1.27(P=0.2)					
2.2.4 Vitamin D + Calcium vs Vitam	in E + Vitamin C				
Deng 2014	7/43	1/43		100%	5.13[1.21,21.79]
Subtotal (95% CI)	43	43		100%	5.13[1.21,21.79]
Total events: 7 (Antioxidant A), 1 (An	tioxidant B)				
Heterogeneity: Not applicable					
Test for overall effect: Z=2.21(P=0.03	:)				
Test for subgroup differences: Chi ² =	8.15, df=1 (P=0.04), I	2=63.17%			
	Fav	ours antioxidant B 0.0	1 0.1 1 10 1	⁰⁰ Favours antioxidant	A

Analysis 2.3. Comparison 2 Head-to-head antioxidant(s), Outcome 3 Total sperm motility at 3 months or less; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% CI
2.3.1 Docosahexaenoic acid (DHA)	400 mg	vs Docosahexae	noic acid	800 mg			
Conquer 2000	9	39.4 (24.3)	10	32 (16.1)		100%	7.4[-11.35,26.15]
Subtotal ***	9		10			100%	7.4[-11.35,26.15]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.77(P=0.44)						
2.3.2 Ethylcysteine vs Vitamin E							
Akiyama 1999	5	40.9 (30.1)	5	42.8 (34.4)		100%	-1.9[-41.97,38.17]
Subtotal ***	5		5			100%	-1.9[-41.97,38.17]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.09(P=0.93)						
2.3.3 L-acetyl carnitine + L-carnitir	ne vs Vita	amin E + Vitamir	۱C				
Li 2005	85	38.3 (9.7)	53	15.2 (7.9)	+	100%	23.1[20.14,26.06]
Subtotal ***	85		53		•	100%	23.1[20.14,26.06]
Heterogeneity: Not applicable							
Test for overall effect: Z=15.28(P<0.0	001)						
2.3.4 L-carnitine vs L-acetyl carniti	ine						
Balercia 2005	15	59.9 (8)	15	56.5 (11.6)		100%	3.4[-3.73,10.53]
Subtotal ***	15		15		•	100%	3.4[-3.73,10.53]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.93(P=0.35)						
			Favours	Antioxidant B	-50 -25 0 25 50	Favours Ant	tioxidant A

Antioxidants for male subfertility (Review)

Cochrane Library

Trusted evidence. Informed decisions. Better health.

Study or subgroup	Antio N	oxidant A Mean(SD)	Anti N	oxidant B Mean(SD)	Mean Difference Random, 95% Cl	Weight	Mean Difference Random, 95% Cl
2.3.5 L-carnitine vs L-carnitine + L-a	-						
Balercia 2005	15	59.9 (8)	15	55.1 (10.2)		100%	4.8[-1.76,11.3
Subtotal ***	15		15			100%	4.8[-1.76,11.36
Heterogeneity: Not applicable Test for overall effect: Z=1.43(P=0.15)							
2.3.6 L-acetyl carnitine vs L-carnitin	ne + L-ac	etyl carnitine					
Balercia 2005	15	56.5 (11.6)	15	55.1 (10.2)		100%	1.4[-6.42,9.22
Subtotal ***	15		15		•	100%	1.4[-6.42,9.22
Heterogeneity: Not applicable Test for overall effect: Z=0.35(P=0.73)							
2.3.7 Selenium vs combined antioxi	idants						
Scott 1998	16	30.2 (22.8)	30	27 (20.3)		100%	3.2[-10.13,16.53
Subtotal ***	16		30		+	100%	3.2[-10.13,16.53
Heterogeneity: Not applicable Test for overall effect: Z=0.47(P=0.64)							
2.3.8 Vitamin C 200mg vs Vitamin C	1000mg	g					
Dawson 1990	10	51 (22.1)	10	94 (32)		100%	-43[-67.1,-18.9
Subtotal ***	10		10			100%	-43[-67.1,-18.9
Heterogeneity: Not applicable Test for overall effect: Z=3.5(P=0)							
2.3.9 Zinc vs Folic acid							
Azizollahi 2013	40	48.9 (27.7)	40	53.3 (15.3)		100%	-4.4[-14.21,5.4
Subtotal ***	40		40		•	100%	-4.4[-14.21,5.4]
Heterogeneity: Not applicable Test for overall effect: Z=0.88(P=0.38)							
2.3.10 Zinc vs Zinc + Folic acid							
Azizollahi 2013	40	48.9 (27.7)	40	51.7 (17.2)		100%	-2.8[-12.9,7.3
Subtotal ***	40		40		•	100%	-2.8[-12.9,7.3
Heterogeneity: Not applicable							
Test for overall effect: Z=0.54(P=0.59)							
2.3.11 Zinc + Folic acid vs Folic acid							
Azizollahi 2013	40	51.7 (17.2)	40	52.3 (15.3)	—	100%	-0.6[-7.73,6.53
Subtotal ***	40		40		•	100%	-0.6[-7.73,6.53
Heterogeneity: Not applicable Test for overall effect: Z=0.16(P=0.87)							
2.3.12 Zinc vs Zinc + Vitamin E							
Omu 2008	6	49 (12)	12	50 (18)		100%	-1[-15,13
Subtotal ***	6		12		•	100%	-1[-15,13
Heterogeneity: Not applicable							
Test for overall effect: Z=0.14(P=0.89)							
2.3.13 Zinc vs Zinc + Vitamin E + Vita							
Omu 2008	6	49 (12)	6	50 (20)		100%	-1[-19.66,17.66
Subtotal ***	6		6			100%	-1[-19.66,17.66

Antioxidants for male subfertility (Review)

Trusted evidence. Informed decisions. Better health.

Study or subgroup	Anti	oxidant A	Anti	oxidant B		Mean D	oifference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)		Rando	m, 95% Cl		Random, 95% CI
Heterogeneity: Not applicable									
Test for overall effect: Z=0.11(P=0.92)									
2.3.14 Zinc + Vitamin E vs Zinc + Vita	min E +	+ Vitamin C				_			
Omu 2008	12	50 (18)	6	50 (20)				100%	0[-18.97,18.97]
Subtotal ***	12		6					100%	0[-18.97,18.97]
Heterogeneity: Not applicable									
Test for overall effect: Not applicable									
			Favours	Antioxidant B	-50	-25	0 25 50	Favours Ant	ioxidant A

Analysis 2.4. Comparison 2 Head-to-head antioxidant(s), Outcome 4 Total sperm motility at 6 months; type of antioxidant.

Study or subgroup	Anti	oxidant A	Antie	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
2.4.1 L-carnitine vs L-acetyl carniti	ine						
Balercia 2005	15	64.5 (8.4)	15	60.4 (10.5)		100%	4.1[-2.7,10.9]
Subtotal ***	15		15			100%	4.1[-2.7,10.9]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.18(P=0.24)						
2.4.2 L-carnitine vs L-carnitine + L-	acetyl ca	arnitine					
Balercia 2005	15	64.5 (8.4)	15	61.1 (9.1)		100%	3.4[-2.87,9.67]
Subtotal ***	15		15			100%	3.4[-2.87,9.67]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.06(P=0.29)						
2.4.3 L-acetyl carnitine vs L-carniti	ine + L-a	cetyl carnitine					
Balercia 2005	15	60.4 (10.5)	15	61.1 (9.1)		100%	-0.7[-7.73,6.33]
Subtotal ***	15		15			100%	-0.7[-7.73,6.33]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.2(P=0.85)							
2.4.4 N-acetylcysteine (NAC) vs Se	lenium +	N-acetylcystei	ne (NAC)				
Safarinejad 2009	118	24.8 (2.9)	116	29.2 (2.9)	+	100%	-4.4[-5.14,-3.66]
Subtotal ***	118		116		◆	100%	-4.4[-5.14,-3.66]
Heterogeneity: Not applicable							
Test for overall effect: Z=11.6(P<0.00	01)						
2.4.5 Selenium vs N-acetylcysteine	e (NAC)						
Safarinejad 2009	116	26.1 (2.9)	118	24.8 (2.9)	+	100%	1.3[0.56,2.04]
Subtotal ***	116		118		•	100%	1.3[0.56,2.04]
Heterogeneity: Not applicable							
Test for overall effect: Z=3.43(P=0)							
2.4.6 Selenium vs Selenium + N-ac	etylcyst	eine (NAC)					
Safarinejad 2009	116	26.1 (2.9)	116	29.2 (2.9)	+	100%	-3.1[-3.85,-2.35]
Subtotal ***	116		116		◆	100%	-3.1[-3.85,-2.35]
Heterogeneity: Not applicable							
			Favours	antioxidant B	-10 -5 0 5 10	Favours and	ioxidant A

Antioxidants for male subfertility (Review)

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
Test for overall effect: Z=8.14(P<0.0	0001)						
2.4.7 Zinc vs Folic acid							
Azizollahi 2013	40	49.8 (11.3)	40	51.5 (10.2)		100%	-1.7[-6.42,3.02]
Subtotal ***	40		40			100%	-1.7[-6.42,3.02]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.71(P=0.4	48)						
2.4.8 Zinc + Folic acid vs Folic aci	d						
Azizollahi 2013	40	52.4 (17.8)	40	51.5 (10.2)		100%	0.9[-5.46,7.26]
Subtotal ***	40		40			100%	0.9[-5.46,7.26]
Heterogeneity: Tau ² =0; Chi ² =0, df=	0(P<0.0001	.); I ² =100%					
Test for overall effect: Z=0.28(P=0.7	78)						
2.4.9 Zinc vs Zinc + Folic acid							
Azizollahi 2013	40	49.8 (11.3)	40	52.4 (17.8)		100%	-2.6[-9.13,3.93]
Subtotal ***	40		40			100%	-2.6[-9.13,3.93]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.78(P=0.4	44)						
Test for subgroup differences: Chi ²	=131.07, d	f=1 (P<0.0001), I ²	=93.9%				
			Favours	antioxidant B	-10 -5 0 5 10	Favours and	ioxidant A

Analysis 2.5. Comparison 2 Head-to-head antioxidant(s), Outcome 5 Total sperm motility at 6 months (data not suitable for meta analysis).

Total sperm motility at 6 months (data not suitable for meta analysis)

Study	Antioxidant A	Antioxidant B	P value									
Folic acid vs Zinc + Folic acid												
Wong 2002	Folic acid	Zinc + Folic acid	Not provided									
-	Median = 35	Median = 35										
	Range = 5 - 65	Range = 5 - 70										
	"Forward motile sperm"	"Forward motile sperm"										
	Zi	nc vs Folic acid										
Wong 2002	Zinc	Folic acid	Not provided									
	Median = 35	Median = 35										
	Range = 10 - 65	Range = 5 - 65										
	"Forward motile sperm"	"Forward motile sperm"										
	Zinc	vs Zinc + Folic acid										
Wong 2002	Zinc	Zinc + Folic acid	Not provided									
-	Median = 35	Median = 35										
	Range = 10 - 65	Range = 5 - 70										
	"Forward motile sperm"	"Forward motile sperm"										

Analysis 2.6. Comparison 2 Head-to-head antioxidant(s), Outcome 6 Total sperm motility at 9 months or more; type of antioxidant.

Study or subgroup	Antio	Antioxidant A		Antioxidant B		Mean Difference				Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)		Rar	ndom, 95%	6 CI			Random, 95% CI
2.6.1 L-carnitine vs L-acetyl	carnitine										
Balercia 2005	15	54.3 (9)	15	50.6 (5.7)			-	\vdash	1	100%	3.7[-1.69,9.09]
			Favours	antioxidant B	-20	-10	0	10	20	Favours anti	oxidant A

Antioxidants for male subfertility (Review)

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI
Subtotal ***	15		15		-	100%	3.7[-1.69,9.09]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.35(P=0.18)						
2.6.2 L-carnitine vs L-carnitine + L-	acetyl ca	arnitine					
Balercia 2005	15	54.3 (9)	15	49 (7.8)		100%	5.3[-0.73,11.33]
Subtotal ***	15		15			100%	5.3[-0.73,11.33]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.72(P=0.08)						
2.6.3 L-acetyl carnitine vs L-carnit	ine + L-a	cetyl carnitine					
Balercia 2005	15	50.6 (5.7)	15	49 (7.8)		100%	1.6[-3.29,6.49]
Subtotal ***	15		15		-	100%	1.6[-3.29,6.49]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.64(P=0.52)						
Test for subgroup differences: Chi ² =	0.91, df=1	. (P=0.63), I ² =0%					
			Favours	antioxidant B	-20 -10 0 10	20 Favours and	tioxidant A

Analysis 2.7. Comparison 2 Head-to-head antioxidant(s), Outcome 7 Progessive sperm motility at 3 months or less; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
2.7.1 L-carnitine vs L-acetyl carniti	ne						
Balercia 2005	15	38.9 (7.1)	15	34.9 (9.2)		100%	4[-1.88,9.88]
Subtotal ***	15		15		•	100%	4[-1.88,9.88]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.33(P=0.18)						
2.7.2 L-carnitine vs L-carnitine + L-	acetyl ca	arnitine					
Balercia 2005	15	38.9 (7.1)	14	33.9 (8.4)		100%	5[-0.68,10.68]
Subtotal ***	15		14		◆	100%	5[-0.68,10.68]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.73(P=0.08)						
2.7.3 L-acetyl carnitine vs L-carniti	ne + L-a	cetyl carnitine					
Balercia 2005	15	34.9 (9.2)	14	33.9 (8.4)		100%	1[-5.41,7.41]
Subtotal ***	15		14		+	100%	1[-5.41,7.41]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.31(P=0.76)						
2.7.4 L-acetyl carnitine + L-carnitir	ne vs Vita	amin E + Vitamii	n C				
Li 2005	85	23.4 (7.9)	53	10.1 (4.6)	+	100%	13.3[11.21,15.39]
Subtotal ***	85		53		•	100%	13.3[11.21,15.39]
Heterogeneity: Not applicable							
Test for overall effect: Z=12.49(P<0.0	001)						
2.7.5 L-carnitine vs Vitamin E + Vita	amin C						
Li 2005a	32	58.3 (7.1)	31	27.8 (3.8)	+	100%	30.5[27.7,33.3]
			Favours	antioxidant B	-100 -50 0 50	¹⁰⁰ Favours ant	ioxidant A

Antioxidants for male subfertility (Review)

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% CI
Subtotal ***	32		31		•	100%	30.5[27.7,33.3]
Heterogeneity: Not applicable							
Test for overall effect: Z=21.35(P<0.	0001)						
2.7.6 L-carnitine + Vitamin E vs Vi	tamin E						
Wang 2010	61	45.4 (11.1)	52	31.3 (10.5)	+	100%	14.1[10.11,18.09]
Subtotal ***	61		52		•	100%	14.1[10.11,18.09]
Heterogeneity: Not applicable							
Test for overall effect: Z=6.93(P<0.0	001)						
2.7.7 Vitamin D + Calcium vs Vitar	nin E + Vi	tamin C					
Deng 2014	43	28.3 (4.5)	43	21.4 (2.4)	+	100%	6.9[5.38,8.42]
Subtotal ***	43		43		•	100%	6.9[5.38,8.42]
Heterogeneity: Not applicable							
Test for overall effect: Z=8.87(P<0.0	001)						
Test for subgroup differences: Chi ²	=237.44, d	f=1 (P<0.0001), I ²	=97.47%				
			Favours	antioxidant B -100	-50 0 50	¹⁰⁰ Favours an	tioxidant A

Analysis 2.8. Comparison 2 Head-to-head antioxidant(s), Outcome 8 Progressive sperm motility at 6 months; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% Cl
2.8.1 L-carnitine vs L-acetyl carniti	ne						
Balercia 2005	15	43.8 (7.1)	15	37.5 (9.2)	+	100%	6.3[0.42,12.18]
Subtotal ***	15		15		\blacklozenge	100%	6.3[0.42,12.18]
Heterogeneity: Not applicable							
Test for overall effect: Z=2.1(P=0.04)							
2.8.2 L-carnitine vs L-carnitine + L-	acetyl ca	arnitine					
Balercia 2005	15	43.8 (7.1)	14	38.1 (8.2)	+	100%	5.7[0.1,11.3]
Subtotal ***	15		14		•	100%	5.7[0.1,11.3]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.99(P=0.05)						
2.8.3 L-acetyl carnitine vs L-carniti	ne + L-a	cetyl carnitine					
Balercia 2005	15	37.5 (9.2)	14	38.1 (8.2)	+	100%	-0.6[-6.93,5.73]
Subtotal ***	15		14		•	100%	-0.6[-6.93,5.73]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.19(P=0.85)						
Test for subgroup differences: Chi ² =2	.97, df=1	L (P=0.23), I ² =32.	56%				
			Favours	antioxidant B	-100 -50 0	50 ¹⁰⁰ Favours an	tioxidant A

Analysis 2.9. Comparison 2 Head-to-head antioxidant(s), Outcome 9 Progressive sperm motility at 9 months; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% CI
2.9.1 L-carnitine vs L-acetyl carnit	tine						
Balercia 2005	15	34 (7)	15	30.2 (7.8)	+	100%	3.8[-1.5,9.1]
Subtotal ***	15		15		◆	100%	3.8[-1.5,9.1]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.4(P=0.16))						
2.9.2 L-carnitine vs L-carnitine + L	-acetyl ca	arnitine					
Balercia 2005	15	34 (7)	14	28.5 (8.3)	+	100%	5.5[-0.11,11.11]
Subtotal ***	15		14		•	100%	5.5[-0.11,11.11]
Heterogeneity: Tau ² =0; Chi ² =0, df=0	(P<0.0001	L); I ² =100%					
Test for overall effect: Z=1.92(P=0.0)	5)						
2.9.3 L-acetyl carnitine vs L-carnit	tine + L-a	cetyl carnitine					
Balercia 2005	15	30.2 (7.8)	14	28.5 (8.3)	+	100%	1.7[-4.17,7.57]
Subtotal ***	15		14		•	100%	1.7[-4.17,7.57]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.57(P=0.5	7)						
Test for subgroup differences: Chi ² =	0.84, df=1	L (P=0.66), I ² =0%					
			Favours	antioxidant B -10) -50 0 5	¹⁰⁰ Favours ant	ioxidant A

Analysis 2.10. Comparison 2 Head-to-head antioxidant(s), Outcome 10 Sperm concentration at 3 months or less; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl		Random, 95% Cl
2.10.1 Docosahexaenoic acid (DHA) 400 mg	vs Docosahexa	aenoic aci	id (DHA) 800			
mg							
Conquer 2000	9	37.8 (36.9)	10	44.6 (41.1)		100%	-6.8[-41.87,28.27]
Subtotal ***	9		10			100%	-6.8[-41.87,28.27]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.38(P=0.7)							
2.10.2 Ethylcysteine vs Vitamin E							
Akiyama 1999	5	20.1 (14.8)	5	17.9 (15.6)		100%	2.2[-16.65,21.05]
Subtotal ***	5		5		-	100%	2.2[-16.65,21.05]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.23(P=0.82))						
2.10.3 L-carnitine vs Vitamin E + Vi	tamin C						
Li 2005a	32	34.6 (7.4)	31	19.1 (4.5)	+	100%	15.5[12.49,18.51]
Subtotal ***	32		31		•	100%	15.5[12.49,18.51]
Heterogeneity: Not applicable							
Test for overall effect: Z=10.08(P<0.0	001)						
2.10.4 L-carnitine + Vitamin E vs Vi	tamin E						
Wang 2010	61	58.5 (34.7)	52	56.6 (32.6)		100%	1.9[-10.52,14.32]
Subtotal ***	61		52			100%	1.9[-10.52,14.32]
			Favours	antioxidant B	-100 -50 0 50	¹⁰⁰ Favours ant	ioxidant A

Antioxidants for male subfertility (Review)

Study or subgroup		oxidant A		oxidant B	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	N	Mean(SD)	Random, 95% Cl		Random, 95% Cl
Heterogeneity: Tau ² =0; Chi ² =0, df=0(P<0.0001	.); I ² =100%					
Test for overall effect: Z=0.3(P=0.76)							
2.10.5 L-carnitine vs L-acetyl carni	tine						
Balercia 2005	15	41 (17.3)	15	39.3 (18.1)		100%	1.7[-10.97,14.3]
Subtotal ***	15		15		•	100%	1.7[-10.97,14.3]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.26(P=0.79)						
2.10.6 L-carnitine vs L-carnitine +	-acetyl c	arnitine					
Balercia 2005	15	41 (17.3)	15	36.9 (19.7)		100%	4.1[-9.17,17.3
Subtotal ***	15		15			100%	4.1[-9.17,17.3
Heterogeneity: Not applicable							
Test for overall effect: Z=0.61(P=0.54)						
2.10.7 L-acetyl carnitine vs L-carni	tine + L-a	acetyl carnitine					
Balercia 2005	15	39.3 (18.1)	15	36.9 (19.7)	-	100%	2.4[-11.14,15.9
Subtotal ***	15	0010 (1011)	15	0010 (2011)		100%	2.4[-11.14,15.9
Heterogeneity: Not applicable					Ť	20070	2.1 21.2 4,2015
Test for overall effect: Z=0.35(P=0.73)						
2.10.8 Selenium vs combined antio	vidants						
Scott 1998	16	48.7 (35.2)	30	34 (34.5)		100%	14.7[-6.51,35.9
Subtotal ***	16	10.1 (33.2)	30	51 (51.5)		100%	14.7[-6.51,35.9
Heterogeneity: Tau ² =0; Chi ² =0, df=0(): $l^2 = 100\%$					[,
Test for overall effect: Z=1.36(P=0.17		,,,. 20070					
2.10.9 Zinc vs Folic acid							
Azizollahi 2013	40	41.5 (40.2)	40	46.8 (42.3)		100%	-5.3[-23.38,12.7
Subtotal ***	40	1110 (1012)	40	1010 (1210)	-	100%	-5.3[-23.38,12.7
Heterogeneity: Not applicable							0.01 -0.00,
Test for overall effect: Z=0.57(P=0.57)						
2.10.10 Zinc + Folic acid vs Folic ac	id						
Azizollahi 2013	40	42.6 (39.9)	40	46.8 (42.3)	-	100%	-4.2[-22.22,13.8
Subtotal ***	40		40		-	100%	-4.2[-22.22,13.8
Heterogeneity: Not applicable							
Test for overall effect: Z=0.46(P=0.65)						
2.10.11 Zinc vs Zinc + Folic acid							
Azizollahi 2013	40	41.5 (40.2)	40	42.6 (39.9)	-	100%	-1.1[-18.65,16.4
Subtotal ***	40	.2.0 (10.2)	40 40	.2.0 (00.0)	-	100%	-1.1[-18.65,16.4
Heterogeneity: Not applicable					T	20070	20.00,20.4
Test for overall effect: Z=0.12(P=0.9)							
		(P=0.01), I ² =59.1					

Antioxidants for male subfertility (Review) Copyright © 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

Analysis 2.11. Comparison 2 Head-to-head antioxidant(s), Outcome 11 Sperm concentration at 6 months; type of antioxidant.

Study or subgroup	Anti	oxidant A	Antie	oxidant B	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% Cl	-	Random, 95% CI
2.11.1 L-carnitine vs L-acetyl car	nitine						
Balercia 2005	15	45.5 (21.4)	15	39.6 (20)		100%	5.9[-8.92,20.72]
Subtotal ***	15		15			100%	5.9[-8.92,20.72]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.78(P=0.	44)						
2.11.2 L-carnitine vs L-carnitine	+ L-acetyl	arnitine					
Balercia 2005	15	45.5 (21.4)	15	37.4 (16.4)		100%	8.1[-5.54,21.74]
Subtotal ***	15		15			100%	8.1[-5.54,21.74]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.16(P=0.	24)						
2.11.3 L-acetyl carnitine vs L-ca	rnitine + L-a	acetyl carnitine					
Balercia 2005	15	39.6 (20)	15	37.4 (16.4)		100%	2.2[-10.89,15.29]
Subtotal ***	15		15	· •		100%	2.2[-10.89,15.29]
Heterogeneity: Not applicable					-		
Test for overall effect: Z=0.33(P=0.	74)						
2.11.4 N-acetylcysteine (NAC) vs	Selenium	+ N-acetylcyste	ine (NAC)			
Safarinejad 2009	118	26.8 (5.3)	116	32.1 (6.8)	+	100%	-5.3[-6.86,-3.74]
Subtotal ***	118	. ,	116		•	100%	-5.3[-6.86,-3.74]
Heterogeneity: Not applicable							
Test for overall effect: Z=6.64(P<0.	0001)						
2.11.5 Selenium vs N-acetylcyst	eine (NAC)						
Safarinejad 2009	116	27.6 (6.4)	118	26.8 (5.3)	+	100%	0.8[-0.71,2.31]
Subtotal ***	116	,	118		•	100%	0.8[-0.71,2.31]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.04(P=0.	3)						
2.11.6 Selenium vs Selenium + N							
Safarinejad 2009	116	27.6 (6.4)	116	32.1 (6.8)	+	100%	-4.5[-6.2,-2.8]
Subtotal ***	116		116		•	100%	-4.5[-6.2,-2.8]
Heterogeneity: Not applicable							
Test for overall effect: Z=5.19(P<0.	.0001)						
2.11.7 Zinc vs Folic acid							
Azizollahi 2013	40	39.6 (30.5)	40	49.1 (16.8)		100%	-9.5[-20.29,1.29]
Subtotal ***	40		40			100%	-9.5[-20.29,1.29]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.73(P=0.	.08)						
2.11.8 Zinc + Folic acid vs Folic a	cid						
Azizollahi 2013	40	47.6 (40.4)	40	49.1 (16.8)		100%	-1.5[-15.06,12.06]
Subtotal ***	40		40			100%	-1.5[-15.06,12.06]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.22(P=0.	.83)						
2.11.9 Zinc vs Zinc + Folic acid							

Antioxidants for male subfertility (Review)

Study or subgroup	Anti	Antioxidant A Ar		oxidant B	Mean Difference	Weight	Mean Difference
	N	Mean(SD)	Ν	Mean(SD)	Random, 95% CI		Random, 95% Cl
Azizollahi 2013	40	39.6 (30.5)	40	47.6 (40.4)		100%	-8[-23.69,7.69]
Subtotal ***	40		40			100%	-8[-23.69,7.69]
Heterogeneity: Not applicable	9						
Test for overall effect: Z=1(P=0	0.32)						
Test for subgroup differences:	: Chi²=41.86, df=	1 (P<0.0001), I ² =	80.89%				
			Favours	antiovidant B	-20 -10 0 10 20	Eavours ant	iovidant A

Favours antioxidant B

Favours antioxidant A

Analysis 2.12. Comparison 2 Head-to-head antioxidant(s), Outcome 12 Sperm concentration at 6 months (data not suitable for meta analysis).

Study	Antioxidant A	Antioxidant B	P value
	Z	inc vs Folic acid	
Wong 2002	Zinc	Folic acid	Not provided
0	Median = 16	Median = 14	·
	Range = 0.6 - 80	Range = 0.9 - 130	
	Zinc	vs Zinc + Folic acid	
Wong 2002	Zinc	Zinc + Folic acid	Not provided
	Median = 16	Median = 12	
	Range = 0.6 - 80	Range = 0.5 - 180	
	Folic ac	cid vs Zinc + Folic acid	
Wong 2002	Folic acid	Zinc + Folic acid	Not provided
	Median = 14	Median = 12	
	Range = 0.9 - 130	Range = 0.5 - 180	

Analysis 2.13. Comparison 2 Head-to-head antioxidant(s), Outcome 13 Sperm concentration at 9 months or more; type of antioxidant.

Study or subgroup	Anti	oxidant A	Anti	oxidant B	Mean Difference	Weight	Mean Difference
	Ν	Mean(SD)	N	Mean(SD)	Random, 95% CI		Random, 95% CI
2.13.1 L-carnitine vs L-acetyl carn	itine						
Balercia 2005	15	39.4 (13.9)	15	31.2 (8.6)		100%	8.2[-0.07,16.47]
Subtotal ***	15		15			100%	8.2[-0.07,16.47]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.94(P=0.0	5)						
2.13.2 L-carnitine vs L-carnitine +	L-acetyl	carnitine					
Balercia 2005	15	39.4 (13.9)	15	33.3 (13.6)		100%	6.1[-3.74,15.94]
Subtotal ***	15		15			100%	6.1[-3.74,15.94]
Heterogeneity: Not applicable							
Test for overall effect: Z=1.21(P=0.22	2)						
2.13.3 L-acetyl carnitine vs L-carn	itine + L-a	acetyl carnitine					
Balercia 2005	15	31.2 (8.6)	15	33.3 (13.6)		100%	-2.1[-10.24,6.04]
Subtotal ***	15		15			100%	-2.1[-10.24,6.04]
Heterogeneity: Not applicable							
Test for overall effect: Z=0.51(P=0.6	1)						
Test for subgroup differences: Chi ² =	-3.31, df=1	(P=0.19), I ² =39.	54%				
			Favours	antioxidant B	-20 -10 0 10 20	Favours ant	ioxidant A

Antioxidants for male subfertility (Review)

ADDITIONAL TABLES

Table 1. Data for undefined or biochemical pregnancy

Undefined or biochemical preg- nancy	Antioxidant	:	Control		Peto OR [CI]		
Antioxidant(s) versus placebo or no treatment							
Combined antioxidants	Events	Total	Events	Total			
Galatioto 2008	1	20	0	22	8.17 [0.16 to 413.39]		
Gopinath 2013	13	92	2	46	2.72 [0.88 to 8.46]		
Arginine							
Pryor 1978	2	35	2	29	0.82 [0.11 to 6.16]		
Carnitines	25	154	3	145			
Sigman 2006	1	12	1	9	0.74 [0.04 to 13.02]		
Peivandi 2010	3	15	0	15	8.57 [0.82 to 89.45]		
Lenzi 2004	4	30	0	26	7.20 [0.95 to 54.34]		
Lenzi 2003	6	43	0	43	8.37 [1.61 to 43.58]		
Cavallini 2004	9	39	1	47	7.50 [2.01 to 27.98]		
Coenzyme Q10	6	136	3	136			
Safarinejad 2009a	0	106	0	106	Not estimable		
Balercia 2009	6	30	3	30	2.16 [0.53 to 8.82]		
Nadjarzadeh 2011	0	23	0	24	Not estimable		
Vitamin C + Vitamin E							
Rolf 1999	0	15	0	16	Not estimable		
Vitamin E							
Ener 2016	5	28	5	28	1.00 [0.26 to 3.88]		
Head-to-head antioxidant(s)	Events	Total	Events	Total			
L-acetyl carnitine + L-carnitine vs Vitamin E + Vitamin C							
Li 2005	10	85	2	53	2.72 [0.81 to 9.14]		

Antioxidants for male subfertility (Review)

Table 1. Data for undefined or biochemical pregnancy (Continued)

L-carnitine + Vitamin E ver tamin E	rsus Vi-				
Wang 2010	21	68	3	67	6.01 [2.49 to 14.47]

Table 2. Outcomes and conclusions from all included studies

Study ID	Design, pop-	Outcomes	Outcomes	In meta-analy-	Results	Conclusions
	ulation	described in methods	reported on in re-	sis Y or N		+ = positive effect
		section	sults			- = negative or no effect
Akiyama	Cross-over,	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Ethylcystein did not im- prove sperm density	+
1999 head-to- head Infertile men, high ROS levels N = 10		rameters	rameters	meters	and motility but "sperm function" increased and	Ethylcysteine shown to be effective for improve
	men, high				ROS levels decreased, compared to vitamin E	ment of sperm parame- ters when compared to vitamin E
Attallah 2013	Parallel, no treatment	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	NAC increased sperm concentration and	+
c Idiopath- a	chemical	chemical		motility	NAC improves semen quality and improves	
	and clinical pregnancy	and clinical pregnancy	Y - pregnancy rate, clinical	Clinical pregnancy was not significantly differ- ent between the groups	pregnancy rates prior to IUI, no improvement of pregnancy rate	
	N = 30					
Azizollahi 2013	Multiple arm trial	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Mild improvement in sperm parameters with	+
Men post- varicocelec- tomy N = 160			Y - pregnancy rate, clinical	the use of antioxidants zinc, folic acid or both	Co-administration of zinc and folic acid im- proved sperm parame- ters and increased varic-	
	N = 160					ocelectomy outcomes, only zinc an improve- ment in pregnancy rate
Balercia	Multiple	Sperm pa-	Sperm pa-	Y - sperm para-	Improvement in motility	+
2005	arm, placebo Infertile men	rameters	pregnancy	V	in LAC group.	Long-term carnitine is effective in increasing
			rate	Y - pregnancy rate, clinical		sperm motility. No evi-
1	N = 60			Y - live birth		dence of increased live birth or clinical pregnan- cy.

	Cochrane
V	Library

Balercia 2009	Parallel, placebo Infertile and unexplained N = 60	Sperm pa- rameters	Sperm pa- rameters, pregnancy rate	Y - sperm para- meters Y - pregnancy rate, clinical	Co enzyme Q10 in- creased sperm motility.	+ Q10 effective in improv- ing sperm kinetic fea- tures in asthenosper- mia. No evidence of in- creased live birth or clin- ical pregnancy.
Barekat 2016	Parallel, no treatment Subfertile men with varicocele N = 40	Sperm pa- rameters, DNA frag- mentation	Sperm pa- rameters, DNA frag- menta- tion, clini- cal sponta- neous preg- nancies	Y - sperm para- meters Y - DNA frag- mentation Y - pregnancy rate, clinical (SEs converted to SDs)	Sperm parameters sig- nificantly improved after surgery compared to be- fore surgery in both the NAC and control groups. NAC might have an addi- tional value by improv- ing sperm motility post- varicocelectomy	+ The results of this study revealed that NAC im- proved chromatin in- tegrity and pregnancy rate when administered as adjunct therapy post- varicocelectomy
Biagiotti 2003	Multiple arm, no treatment Severe id- iopathic oligoas- thenosper- mia N = 42 Conference abstract	Sperm pa- rameters	Sperm pa- rameters	N - no data available	A significant improve- ment in morphology concentration, motility in the carnitine group No side effects	+ Quality of semen is pos- itively associated with fertilisation and implan- tation rates in assisted reproduction
Blomberg Jensen 2018	Parallel, placebo Infertile men with im- paired se- men quality N = 307	Sperm pa- rameters, reproduc- tive hor- mones, live birth rate	Sperm pa- rameters, reproduc- tive hor- mones, live birth rate	Y - sperm para- meters Y - live birth rate	Vitamin D was not as- sociated with changes in semen parameters, although spontaneous pregnancies tended to be higher in couples in which the man was in the treatment group	± Vitamin D did not im- prove semen quality. The positive impact of vitamin D supplemen- tation on live birth rate and serum inhibin B in oligozoospermic and vi- tamin D-deficient men may be of clinical impor- tance and warrant verifi- cation by others.
Boon- yarangkul 2015	Multiple arm, place- bo, tamox- ifen exclud- ed Men with ab- normal se- men analysis N = 68	Sperm pa- rameters, DNA dam- age (Comet assay)	Sperm pa- rameters, DNA tail length	Y - sperm para- meters	Folate alone significant- ly decreased DNA tail length at 3-months. Sperm motility was sig- nificantly increased after 3-months Folate alone.	+ Our study indicated that folate in combination with Tamoxifen citrate could improve sperm quality including semen parameters and sperm DNA integrity

Table 2. Outcomes and conclusions from all included studies (Continued)

Antioxidants for male subfertility (Review)

Busetto 2018	Parallel, placebo Infertile men with OAT, 50% in- cluded with varicocele N = 104	Sperm pa- rameters, pregnancy rate	Sperm pa- rameters, pregnancy rate	Y - sperm para- meters Y - pregnancy rate, clinical	Sperm concentration, total sperm count, progres- sive and total motility were significantly in- creased in supplement- ed (Proxeed Plus) pa- tients. Increased preg- nancy rate	+ Supplementation with metabolic and an- tioxidant compounds could be efficacious when included in strate- gies to improve fertility
Cavallini 2004	Multiple arm, placebo Idiopath- ic OAT men with varico- cele N = 325	Sperm pa- rameters, pregnan- cy rate, adverse events	Sperm pa- rameters, pregnan- cy rate, adverse events	N - sperm pa- rameters, on- ly medians given in full text. Means in conference abstract but no data giv- en for place- bo group and data for group 3 (carnitine + cinoxacin) ver- sus group 2 (carnitines) un- able to be used as 3 includes cinoxacin an anti-inflam- matory drug. Analysis 1.12; Analysis 1.14; Analysis 1.24; Analysis 1.26 N - pregnancy rate, unclear if clinical Table 1 Y - adverse events	Significant increase in sperm parameters for carnitines when com- pared to placebo. Carnitine groups had a significantly higher preg- nancy rate than placebo group	+ The antioxidant plus an- ti-inflammatory group was more effective in improving sperm para- meters and pregnancy than those of carnitines alone or placebo how- ever carnitines alone were more effective than placebo
Conquer 2000	Multiple arm, placebo Astheno- zoospermic men N = 28	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters (SEs converted to SDs)	DHA showed no effect on sperm motility or concentration	± DHA supplementation increased DHA levels in the sperm but not motil- ity or concentration
Cyrus 2015	Parallel, placebo Infertile men with varico- cele N = 115	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Vitamin C was not effec- tive on sperm count but improved sperm motility and morphology signifi- cantly	+ Ascorbic acid can play a role as adjuvant treat- ment after varicocelectomy in infertile men

Table 2. Outcomes and conclusions from all included studies (Continued)

Antioxidants for male subfertility (Review)

Dawson 1990	Multiple arm, placebo	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	The group receiving 1000 mg of AA showed	+ Vitamin C can improve
	Men with sperm agglu- tination			(SEs converted to SDs)	more improvement in parameters than the 200mg group and the placebo	Vitamin C can improve sperm parameters, es- pecially dosage of 1000 mg.
	N = 30					
Deng 2014	Head-to- head	Sperm pa- rameters, adverse re- actions, pregnancy rate	Sperm pa- rameters, adverse re- actions, pregnancy rate	Y - sperm para- meters	Vitamin D is a safe op- tion for the treatment of idiopathic oligoastheno- zoospermia and can ef- fectively improve the se- men quality	+ Vitamin D can improve
	Men with idiopath- ic oligoas- theno-			Y - clinical preg- nancy rate		forward movement sperm number and per- centage, improve the woman's clinical preg- nancy rate, and is well tolerated
	zoospermia				especially the progres- sive sperm motility	
	N = 86					
Dimitriadis 2010	Multiple arm, no treatment, varde- nafil/silde- nafil arms excluded	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	An improvement in sperm concentration with carnitine versus no treatment	+ Enhancement of Ley- dig cell secretory func- tion may increase sperm concentration and motility
	Men with oligoas- thenosper- mia					
	N = 75					
Ener 2016	Parallel, no treatment	Sperm pa- rameters, pregnancy rate	Sperm pa- rameters, pregnancy rate	Y - sperm para- meters N - pregnancy rate, unknown if clinical Table	The administration of vi- tamin E increased all of the parameters; however not statistically signifi- cant	- Vitamin E supplementa-
	Infertile men with varico- cele					tion does not improve the sperm pa- rameters after varicoc-
	N = 56			1		electomy
Eslamian 2013	Parallel, placebo	Sperm pa- rameters	sperm pa- rameters, sperm membrane and serum fatty acids	N - sperm pa- rameters, da- ta not usable, no continuous data but cat- egories from 'significantly improvement' to 'worsened'	Sperm parameters im- proved with DHA + vita- min E supplementation	+ Sperm parameters im-
	Asthenos- zoospermic men					prove with DHA + vita- min E supplementation
	N = 50					
Exposito 2016	Parallel, placebo	rameters, pregnancy	Sperm pa- rameters,	N - sperm para- meters	50% of oligozoospermic men improved sperm concentration and sperm count to normo- zoospermic levels. This trend was also observed in asthenozoospermic	+ Vitamin E tuastan ant bu
	Normo- zoosper-		pregnancy rate	N - pregnancy rate		Vitamin E treatment by oral administration im- proves semen parame- ters
	mig, oligo- zoospermic			Both not in- cluded because		

Table 2. Outcomes and conclusions from all included studies (Continued)

Antioxidants for male subfertility (Review)

	and astheno- zoospermic men			data included normospermic men	men, but nog signifi- cantly		
	N = 113						
Galatioto 2008	Parallel, no treatment Men with persistent oligospermia after em- bolisation of varicocele N = 42	Sperm pa- rameters, pregnan- cy rate, adverse events	Sperm pa- rameters, pregnan- cy rate, adverse events	N - sperm pa- rameters, only medians given N - pregnancy, unclear if clini- cal Table 1 N - adverse events	Significant difference in sperm count in com- bined antioxidant group but not in motility. One pregnancy in the NAC group No significant adverse effects	± NAC does not improve pregnancy rate, no sig- nificant adverse events, but do significantly in- crease sperm count	
Gamidov 2017	Multiple arm, no treatment Men with varicocele N = 114	Sperm pa- rameters, DNA frag- mentation, adverse events	Sperm pa- rameters, DNA frag- mentation, adverse events	N - sperm pa- rameters, only medians with IQR Analysis 1.18; Analysis 1.24; Analysis 1.24 N - DNA frag- mentation, on- ly medians with IQR Analysis 1.10 Y - adverse events	SpermActine (SA) re- sulted in a 22.3% de- crease in the level of sperm DNA fragmenta- tion at 3 months. SA + vi- tamin complex resulted in a 27% increase in the sperm concentration at 3 months. There were no side effects of pharma- cotherapy.	+ Antioxidant therapy leads to an improve- ment in the basic sperm parameters (sperm con- centration and motili- ty) and a decrease in the level of sperm DNA frag- mentation in the short term. There were no side effects	
Gopinath 2013	Multiple arm, placebo Idiopathic OAT men N = 138	Sperm pa- rameters, pregnan- cy rate, adverse events	Sperm pa- rameters, pregnan- cy rate, adverse events	Y - sperm para- meters N - pregnancy rate, not clinical Table 1 Y - adverse events	Combined antioxidant significantly improved sperm count and to- tal motility in both treatment arms (1 vs 2 tablets). Mild adverse events were reported, no severe.	+ Exogenous administra- tion of fixed dose combi- nation of antioxidants is safe and effective thera- py in improving the male subfertility regarding sperm parameters. On- ly mild adverse events when using combined antioxidants	
Greco 2005	Parallel, placebo Infertile males with high DNA fragmenta- tion N = 64	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	No significant differ- ence in concentration or motility however DNA fragmentation was sig- nificantly reduced in the vitamin C + E when com- pared to placebo	+ A short oral treatment of Vitamin C + E can reduce DNA fragmentation	
Haghighian 2015	Parallel, placebo	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	Sperm parameters were significantly	+	

Antioxidants for male subfertility (Review)

	Men with idiopath- ic astheno- zoospermia N = 48	adverse events	adverse events	N - adverse events, report- ed "none", however not clear which side effects they aimed for	higher in ALA group. No side effects due to the oral administration of ALA were observed in any participants.	Medical therapy of as- thenoteratospermia with ALA supplement could improve quality of semen parameters
Haje 2015	Multiple arm, place- bo, tamofix- en arms ex- cluded Infertile men	Sperm pa- rameters, pregnancy rate	Sperm pa- rameters, pregnancy rate	N - sperm para- meters, range of treatment 3 - 6 months and not divided N - pregnancy	L-carnitine no improve- ment of sperm count or motility. Only tamoxifen or tamofixen + L-carni- tine improved pregnan- cy rate, not significantly.	± Administration of ta- moxifen or L-carnitine can improve sperm pa- rameters and ICSI out- comes. Combining those
	with idio- pathic OAT N = 128			rate, unclear if pregnancy and no numbers but percentage		result in maximum ther- apeutic effect
Kessopoulou 1995	Cross-over, placebo Male infertil- ity	Sperm pa- rameters, adverse events, live birth	Sperm pa- rameters, adverse ef- fects, live birth	N - sperm pa- rameters, only medians given Analysis 1.12; Analysis 1.24	No differences in sperm outcomes were seen between the groups. 1 pregnancy in the vita- min E group and nil in the placebo (first phase data)	+ No difference in semen parameters. There is ev- idence of increased live birth and clinical preg- nancy rate.
	N = 30			Y - pregnancy rate, clinical		
				Y - live births Y - adverse events		
Kumamoto 1988	Multiple arm, placebo	Sperm pa- rameters		N - sperm pa- rameters, only scales given	No statistical difference in sperm outcomes in vitamin B 12 groups or placebo	- No improvement in sperm parameters after use of vitamin B12
	Men with abnormal sperm count or motility					
	N = 396					
Lenzi 2003	Cross-over, placebo	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	The patient groups showed no differences	+
	Infertile men with OAT	pregnancy rate	pregnancy rate	N - pregnancy rate, no defin-	in sperm outcomes be- tween therapy (car- nitine) and placebo	The pregnancies ob- tained during the car- nitine therapy period could suggest that car- nitines may also lead to improvement in sperm function and fertilisation
	N = 100			ition of preg- nancy given see Table 1	groups. Six pregnancies in the carnitine group and nil in the placebo (first phase)	
Lenzi 2004	Parallel, placebo	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	Four participants tak- ing carnitine induced a	+ No evidence of im- proved sperm parame- ters
	Infertile men with OAT	pregnan- cy rate,	pregnan- cy rate,	N - pregnancy rate, no defin-	pregnancy in their part- ner and nil in the place- bo	

Antioxidants for male subfertility (Review)

		events	events	ble 1		
				N - adverse events		
Li 2005	Head-to- head	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	L-carnitine and acetyl carnitine more effective	+
	Infertile men with OAT	pregnancy rate	pregnancy rate	N - pregnancy rate, no defini-	than vitamin E + vitamin C for pregnancy, sperm parameters and no evi-	L-carnitine and acetyl carnitine more effective than vitamin E + vitami
	N = 150			tion given Table 1	dence of adverse events	C for pregnancy, sperm parameters and no evi- dence of adverse event
Li 2005a	Head-to- head	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Statistical significance for carnitines over vita-	+
	Infertile men with OAT	Tunicters	rameters	meters	min E + C	Improvement of sperm parameters for car- nitines compared to vit
	N = 80					amin E + C
Lombardo 2002	Cross-over	Sperm pa- rameters	Sperm pa- rameters	N - sperm para- meters, no data available	Sperm parameters (con- centration, motility) car- nitines versus placebo	+
	Infertile men with OAT					Improvement of sperm parameters
	N = 100					
	Conference abstract					
Martinez 2015	Multiple arm, place- bo, SG1002 arm exclud- ed	Sperm pa- rameters		N - sperm para- meters, no SDs given	Resveratrol treatment did not sig- nificantly affect any of the parameters.	- Resveratrol treatment did not significantly af- fect any of the para-
	Men with id- iopathic OAT					meters. SG1002 may reverse oligoastheno- zoospermia. It seems to be more potent antioxi
	N = 54					dant than resveratrol
Mar- tinez-Soto	Parallel, placebo	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	No differences were found in	+
2010	Infertile men				traditional sperm para- meters or lipid composi-	Positive effect only on DNA fragmentation
	N = 50				tion of the sperm mem- brane after DHA treat-	
	Conference abstract + manuscript from author				ment, only reduction in the percentage of sper- matozoa with DNA dam- age	
Mehni 2014	Multiple arm, place- bo, pentoxi- fylline arms excluded	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	L-carnitine only im- proved sperm motility, combined with pentox- ifylline it improves all sperm parameters.	+ Positive effect only sperm motility

Antioxidants for male subfertility (Review)

Table 2. Outcomes and conclusions from all included studies (Continued)

Infertile men with OAT

	N = 235					
Micic 2017	Parallel, placebo Men with OAT N = 175 Conference abstract	Sperm motility	Sperm motility	N - sperm motility, data given in medi- ans with IQR Analysis 1.18	Proxeed Plus significant- ly improved progressive sperm motility	+ Proxeed Plus significant improvement in per- centage of progres- sive sperm motility af- ter six months of thera- py and also underlines the importance of dura- tion of therapy (3 and 6 months)
Morgante 2010	Parallel, no treatment Infertile men with idio- pathic as- thenosper- mia N = 180	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Significant improvement in sperm motility.	+ Improvement of sexual satisfaction Significant improvement in sperm motility
Nad- jarzadeh 2011	Parallel, placebo Men with Idiopathic OAT N = 60	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Non-significant changes in semen parameters of CoQ10 group.	- CoQ10 further evidence suggesting that supple- mentation is associated with alleviating oxida- tive stress, although it does not show any sig- nificant effects on sperm concentration, motility and morphology
Nozha 2001	Head-to- head Men with OAT N = unclear, 20?	Sperm pa- rameters	Sperm pa- rameters	N - sperm para- meters, no data available	Vitamin E + selenium significantly improves sperm motility	+ Vitamin E + selenium as- sociated with improved sperm motility when compared with vitamin B
Omu 1998	Parallel, no treatment Men with as- thenozoop- ermia N = 100	Sperm pa- rameters	Sperm pa- rameters, pregnancy, live birth	N - sperm para- meters, only % increase or de- crease, not us- able Y - pregnancy rate, clinical Y - live birth	Significant improvement in sperm quality by zinc therapy	+ Zinc has a role in im- proving sperm parame- ters. Significant increase in pregnancy, not live birth

Antioxidants for male subfertility (Review)

Omu 2008	Multiple arm, no treatment Men with astheno- zoospermia N = 100	Sperm pa- rameters	Sperm pa- rameters	Y - sperm para- meters	Zinc therapy alone, in combination with vita- min E or with vitamin E +C were associated with comparably improved sperm parameters and less sperm DNA frag- mentation	+ Zinc therapy reduces as- thenozoospermia
Peivandi 2010	Cross-over, placebo Infertile men N = 30	Sperm pa- rameters	Sperm pa- rameters, pregnancy rate	Y - sperm para- meters N - pregnancy rate, no defined as clinical Table 1	Significant improve- ments in mean sperm concentration and pro- gressive sperm motility upon two months of L- carnitine intake but no significant changes were found in sperm volume or morphology.	+ Sperm outcomes and biochemical pregnan- cies. L-carnitine intake effectively improved the mean sperm count and progressive sperm motility
Pourmand 2014	Parallel, no treatment Men with male factor infertility and varico- cele N = 100	Sperm pa- rameters, DNA frag- mentation, adverse events	Sperm pa- rameters, DNA frag- mentation, adverse events	N - sperm para- meters, no SD given N - DNA frag- mentation, no SD given Y - adverse events	No statistical difference between the two groups (varicocelectomy with L- carnitine or with no ad- juvant therapy).	- Addition of 750 mg of L- carnitine orally daily to standard inguinal varic- ocelectomy does not add any extra benefit in terms of improvement in semen analysis parame- ters or DNA damage
Poveda 2013	Multiple arm, placebo Infertile men N = 60 Conference abstract	Sperm pa- rameters	Sperm pa- rameters	N - sperm pa- rameters, data not available	L-carnitine significantly improves sperm concen- tration, Spermotrend and Maca improve sperm motility.	+ Sperm concentration with L-carnitine and motility with com- bined antioxidant Sper- motrend
Pryor 1978	Cross-over, placebo Men with se- vere oligo- zoospermia N = 64	Sperm pa- rameters, pregnancy rate	Sperm pa- rameters, pregnancy rate	N - sperm pa- rameters, bar graph of % pa- tients showing an increase in motility and density N - pregnancy rate, not clear if clinical. Includ- ed in biochemi- cal analysis Ta- ble 1	Arginine was no more ef- fective than placebo for sperm parameters and biochemical pregnancy rates	- There was no difference in the conception rates of the wives or changes in the quality of the se- men during each period of treatment
Raigani 2014	Multiple arm, placebo	Sperm pa- rameters, DNA frag- mentation	Sperm pa- rameters, DNA frag- mentation	N - sperm pa- rameters, data provided in me- dians with IQR	Sperm concentration, DNA fragmentation not significantly improved in either group	- Zinc sulphate and folic acid supplementa-

Table 2. Outcomes and conclusions from all included studies (Continued)

Antioxidants for male subfertility (Review)

	Men with proven male factor infer- tility			Y - DNA frag- mentation (mean with SD)		tion did not ameliorate sperm quality in infertion men with severely compromised sperm parameters, OAT	
Dolf 1000	N = 83				sperin parameters, OAT		
Rolf 1999	As- thenosper- mia (N = 33)	Sperm pa- rameters, pregnan- cy rates, adverse events	Sperm pa- rameters, pregnan- cy rate, adverse events	Y - sperm para- meters N - pregnancy rate, not stated as clinical preg- nancy	No adverse events or pregnancies in either group	- Overall no difference vit amin E + C versus place bo	
				N - adverse events, not clear which side effects aimed for			
Safarinejad 2009	Multiple arm, placebo Men with id- iopathic OAT	Sperm pa- rameters, adverse events	ameters, rameters, dverse adverse	Y - sperm para- meters N - adverse events, not	All semen parameters significantly improved with selenium and N- acetyl-cysteine treat- ment. Administering se-	+ Supplemental selenium and N-acetyl-cysteine improve semen quality.	
N = 468	N = 468			specified which adverse events aimed for	lenium plus N-acetyl- cysteine resulted in ad- ditive beneficial effects. Zero adverse events	Zero adverse events	
Safarinejad 2009a	Parallel, placebo	Sperm pa- rameters, rameters, adverse adverse events events		Y - sperm para- meters	Significant improvement in sperm density and	+	
	Men with id- iopathic OAT		N - adverse events, not specified which	motility after coenzyme Q10 therapy. Zero ad- verse events	Coenzyme Q10 supple- mentation resulted in a statistically significant improvement in certain		
	N = 212			adverse events aimed for		sperm parameters. Zero adverse events	
Safarinejad 2012	Parallel, placebo	Sperm pa- rameters		Y - sperm para- meters	Sperm parameters im- proved significantly af- ter coenzyme Q10	+	
	Infertile men					Coenzyme Q10 was sig- nificantly effective in	
	N = 228					men with unexplained oligoasthenoterato- zoospermia for im- proving sperm densi- ty, sperm motility and sperm morphology	
Scott 1998	Multiple arm, placebo	Sperm pa- rameters,	Sperm pa- rameters,	Y - sperm para- meters	Sperm motility in- creased in both seleni-	±	
	Men with subfertili- ty and low sperm motil- ity	pregnancy rate	pregnancy rate	N - pregnancy rate, not usable due to pooling of data in the two interven- tion groups Ta-	um-treated groups, only significant if both treat- ment groups were com- bined. Sperm density unaffected	Selenium supplemen- tation in subfertile men with low selenium sta- tus can improve sperm motility and the chance of successful concep- tion. However, not all	

Antioxidants for male subfertility (Review)

Table 2. Outcomes and conclusions from all included studies (Continued)

56% showed a positive response to treatment

Shar- ifzadeh 2016	Parallel, placebo Idiopathic subfertile men N = 114	Sperm pa- rameters, adverse events	Sperm pa- rameters, adverse events	Y- sperm para- meters Y - adverse events	Significant increase in concentration in zinc group	+ Normal sperm percent- age and total sperm concentration increased after zinc sulphate treat- ment
Sigman 2006	Parallel, placebo Infertile men with low sperm motil- ity N = 26	Sperm pa- rameters, pregnancy rate	Sperm pa- rameters, pregnancy rate	Y - sperm para- meters N - pregnancy rate, biochemi- cal Table 1	No statistically signifi- cant or clinically signif- icant increase in motili- ty or total motile sperm counts between base- line, 12 week, or 24 weeks in the carnitine or placebo arms.	- Carnitine supplementa- tion demonstrated no clinically or statistical- ly significant effect on sperm motility or total motile sperm counts. No difference in pregnancy rate
Sivkov 2011	Parallel, placebo Men with chronic pro- statitis and infertility N = 30	Sperm pa- rameters	Sperm pa- rameters	N - sperm para- meters, no SD given Analysis 1.12	One-month course of therapy produced no side effects, had a posi- tive effect on low fertility of ejaculate.	+ Selenium + zinc improve
Sofikitis 2016	Multiple arm, no treatment, Avanafil ex- cluded Oligoas- thenosper- mic infertile men N = 39 Abstract only	Sperm pa- rameters	Sperm pa- rameters	N - sperm para- meters, no data available	No significant difference in L-carnitine group re- garding sperm parame- ters	- No direct conclusion made about L-carnitine. From result section con- cluded: no impact on sperm parameters after use of L-carnitine
Suleiman 1996	Parallel, placebo As- thenosper- mic men N = 110	Sperm pa- rameters	Sperm pa- rameters, pregnan- cy rate, live birth, mis- carriage	Y - sperm para- meters Y - pregnancy rate, clinical Y - live birth Y - adverse events: miscar- riage	Vitamin E significantly decreased the MDA con- centration in spermato- zoa and improved sperm motility. Significant in- crease pregnancy/live birth rate	+ Vitamin E increases sperm motility, preg- nancy rate and live birth rate compared to place- bo
Tremellen 2007	Parallel, placebo	Pregnan- cy rate,	Pregnan- cy rate,	Y - pregnancy rate, clinical	Antioxidant group recorded a statistical-	+

Antioxidants for male subfertility (Review)

Table 2. Ou	tcomes and co Male factor infertility N = 60	nclusions fro adverse events	m all include adverse events, live birth pro- vided by author	d studies (Continued Y - live birth Y - adverse events	Iy significant improve- ment in viable pregnan- cy rate. Side-effects on the Menevit antioxidant were rare (8%) and mild in nature.	Menevit antioxidant ap- pears to be a useful an- cillary treatment that significantly improves pregnancy rates in cou- ples undergoing IVF-ICSI treatment. Side-effects on the Menevit antioxi- dant were rare (8%) and mild in nature.
Wang 2010	Head-to- head Infertile men with astheno- zoospermia N = 135	Sperm pa- rameters, pregnan- cy rate, adverse events	Sperm pa- rameters, pregnan- cy rate, adverse events	Y - sperm para- meters N - pregnancy rate, not clear if clinical Table 1 N - adverse events, zero found, however not clear which they aimed for	Significant increase in L-carnitine + vitamin E group for sperm motil- ity, no difference for sperm density and mor- phology. Pregnancy rate significantly higher in L-carnitine + vitamin E group	+ L-carnitine (+vitamin E) significantly improves sperm motility and preg- nancy rate
Wong 2002	Multiple arm, placebo Fertile and subfertile men N = 103	Sperm pa- rameters	Sperm pa- rameters	N - sperm pa- rameters, on- ly medians pro- vided Analysis 1.14; Analysis 1.26; Analysis 2.5; Analysis 2.12	Subfertile men demon- strated a significant 74% increase in total normal sperm count and a mi- nor increase of 4% ab- normal spermatozoa	+ Total normal sperm count increases after combined zinc sulphate and folic acid treatment in both subfertile and fertile men
Zalata 1998	Head-to- head, pilot Men attend- ing androlo- gy clinic N = 22 Conference abstract	Sperm pa- rameters	Sperm pa- rameters	N - sperm pa- rameters, only before and af- ter median data given	No significant difference in sperm parameters af- ter treatment (acetyl- cysteine or DHA). DNA damage measured by oh8dG (fmol/ug) was significantly decreased after supplementation	- No improvement of sperm parameters
Zavaczki 2003	Parallel, placebo Men with id- iopathic in- fertility N = 20	Sperm pa- rameters, clinical pregnan- cy, adverse events	Sperm pa- rameters, clinical pregnan- cy, adverse events	Y - sperm para- meters Y - pregnancy rate, clinical Y - adverse events	No significant changes in sperm characteristics were detected	- Magnesiumt neither leads to a significant improvement of sperm variables nor does it in- crease the pregnancy rates

DHA: docosahexaenoic acid; IUI: intrauterine insemination; NAC: N-acetylcysteine; OAT:oligoasthenoteratozoospermia; ROS: reactive oxygen species

APPENDICES

Appendix 1. Cochrane Gynaecology and Fertility Specialised Register search strategy

Searched 1 Febuary 2018

PROCITE platform

Keywords CONTAINS "antioxidants" or "antioxidant levels" or "vitamin" or "vitamin A" or "vitamin B" or "Vitamin-B-12" or "Vitamin-B-12" or "Vitamin C" or "Vitamin D" or "vitamin E" or "vitamins" or "selenium" or "folic acid" or "glutathione" or "Menevit anti-oxidant" or "carnitene" or "ascorbic acid" or "zinc" or "fatty acids" or "oil" or "fish oils" or "plant extracts" or "flavonoids" or "L-arginine" or "pycnogenol" or "folate" or "ubiquinol "or "coenzyme Q10" or "L-carnitin" or "L-carnitine" or "multivitamins" or "beta-caritine" or "N-acetyl cysteine" or "L-acetyl-carnitine" or "acetyl L-carnitine" or "acetylcysteine" or "alpha tocopherol" or "pentoxifylline" or "omega-3" or "omega-6 fatty acid" or "inositol" or "Myo-inositol" or "d-chiro-inositol" or "melatonin" or "docosahexaenoic acid" or "vitamin A" or "vitamin B" or "Vitamin-B-12" or "vitamin-B-12" or "vitamin" or "antioxidant levels" or "vitamin" or "vitamin B" or "vitamin" or "nutritional supplement" or "nutritional supplements" or "vitamin-B-12" or "vitamin B" or "vitamin B" or "vitamin B" or "vitamin-B-12" or "vitamin B" or "vitamin" or "acetyl-carnitine" or "nutritional supplements" or "nutritional supplements" or "docosahexaenoic acid" or "indiant A" or "vitamin B" or "vitamin-B-12" or "Vitamin-B-12-Therapeutic-Use" or "vitamin B6" or "vitamin C" or "nutritional supplements"

AND

Keywords CONTAINS "idiopathic asthenospermia" or "idiopathic oligozoospermia" or "IVF" or "ICSI" or "Intrauterine Insemination" or "ART" or "Sperm" or "sperm DNA integrity" or "sperm damage" or "sperm quality" or "sperm parameters" or "oligo-asthenozoospermia" or "Oligoasthenospermia" or "oligoasthenospermia" or "oligoasthenospermia" or "oligoasthenospermia" or "asthenospermia" or "asthenospermia" or "asthenospermia" or "asthenospermia" or "idiopathic oligozoospermia" or "Male" or "male subfertility" or Title CONTAINS "idiopathic asthenospermia" or "idiopathic oligozoospermia" or "Sperm" or "sperm DNA integrity" or "sperm damage" or "sperm quality" or "sperm parameters" or "oligo-asthenozoospermia" or "Oligoasthenospermia" or "oligoasthenoteratozoospermia" or "oligospermia" or "sperm damage" or "sperm quality" or "sperm parameters" or "oligo-asthenozoospermia" or "Oligoasthenospermia" or "oligoasthenoteratozoospermia" or "oligospermia" or "sperm damage" or "sperm quality" or "sperm parameters" or "oligo-asthenozoospermia" or "Oligoasthenospermia" or "oligoasthenoteratozoospermia" or "oligospermia" or "oligozoospermia" or "oligoasthenoteratozoospermia" or "oligoasthenoteratozoospermia" or "oligospermia" or "oligoasthenoteratozoospermia" or "oligospermia" or "oligoasthenoteratozoospermia" or "oligozoospermia" or "oligoasthenoteratozoospermia" or "oligoasthenoteratozoospermia" or "oligozoospermia" or "oligoasthenoteratozoospermia" or "oligoasthenoteratozoospermia" or "oligozoospermia" or "oligozoospermia" or "asthenozoospermia" or "oligoasthenoteratozoospermia" or "azoospermia" or "azoospermia" or "azoospermia" or "azoospermia" or "oligozoospermia" or "oligozoospermia" or "azoospermia" or "azoosp

Appendix 2. CENTRAL Register of Studies Online (CRSO) search strategy

Searched 1 Febuary 2018

Web platform

- #1 MeSH descriptor: [Infertility, Male] explode all trees 664
- #2 asthenozoospermia or oligospermia or azoospermia:ti,ab,kw 462
- #3 Asthenospermia or Teratospermia:ti,ab,kw 75
- #4 MeSH descriptor: [Spermatozoa] explode all trees 440

#5 Sperm*:ti,ab,kw 3994

- #6 male subfertility:ti,ab,kw 197
- #7 male infertility:ti,ab,kw 1604
- #8 subfertile men:ti,ab,kw 48
- #9 infertile men:ti,ab,kw 265
- #10 semen:ti,ab,kw 1255
- #11 oligoasthenoteratozoospermia:ti,ab,kw 25
- #12 #1 or #2 or #3 or #4 or #5 or #6 or #7 or #8 or #9 or #10 or #11 5016
- #13 MeSH descriptor: [Antioxidants] explode all trees 4250
- #14 antioxidant*:ti,ab,kw 8353
- #15 radical scavenger*:ti,ab,kw 687
- #16 MeSH descriptor: [Vitamins] explode all trees 2263

Antioxidants for male subfertility (Review)

Copyright $\ensuremath{\mathbb S}$ 2019 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd.

- #17 vitamin*:ti,ab,kw 19677
- #18 MeSH descriptor: [Zinc] explode all trees 1393
- #19 zinc:ti,ab,kw 4285
- #20 MeSH descriptor: [Selenium] explode all trees 584
- #21 Selenium:ti,ab,kw 1456
- #22 Glutathione or folate:ti,ab,kw 4279
- #23 ubiquin\$ or folic acid:ti,ab,kw 3446
- #24 coenzyme q10:ti,ab,kw 524
- #25 MeSH descriptor: [Carnitine] explode all trees 559
- #26 carnitine\$ or carotenoid 1792
- #27 astaxanthin\$ or lycopene 564
- #28 menevit 3
- #29 multivitamin\$ 904
- #30 betacarotene\$ or beta carotene\$ 1694
- #31 ascorbic acid 3534
- #32 acetylcysteine 1587
- #33 MeSH descriptor: [Acetylcysteine] explode all trees 738
- #34 Acetylcysteine 1587
- #35 cysteine or ethylcysteine 1083
- #36 alpha-tocopherol\$ 2596
- #37 fish oil\$ 2286
- #38 omega\$ 4656
- #39 MeSH descriptor: [Fatty Acids] explode all trees 19683
- #40 fatty acid\$ 10373
- #41 arginine or flavonoid or carotenoid or riboflavin 5416
- #42 pycnogenol\$ or lutein\$ or lipoic acid\$ or Inositol 1626
- #43 MeSH descriptor: [Inositol] explode all trees 340
- #44 myoinositol or mesoinositol or melatonin 1767
- #45 cysteine or docosahexaenoic or magnesium 9176
- #46 nutritional supplement\$ 2441
- #47 nutraceutical\$ 383

#48 #13 or #14 or #15 or #16 or #17 or #18 or #19 or #20 or #21 or #22 or #23 or #24 or #25 or #26 or #27 or #28 or #29 or #30 or #31 or #32 or #33 or #34 or #35 or #36 or #37 or #38 or #39 or #40 or #41 or #42 or #43 or #44 or #45 or #46 or #47 73432

#49 #12 and #48 419

Appendix 3. MEDLINE search strategy

Searched 1946 to 1 Febuary 2018

OVID platform

1 exp male infertility/ (25443) 2 (asthenozoospermia or oligospermia or azoospermia).tw. (6718) 3 Asthenospermia.tw. (319) 4 Teratospermia.tw. (157) 5 exp Spermatozoa/ (61935) 6 Sperm\$.tw. (123530) 7 (male\$ adj2 subfertil\$).tw. (716) 8 (male\$ adj2 infertil\$).tw. (10031) 9 (subfertil\$ adj2 men).tw. (493) 10 (infertil\$ adj2 men).tw. (4006) 11 (male\$ adj2 fertility).tw. (5274) 12 semen.tw. (26643) 13 oligoasthenoteratozoospermi\$.tw. (360) 14 or/1-13 (153999) 15 exp antioxidants/ or free radical scavengers/ (411638) 16 (antioxidant\$ or radical scavengers).tw. (161958) 17 exp vitamins/ or exp ascorbic acid/ or exp dehydroascorbic acid/ or exp vitamin a/ or exp vitamin e/ or exp vitamin u/ or exp alphatocopherol/ or exp beta carotene/ or exp beta-tocopherol/ or exp gamma-tocopherol/ (318144) 18 vitamin\$.tw. (184483) 19 exp Zinc/ (55556) 20 exp Selenium/ (18842) 21 (Glutathione\$ or folate).tw. (134066) 22 exp Glutathione Peroxidase/ or exp folic acid/ (52442) 23 exp Ubiquinone/ (8226) 24 (ubiquin\$ or folic acid).tw. (25733) 25 coenzyme q10.tw. (2906) 26 exp Carnitine/ (8935) 27 (carnitine\$ or carotenoid\$).tw. (30261) 28 (astaxanthin\$ or lycopene\$).tw. (5723) 29 menevit.tw. (3) 30 multivitamin\$.tw. (3391) 31 (betacarotene\$ or beta carotene\$).tw. (12411) 32 ascorbic acid.tw. (28266) 33 n-acetylcysteine.tw. (9954) 34 exp Acetylcysteine/ (11959) 35 Acetylcysteine.tw. (10732) 36 Acetyl cysteine.tw. (3094) 37 Acetyl-carnitine.tw. (168) 38 ethylcysteine.tw. (62) 39 alpha-tocopherol\$.tw. (14639) 40 (fish adj2 oil\$).tw. (9589) 41 omega\$.tw. (44863) 42 exp fatty acids/ or exp fish oils/ or exp cod liver oil/ or exp fatty acids, omega-3/ or exp plant oils/ (448639) 43 fatty acid\$.tw. (185377) 44 (plant adj4 oil\$).tw. (2449) 45 arginine.tw. (88608) 46 flavonoid\$.tw. (32547) 47 carotenoid\$.tw. (17021) 48 riboflavin\$.tw. (9284) 49 pycnogenol\$.tw. (345) 50 lutein\$.tw. (36115) 51 lipoic acid\$.tw. (3967) 52 exp Inositol/ (22263) 53 (Inositol or myoinositol).tw. (35152) 54 mesoinositol.tw. (36) 55 melatonin.tw. (21226)

56 n acetyl cysteine.tw. (3045) 57 docosahexaenoic acid.tw. (10078) 58 magnesium.tw. (51372) 59 nutritional supplement\$.tw. (5235) 60 (diet\$ adj3 supplement\$).tw. (36417) 61 nutraceutical\$.tw. (4403) 62 or/15-61 (1623704) 63 randomized controlled trial.pt. (452080) 64 controlled clinical trial.pt. (92108) 65 randomized.ab. (400977) 66 placebo.tw. (190947) 67 clinical trials as topic.sh. (182333) 68 randomly.ab. (283901) 69 trial.ti. (176948) 70 (crossover or cross-over or cross over).tw. (75086) 71 or/63-70 (1155842) 72 (animals not (humans and animals)).sh. (4385913) 73 71 not 72 (1063162) 74 14 and 62 and 73 (559)

Appendix 4. Embase search strategy

Searched 1980 to 1 Febuary 2018

OVID platform

1 exp male infertility/ (36830) 2 (asthenozoospermia or oligospermia or azoospermia).tw. (8576) 3 Asthenospermia.tw. (404) 4 Teratospermia.tw. (196) 5 exp Spermatozoa/ (40046) 6 Sperm\$.tw. (134402) 7 (male\$ adj2 subfertil\$).tw. (924) 8 (male\$ adj2 infertil\$).tw. (13888) 9 (subfertil\$ adj2 men).tw. (607) 10 (infertil\$ adj2 men).tw. (5561) 11 (male\$ adj2 fertility).tw. (6397) 12 semen.tw. (31205) 13 oligoasthenoteratozoospermi\$.tw. (501) 14 or/1-13 (168218) 15 vitamin\$.tw. (224591) 16 exp Zinc/ (96319) 17 exp Selenium/ (33745) 18 (zinc or selenium).tw. (136357) 19 (Glutathione\$ or folate).tw. (154128) 20 exp Ubiquinone/ (7428) 21 ubiquin\$.tw. (8388) 22 coenzyme q10.tw. (4117) 23 exp Carnitine/ (13571) 24 (carnitine\$ or carotenoid\$).tw. (34331) 25 (astaxanthin\$ or lycopene\$).tw. (6806) 26 menevit.tw. (12) 27 multivitamin\$.tw. (4547) 28 (betacarotene\$ or beta carotene\$).tw. (14287) 29 ascorbic acid.tw. (31008) 30 n-acetylcysteine.tw. (12585) 31 exp acetylcysteine/ (31271) 32 acetylcysteine.tw. (13657) 33 Acetyl cysteine.tw. (4153) 34 ethylcysteine.tw. (61) 35 alpha-tocopherol\$.tw. (15603) 36 (fish adj2 oil\$).tw. (12046) 37 omega\$.tw. (44717)

38 fatty acid\$.tw. (208396) 39 (plant adj4 oil\$).tw. (3474) 40 arginine.tw. (95239) 41 flavonoid\$.tw. (47169) 42 carotenoid\$.tw. (18326) 43 riboflavin\$.tw. (9563) 44 pycnogenol\$.tw. (439) 45 lutein\$.tw. (36273) 46 lipoic acid\$.tw. (4844) 47 exp antioxidant/ (165170) 48 free radical scavengers/ (20469) 49 (antioxidant\$ or radical scavengers).tw. (209843) 50 exp vitamin/ or exp ascorbic acid/ or exp carotenoid/ or exp multivitamin/ or vitamin b group/ (560638) 51 exp edible oil/ or exp castor oil/ or exp lyprinol/ or exp olive oil/ or exp safflower oil/ or exp essential fatty acid/ or exp arachidonic acid/ or exp linoleic acid/ or exp linolenic acid/ or exp gamma linolenic acid/ or exp unsaturated fatty acid/ or exp omega 6 fatty acid/ or exp polyunsaturated fatty acid/ (170403) 52 exp fatty acid/ (499866) 53 exp vegetable oil/ (71261) 54 exp fish oil/ (15511) 55 exp cod liver oil/ (1108) 56 exp omega 3 fatty acid/ (26841) 57 exp inositol/ (10949) 58 docosahexaenoic acid.tw. (12438) 59 magnesium.tw. (57498) 60 (Inositol or myoinositol).tw. (38014) 61 mesoinositol.tw. (10) 62 melatonin.tw. (25584) 63 nutritional supplement\$.tw. (7123) 64 nutraceutical\$.tw. (5817) 65 or/15-64 (1906582) 66 Clinical Trial/ (963424) 67 Randomized Controlled Trial/ (481441) 68 exp randomization/ (76750) 69 Single Blind Procedure/ (30162) 70 Double Blind Procedure/ (142753) 71 Crossover Procedure/ (53922) 72 Placebo/ (303506) 73 Randomi?ed controlled trial\$.tw. (170913) 74 Rct.tw. (26655) 75 random allocation.tw. (1715) 76 randomly allocated.tw. (28704) 77 allocated randomly.tw. (2277) 78 (allocated adj2 random).tw. (789) 79 Single blind\$.tw. (20147) 80 Double blind\$.tw. (177989) 81 ((treble or triple) adj blind\$).tw. (733) 82 placebo\$.tw. (259893) 83 prospective study/ (418782) 84 or/66-83 (1845002) 85 case study/ (51632) 86 case report.tw. (343900) 87 abstract report/ or letter/ (1015495) 88 or/85-87 (1402788) 89 84 not 88 (1798045)

90 14 and 65 and 89 (1401)

Appendix 5. CINAHL search strategy

Searched from 1961 to 1 February 2018

EBSCO platform

#	Query	Results
S43	S25 AND S42	100
S42	S26 OR S27 OR S28 OR S29 OR S30 OR S31 OR S32 OR S33 OR S34 OR S35 OR S36 OR S37 OR S38 OR S39 OR S40 OR S41	1,203,002
S41	TX allocat* random*	8,211
S40	(MH "Quantitative Studies")	18,214
S39	(MH "Placebos")	10,641
S38	TX placebo*	49,628
S37	TX random* allocat*	8,211
S36	(MH "Random Assignment")	45,438
S35	TX randomi* control* trial*	142,613
S34	TX ((singl* n1 blind*) or (singl* n1 mask*))	13,112
S33	TX ((doubl* n1 blind*) or (doubl* n1 mask*))	923,796
S32	TX ((tripl* n1 blind*) or (tripl* n1 mask*))	291
S31	TX ((trebl* n1 blind*) or (trebl* n1 mask*))	224
S30	TX ((trebl* n1 blind*) or (trebl* n1 mask*))	224
S29	"or TX ((trebl* n1 blind*) or (trebl* n1 mask*))"	224
S28	TX clinic* n1 trial*	219,940
S27	PT Clinical trial	85,642
S26	(MH "Clinical Trials+")	233,936
S25	S20 AND S24	373
S24	S21 OR S22 OR S23	4,567
S23	TX sperm*	4,329
S22	(MH "Sperm Motility") OR (MH "Spermatozoa") OR (MH "Sperm Count") OR "sperm"	3,066
S21	"male infertility"	500
S20	S1 OR S2 OR S3 OR S4 OR S5 OR S6 OR S7 OR S8 OR S9 OR S10 OR S11 OR S12 OR S13 OR S14 OR S15 OR S16 OR S17 OR S18 OR S19	108,659
S19	TX docosahexaenoic acid	2,993
S18	TX magnesium	6,027

Antioxidants for male subfertility (Review)

(Continued)		
S17	TX acetyl cysteine	351
S16	TX melatonin	2,528
S15	TX chiro inositol	42
S14	TX myoinositol	85
S13	TX Inositol	839
S12	TX fatty acid	22,457
S11	TX omega 3	7,555
S10	TX Pentoxifylline	504
S9	TX Acetylcysteine	1,656
S8	TX menevit	3
S7	TX coenzyme q10	579
S6	TX Selenium	2,579
S5	TX Zinc	6,947
S4	TX carnitine	1,529
S3	TX vitamin*	45,611
S2	TX antioxidant*	22,539
S1	(MH "Antioxidants+") or (MH "Berries+") or (MH "Chlorophyll") or (MH "Flavonoids+") or (MH "Lycopene") or (MH "Polyphenols+")	25,644

Appendix 6. PsycINFO search strategy

Searched from 1806 to 1 Febuary 2018

OVID platform

1 exp Infertility/ (2007) 2 (asthenozoospermia or oligospermia or azoospermia).tw. (41) 3 exp Sperm/ (831) 4 Sperm\$.tw. (2981) 5 (male\$ adj2 subfertil\$).tw. (8) 6 (male\$ adj2 infertil\$).tw. (202) 7 (subfertil\$ adj2 men).tw. (1) 8 (infertil\$ adj2 men).tw. (94) 9 (male\$ adj2 fertility).tw. (143) 10 semen.tw. (439) 11 oligoasthenoteratozoospermi\$.tw. (2) 12 Asthenospermia.tw. (2) 13 Teratospermia.tw. (0) 14 or/1-13 (5309) 15 vitamin\$.tw. (6685) 16 exp Zinc/ (780)

17 exp Antioxidants/ (2458) 18 (zinc or selenium).tw. (2256) 19 (Glutathione\$ or folate).tw. (3469) 20 ubiquin\$.tw. (98) 21 coenzyme q10.tw. (195) 22 (carnitine\$ or carotenoid\$).tw. (745) 23 (astaxanthin\$ or lycopene\$).tw. (76) 24 menevit.tw. (0) 25 multivitamin\$.tw. (229) 26 (betacarotene\$ or beta carotene\$).tw. (139) 27 ascorbic acid.tw. (416) 28 n-acetylcysteine.tw. (347) 29 exp Cysteine/ (628) 30 acetylcysteine.tw. (357) 31 alpha-tocopherol\$.tw. (219) 32 (fish adj2 oil\$).tw. (278) 33 omega\$.tw. (2433) 34 fatty acid\$.tw. (4091) 35 (plant adj4 oil\$).tw. (40) 36 l-arginine\$.tw. (1068) 37 arginine\$.tw. (2842) 38 flavonoid\$.tw. (382) 39 carotenoid\$.tw. (352) 40 riboflavin\$.tw. (196) 41 pycnogenol\$.tw. (13) 42 lutein\$.tw. (1544) 43 lipoic acid\$.tw. (175) 44 (antioxidant\$ or radical scavengers).tw. (4920) 45 Inositol.tw. (1411) 46 myoinositol.tw. (130) 47 mesoinositol.tw. (0) 48 acetyl cysteine.tw. (146) 49 melatonin.tw. (4242) 50 or/15-49 (30905) 51 random.tw. (52089) 52 control.tw. (401965) 53 double-blind.tw. (21242) 54 clinical trials/ (10777) 55 placebo/ (5057) 56 exp Treatment/ (705267) 57 or/51-56 (1095872) 58 14 and 50 and 57 (34)

Appendix 7. 'The World Health Organization International Clinical Trials Registry Platform' search portal

Searched 1 Febuary 2018

Web platform

- 1) Antioxidant* AND men
- 2) Vitamins* AND men
- 3) Antioxidant* AND male
- 4) Vitamin* AND male
- 5) Infertility AND men
- 6) Infertility AND male

Appendix 8. 'ClinicalTrials.gov' trials register

Searched 1 Febuary 2018

Web platform

1) Antioxidants (clinical condition: infertility)

2) Vitamins (clinical condition: infertility)

Appendix 9. OpenGrey

Searched 1 Febuary 2018

Web platform

1) Antioxidant*

2) Vitamin*

3) Infertility AND Men

4) Antoxidant AND fertility

Appendix 10. ProQuest Dissertations & Theses database

Searched 1 Febuary 2018

Web platform

1) Antioxidants AND sperm AND (men OR male) AND (fertility or infertility) AND random*

2) Antoxidants AND sperm AND (men OR male) AND (fertility or infertility)

Appendix 11. Web of Science

Searched 1 Febuary 2018

Web platform

1) Antioxidants AND sperm AND male AND (fertility OR infertil*) limited by 'clinical trial'

WHAT'S NEW

Date	Event	Description
4 December 2018	New search has been performed	Nineteen new studies were added in this update (Barekat 2016; Blomberg Jensen 2018; Boonyarangkul 2015; Busetto 2018; Cyrus 2015; Deng 2014; Ener 2016; Exposito 2016; Gamidov 2017; Gopinath 2013; Haghighian 2015; Haje 2015; Martinez 2015; Mehni 2014; Micic 2017; Pourmand 2014; Raigani 2014; Shar- ifzadeh 2016; Sofikitis 2016). There is one study placed in await- ing classification (Goswami 2015).
		All pentoxifylline studies were excluded. Two previously included studies were excluded for containing an ineligible study popula- tion.
4 December 2018	New citation required and conclusions have changed	Pentoxifylline was removed from the review due to the fact that it is a prescription drug and not an 'over-the-counter' supple- ment.
		Progressive sperm motility was added as a secondary outcome; this is an outcome with more clinical importance than total sperm motility.

HISTORY

Protocol first published: Issue 4, 2008 Review first published: Issue 1, 2011

Date	Event	Description
10 February 2015	Amended	Correction of some analysis graph labels.
28 November 2014	New citation required and conclusions have changed	Comparisions were restructured into a more logical framework. Clinical pregnancy rate data were used in this update rather than the undefined pregnancy rate data of the original review as this is more clinically meaningful when considering the evidence for use of antioxidants.
28 November 2014	New search has been performed	14 new studies were added in this update (Attallah 2013, Azi- zollahi 2013, Dimitriadis 2010, Eslamian 2013, Kumamoto 1988, Martinez-Soto 2010, Morgante 2010, Nadjarzadeh 2011, Poveda 2013, Pryor 1978, Safarinejad 2011b, Safarinejad 2012, Sivkov 2011, Wang 2010). The search was updated in August 2014 and six studies were placed in awaiting classification (Anarte 2013a; Gopinath 2013; Iacono 2014; Nadjarzadeh 2014; Nashivochniko- va 2014a; Nematollahi-Mahani 2014).
7 December 2011	Feedback has been incorporated	Change of emphasis to conclusions, additional sensitivity analy- sis performed, Risk of Bias, Summary of Findings Table and Dis- cussion sections edited to increase this review's focus on clinical outcomes of pregnancy and live birth.
3 May 2011	Amended	2.1 Analysis edited to fixed effect Peto. The conclusions remain the same.
8 March 2011	Amended	Changed summary of findings table to reflect quality of studies
21 December 2010	Amended	Minor edits made - no changes to conclusions
4 May 2007	New citation required and major changes	Substantive amendment

CONTRIBUTIONS OF AUTHORS

RS: starting from the 2018 update: searched other sources, selected studies for inclusion, assessed quality, performed data extraction, entered data, updated and renewed the whole background text and wrote the final 2018 update review. Also provided clinical expertise. RM-P: selected studies for inclusion in the 2014 and 2018 update, assessed quality, performed data extraction and commented on the final version of the update. In the 2014 update also assisted with background text updating and entered text into tables of characteristic. AY: co-drafted the protocol and wrote the section concerning sperm DNA fragmentation for the background up to the 2014 update. Provided technical advice on all versions.

MS: co-drafted the protocol and provided technical advice on semen parameters. Commented on all versions.

VJ: starting from the 2018 update: provided technical advice and commented on the final version of the update.

MGS: initiated, conceptualised and wrote the protocol, performed the searches in all versions. Up to and including the 2014 update: selected studies for inclusion, assessed quality, performed data extraction, entered data and wrote the first review and the 2014 update. Commented on the final versions of the 2018 update.

DECLARATIONS OF INTEREST

The institution of first author Roos M Smits received an unrestricted grant for conducting the trial NCT03337360, to cover the salary of the trial co-ordinator Roos M Smits. This trial (NCT03337360) started in April 2018. No data have been extracted from this study. The trial

Antioxidants for male subfertility (Review)

NCT03337360 is submitted to 'Ongoing studies'. This matter was referred to Cochrane's Funding Arbiters who have confirmed that Dr Smits' declared interest does not constitute a COI under the current policy.

The following authors have reported financial activities outside the submitted work:

- AY is a member of the advisory board of MSD. He is a stockholder of Queensland Fertility Group and is director of research and development of that institution. The research foundation of Queensland Fertility Group has received research grants from Merck Serono, MSD and the AGES Society (unrestricted grant December 2018; research proposal for pragmatic trial on surgery vs IVF). AY has received travel and conference expenses from Merck Serono (February 2018) and Ferring (January 2016 and January 2018). AY advises that none of these companies manufacture or market any antioxidants.
- MS has received travel and conference expenses from Merck Serono (July 2018), Finox (April 2017) and Ferring (January 2016).

VJ, MGS and RM-P have no conflicts to declare.

SOURCES OF SUPPORT

Internal sources

• Cochrane Gynaecology and Fertility Group, Other.

External sources

• None, Other.

DIFFERENCES BETWEEN PROTOCOL AND REVIEW

In the 2011 full review, sperm outcomes of concentration and motility were added as these two sperm outcomes are thought to reflect the oxidative process. A study by El-Taieb (El-Taieb 2009) states that "increased ROS generation and reduced antioxidant capacity is negatively correlated with sperm concentration and motility in infertile men".

The comparisons 'antioxidant versus placebo' and 'antioxidants versus no treatment' were combined as the one comparison 'antioxidants versus control', and then it was stated in the sensitivity analysis whether exclusion of those that failed to use placebo would have altered the conclusions - as per statistical advice in the editorial comments.

Subgrouping and sensitivity analysis were performed on the outcomes of live birth and pregnancy in order to assess the potential of overestimation of benefit and reporting bias.

Subgroup analysis was performed on studies that enrolled couples undergoing IVF/ICSI and a sensitivity analysis was performed on those studies enrolling men undergoing IUI.

Sensitivity analysis was performed to consider whether conclusions were any different if eligibility was restricted to those studies without risk of bias.

A post hoc sensitivity analysis was conducted to examine the effect of excluding from the analysis those studies which reported remarkably low standard deviations as the review authors considered that these data were potentially erroneous.

In the 2014 update of the review 'pregnancy rate per couple' was redefined to be 'clinical pregnancy rate'. Stillbirth as an outcome was removed; this will be reported as an adverse event, as reported by the studies. The outcome 'level of sperm DNA damage after treatment' was reworded as 'level of sperm DNA fragmentation'.

In the 2018 update, we decided to remove pentoxifylline due to the fact that it is a prescription drug and not an 'over-the-counter' or overall free available supplement. In the future, there will be a new Cochrane Review solely on this item. We added a new secondary outcome: progressive sperm motility. In past versions of this review we already noticed that four studies only reported on progressive sperm motility and not on total sperm motility. In this 2018 update, we noticed that eight more studies (out of the 17 new included) report only on progressive sperm motility. We came to the conclusion that progressive sperm motility is the motility outcome with more clinical importance.

Furthermore, in the 2018 update we clarified that this review is (as the title implies) solely for subfertile men; men with abnormal semen parameters. In the previous updates it was said to include "men of a couple with male factor infertility or unexplained infertility". However, male factor infertility has always been the main focus of the search and the review. Broadening the focus of the review to also unexplained infertility would change the scope of the review. Therefore we changed the inclusion and exclusion criteria, which are now also more like those in the review '*Antioxidants for female subfertility*' (Showell 2017).

Other changes were made in regard with the 'Risk of bias' assessments of blinding: we decided to assess 'performance bias' and 'detection bias' separately.

INDEX TERMS

Medical Subject Headings (MeSH)

Abortion, Spontaneous [epidemiology]; Antioxidants [*therapeutic use]; DNA Damage; DNA Fragmentation; Gastrointestinal Diseases [chemically induced]; Infertility, Male [*drug therapy] [etiology]; Live Birth [epidemiology]; Oxidative Stress [*drug effects]; Pregnancy Rate; Randomized Controlled Trials as Topic; Sperm Count; Sperm Motility [drug effects]; Spermatozoa [drug effects]

MeSH check words

Female; Humans; Male; Pregnancy