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Antyscam – Practical Web Spam Classifier
Marcin Luckner, Michał Gad, and Paweł Sobkowiak

Abstract—To avoid of manipulating search engines results by
web spam, anti spam system use machine learning techniques
to detect spam. However, if the learning set for the system is
out of date the quality of classification falls rapidly. We present
the web spam recognition system that periodically refreshes the
learning set to create an adequate classifier. A new classifier is
trained exclusively on data collected during the last period. We
have proved that such strategy is better than an incrementation
of the learning set. The system solves the starting–up issues of
lacks in learning set by minimisation of learning examples and
utilization of external data sets. The system was tested on real
data from the spam traps and common known web services:
Quora, Reddit, and Stack Overflow. The test performed among
ten months shows stability of the system and improvement of the
results up to 60 percent at the end of the examined period.

Keywords—Web Spam Detection, Spam Detection, Imbalanced
Sets Classification, Automatic Classification, Machine Learning.

I. INTRODUCTION

S
PAM is a serious problem for the Internet community

[1]. However, the unsolicited message are not limited to

emails. Spam is present in SMS [2], MMS [3], image files [4],

[5]., video files [6], [7], and on web pages [8].

The last form of spam – web spam – is still one of the most

challenging issues. The most common type in the list is web

spam that exploits vulnerabilities and gaps in the web 2.0 to

inject links to spam content into dynamic and sharable content

such as blogs, comments, reviews, or wikipages.

Figure 1 presents a few examples of web spam. The

examples are comments on WordPress blogs. The comments

are diversified. The first comment (Figure 1(a)) looks like a

valid comment, but hides a link in the user name. The second

comment (Figure 1(b)) contains links in nearly normal text.

The last comment (Figure 1(c)) is a typical example of web

spam comment with several injected links without normal text.

This spam was created to promote link farms and provide

credibility to the spammer website.

Because of variety of web spam, web spam detectors use

machine learning techniques to create a model of spam from

training sets that include spam and non–spam examples. On of

the most popular training sets is WEBSPAM-UK collection.

The collection includes two datasets from 2006 and 2007 [9].

Many projects have used these data sets to test web spam

detectors.

However, works [10], [11], [12], [13], [14] proved that using

data from 2006 to create classifier that recognises web spam
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Fig. 1. The examples of web spam comments with linked content. The first
example does not contain a visible link in text but the author name links to
a spam web page, the second one consists of normal text and links, the last
one does not contains normal text.
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in data from 2007 decreases the accuracy of the classification

in comparison to classifiers trained on the data from the same

year.

The problem of reduction of the classification accuracy over

time was stressed in [14], [15], [16], [10], [17]. The works

shows that it is impossible to create the classifier that will

keep the similar level of quality over years.

In this work, we proposed a new system for web spam

classification. The system collects data on web spam from

web spam traps and information on non–spam from trusted

web services to create a new classifier for each approaching

period. The classifiers are based on fast learning bagging

methods and the RUSBoost algorithm. The creation of new

classifiers allows the web page administrator to keep the anti-

spam protection on the high level. The system can work in a

fully automated mode when the learning process is based on

external learning data or master the spam rejection when the

learning process is based on supervised internal data from the

protected service.

We present test of the classifiers on three common knows

web services: Quora, Reddit, and Stack Overflow. The test

proved high quality of the system. Using the data sets, we

discussed issues of the classification in the case of lacks in

positive or negative spam examples during starting–up of the

system. We also proved an unobvious fact that using web spam

rejectors trained on limited data from the last period gives

better results than using rejectors trained on the whole history.

The remainder of this work is organised as follows. First,

the results obtained in other works on web spam detection

are described in Section II. This is followed by a description

of the proposed dynamic web spam recognition system in

Section III. Section IV presents the testing methodology.

Section V contains the results and discussion. This is followed

by the conclusions in Section VI.

II. PREVIOUS WORKS

The web spam recognition issue was analysed by several

works summarized in the following articles. In work [18],

the authors compared results obtained by various machine

learning techniques used for web spam recognition. The work

was focused on the commonly known techniques that were

tested over the WEBSPAM-UK2006 and WEBSPAM-UK2007

datasets. That review includes such works as [14], [13],

[19], [12]. More results obtained on the same data sets were

published in [10], [17], [20], [21], [22], [23], [24], [25]. The

discussion of these results was presented in [14]. The present

research focuses on systematically analysing and categorizing

models that detect review spam were summed in [26].

Several new approach were proposed in last years. In work

[27], the authors proposed a general mathematical framework,

which proves beneficial for grouping classifiers using a convex

ensemble diversity measure. The ant colony optimization

designed to let an ant start from a non-spam seed, and

compilation of the created path to non-spam classification rules

was discussed in [28].

Our solution depends on features that discriminate web

spam. Two approaches are common in web spam detection. In

the first one, features are selected using data mining methods

[21], [29]. In the second approach expert knowledge is used.

Several works proposed their own set of features. In work

[30], changes in the distribution of the set of the selected detec-

tion features according to the page language were examined.

The authors of work [31] proved that historical web page

information was an important factor in spam classification.

Work [32] described how to use the HTML style similarity

clusters to pinpoint dubious pages and enhance the quality

of spam classifiers. Work [33] proved that certain linguistic

features could be useful for a spam-detection task when

combined with features studied elsewhere.

Part of the features used in our system was inspired by the

above–mentioned papers.

We propose a complete system for the web spam rejection

from blogs. The following two systems aimed at email spam

were created before.

Paper [16] evaluated spam filters derived from different op-

timisation problems on chronologically ordered future emails.

The Nash–equilibrial prediction models used outperformed

reference methods. However, the execution time is 10 thousand

time higher for the Nash–equilibrial prediction models than for

the SVM.

The recognition of spam through years was discussed in

several works. Work [15] presented two mechanisms. The pre-

dictive defence algorithm combines game theory with machine

learning to model and predict future adversary actions for syn-

thesising robust defences. The extrapolative defence algorithm

involves extrapolating the evolution of defence configurations

forward in time, in the terms of defence parametrisations, as

a way of generating defences. The algorithms were tested

over 18 quarters. The results showed a 5 percent reduction

in accuracy over 5 quarters for both methods.

Finally, a new web spam filtering framework WSF2 was

presented in [34], [35]. The authors proposed the approach

being able to dynamically adjust different parameters to ensure

continuous improvement in filtering precision with the passage

of time. The framework was tested over the WEBSPAM-

UK2007 using combinations of different filtering techniques

including regular expressions and well-known classifiers.

In our work we discuss several issues that were not stressed

in description of the WSF2 system such as updating the

learning set and first period issue, when the classifiers do not

have a full knowledge on characteristic of the recognized data.

III. METHODOLOGY

A. System

Our research was done as part of Antyscam project, which

is a commercially developed SaaS (Software as a Service)

application designed to identify and minimize volume of

unwanted content on web pages. It’s goal is to provide a simple

API that allow users to quickly classify content of any kind

as spam or non-spam.

Most available spam detection solutions are limited to a

single type of content - SpamAssasin handles unwanted email,

Akismet fights spam WordPress comments and search engines

filter out malicious web pages. Current common practice is
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Fig. 2. Administration panel for Antyscam system

to build a domain-specific tool from scrap, rely on human

moderators or to ignore the issue completely.

Although, in this work we are focused on web spam,

Antyscam provides a cross-domain solution by focusing on

lexical-based features that can be extracted from any textual

content, be it blog post, web page, email or a comment.

In order to classify documents Antiscam user must first log

in to the panel and configure a document feed schema by

defining a list of typed fields of the documents that will be

analysed.

Figure 2 shows how the admin can define a datafeed for

WordPress comments consists of four fields: a ’content’ field

of a type HTML for comment content, ’author’ field for

comment’s author nickname, ’url’ field for author’s website

link and ’email’ field for author’s email. This allows the

application to properly extract features - HTML is treated

differently than plain text or URL.

After document feed is defined, user can start sending

documents to Antyscam via API. Labelled documents (i.e.

ones that the user is sure whether they are spam or non-spam)

are stored and used for training the classifier and unlabelled

documents are evaluated and classified as spam or non-spam.

Each user has his own classifier, which is initially trained on

a corpora of heterogeneous documents collected by Antyscam

sub-modules. This allows to quick start the spam classification

process, user can get a working solution without the necessity

of providing a premoderated dataset. Later, as user adds

labelled examples to his document feeds, the classifier is

retrained to include them.

Antiscam corpora consist of different kinds of datasets,

collected with different methods. We use some publicly avail-

able complete datasets, for example a WEBSPAM-UK dataset

of web pages crawled by Yahoo. We also use public APIs

to collect a snapshot collection of documents, for example

comments to Reddit threads or answers to Quora questions

described in detail later in the article. And finally we collect

spam documents by creating spam traps (honeypots), for

example by creating multiple fake WordPress blogs to attract

bots posting spam comments.

B. Algorithm

In the described system, the classification process performs

in separated periods. During a period Ti all incoming com-

ments are classified by the same classifier ci. The classifier is

trained on data from the previous period Ti−1. Parallel to the

classification process the system collects information on web

spam from the spam traps and on non–spam comments from

trusted web services. After the period Ti the system possesses

the following data sets

exS+

i - external spam examples collected by the spam

traps;

exS−
i - external non–spam examples downloaded from

trusted web services;

inS+

i - internal spam examples labelled by the existing

classifier;

inS−
i - internal non-spam examples labelled by the existing

classifier;

The collected sets can be used to create a new classifier ci+1.

Spam collected in the same period from various sources should

be similar. Therefore, it can be assumed that inS+

i ⊂ exS+

i

and the set exS+

i should be used to create the classifier. The

selection of data set with non–spam comments is disputable.

If the web page is well supervised then the set inS−
i is the

most representable. In other case, the set exS−
i provides data

for the full automated classification.

A separate issue is classification of data in the first period T1

when the system lacks in collected examples. The first period

starts when

inS+

i ∪ inS−
i = ∅ (1)

However, we assumed that the set eS+

0 always exists. There-

fore, it is necessary to create a set with non–spam comments.

One option is to find the set eS−
0 . An alternative is to create a

set innS0 ⊂ inS−
0 that contains n manually labelled non-spam

comments from the working web page. In this second option

it is necessary to minimise the number n. In such case the

first period ends when

inS+

0 6= ∅ ∧ |innS0| ≥ n (2)

The issue of the first period is discussed in Section V-C.

When the number of non–spam comments n is minimised

the disproportion between sets innS
−
0 and exS+

0 grows. As

the result, the classifier may label all comments as a spam.

To avoid this situation a special classification algorithm for

unbalanced learning set must be used.

This period ends when

||innS
−
0 | − |exS+

0 || < ǫ (3)

where ǫ is an acceptable difference between cardinal num-

bers of the sets. After that the classification problem can be

solve by any binary classifier.
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C. Classifiers

The discussed issue of a continuous working web spam

rejector contains two classification problems. The first problem

is data classification at the beginning of function of the system

when the full knowledge of data from the previous period. The

following classification functions can be used to recognise web

spam under given circumstances.

The RUSBoost algorithm [36] is dedicated to discriminate

imbalance classes. The algorithm creates an ensemble of week

classifiers similarly as bagging techniques. However, in the

created learning set a number of examples from the majority

class is reduced to reach a given percentage of examples of

the minority class in the learning set.

The One–Class Support Vector Machine (SVM) algo-

rithm [37] creates an SVM classifier [38] for one class.

Assuming that xi ∈ Rd are vectors of features of training

elements, for i = 1, 2, . . . , N and for N being the cardinality

of the training set. Assume also K(x, x′) is a kernel function.

Then a one-class SVM decision function is implemented as:

f(x) = sgn

(

N
∑

i=1

αi ∗K(x, xi)− ρ

)

(4)

where αi and ρ are obtained by maximization of the following

convex quadratic programming (QP) problem:

1

2

(

N
∑

i=1

αi∗K(x, xi)
)2

−ρ−
N
∑

i=1

αi

(

(

N
∑

i=1

αi∗K(x, xi)
)

−ρ

)

(5)

with constrains:

∧

i∈{1,2,...,N}

0 6 αi 6
1

νN
∧

N
∑

j=1

αi = 1 (6)

where ν is an equivalent of the regularization coefficient C in

the binary SVM classification.

Comparison of various SVM techniques in recognition with

rejection is given in [39] .

The second problem is classification of data from the current

period using a full knowledge on data from the previous

periods. The classifier should provide a high accuracy and

short learning and testing time. A very good candidate is

Random Forest that uses a bagging for classification [40].

Bagging bags a weak classifier such as a decision tree on a

dataset, generates many bootstrap replicas of this dataset and

grows decision trees on these replicas. To find the predicted

response of a trained ensemble, the algorithm takes an average

of predictions from individual trees.

D. Features extraction

In the preprocessing, before calculating actual features, each

analysed comment was transformed into three separate forms.

The first form was a Visible Text. The HTML document was

stripped of all mark–up. For that BeatifulSoup4 library with

lxml backend was used. In the result, we obtained the pure

text between tags.

The second form was a Non–blank Visible Text. To obtain

this form, we removed all space characters from the Visible

Text. With this form it is easier to detect content given by

spaced out letters such as v i a g r a.

The third created form was a Distinct Domains. The Dis-

tinct Domains is a set of unique domain names including

the domains defined by Internationalised Domain Names in

Application (IDNA) standards [41], which were in a language–

specific script or alphabet, such as Arabic, Chinese, Russian,

or the Latin alphabet-based characters with diacritical marks,

such as Polish.

The domains were extracted not only from the visible part

of a comment, but also from the whole of origin the HTML

document to include the domains written down inside tags. It

is easy to distinguish domains names from the surrounding text

due to well defined constraints, especially the set of characters

a domain name can consist of and the limited set of valid top–

level domains.

The features used in web spam detection were detailed

described in our previous work [14] including the Python

codes that calculate the features.

IV. TESTS

A. Data sets

Data were collected from June 2013 to February 2014 and

divided into ten monthly periods labelled Ti where i = 0 . . . 9.

The first period T0 is unique because there is not a preceding

period and it is not possible to use any preceding data to create

a classifier to recognise classes from this period.

The system collected two data sets. The first set S+

contains web spam comments collected by a spam trap and

is labelled as spam. The second set S− consist of non–

spam comments and is labelled as non–spam. This set is

heterogeneous and contains non–spam comments from the

three web communities: Quora, Reddit, and Stack Overflow.

Examples of comments are presented on Figure 3. In the test,

the comments from one web service are treated as an internal

dataset inS− when the other two are treated as separate

external datasets exS−. All spam data are treated as an internal

spam data inS+.

Quora dataset consists of the best answers to most popular

questions posted on Quora.com. Quora does not provide an

API, so web scraping method was chosen. Bot started crawling

from pages with most followed topics in 2014 and 2015 and

collected 105 links to top topic pages.

On each topic page the bot visited an overview, top answers

and FAQ page to extract a total of 2804 links to individual

question pages. On each question page 5 top answers were

extracted and saved, for a total of 9520 answers.

Reddit JSON API was used to collect non-spam comments

for Reddit dataset. Bot starts with top topics page and en-

ters each topic in order. On each topic page all comments

are examined. Comments are considered non-spam when the

following conditions are met:

• Comment is parsed correctly according to Reddit API

docs

• Comment is ranked positively - it has 5 more thumbs-up

than thumbs-down

• Comment is not too short - it has at least 100 characters



ANTYSCAM – PRACTICAL WEB SPAM CLASSIFIER 717

(a) Quora

(b) Reddit

(c) Stack Overflow

Fig. 3. The examples of comments from various datasets

• Comment is not reported as offensive by any user

When feed was collected a total of 6521 topic pages were

visited. 529158 comments were parsed. Among them 130604

were rejected because they had the ups/downs balance lower

than 5. Among all the comments, 176688 comments were

considered too short (less than 100 characters). Finally, 221866

were collected and included in the feed data.

StackExchange API was used to download all answers to top

rated questions on StackOverflow. When feed was collected a

list of 68410 top rated questions was downloaded via API and

a total of 500000 answers were extracted and saved. Answers

with upvote score greater or equal to 30 were selected for a

total of 101161 highly rated answers.

The collected comments were limited to comments that

overlap the monthly periods when the spam comments were

collected. The number of data in division on data sources and

periods are given in Table I.

B. Methods of tests and evaluations

We considered the ten monthly periods. During the periods

both spam comments and non–spam comments were collected.

We compared the three following strategies of creation of the

learning set for the classification: Dynamic, Incremental, and

Static.

The Dynamic strategy uses data inS+

i and inS−
i from the

previous period to classify data inS+

i+1
and inS−

i+1
from the

current period.

The Incremental strategy uses all collected data
⋃i

j=0
inS+

j

and
⋃i

j=0
inS+

j – including the previous period – to classify

data inS+

i+1
and inS−

i+1
from the current period..

The Static strategy uses the static learning set inS+

0 and

inS−
0 – the set collected during the first period – to classify

data iS+

i+1
and inS−

i+1
from the current period.

For all strategies the test were done separately on nine

monthly periods from T1 to T9 The evaluation of the results

obtained on the testing sets was done by the following mea-

sures:

TP (true positive) the number of correctly recognised spam

entries. TN (true negative) the number of correctly recognised

non–spam entries. FP (false positive) the number of incorrectly

recognised spam entries. FN (false negative) the number of in-

correctly recognised non–spam entries. Accuracy the fraction

of correctly recognised entries (both spam and non–spam)

ACC =
TP + TN

TP + FP + TN + FN
. (7)

Sensitivity or True Positive Rate the fraction of correctly

recognised spam entries among all spam entries

TPR =
TP

TP + FN
. (8)

Specificity the fraction of detected non–spam entries among

all non–spam entries

SPC =
TN

TN + FP
. (9)

F–measure the weighted average of the spam predictive value

and sensitivity,

F1 =
2TP

2TP + FP + FN
. (10)

V. RESULTS AND DISCUSSION

The detailed results – obtained for each training set T1 . . . T9

by three examined strategies – are given for each non–spam

dataset separately. Table II presents statistics for the Quora

dataset, Table III shows results for the Stack Overflow dataset,

and Table IV gives information on the Reddit dataset. In all

cases, the data set was treated as the internal non-spam dataset

inS−
0 when data from the spam traps were used as the internal

spam data set inS+

0 .

In each table, the stressed results are the best obtained

results for a given measure among three learning strategies.

The Dynamic strategy and the Incremental strategy give good

classification results. The detailed comparison of the strate-

gies is given in Section V-B. The Static strategy gives the

worst results. The reasons of this situation are discussed in

Section V-A.

Data collected in the tables does not include results for

period T0. The first period issue is raised separately in Sec-

tion V-C.
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TABLE I
DATASETS

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Spam trap 2588 7673 7371 4176 1783 7746 17419 15323 14112 2065
Quora 45 40 41 53 59 47 54 53 73 49
Reddit 105 362 51 555 319 40 24 867 626 343
Stack Overflow 1104 951 972 1028 1057 1007 849 717 884 689

TABLE II
STATISTICS FOR QUORA OBTAINED BY RANDOM FOREST

T1 T2 T3 T4 T5 T6 T7 T8 T9

Dynamic
ACC 1.0000 0.9981 0.9991 0.9973 0.9995 0.9994 0.9997 0.9997 0.9991

TPR 1.0000 1.0000 0.9993 0.9983 0.9999 0.9996 0.9997 0.9997 0.9990
SPC 1.0000 0.7455 0.9804 0.9655 0.9388 0.9216 1.0000 1.0000 1.0000

F1 1.0000 0.9990 0.9995 0.9986 0.9997 0.9997 0.9998 0.9999 0.9995

Incremental
ACC 1.0000 0.9943 0.9991 0.9843 0.9850 0.9997 0.9997 0.9998 0.9991

TPR 1.0000 1.0000 1.0000 0.9983 0.9997 0.9998 0.9997 0.9998 0.9990
SPC 1.0000 0.4940 0.9298 0.6829 0.2812 0.9804 1.0000 1.0000 1.0000

F1 1.0000 0.9971 0.9995 0.9918 0.9924 0.9999 0.9999 0.9999 0.9995

Static
ACC 1.0000 0.9950 0.9790 0.8333 0.6687 0.4434 0.5244 0.7724 0.8723
TPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SPC 1.0000 0.5256 0.3732 0.1612 0.0179 0.0055 0.0072 0.0221 0.1536
F1 1.0000 0.9975 0.9892 0.9058 0.8000 0.6128 0.6866 0.8708 0.9301

TABLE III
STATISTICS FOR STACK OVERFLOW OBTAINED BY RANDOM FOREST

Stat T1 T2 T3 T4 T5 T6 T7 T8 T9

Dynamic
ACC 0.9686 0.9942 0.9773 0.9299 0.9721 0.9931 0.9948 0.9945 0.9851
TPR 1.0000 0.9997 0.9995 0.9981 0.9992 0.9970 0.9953 0.9953 0.9805
SPC 0.7782 0.9547 0.8984 0.8432 0.8079 0.9150 0.9832 0.9808 1.0000

F1 0.9820 0.9967 0.9857 0.9410 0.9840 0.9964 0.9973 0.9971 0.9902
Incremental

ACC 0.9667 0.9942 0.9710 0.8908 0.9481 0.9681 0.9981 0.9977 0.9938

TPR 1.0000 0.9999 1.0000 0.9993 0.9999 0.9994 0.9990 0.9989 0.9918
SPC 0.7682 0.9538 0.8719 0.7736 0.6895 0.5942 0.9804 0.9786 1.0000

F1 0.9809 0.9967 0.9816 0.9048 0.9698 0.9830 0.9990 0.9988 0.9959

Static
ACC 0.9681 0.8632 0.8100 0.6067 0.3728 0.2069 0.1436 0.2279 0.3635
TPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

SPC 0.7757 0.4600 0.5097 0.4862 0.1550 0.0554 0.0496 0.0709 0.2821
F1 0.9818 0.9161 0.8657 0.5439 0.4511 0.2880 0.1877 0.3045 0.2625

A. Reasons of fail of Static strategy

The main reason why the Static strategy fails is a concept

drift. The statistical definition of spam and non–spam changes

over time in unforeseen way. This causes problems because

the predictions become less accurate as time passes. To prove

this reasoning we have tested changes of features importance

in the classification process.

An estimation of predictor importance for decision trees was

calculated. Feature importance is calculated for a split defined

by the given feature. Importance is computed as the difference

between Mean Squared Error (MSE) for the parent node and

the total MSE for the two children in the regression task. In

the classification task the Gini coefficient is used instead to

estimate how the data space in the node is divided among

classes. The Gini coefficient equals 2(AUC)−1. Where AUC

is the area underneath the Receiver Operating Characteristic

Curve (ROC Curve).

For a random forest, the used function computes estimates

of predictor importance for all weak learners. For every tree

the sum of changes in the MSE is calculated due to splits on

every feature used in the recognition process. Next, the sum

is divided by the number of branch nodes.

Importance is normalised to the range [0, 1] with 0 repre-

senting the smallest possible importance.

Figure 4(a), Figure 4(b), and Figure 4(c) show how the

normalised importance was changed among time. For clarity,

we have limited the number of presented features to the

set of features with the maximum normalised importance

that exceeds 0.8. The influence of the other features on the

classification results may be still important, but we can limit

the current discussion to the most important features.

The most important features are mostly connected with

the Distinct Domain document that was used to calculate the

number of unique domains and the average length, maximum

length, and standard deviation of the length of domains.

Additionally, the fraction o non–alpha characters in the domain

names was calculated.
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TABLE IV
STATISTICS FOR REDDIT OBTAINED BY RANDOM FOREST

Stat T1 T2 T3 T4 T5 T6 T7 T8 T9

Dynamic
ACC 0.9968 0.9943 0.9880 0.9410 0.9974 0.9998 0.9896 0.9991 0.9975

TPR 1.0000 1.0000 0.9865 0.9994 0.9999 0.9999 0.9891 0.9992 0.9971
SPC 0.9330 0.5484 1.0000 0.7211 0.6724 0.9200 1.0000 0.9984 1.0000

F1 0.9983 0.9971 0.9932 0.9640 0.9987 0.9999 0.9945 0.9995 0.9985

Incremental
ACC 0.9968 0.9943 0.9882 0.9391 0.9797 0.9991 0.9991 0.9991 0.9975

TPR 1.0000 1.0000 0.9995 0.9994 0.9999 1.0000 0.9992 0.9992 0.9971
SPC 0.9330 0.5484 0.9110 0.7146 0.1990 0.6000 0.9977 0.9984 1.0000

F1 0.9983 0.9971 0.9933 0.9628 0.9897 0.9995 0.9995 0.9995 0.9985

Static
ACC 0.9968 0.9935 0.9789 0.8516 0.5426 0.4322 0.5379 0.7736 0.8733
TPR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9994

SPC 0.9330 0.5152 0.8473 0.5055 0.0111 0.0024 0.1038 0.1580 0.5294
F1 0.9983 0.9967 0.9879 0.9041 0.7015 0.6027 0.6771 0.8660 0.9203

The observed changes of importance are very chaotic but

that supports the concept drift hypothesis. For example, we

observe for Quora dataset (Figure 4(a)) that the count of

word that was extremely important in the first month loose

it position in the following months. On the other hand, the

ratio of non–alpha characters in the domain names grows

rapidly in the 3rd month despite that it was not an important

discriminator in the first month.

Therefore, it is not possible to create a classifier based on

Static strategy that obtains a stable accuracy of the webspam

detection.

B. Dynamic strategy versus Incremental strategy

The main important question is which strategies brought the

best results. Table II, Table III, and Table IV show that the

ACC obtained by the Static strategy is definitely the worst but

the victory of any strategy from the two remaining strategies

can be questioned.

In the tables the highest values of statistics ACC and F1

were marked. In some months the Dynamic strategy was the

best options in other the Incremental strategy was better. To

prove that there is a significant difference between results

obtained by the strategies, we performed Wilcoxon’s Signed–

Rank test for paired scores [42].

If the ACC obtained by the Dynamic strategy is significantly

better the test should show that the ACC calculated for the

Dynamic strategy is greater than for the Incremental strategy

in most of the tests and smaller in a few tests by only a small

amount. We compared both strategies in all 27 combinations

of datasets and months. For 16 pairs ACC calculated for the

Dynamic strategy was greater. An opposite situation has place

in 8 cases. In the rest of cases the results was the same for

both strategies.

Wilcoxon’s Signed–Rank test rejected the null hypothesis

(p = 0.083556), which stated that the results obtained by the

two strategies were not significantly different, at the 0.1 level.

Moreover, the modified test accepted (p = 0.043606), at the

0.1 level, the alternate hypothesis that the difference in ACC

between the Dynamic strategy and the Incremental strategy

come from a distribution with median greater than 0.

A similar test on 27 combinations of datasets and months

was performed for F1. For 13 pairs F1 calculated for the

Dynamic strategy was grater. An opposite situation has place

in 8 cases. In the rest of cases the results was the same for

both strategies.

Wilcoxon’s Signed–Rank test rejected the null hypothesis

(p = 0.098741), which stated that the results obtained by the

two strategies were not significantly different, at the 0.1 level.

Moreover, the modified test accepted (p = 0.051170), at the

0.1 level, the alternate hypothesis that the difference in F1

between the Dynamic strategy and the Incremental strategy

come from a distribution with median greater than 0.

Therefore, the results obtained by the Dynamic strategy

significantly better than results obtained by the Incremental

strategy when the strategies are evaluated using ACC and F1.

The second aspect that can be compared is time necessary

to learn and classify. Times that should be compared are the

learning time as a time necessary to train a web spam detector

and the testing time as a time necessary to classify all entries

from the given period.

TABLE V
COMPARISON OF THE AVERAGE LEARNING AND CLASSIFICATIONTIME

TIME CONSUMED BY VARIOUS STRATEGIES FOR VARIOUS DATASETS. THE

RESULTS ARE PRESENTED FOR RANDOM FOREST (RF) AND SUPPORT

VECTOR MACHINE (SVM)

Learning Testing
Classifier Strategy Dataset time [s] time [s]

RF Incremental Quora 19.33 0.00
RF Incremental Reddit 22.30 0.00
RF Incremental Stack Overflow 36.60 0.00
RF Dynamic Quora 3.54 0.00
RF Dynamic Reddit 3.89 0.00
RF Dynamic Stack Overflow 6.89 0.00
SVM Incremental Quora 19.06 0.08
SVM Incremental Reddit 118.17 0.66
SVM Incremental Stack Overflow 959.77 6.41
SVM Dynamic Quora 2.79 0.04
SVM Dynamic Reddit 9.86 0.21
SVM Dynamic Stack Overflow 35.42 1.06

Table V presents comparison of time consumption for both

strategies. The tests have been done on personal computer with

the processor 2.9 GHz Intel Core i5 supported by 16 GB 1867

MHz DDR3 memory.

The difference in learning time between the Dynamic strat-

egy and the Incremental strategy is very big. The Incremental

strategy is over five times slower.
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(a) Quora

(b) Stack Overflow

(c) Reddit

Fig. 4. Changes of importance of features among months

The learning time among the months is presented on Fig-

ure 5. The learning time for the Incremental strategy grows

rapidly when the learning time for the Dynamic strategy stays

nearly on the same level. Therefore, even if the learning times

obtained on the datasets are not very long the learning time

for the Incremental strategy will increase month by month.

The testing times for both strategies stay similar for all

datasets. The testing time is shorter than one second.

Fig. 5. Comparison of learning time for Dynamic strategy and Incremental
strategy

The discussed problem arises for more time consuming

classification methods.The additional test have been done on

SVM classifiers. The tests stress differences between strate-

gies. Depending on the dataset the Incremental strategy can

be from six to twenty-seven times slower. Moreover, the

classification times is from two to six time slower than for

the Dynamic strategy.

To sum up, the Dynamic strategy obtained the significantly

better results – evaluated by ACC and F1 – than the Incre-

mental strategy. Moreover, the learning time for the Dynamic

strategy was static in time when for the Incremental strategy

the learning time grew. Therefore, the Dynamic strategy is

better option for implementation.

C. First period issue

During the first period the classifier does not possess the full

characteristic of the web spam inS+ and non–spam comments

inS+ from the previous period. To create any classifier we

have to had a representation of at least one of the classes.

Because the historical web spam data sets exist – spam

collected before the system start-up or spam from public

repositories such as WEBSPAM-UK [9] – we assume that a set

exS+ can be created. However, To optimize the classification

process, the knowledge on web spam characteristic should

be supplemented by a partial knowledge on the non–spam

comments. This knowledge is represented by a set innS
−
0 that

contains n examples of the comments.

Especially, for the small value of n the both sets are

imbalanced. Therefore, the dedicated classifier – such as one–

class SVM or RUSBoost – should be used as a discriminator.

Figure 6(a) presents the accuracy obtained by the RUSBoost

algorithm on the sets inS+

1 and inS−
1 using as the learning

sets inS+

0 and innS
−
0 (the whole information on spam from

the previous period and n non–spam comments).

From n = 7, the results obtained on the testing set are

more or less stable for all data sets. Moreover, for the Stack

Overflow set and the Quora set the obtained accuracy is similar
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(a) Limited size of labelled non–spam comments

(b) Limited size of labelled spam comments

Fig. 6. The accuracy obtained if the number of labelled comments is limited

to the accuracy that is reached using the complete learning set.

For the Reddit data set, the obtained quality is 4 percent point

less.

The same tests have been performed for the one–class SVM.

The classifier also stabilised for all datasets on the level of 95

percent after 10 iterations.

We can also discuss the second variant – more academic

than the first one – that assumes that the number of known

spam comments is limited. Figure 6(b) shows that the number

of 10 spam comments is enough to exceed 90 percent of the

accuracy for the first period in all cases except the Quora

dataset that needs over 50 spam comments to stabilise the

results.

In this case, the one–class SVM failed. The number of the

learning comments was too small to change the structure of

the classification process and the accuracy was constant. The

classifier accepted all non–spam comments as spam obtaining

70 percent accuracy.

VI. CONCLUSIONS

We have presented the web spam recognition system. The

system periodically replaces the classifier used for the web

spam rejection. A new classifier is trained exclusively on data

collected during the last period. We have proved that such

strategy is better than an incrementation of the learning set.

The system contains the start-up mechanism that allows the

web page administrator to protect the service despite of lacks

in learning sets. Assuming the full information on current form

of web spam received from the spam traps, the system can

works with minimal information on non–spam comments.

All elements of the classification process were tested on real

data from the spam traps and common known web services:

Quora, Reddit, and Stack Overflow. In all cases, the quality

of the system was satisfactory.
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