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Abstract

We report on our system for textual inference

and question entailment in the medical do-

main for the ACL BioNLP 2019 Shared Task,

MEDIQA. Textual inference is the task of find-

ing the semantic relationships between pairs

of text. Question entailment involves iden-

tifying pairs of questions which have similar

semantic content. To improve upon medical

natural language inference and question en-

tailment approaches to further medical ques-

tion answering, we propose a system that in-

corporates open-domain and biomedical do-

main approaches to improve semantic under-

standing and ambiguity resolution. Our mod-

els achieve 80% accuracy on medical natural

language inference (6.5% absolute improve-

ment over the original baseline), 48.9% accu-

racy on recognising medical question entail-

ment, 0.248 Spearman’s rho for question an-

swering ranking and 68.6% accuracy for ques-

tion answering classification.

1 Introduction

Medical health search is the second most searched

thematic query, representing 5% of all queries on

Google (Cocco et al., 2018). However, many

queries are semantically identical and are poten-

tially already answered by experts (Abacha and

Demner-Fushman, 2016). However, these ques-

tions may not be directly retrievable due to se-

mantic ambiguity involving abbreviations (Wu

et al., 2017), patient colloquialism (Graham and

Brookey, 2008) or esoteric terminology (Lee et al.,

2019). Furthermore, in regards to disease, tempo-

rality is a key factor in determining the relevance

of retrieved answers (Lee et al., 2019). For ex-

ample, it is more appropriate to retrieve answers

relating to the summer cold in the summer.

As a means to retrieve these questions that

are already answered by experts, question en-

tailment has been proposed to discern relation-

ships between pairs of questions. Recognising

Question Entailment (RQE) is the task of deter-

mining the relationship between a question pair,

RQE(Q1, Q2), as either entailment or not en-

tailment, where Abacha and Demner-Fushman

(2016) define question entailment as the situation

where “a question, Q1, entails another question,

Q2, if every answer to Q2 is also a complete or

partial answer to Q1.”

Natural Language Inference (NLI) is determin-

ing the relationship between pairs of sentences,

not just questions. NLI is the task of determin-

ing whether a hypothesis, H , is inferred (entail-

ment), not inferred (contradiction) or neither (neu-

tral), given a premise. In the context of question

answering (QA), it can be used to validate if the

answer can be inferred from the question.

Though RQE and NLI have thrived in the open-

domain setting (Bowman et al., 2015; Rajpurkar

et al., 2016), there are unique challenges in apply-

ing these tasks directly to the biomedical question

answering field. Previous models in the medical

domain that used NLI and RQE relied on mod-

els which were shallowly bidirectional (Romanov

and Shivade, 2018) or rule-based approaches with

shallow keyword matching techniques (Abacha

and Demner-Fushman, 2016) which would not

generalise well.

The MEDIQA (Ben Abacha et al., 2019) chal-

lenge, as part of the ACL BioNLP workshop, aims

to further research efforts in NLI and RQE by in-

troducing their applications to Biomedical QA.

In this paper, we detail our approach in

MEDIQA which addresses some of the problems

with biomedical text such as utilising deep contex-

tual relationships between words within a sentence

for semantic understanding and ambiguity associ-

ated with esoteric terminology, abbreviations, and

patient colloquialism. We combine biomedical

and open-domain approaches as a means to im-

prove generalisation and bridge the gap between

patient colloquialism and biomedical terminology.
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2 Datasets

MEDIQA 2019 (Ben Abacha et al., 2019) pro-

vides datasets to be used for three different tasks.

Task 1: Natural Language Inference The

MEDNLI dataset is used for this task (Romanov

and Shivade, 2018). A collection of 11232 med-

ical premise-hypothesis pairs are used for train-

ing, 2817 pairs for validation and 405 for testing.

We preprocessed the text to remove punctuation,

that were designed to ensure patient anonymity as

a means to reduce noise while ensuring that sen-

tence integrity was not broken.

For example, cerebrovascular accident in

[**2948**]→ cerebrovascular accident in 2948.

Furthermore, we expand all medical abbreviations

using the ADAM database (Wu et al., 2017). For

example, On arrival to the ED T97 BP 184/94

HR 92→ On arrival to the emergency department

Temperature 97 Blood Pressure 184/94 Heart rate

92.

Task 2: Recognizing Question Entailment For

RQE, a collection of 8588 medical question pairs

for training, 302 pairs for validation (Abacha and

Demner-Fushman, 2016) and 230 pairs for testing

is released. The RQE collection aims to match

consumer health questions from the National Li-

brary of Medicine with Frequently Asked Ques-

tions (FAQs) from NIH websites.

Task 3: Question Answering Two sepa-

rate training datasets were provided from the

MEDIQA challenge (Ben Abacha et al., 2019):

LiveQAMed: 104 consumer health questions

covering different types of questions about dis-

eases and drugs alongside their associated an-

swers.

Alexa: 104 simple questions about the most fre-

quent diseases and associated answers.

No external data was used for any of the tasks

as a conscious decision in order to assess the fine-

tuning performance of our models. However, ex-

ternal data has shown to be useful in knowledge-

based approaches (Romanov and Shivade, 2018)

and we leave this as future work.

3 Our System

Due to the similarity of our approaches in the three

tasks, we first describe a shared model that was

utilised by all the tasks. Our approach extends

upon the current state-of-the-art models (Lee et al.,

Algorithm 1: Ensemble Approach for NLI,

RQE and QA

Input: Training Data, x ∈ X , Test Data,

z ∈ Z, Hyperparameters Θ,

Pre-trained Models MBrt and MBio

Output: Label Predictions, y ∈ Y
X ← PreprocessText(X);
Z ← PreprocessText(Z);
while numEpochs < totalEpochs do

for bx ∈ X do
//bx is a minibatch of X
MBioFT ← Train(MBio, bx,Θ);
MBrtFT ← Train(MBrt, bx,Θ);
//MFT denotes the fine-tuned model

end

numEpochs++;

end

for x ∈ X do

PredxBio ← Predict(MBioFT , x);
PredxBrt ← Predict(MBrtFT , x);
//Pred is the softmax score outputs from

each model

SVM ← Train(PredxBio ⊕ PredxBrt)
end

PredZBio ← Predict(MBioFT , Z);
PredZBrt ← Predict(MBrtFT , Z);
Y = Predict(SVM,PredZBio ⊕ PredZBrt);
return Y

2019; Devlin et al., 2019) in the open-domain

and apply them to the MEDIQA biomedical tasks.

As the state-of-the-art models currently employ

transfer learning, we modelled an ensemble trans-

fer learning approach used in the medical com-

puter vision domain (Menegola et al., 2017; Ku-

mar et al., 2017).

BERT As part of our strategy to combine open-

domain approaches to a biomedical focused one,

we elected to use a current state-of-the-art open-

domain approach, BERT (Devlin et al., 2019),

that is based on deeply bidirectional, unsupervised

language representation that has been trained on

Wikipedia.

BioBERT From the biomedical focused ap-

proach, we used BioBERT (Lee et al., 2019), a ver-

sion of BERT that has been pre-trained using ad-

ditional biomedical datasets, including PubMED

and PMC.
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Table 1: Hyperparamters used for each run for Tasks 1 & 2.

Task 1 Task 2

Run Model Learning

Rate

Batch Size Epochs Learning

Rate

Batch Size Epochs

1
BioBERT 2e-5 64 1 2e-5 64 1

BERT 8e-6 32 1 8e-6 32 1

2
BioBERT 2e-5 64 40 2e-5 64 40

BERT 8e-6 32 40 8e-6 32 40

3
BioBERT x3 2e-5 64 40 2e-5 64 40

BERT 8e-6 32 40 8e-6 32 40

4
BioBERT x3 - - - 2e-5 64 -

BERT - - - 2e-5 32 -

5
BioBERT x3 1e-6 32 100 1e-6 32 100

BERT 1e-6 32 100 1e-6 32 100

Table 2: Tokenisation statistics for all Tasks.

Task Statistic Training Validation Testing

1 Average Sequence Length 386 190 64

2 Average Sequence Length 176 276 230

3
Average Sequence Length 605 632 582

Portion of Docs >512 Sequence Length 0.32 0.37 0.32

Support Vector Machine We combined our

predictions from our open-domain and biomedi-

cal domain approaches using a support vector ma-

chine (Cortes and Vapnik, 1995), which here, is

akin to using a data-driven weighting function.

Learning-to-Rank We also used learning-to-

rank models such as LambdaRank (Burges et al.,

2007) and RankNet (Burges et al., 2005), which

were implemented in Tensorflow Ranking1 for the

ranking portion of the challenge.

Sentence Embeddings When encoding our fea-

tures into sentence embeddings, we used bert-

as-service2 in conjunction with BioBERT to cre-

ate context-rich embeddings of text. In one of

our post-challenge runs, we used a biomedical

word2vec word embedding model (Chiu et al.,

2016).

Hyperparameters For all three tasks, we exper-

imented with batch sizes (2N , n ∈ {3, 4, 5, 6, 7})
and learning rates (A × 10B , A ∈ {1, 2, 3...10},
B ∈ {2, 3, 4, 5, 6}) and selected the parameters

that maximised performance on the validation set.

We used the default sequence length of 64 for

training, validation and testing of all three tasks.

1Tensorflow Ranking
2Bert-As-Service Sentence Embeddings

Algorithm For the classification tasks in the

challenge, we used an ensemble approach (see Al-

gorithm 1). First, the text training data, X , and

testing data, Z, is preprocessed. This preprocess-

ing is done differently depending on the submis-

sion and task. Preprocessing includes punctuation

removal and abbreviation expansion. This training

data is used to train the BERT and BioBERT mod-

els using hyperparameters, Θ. The softmax scores

for each training example, X , predicted by the fi-

nal fine-tuned models are concatenated (denoted

by ⊕ and used to train an SVM). The final predic-

tions for the testing set, Z, are collected by first

using the fine-tuned models to predict the softmax

scores. These softmax scores are concatenated and

fed as input into the SVM which outputs predic-

tions, Y , for the test set.

Task 1: Natural Language Inference

The models were trained as follows: For the first

and second run, BERT3 is trained for a single

epoch with a learning rate of 8e-6 with a batch size

of 32, while the BioBERT4 models were trained

with a learning rate of 2e-5 with a batch size of

64. The models had their predictions combined

3BERT Base Model
4BioBERT Pretrained Models

https://github.com/tensorflow/ranking
https://github.com/hanxiao/bert-as-service
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-24_H-1024_A-16.zip
https://github.com/naver/BioBERT-pretrained/releases/tag /v1.0-PubMed-pmc
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via an SVM (sklearn-pandas, version 1.8.0) with

a penalty of 1.0, RBF kernel and gamma with the

’auto’ parameter, which was then used as a data-

driven weighting function. The code used for this

portion was based on the following code from the

BERT repository.5

For run 1, we established a baseline approach

with no preprocessing and the models were trained

only for one epoch. From run 2 onwards, prepro-

cessing was done to the text to remove punctuation

used for patient anonymity and expand medical

abbreviations as mentioned previously. For runs 3

and 5, instead of using a single BioBERT model,

the three variants of BioBERT were trained indi-

vidually using the same parameters as in run 2.

However, in the fourth run, early stop validation

was used to select the best models that maximised

validation accuracy. However, we excluded this

run because it had the same predictions as run 3.

In the final run, the learning rate was lowered and

trained over a larger number of epochs.

Task 2: Recognizing Question Entailment

We use the same runs as Task 1. However, we did

not do any preprocessing for any runs as it did not

have any benefit on the validation set.

Task 3: Question Answering Task 3 was a 2-

part challenge where answer snippets needed to be

ranked and classified as relevant or irrelevant.

Algorithm 2: Ensemble Approach for Rank-

ing QA

Input: Alexa Training Data, TA, LiveQA

Training Data, TL, Test Data, Z
Output: Ranked List, RL
while numEpochs < totalEpochs do

for ba, bl ∈ (TA, TL) do
//ba is a minibatch of TA

MAlexa ← Train(FE(ba),Θ);
MLiveQA ← Train(FE(bl),Θ);
//FE is a feature extractor that

vectorizes input

end

numEpochs++;

end

RLAlexa ← Predict(MAlexa, Z);
RLLiveQA ← Predict(MLiveQA, Z);
RL← RankScore(RLAlexa, RLLiveQA)
return RL

5Sentence Classification Bert Code

In this task, for the ranking task, we mainly

used an ensemble of two separate learning-to-rank

models that were trained on LiveQA and Alexa

(see Algorithm 2). We used the following features

as input to the model:

1. BioBERT sentence embedding of Question

2. BioBERT sentence embedding of Answer

3. BioBERT sentence embedding of Entailed

Answer from MedQUAD

4. NLI predictions over all candidates summed

5. NLI predictions over all candidates averaged

The first two features were embeddings that

were encoded using BioBERT, as mentioned pre-

viously. The third feature was found through the

following steps:

1. Use BM25 (Stephen Robertson, 1994) to find

the question candidates in MedQUAD, M ,

which are most related to a Question, Q.

2. Set a cut-off value, ρ to minimise the num-

ber of candidates for RQE/NLI. For the chal-

lenge, we set rho = 4.

3. Predict the question entailment between

all questions, Q and candidates M us-

ing the RQE model, predrqe(Q,m) =
RQE(Q,m ∈M).

4. Retain all candidate answers, R, that had

questions predicted to be entailed to the

Question.

5. Perform NLI on the answers in the origi-

nal ranked list, L, and all candidate answers

extracted from MedQUAD, prednli(l, r) =
NLI(l ∈ L, r ∈ R).

6. Use the answer with the highest BM25 score

for the third feature.

The fourth and fifth features were performed by

summing NLI predictions,
∑

prednli(l ∈ L, r ∈
R), and averaging, 1

|R|

∑
prednli(l ∈ L, r ∈ R).

The features were fed into Tensorflow learning-

to-rank models (RankNet for run 1 and Lamb-

daRank for runs 3 and 4) with 2307 features us-

ing the Adam optimizer (Kingma and Ba, 2015), a

group size of 2 and a learning rate of 0.001.

We ensembled predictions from the two models

in two different ways. We used simple averaging

for Run 1. However, for subsequent runs, we used

RankScore (Li et al., 2013), which we define as:

https://github.com/google-research/bert/blob/master/run_classifier.py


482

Table 3: Results for all 3 tasks in the MEDIQA shared task, additional post challenge runs are included. Note:

With the exception of Task 1, all post challenge runs were evaluated using the official evaluation script.

Task 1 Task 2 Task 3

Run Accuracy Accuracy Accuracy Spearman’s Rho Precision@1

1 0.751 0.481 0.581 0.093 0.580

2 0.800 0.485 0.584 0.122 0.640

3 0.796 0.481 0.584 -0.007 0.520

4 - 0.489 0.584 -0.043 0.533

5 0.768 0.485 0.577 0.162 0.593

Post Challenge Runs

Task Description Accuracy Spearman’s Rho Precision

1 Run 5 + Maximum Sequence

Length (Validation Set)

0.827 (+0.016) - -

2 Run 5 + Maximum Seq. Length 0.489 (+0.004) - -

3 Run 5 (Corrected Submission) 0.686 (+0.109) 0.0513 (-0.111) 0.771 (+0.178)

3 Run 5 (Corrected Submission) +

Max Seq. Length

0.663 (-0.023) 0.0971 (+0.046) 0.749 (-0.022)

3 Run 1 with word2vec embed-

ding

- 0.284 (+0.189) -

3 Run 5 (Corrected Submission)

with UMLS concept expansion

0.659 (-0.027) 0.0200 (-0.0313) 0.749 (-0.022)

Rs(d ∈ D) = 1/dr. We use RankScore to score

each item in the ranked lists of Alexa and LiveQA

models. We then combine the items by summing

the documents RankScore from each model and

sorting.

For classification, the same architecture from

Tasks 1 and 2 for Runs 3 - 5 was used (4-ensemble

with SVM layer). For runs 2 and 5, we use soft-

max scores output from the classification to rank

documents.

4 Results and Discussion

Ensembles have been successfully utilised in other

biomedical domains (Kumar et al., 2017; Bri-

jesh and Zahid, 2011), with the main idea behind

using these being to incorporate complementary

strengths of the members of the ensemble. Thus,

BERT is used in conjunction with BioBERT in or-

der to correct the mistakes that the model makes

by injecting non-domain specific knowledge. This

idea was supported in our baseline experiments

on task 1 where BioBERT scored 0.7913 on val-

idation, while BERT scored 0.7715 on validation,

but ensembling resulted in a higher final score of

0.7950.

NLI Baseline System Problems Our baseline

system made characteristic mistakes on the vali-

dation set, which is shown in Table 4 for Task 1.

We found that our system had trouble with nu-

merical interpretation and, for instance, was not

able to determine the difference between type 1

and type 2 diabetes. Furthermore, this problem

is exacerbated when abbreviations and numeri-

cal interpretation are required in phrases such as

T97 BP 184/94. Thus, to aid the system in dis-

ambiguating abbreviations, we expanded all ab-

breviations using the ADAM database of com-

mon clinical abbreviations and resulted in an 0.049

increase in accuracy. Furthermore, the system

would struggle with medical forms of negation.

However, due to the use of BERT/BioBERT, con-

ventional techniques such as NegEx or removal

would break sentence integrity and reduce com-

prehension, thereby affecting word context, and

thus were not viable. Furthermore, punctuation,

in terms of patient anonymisation, is also a prob-

lem as the punctuation does not carry meaningful

semantic content and will confuse the classifiers.

RQE Baseline System Problems In task 2, we

found that our baseline system made similar mis-

takes for different reasons (see Table 5). We found

examples of what we consider near miss where the

definition of partial entailment depends on inter-

pretation. For example, in this question, the user
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Table 4: Common mistakes made by the baseline system in Task 1.

Type Premise Hypothesis

Numerical

Interpretation

PAST MEDICAL HISTORY: Type 2 diabetes

mellitus.

the patient has type 1 diabetes

Abbreviation

and Numerical

Interpretation

On arrival to the ED T97 BP 184/94 HR 92

RR 24 88% on RA ->98% on NRB.

The patient was hypertensive in

the ED

Negation He denied headache or nausea or vomiting. He has no head pain

Semantic Gap HISTORY OF PRESENT ILLNESS:,The pa-

tient is a 54 year old male with endstage re-

nal disease secondary to type 1 diabetes who

presents for kidney transplant from wife.

patient is on insulin

wants information on hypertension (high blood

pressure). However, according to the gold stan-

dard, this is not a form of entailment, partial or

otherwise. We hypothesise that this lies on the

borderline of the entailment definition or may be

due to bias. Furthermore, our system struggles

with abbreviations. However, the examples in the

second task dataset are more related to problems

with co-reference resolution where abbreviations

appear in the original question but not in the FAQ

question.

Furthermore, phrases like “come out of” should

be aligned to terms such as “discharge”, which is

an example of a semantic gap and require com-

mon sense comprehension. This is problematic as

BERT is known to struggle with this sort of rea-

soning (Talmor et al., 2018). Also, we did not

adjust the sequence length parameter (set to 64),

which may have been a source of error. How-

ever, a later investigation through a post-challenge

run that shows that only Task 1 benefits from an

increase in sequence length (see Table 3). Fi-

nally, patient colloquialism presents a unique chal-

lenge where “hole in lung” is to be interpreted as

“pleurisy” (lung inflammation). Although we did

not address this complex problem, it could be po-

tentially solved through crowd-sourcing of medi-

cal forum data. This may be suitable as an area to

investigate for future work.

We found that in all our submissions on the

test set of the challenge, although our system was

able to achieve high results on the validation set of

79%, the models were not well suited for the test

set. Our model predicted entailment 92% of the

time on the test set, suggesting that the model is

overfitting, even though our baseline was trained

for only one epoch. We found that the cases where

the models make errors are cases where the ques-

tion contains words such as diagnosis and the dis-

ease is mentioned, but the semantic content of the

question might be about treatment rather than the

diagnosis. This is very different from the training

and validation datasets that were provided, which

were much more straightforward and did not re-

quire as much comprehension. An example il-

lustrating this difficulty is Question A: Glaucoma:

Can you mail me patient information about Glau-

coma, I was recently diagnosed and want to learn

all I can about the disease.” and Question B: How

is glaucoma diagnosed?

Question Answering Submission Problems

For the third Task, we incorrectly trained our mod-

els to recognise documents with a relevance score

of one as irrelevant. In contrast, the task is defined

to classify documents of relevance score one and

two as irrelevant. By fixing this error, we found

that we had over a 10% increase in accuracy (Ta-

ble 3). However, interestingly, we found that the

ranking quality (shown through Spearman’s Rho)

decreased. Upon investigation, we found two rea-

sons why this problem occurred: (1) our system

was able to differentiate the relevance of one from

the other three labels much better than differenti-

ating between labels of one/two against three/four.

This was reflected in the validation accuracy of our

initial incorrect model, which achieved an accu-

racy of 95% whereas the corrected model scores

only 70% on the validation set, (2) we found that

the longer the models were trained, the worse the

ranking quality became. We hypothesise that the

problem is due to how cross entropy loss and soft-

max functions work. Since the models are min-

imising KL-Divergence, the softmax scores be-

come more extreme, falling close to 1 or very
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Table 5: Common mistakes made by the baseline system in Task 2.

Type Question A Question B

Near Miss I want more information on Hypertension and

fibromyalgia, I seem to be getting only topics

on diabetes and I do not have this. I enjoy

reading the current info.

What is high blood pressure?

Abbreviation Hi I have retinitis pigmentosa for 3years, Im

suffering from this disease. Please intoduce

me any way to treat mg eyes such as stem cell

... Thank you

Are there treatments for RP?

Semantic Gap Which drug we I take to stop water come out

of my nipple

How to Treat Nipple Discharge

Sequence

Length

... The problem is my binocular vision is not

good enough ... is there any operation that can

fix this?

What is Vision Therapy When

and why is it needed [for binoc-

ular vision]?

Patient Collo-

quialism

Cure for hole in lung. I certainly would like

to request for medical for hole in the lung

How Are Pleurisy and Other

Pleural Disorders Treated?

close to 0. This results in the differences between

scores of the documents to be very low (forming

dense clusters) which reduces ranking quality as

the ranking becomes more sensitive to noise and

uncertainty (Siddhant and Lipton, 2018).

Question Answering Baseline System Problems

Due to the error of our submissions for Task 3, we

will not discuss the mistakes that occurred within

the challenge for the pointwise ranking runs. In-

stead, we will look at the mistakes that the post-

challenge run encountered for those. However, for

the pairwise runs within the challenge, we found

that it performed much worse than expected. We

attribute this ranking deficit to two important fac-

tors.

The first is that BERT sentence embeddings are

not useful to represent sentences because the vec-

tor space is too condensed (vector representations

are very close together). The second is that our

vector representations were too large, with BERT

sentence embeddings producing embeddings up to

800 dimensions. Using 3 of these embeddings re-

sults in a very large input which would take too

long to train or hinder convergence. This effect

was observed in a post-challenge run where we

used Chiu et al. (2016)’s biomedical word2vec

embeddings and achieved a much higher Spear-

man’s Rho. The second factor was that the Lamb-

daLoss (Burges et al., 2007) function was not a

suitable objective function as the RankNet model

performed better.

From Table 2, we find that Task 3 is more ver-

bose than the other two tasks and presents unique

challenges as almost a third of the documents will

have information loss due to the limitation of max-

imum sequence length by BERT being 512 due

to quadratic memory explosion (Liu et al., 2018).

However, we did a post-challenge run where we

increased the sequence length with no noticeable

difference. This is because the majority of infor-

mation in these long sequence can be safely dis-

carded. Furthermore, the BERT truncation strat-

egy is to truncate from the end of the sentence, im-

plying that the important information is typically

at the start of the answer.

We also find that there are unique challenges

in Task 3 due to the use of real patient ques-

tions shown in Table 6. We found that problems

such as typos, grammar and spellings mistakes

were not directly fixed by the BERT/BioBERT

ensemble as the collections were pretrained on

academic or formal language (Pubmed, PMC and

Wikipedia). However, problems such as synonyms

(for example, abetalipoproteinemia and Bassen-

Kornzweig syndrome) which should be addressed

by the model were also not addressable due to a

limitation in the vocabulary of the models, which

is discussed below. Furthermore, we found cases

of near miss, for example, the model identifies

anemia and treatment options, but it is not the tar-

get disease of the question. To address these prob-

lems, we use a heuristic to expand UMLS terms in

the question and answer, and add these to the start

of the sentence to combat the mentioned problems.
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Table 6: Common mistakes made by baseline system in Task 3

Type Question Answer

Typo abetalipoproteimemia hi, I would like to know

if there is any support for those suffering with

abetalipoproteinemia ... keen to learn how to

get it diagnosed...

abetalipoproteinemia: Abetal-

ipoproteinemia is an inherited

disorder that affects the absorp-

tion of dietary fats, cholesterol,

and fat-soluble vitamins...

Synonyms abetalipoproteimemia hi, I would like to know

if there is any support for those suffering with

abetalipoproteinemia...

Bassen-Kornzweig syndrome

(Exams and Tests): There may

be damage to the retina of

the eye (retinitis pigmentosa).

Tests that may be done to

help diagnose this condition

include...

Near miss about thalassemia treatment sir,my friend is

suffering from thalassemia ,in that majorly

red blood anemia,white blood anemia and the

blood is comming out from mouth when she

got cough .her condition is very severe...

Anemia (Treatment): Anemia

treatment depends on the cause.

- Iron deficiency anemia. Treat-

ment for this form of anemia...

Grammar

and spelling

mistakes

Absence seizures Does any damage occurre

from these spells. Mental or physical

Seizures: A seizure is a sud-

den, uncontrolled electrical dis-

turbance in the brain. It can

cause changes in your behavior,

movements or feelings, and in

levels of consciousness. If you

have two...

Semantic Gap Bad Breath I have very bad breath and at

times it can make myself and others sick. I

need some advice as to what I need to do.

Breath odor (Home Care): Use

proper dental hygiene, espe-

cially flossing. Remember that

mouthwashes are not effective

in treating the underlying prob-

lem...

We found that the model performs better on the

validation set than any of the post-challenge runs

(79% accuracy, a 5% absolute increase over the

other runs), but did not perform substantially bet-

ter on the test set (see Table 3).

Problems with Underlying Models One prob-

lem in using models such as BERT and BioBERT

is the limitation in the maximum sequence length.

This is demonstrated in the test portion of the chal-

lenge, where test set answers were much longer

than those seen in the training and validation col-

lection. These sequences were longer than the 512

sequence length limit allowed by the BERT ar-

chitecture, which is constrained due to a problem

known as the quadratic memory explosion (Liu

et al., 2018) leading to exponentially longer train-

ing times and memory usage.

Though there are ways to overcome these re-

strictions such as striding the sentences pairs and

labels, this results in contextual information being

lost and label imbalance. This restriction also hin-

ders the encoding of long-range dependencies be-

tween sequences as only contexts within a fixed

length can be considered (Dai et al., 2019).

In addition, we use BioBERT as a means of con-

tributing deep clinical contextual understanding of

sentences. However, we find that during Word-

Piece Tokenisation (Devlin et al., 2019), medical

terms are always split into their sub-word rep-

resentations as they are out-of-vocabulary, e.g.,

arthralgias → art hra al gia s. Wordpiece to-

kenisation relies on the idea that morphemes carry

meaning. However, due to the use of this non-

medical vocabulary, specific medical related mor-
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phemes are not being learned. For instance, arthr-

(where - denotes prefix), means joints and -algias

means pain, so the correct tokenisation should be

arthralgias→ arthr algia s so that the model can

currently learn the semantic meaning behind the

morpheme. We find that these limitations hindered

the use of these models and their application to the

MEDIQA tasks.

We emphasise that there is a real-world appli-

cation with the models and methods in this chal-

lenge. However, if we were to scale our ap-

proach to real-world application, we would require

external data. Therefore for future work, given

more time, we would like to use external datasets

such as emrQA (Pampari et al., 2018) and explore

multi-task learning due to the similarity of the

three tasks and aim to incorporate other medical

tasks for a better generalisation of the biomedical

question answering. We would also want to train

the BERT models on biomedical-focused vocabu-

lary and additional data in the future as a baseline

to compare against multi-task learning.

5 Conclusions

In this shared task, we use and improve upon NLI

and RQE techniques for medical question answer-

ing. Our approach involves utilising deep con-

textual relationships between words emphasising

semantic understanding and resolving ambiguity.

We combine biomedical and open-domain strate-

gies to improve generalisation and bridge the gap

between the open-domain and biomedical domain

question answering.
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