
Anuj@DPIL-FIRE2016: A Novel Paraphrase Detection Method

in Hindi Language using Machine Learning
Anuj Saini

Sapient Global Markets

Gurgaon, Haryana

asaini13@sapient.com

ABSTRACT

Every language possesses plausible several interpretations. With

the evolution of web, smart devices and social media it has

become a challenging task to identify these syntactic or semantic

ambiguities. In Natural Language Processing, two statements

written using different words having same meaning is termed as

paraphrasing. At FIRE 2016, we have worked upon the problem

of detecting paraphrases for the given Shared Task DPIL

(Detecting Paraphrases in Indian Languages) in Hindi Language

specifically. This paper proposed a novel approach to identify if

two statements are paraphrased or not using various machine

learning algorithms like Random Forest, Support Vector Machine,

Gradient Boosting and Gaussian Naïve Bayes on the given

training data set of two subtasks. In cross validation experiments,

Random Forest leads the other methods in terms of F1-score. The

experimental results depicts that our algorithm gives better

performance with the ensemble learning method than individual

approaches for such classification problem. This can be used in

various applications such as question-answering system,

document clustering, machine translation, text summarization,

plagiarism detection and many more.

CCS Concepts

• Theory of computation Random Forest

• Computing methodologiesNatural language

 Processing

Keywords

Paraphrase detection; Machine Learning; Natural Language

Processing; Soundex; Semantic Similarity; Random Forest

1. INTRODUCTION

With the plethora of information generated by the web these days,

it is challenging to understand the semantics of different

languages when each language has its own scripts and linguistic

rules. Hindi language is still in its early stage concerning to

natural language processing and applications [1]. Currently

significant amount of research work has already been done for

English language but there is a huge scope for Hindi language.

Paraphrases are sentences or phrases which conveys the same

meaning using different words [2]. Paraphrase detection is an

important building block in Natural Language Processing (NLP)

pipeline [8]. Previously, many researchers have investigated ways

of automatically detecting paraphrases on formal texts [3].Various

state-of-the-art paraphrase identification techniques have been

summarized in an excellent manner by ACL [4]. The objective of

our work is motivated by the shared task of DPIL [11] organized

by the Forum for Information Retrieval Evaluation (FIRE 2016).

There were two subtasks given for the classification problem.

Subtask 1 is to classify two Hindi sentences into two classes: P

(Paraphrased) or NP (Non-Paraphrased). Subtask 2 is to classify

them into three classes which are P (Paraphrased), SP (Semi-

Paraphrased) or NP (Non-Paraphrased). For detecting

paraphrases, it is very important to understand the language at an

initial stage. Starting from tokenization, stemming, lemmatization,

stop words, phonetics and POS tags etc. need to be identified

before comparing two texts. And as machine learning algorithms

works on numeric data, so it’s important to convert our textual

data into corresponding numbers known as text vectors. A vector

denotes the numerical representation of text comparison of two

sentences. We have generated a set of vectors for each data point

using first two steps of our proposed approach and trained the

model in the third step to get the results.

The paper has been organized as follows. Section 2 gives the

description of the training dataset provided by the organizing

committee. Section 3 presents the proposed approach for

paraphrase detection. The experimental evaluation has been

carried out in Section 4. Section 5 concludes our research work

followed by acknowledgment and references given in Section 6

and Section 7 respectively.

2. DATA SET DESCRIPTION

There were a total of 2500 data points in the training set with 2

classes P and NP to be used for classification in Subtask1,

whereas Subtask 2 had 3 classes and a total of 3500 data points. A

detail distribution of classes and its count for both the tasks is

mentioned in Table1.

Table 1. Classes & its count for SubTask1 and SubTask2

Class SubTask1 SubTask2

P 1500 1500

NP 1000 1000

SP - 1000

Each data point contains a pID, a unique id for each data point and

two Hindi sentences and their final tagged Class. The initial

analysis of the data surfaced some noise, majorly in NP class. A

few examples of false negatives and false positives have been

identified and listed down in Table 2. Here the examples for class

NP and class P denotes false negatives and false positives

respectively.

 Table 2. False Negatives and False Positives in the dataset

pID Sentence1 Sentence2 Class

HIN2802

रविशंकर ने

कहा मुझ े

लगता है कक

आईएसआईएस

कोई पीस टॉक

नह ं चाहता

मुझ ेलगता है कक

आईएसआईएस कोई

पीस टॉक नह ं चाहता:
रविशंकर

NP

HIN2852 पाक के फॉरेन

सेके्रटर एजाज

अहमद चोधर
मंगलिार को
हाटट ऑफ

एशशया के

ऑकफशशयल्स

की बठैक में
भाग लेने के

शलए भारत

पहंुच रहे हैं

पाककस्तान के विदेश

सचचि एजाज अहमद

चोधर हैदराबाद हाउस

में हाटट ऑफ एशशया
सम्मेलन में भाग लेंगे

NP

HIN2958 इस ककताब में
कांगे्रस

उपाध्यक्ष राहुल

गांधी को
कररश्माई नेता
भी बताया गया

है

इस ककताब में कांगे्रस

उपाध्यक्ष राहुल गांधी
को कररश्माई नेता भी
बताया गया और इसको
लेकर लोकसभा में
बधुिार को सत्तापक्ष

और विपक्ष के बीच

काफी नोकझोंक हुई

NP

HIN3032 बॉल िडु

अशभनेत्री
बबपाशा बस ुने

शननिार को
एक ननजी
समारोह में
करण शसहं

ग्रोिर के साथ

शाद रचाई

बॉल िडु एक्ट्रैस बबपाशा
बसु और करण शसहं

ग्रोिर ने शननिार को
मुंबई में की शाद

NP

HIN0230

मुद्राकोष में
बढेगा भारत का

रुतबा

ऎएमएफ के दस बडे
सदस्य देशों में भारत भी

शाशमल P

We have accepted this noise present in the given training data

without any filtering of such misclassified records and trained

model on all the data points.

3. THE PROPOSED METHOD

The proposed approach includes three major steps which are text

preprocessing, feature generation and classification model. Text

preprocessing is done in various steps such as tokenization,

stemming, soundex, stop word removal and handling synonyms.

Feature generation involves the creation of five new features

which will be used as an input to the classifier for classification of

paraphrases. Classification model includes the model training

using the four machine learning algorithms. All the steps are

described below.

3.1 Text Preprocessing

For each data point, the preprocessing steps are as follows:

3.1.1 Text Encoding

We have encoded the sentences using standard UTF-8 encoding

that handles scripting of Hindi language.

3.1.2 Tokenization

We have tokenized the sentences into words using NLTK library.

3.1.3 Phonetics Transformation

We have applied custom set of rules for phonetics. The

normalization of phonetics has been done using soundex

algorithm [9]. It looks for specific characters and replaces them

with their corresponding metaphor characters. For example,

न ् न or ज़ ज

3.1.4 Tokens Stemming

We have applied some more set of rules for stemming into its

basic form. A set of Hindi suffixes characters were removed to get

normalized Hindi word. For example,

[ोो",ोे",ो ",ोु",ोी",िो",ोा"][कर",ोाओ",िोए",ोाई",ोाए",ने",नी",ना",

ते",ोीों",ती",ता",ोाो ",ोाो"ं,ोोो"ं,ोेों"]

[ोाकर",ोाइए",ोाईं",ोाया",ोेगी",ोेगा",ोोगी",ोोगे",ोान"े,ोाना",ोात"े,

ोाती",ोाता",ती"ं,ोाओ"ं,ोाए"ं,ोुओ"ं,ोुएं",ोुआं"]

3.1.5 Stop Words Filtering

We have removed irrelevant words from the sentences using a

standard list of 164 Hindi Stop words. For example,

[सारा, स,े सो, संग, ह , हुआ, हुई, हुए]

3.1.6 Synonyms Expansion

We have used Hindi WordNet, an extensive lexical dictionary of

Hindi language having 40K~ synsets, to fetch synonyms for Hindi

words. It was developed by researchers at the Center for Indian

Language Technology, Computer Science and Engineering

Department, IIT Bombay and we have downloaded it from the

mentioned link in [5].

All the text preprocessing steps have been summarized with

examples in the below Table 3.

Table 3. Text Preprocessing Steps

PreProcessing Input Preprocessed
Tokenization कवपल शमाट फोर्बसट [कवपल, शमाट, फोर्बसट]

Soundex हजअर लोट

हज़अर लौट

Stemming अननयशमतताओ,ं

ददल्ल

अननयशमत, ददल्ल

Stop Words

Removal
काफी ननराश था और

ड्रेशसगं रूम में लोटते

हुए रोने लगा

काफी ननराश ड्रेशसगं रूम

लोटते हुए रोने लगा

Synonyms इंडडया आखिर भारत फाइनल

3.2 Feature Generation

After the preprocessing of sentences following features have been

generated in the form of vectors to be passed as an input to the

classifier.

3.2.1 Common Tokens
The number of common tokens amongst two sentences is used as

a feature. These tokens have been generated by comparing the

preprocessed tokens after removing the stop words and then

taking intersection of them symbolized as follows.

Tokens (sentence1) ∩ Tokens (sentence2)

3.2.2 Normalized common Tokens
We have normalized the common tokens generated in the first

feature to compute the proportion of commonality of tokens

between two sentences. The value will be in the range of 0 and

1.It is 0 when there are no common tokens between two sentences

and 1 if all tokens between the two sentences are exactly the

same. Mathematically, It has been calculated by dividing the

common tokens by number of unique tokens in both the sentences

as shown below.

Common tokens/Unique Tokens (sent1, sent2)

3.2.3 Common IDF Score
Sum of IDF scores of common tokens from two sentences is used

as numeric similarity vector.

ΣIDF score (common tokens)

IDF (Inverse Document Frequency) is defined as inverse of

document frequency which is used to identify the importance of a

token in a given corpus. Represented as:

Here a document is an individual sentence. At first IDF has been

calculated for all tokens and kept for reference. Then during

feature generation process, IDF of common tokens has been

calculated and is used as a feature.

3.2.4 Normalized Common IDF Score
Here the proportion of IDF score of common tokens between two

sentences is computed for normalization and used as a vector to

model. It gives us normalized common IDF score ranges between

0 to 1 of common tokens. It can be calculated as follows.

IDF of Common tokens/

Total IDF of Unique tokens (sent1, sent2)

3.2.5 Sentences Length
It denotes the count of number of tokens in sentence 1 and

sentence 2 as separate columns.

3.3 Classification Model

Features generated in section 3.2 have been used as training data

to train the classifiers using Python Scikit library. Here, we have

used four popular machine learning algorithms which are random

forest, support vector machine and gradient boosting and

compared their performance. Since, random forest being an

ensemble learning method outperforms the other individual

methods, is implemented by growing many classification trees

and having them “vote” for a final decision according to a

majority role [6].We have focused on tuning its hyper parameters

to enhance the predictive ability of the model. Key parameters are

as follows:

3.3.1 n_estimators
These are the number of trees that we want to build before having

the vote for the final decision. More the number of trees better the

performance however it also increases the time complexity.

3.3.2 max_depth
 It is the maximum depth of the tree which needs to be tuned.

3.3.3 min_samples_leaf
These are the minimum number of samples or observations

required in a terminal node of the tree.

3.3.4 min_samples_split
These are the minimum number of samples or observations

needed in a node to be considered for splitting.[7]

We have selected the best set of hyper parameters for Random

Forest using Grid Search of Scikit which resulted in the following

values n_estimators - 500, max_depth - 10, min_samples_leaf - 4

and min_samples_split – 4 and trained our training data. Overall

training time for model is less than 1 second on quad-core

Machine with 8GB of RAM.

4. EXPERIMENTAL RESULTS

We have used 10 fold cross validation to compute overall

accuracy for the system. In this work three evaluation metrics

have been considered which are precision, recall and f1-score. We

have calculated the values of the evaluation parameters for all of

the four respective algorithms. For the subtask 1 we have got the

overall accuracy of 0.92 with F1 score of 0.94 maximum for

Random Forest algorithm. Detailed performance matrix of the

model is given as below in Table 4 in which we have to predict

for 2 classes.

Table 4. Subtask 1 Scores Summary

Class Precision Recall F1-Score Algorithm

P 0.94 0.93 0.94

Random

Forest
NP 0.90 0.91 0.90

Avg/Total 0.92 0.92 0.92

NP 0.93 0.91 0.92

Gradient

Boosting
P 0.87 0.89 0.88

Avg/Total 0.9 0.9 0.9

NP 0.92 0.84 0.88

SVM P 0.79 0.89 0.84

Avg/Total 0.87 0.86 0.86

NP 0.92 0.94 0.93

Gaussian
Naïve Bayes

P 0.91 0.88 0.9

Avg/Total 0.92 0.92 0.92

Subtask 2 which had same problem with 3 classes to predict from.

We have used similar approach and similar features set for

training our model. With 3 classes and larger training set of 3500

data points we have got overall accuracy of 0.85 with 10 cross

folds and a F1 score of 0.91 which is again maximum for Random

forest algorithm. Detailed summary of performance matrix of

subtask2 is given in Table 5.

Table 5. Subtask 2 Scores Summary

Class Precision Recall F1-Score Algorithm

NP 0.90 0.91 0.91

Random

Forest

P 0.81 0.80 0.80

SP 0.83 0.82 0.82

Avg/Total 0.85 0.85 0.85

NP 0.89 0.90 0.89

Gradient

Boosting

P 0.79 0.80 0.79

SP 0.84 0.81 0.83

Avg/Total 0.85 0.85 0.85

NP 0.89 0.82 0.86

SVM
P 0.74 0.67 0.70

SP 0.68 0.82 0.74

Avg/Total 0.79 0.78 0.78

NP 0.87 0.93 0.9

Gaussian

Naïve

Bayes

P 0.68 0.73 0.71

SP 0.76 0.62 0.68

Avg/Total 0.78 0.79 0.78

Following figures gives the summarized view of the performance

of the various machine learning algorithms for both subtasks

Figure 1: Subtask 1 Results Comparison

Figure 2: Subtask 2 Results Comparison

5. CONCLUSION

In this paper we have proposed our novel approach for the

detection of Hindi paraphrases which is a very important building

block of semantic text analysis. Building a question answering

system, document clustering, knowledge extraction, plagiarism

detection, building ontologies etc. are the potential applications

for paraphrase identification in NLP [10]. After comparing all the

four machine learning algorithms used in our model, random

forest is giving best results with F1 score of 0.94 for subtask1 and

0.91 for subtask2 which can be further improved by using more

robust phonetics and synonyms replacements. One limitation of

our research work is that we have not removed outliers from the

training data which could slightly improve the system

performance. In our future work we will include Part of Speech

tagging in feature generation which plays an important role in

paraphrase detection, as nouns and verbs are key elements for

paraphrasing.

6. ACKNOWLEDGMENTS

We would like to thank organizers for conducting this shared task

and also building the training data. We also would like to thank

Sapient Corporation for giving us an opportunity to work and

explore the world of text analytics.

7. REFERENCES

[1] Sethi, N., Agrawal, P., Madaan, V., and Singh, S.K. July

2016. A Novel Approach to Paraphrase Hindi Sentences

using Natural Language Processing. Indian Journal of

Science and Technology, Vol 9(28), DOI:

10.17485/ijst/2016/v9i28/98374.

[2] Kumar, N. 2014. A Graph Based Automatic Plagiarism

DetectionTechnique to Handle Artificial Word Reordering

and Paraphrasing. A. Gelbukh (Ed.): CICLing 2014, Part

II, LNCS 8404, pp. 481–494, Springer-Verlag Berlin

Heidelberg 2014.

[3] Xu, W., Callison-Burch, C., and Dolan, W. B. 2015.

SemEval-2015 Task 1: Paraphrase and Semantic

Similarity in Twitter (PIT), Proceedings of the 9th

International Workshop on Semantic Evaluation (SemEval

2015), pages 1–11, Denver, Colorado, June 4-5,

Association for Computational Linguistics

[4] https://www.aclweb.org/aclwiki/index.php?title=Paraphras

e_Identification_(State_of_the_art)

0.82
0.84
0.86
0.88
0.9

0.92
0.94

Precision

Recall

F1-Score

0.7
0.75
0.8

0.85
0.9

Precision

Recall

F1-Score

https://www.aclweb.org/aclwiki/index.php?title=Paraphrase_Identification_(State_of_the_art
https://www.aclweb.org/aclwiki/index.php?title=Paraphrase_Identification_(State_of_the_art

[5] http://www.cfilt.iitb.ac.in/wordnet/webhwn/downloaderInf

o.php

[6] Zhang, W., Zeng, F., Wu, X., Zhang, X., and Jiang, R.A.

2009. comparative study of ensemble learning approaches

in the classification of breast cancer metastasis,

International Joint Conference on Bioinformatics, Systems

Biology and Intelligent Computing

[7] Banfield, E.R., Student Member, IEEE,Lawrence O. Hall,

Fellow, IEEE,Kevin W. Bowyer, Fellow, IEEE, and W.P.

Kegelmeyer, Member, IEEE, JANUARY 2007. A

Comparison of Decision Tree Ensemble Creation

Techniques, IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29,

NO. 1.

[8] Sundaram, Shanmuga, M., Anand Kumar M, and Soman,

K.P. 2015. AMRITA CEN@ SemEval-2015: Paraphrase

Detection for Twitter using Unsupervised Feature

Learning with Recursive Autoencoders. SemEval-2015

(2015): 45.

[9] Mahalakshmi, S., Anand Kumar, M., Soman, K.P.

2015. Paraphrase detection for Tamil language using deep

learning algorithm, (2015) International Journal of

Applied Engineering Research, 10 (17), pp. 13929-13934

[10] Socher, R., Huang, E. H., Pennin, J., Manning, C.D., and

Andrew, Y. Ng. 2011. Dynamic pooling and unfolding

recursive autoencoders for paraphrase detection. Advances

in Neural Information Processing Systems (pp. 801-809).

[11] Anand Kumar, M., Singh, S., Kavirajan, B., and Soman,

K. P. 2016. DPIL@FIRE2016: Overview of shared task on

Detecting Paraphrases in Indian Languages, Working

notes of FIRE 2016 - Forum for Information Retrieval

Evaluation, Kolkata, India, December 7-10, CEUR

Workshop Proceedings, CEUR-WS.org.

http://www.cfilt.iitb.ac.in/wordnet/webhwn/downloaderInfo.php
http://www.cfilt.iitb.ac.in/wordnet/webhwn/downloaderInfo.php
https://www.amrita.edu/publication/amrita-cen-semeval-2015-paraphrase-detection-twitter-using-unsupervised-feature-learning

