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ANY AND-OR FORMULA OF SIZE N CAN BE EVALUATED IN
TIME N1/2+o(1) ON A QUANTUM COMPUTER∗

A. AMBAINIS† , A. M. CHILDS‡ , B. W. REICHARDT§ , R. ŠPALEK¶, AND S. ZHANG‖

Abstract. Consider the problem of evaluating an AND-OR formula on an N -bit black-box
input. We present a bounded-error quantum algorithm that solves this problem in time N1/2+o(1).
In particular, approximately balanced formulas can be evaluated in O(

√
N) queries, which is optimal.

The idea of the algorithm is to apply phase estimation to a discrete-time quantum walk on a weighted
tree whose spectrum encodes the value of the formula.
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1. Introduction. Consider a Boolean formula ϕ on N binary inputs x1, . . . , xN ,
using a gate set S consisting of either AND, OR, and NOT gates or, equivalently,
NAND gates. The formula ϕ corresponds to a tree where each internal node is a
gate from S on its children. If the same variable is fed into different inputs of ϕ, we
treat each occurrence separately, so that N counts variables with multiplicity. The
variables xi are accessed by querying a quantum oracle, which we can take to be the
unitary operator

(1) Ox : |b, i〉 7→ (−1)bxi |b, i〉,

where b ∈ {0, 1} and i ∈ {1, . . . , N} label the control qubit and query index, respec-
tively. In this paper, we show the following.

Theorem 1. Let ϕ be an arbitrary AND-OR formula of size N . After efficient
(i.e., time poly(N)) classical preprocessing that does not depend on the input x, ϕ(x)
can be evaluated with error at most 1/3 using N1/2+O(1/

√
log N) queries to Ox. The

running time is also N1/2+O(1/
√

log N), assuming unit-cost coherent access to the result
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of the preprocessing. For an approximately balanced formula (see Definition 2), the
query complexity is only O(

√
N) and the running time is only

√
N(logN)O(1).

Our algorithm is inspired by the recent N1/2+o(1)-time algorithm of Farhi, Gold-
stone, and Gutmann [FGG08] for the case in which S = {NAND}, each NAND gate
in ϕ has exactly two inputs, and ϕ is balanced—i.e., N = 2n and ϕ has depth n. Our
algorithm requires no preprocessing in this special case of a balanced binary NAND
tree. For a balanced or even an “approximately balanced” NAND tree, our algorithm
requires only O(

√
N) queries, which is optimal [BS04]. As in [FGG08], we analyze the

algorithm in terms of the spectrum of a Hermitian matrix, but in general this matrix
involves weights that compensate for the formula’s imbalances.

This result almost resolves in the positive a problem posed by Laplante, Lee,
and Szegedy [LLS06]. They asked whether the square of the bounded-error quantum
query complexity Q(f) of evaluating a Boolean function f is a lower bound on the size
L(f) of the smallest formula evaluating that function. Theorem 1 says that Q(f) is
at most L(f)1/2+o(1) or, equivalently, that the formula size of f is at least Q(f)2−o(1).

Our algorithm also almost solves a problem of O’Donnell and Servedio [OS03],
who conjectured that every Boolean formula of size N has a polynomial threshold
function of degree

√
N . Our result implies that every Boolean formula of size N

has a polynomial threshold function of degree N1/2+o(1), because a T -query quantum
algorithm implies an upper bound of 2T for the corresponding polynomial threshold
function [BBC+01]. By previous results [KS04, KOS04], this in turn implies that the
class of Boolean formulas of size N can be classically learned in time NN1/2+o(1)

=
2N1/2+o(1)

, in both the probably approximately correct model and the online model of
learning from adversarially generated examples.

Note that evaluating an AND-OR tree is the decision version of evaluating a
MIN-MAX tree; the latter can be solved using any algorithm for the former with at
most a logarithmic slowdown.

History of the problem and related work. Grover showed in 1996 [Gro97,
Gro02] how to search a general unstructured database of size N , represented by a
black-box oracle function, in O(

√
N) oracle queries and O(

√
N log logN) time on a

quantum computer. Grover’s search algorithm can be used to compute the logical OR
of N bits in the same time, by simply searching for a 1 in the input string. By applying
Grover search recursively, one can speed up the computation of more general logical
formulas. For example, a two-level AND-OR tree, with one AND gate of fan-in

√
N

and
√
N OR gates of the same fan-in as its children, can be evaluated in O(

√
N logN)

queries. Here the logarithmic factor comes from amplifying the success probability of
the inner quantum search to be polynomially close to one, so that the total error is
at most constant. By iterating the same argument, regular AND-OR trees of depth
d can be evaluated with constant error in time O(

√
N logd−1N) [BCW98].

Høyer, Mosca, and de Wolf [HMW03] showed that Grover search can be applied
even if the input variables are noisy, so the log factor is not necessary. Consequently,
a depth-d AND-OR tree can be computed in O(

√
N ·cd) queries, where c is a constant

that comes from their algorithm. It follows that constant-depth AND-OR trees can
be computed in O(

√
N) queries. Unfortunately, their algorithm is too slow for the

balanced binary AND-OR tree of depth log2N (although it does give some speedup
over classical computation for sufficiently large constant fan-ins).

Classically, one can compute the value of a balanced binary AND-OR tree with
zero error in expected time O(N log2[(1+

√
33)/4]) = O(N0.754) [Sni85, SW86] using a
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technique called alpha-beta pruning. This running time is optimal even for bounded-
error algorithms [San95]. For a long time, no quantum algorithm was known that
performed better than this classical zero-error algorithm, despite the fact that the
best known lower bound, from the adversary method, is only Ω(

√
N) [BS04].

Recently, Farhi, Goldstone, and Gutmann [FGG08] presented a ground-breaking
quantum algorithm for the balanced binary case using continuous-time quantum
walks. Their algorithm is based on the concept of scattering and runs in time O(

√
N)

in an unconventional, continuous-time query model. Shortly afterward, Childs et
al. [CCJY09] pointed out that this algorithm can be discretized into the conventional
oracle query model with a small slowdown, to run in time N1/2+o(1).

The present paper is based on a merged version of the technical reports [CRŠZ07,
Amb07], which appeared in a joint conference proceeding [ACR+07].

Two of the authors have since generalized the framework of this paper by incorpo-
rating the concept of span programs and have thereby given algorithms for evaluating
formulas over more general gate sets [RŠ08]. For example, span programs provide an
optimal algorithm for evaluating a balanced recursive three-majority formula. One of
the authors has investigated generalizations and further applications of a correspon-
dence employed in our algorithm between continuous- and discrete-time quantum
walks [Chi08]. Also, it has been shown that the formula evaluation algorithm of this
paper can be applied recursively to find a certificate for a balanced, regular NAND
formula in nearly optimal time [ACLT09].

2. Summary of results and methods. We design an algorithm whose running
time depends on the structure of the NAND tree. For arbitrary balanced trees, the
algorithm uses O(

√
N) queries. More generally, if the fan-in of each NAND gate in

our formula is bounded by a constant, our algorithm uses O(
√
Nd) queries, where d

is the depth of the formula. If the depth is large, we can use a rebalancing procedure
[BCE95, BB94] to construct an equivalent formula with depth 2O(

√
log N). This implies

that any NAND formula of size N can be evaluated using N1/2+O(1/
√

log N) queries.

Idea of the algorithm. Starting from a tree representing the formula ϕ with
input x (see Figure 1), we define a weighted adjacency matrix H such that the eigen-

r

Fig. 1. The balanced binary NAND formula of depth three

ϕ(x) =
`
(x1 ∧x2)∧(x3 ∧x4)

´
∧

`
(x5 ∧x6)∧(x7 ∧x8)

´
,

where a∧ b = (a ∧ b), is represented by the subtree rooted at r. The leaves (at the top of the tree)
correspond to the input, which is encoded by deleting edges to leaves evaluating to 1, as indicated by
a dashed line. Internal vertices correspond to NAND gates on their children. A vertex is represented
by an open circle if it evaluates to 0 and by a filled circle if it evaluates to 1. In this example, the
input is x = 00010111, and ϕ(x) = 1. Below r, we add two more vertices r′ and r′′; then r′′ also
evaluates to ϕ(x).
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states of H with small eigenvalues encode ϕ(x). In particular,
• if ϕ(x) = 0, then H has a normalized eigenstate with eigenvalue zero and

with large amplitude on the root.
• if ϕ(x) = 1, then any eigenstate of H with nonzero amplitude on the root has

an eigenvalue bounded away from zero.
We carefully design H so that quantitative versions of both of these properties can
be established inductively.

Considering H as the Hamiltonian of a quantum system, these properties mean
that ϕ(x) can be evaluated by applying phase estimation to the unitary operator
e−iHt, with the root as the starting state.1 However, that approach requires simulating
the dynamics generated by H, a continuous-time quantum walk on the tree, and
this introduces unnecessary overhead. We avoid this overhead by converting the
process into a corresponding discrete-time quantum walk with similar behavior, using
Szegedy’s correspondence between classical random walks and discrete-time quantum
walks. We reinterpret Szegedy’s correspondence in order to construct a discrete-time
quantum walk from an arbitrary continuous-time quantum walk with positive weights
such that the spectral properties of the two walks are closely related.

Figure 2 presents a simplified version of the overall algorithm for the balanced
binary case.

Organization. The remainder of the paper is organized as follows.
For any NAND formula ϕ, section 3 defines a weighted undirected tree T (ϕ),

where the weights of edges to the leaves depend on the input x and where a short tail
is added to the root.

In section 4 and section 5, we establish spectral properties of this weighted tree.
Section 4 considers only the eigenstates with eigenvalue zero. We show that when
ϕ(x) = 0, there is a normalized zero-eigenvalue eigenstate with substantial overlap on
the root. Conversely, if ϕ(x) = 1, any such eigenstates have no overlap on the root
and hence can be neglected. Section 5 then shows that in the case ϕ(x) = 1, any
eigenvectors with small nonzero eigenvalues can also be neglected. Essentially, these
properties follow because the ratio of eigenstate amplitudes between a vertex and its
parent depend on the evaluation of NAND gates.

We then apply the spectral analysis to construct the algorithm. Section 6 reviews
Szegedy’s correspondence theorem, which we use to construct a discrete-time quantum
walk whose eigenvalues and eigenvectors are closely related to those of the weighted
tree. In section 7, we explain how to evaluate ϕ by applying phase estimation to this
discrete-time quantum walk.

We conclude the paper by describing some applications to evaluating iterated
functions in section 8 and by presenting some open problems in section 9.

3. Weighted NAND formula tree. The NAND gate on inputs y1, . . . , yk ∈
{0, 1} evaluates to 1−

∏k
i=1 yi. In particular, a NAND gate on a single input is simply

a NOT gate.
Consider a NAND formula ϕ of size N , i.e., on N variables, counting multiplicity.

Represent ϕ by a rooted tree T = T (ϕ), in which the leaves correspond to variables and
other vertices correspond to NAND gates on their children. (Because ϕ is a formula,

1Note that phase estimation has also been used to resolve the eigenvalue gap of a quantum
walk—albeit for a different purpose, namely, to implement a reflection operator used in each step of
a search algorithm—in [MNRS07].
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1. Initialization. Let τ = 320b
√
Nc. Prepare three quantum registers in

the state ( 1√
τ

τ−1∑
t=0

(−i)t|t〉
)
⊗ |r′′〉|left〉.

The first register is a counter for quantum phase estimation, the second
register holds a vertex index, and the third register is a qutrit “coin”
holding “down,” “left,” or “right.”

2. Quantum walk. If the first register is |t〉, perform t steps of the fol-
lowing discrete-time quantum walk U . Denote the last two registers by
|v〉|c〉.
• Diffusion step.

(a) If v is a leaf, apply a phase flip (−1)xv using one controlled call
to the input oracle.

(b) If v is an internal degree-three vertex, apply the following diffusion
operator on coin |c〉:

Reflection|u〉 = 2|u〉〈u| − 1,

where |u〉 = 1√
3
(|down〉+ |left〉+ |right〉).

(c) If v = r′, apply the following diffusion operator on |c〉:

Reflection|u′〉 = 2|u′〉〈u′| − 1,

where |u′〉 = 1
4√

N
|down〉+

√
1− 1√

N
|left〉.

(d) If v = r′′, do nothing.
• Walk step.

(a) If c = “down,” then walk down to the parent of v and set c to
either “left” or “right,” depending on which child v is.

(b) If c ∈ {“left,” “right”}, then walk up to the corresponding child
of v and set c to ‘down’.

Note that the walk step operator is a permutation that simply flips
the direction of each oriented edge.

3. Quantum phase estimation. Apply the inverse quantum Fourier
transform (modulo τ) on the first register and measure it in the compu-
tational basis. Return 0 if and only if the outcome is 0 or τ/2.

Fig. 2. An optimal quantum algorithm to evaluate the balanced binary NAND formula using
O(

√
N) queries. The algorithm runs quantum phase estimation on top of the quantum walk of

Figure 1.

not a circuit, each gate has fan-out one, so there are no loops in the associated graph.)
Attach to the root r a “tail” of two vertices r′ and r′′, as in Figure 1.

Definition 1. For a vertex v, let sv be the number of inputs of the subformula
rooted at v, counting multiplicity. In particular, sr = sr′ = sr′′ = N ; if v is a leaf,
then sv = 1. Let ∧(v) denote the value of the subformula rooted at v, so ϕ(x) =
∧(r) = ∧(r′′).
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To track error terms through the analysis, it will also be helpful to define

σ−(v) = max
ξ

∑
w∈ξ

1
√
sw
,

σ+(v) = max
ξ

∑
w∈ξ

sw,
(2)

with the maximum in each case taken over all paths ξ from v up to a leaf of T . Let
σ−(ϕ) = σ−(r) and σ+(ϕ) = σ+(r).

Letting depth(ϕ) denote the depth of the formula ϕ, it is clear that, for all vertices
v, σ−(v) ≤ σ−(ϕ) ≤ depth(ϕ) and σ+(v) ≤ σ+(ϕ) ≤ N depth(ϕ).2

Definition 2. The formula ϕ is approximately balanced if σ−(ϕ) = O(1) and
σ+(ϕ) = O(N).

The simplest example of an approximately balanced tree is the balanced binary
tree with N leaves. In this case, σ−(ϕ) < 2 and σ+(ϕ) < 2N are both geometric
series. More generally, a tree is approximately balanced if sv decreases sufficiently
rapidly from the root toward the leaves. For example, if for a fixed ε ∈ (0, 1

2 ], for
every vertex p and every grandchild c of p, sc ≤ (1− ε)sp, then σ−(ϕ) = O(1/ε) and
σ+(ϕ) = O(N/ε).

Definition 3. Let H be a weighted, symmetric adjacency matrix of the graph
consisting of T and the attached tail. Letting hpv = 〈p|H|v〉 = 〈v|H|p〉 denote the
weight on the edge between a vertex v and its parent p, we have

(3) H|v〉 = hpv|p〉+
∑

c

hvc|c〉,

where the sum is over the children of v. (If v has no parent or no children, the
respective terms are zero.) The edge weights depend on the structure of the tree and
are given by

(4) hpv =
(sv

sp

)1/4

,

with two exceptions:
1. If a leaf v evaluates to ∧(v) = 1, set hpv = 0, i.e., effectively remove the edge

(p, v) by setting its weight to zero.
2. Set hr′′r′ = 1/(

√
σ−(ϕ)N1/4).

Our algorithm relies on spectral properties of H.
Theorem 2. The weighted adjacency matrix H has the following properties:
• If ϕ(x) = 0, then there exists a zero-eigenvalue eigenvector |a〉 of H with
‖|a〉‖ = 1 and overlap |〈r′′|a〉| ≥ 1/

√
2.

• If ϕ(x) = 1, then every eigenvector with support on r′ or r′′ has corresponding
eigenvalue at least 1/

(
9σ−(ϕ)

√
σ+(ϕ)

)
in absolute value.

The following two sections contain the proof of Theorem 2.
Remark 1. Although we have specified H with particular weights for the sake of

concreteness, there is considerable flexibility in the choice of these weights. For a leaf

2In fact, σ−(ϕ) = O(
p

depth(ϕ)), because sw must increase by at least one every two levels
toward the root; two NOT gates in a row would be redundant. Slightly stronger bounds can be given
for trees preprocessed according to the rebalancing procedure of Lemma 9, but poly(depth(ϕ)) and
poly(log N) factors here won’t significantly change the running time.
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α + β

α + β

−α− β

βα

γ−γ

Fig. 3. An example NAND tree to illustrate Lemmas 3 and 4. As in Figure 1, a vertex is
filled or not according to whether it evaluates to 1 or 0, respectively. The amplitudes 〈v|a〉 of a
zero-eigenvalue eigenstate |a〉 of the adjacency matrix H are also labeled, with α, β, γ free variables,
assuming hpv = 1 for every edge (p, v). The eigenvalue condition means that the amplitudes of the
neighbors of any vertex sum to zero. The existence of such an |a〉 is promised by Lemma 4. As
required by Lemma 3, 〈v|a〉 = 0 if ∧(v) = 1, so vertices evaluating to 1 are not labeled.

v evaluating to 0, one can check that it is sufficient for hpv to satisfy hpv ≥ 1/s1/4
p .

One can also verify that for any fixed β ∈ (0, 1/2), Theorem 2 holds if the weights
hpv are defined by hpv = sv

β/sp
1
2−β and hr′′r′ = 1/(σβ

−(ϕ)
1
2N

1
2−β), where σβ

−(ϕ) =
maxξ

∑
w∈ξ:∧(w)=0 sw

−2β. We have fixed β = 1/4 to simplify notation.

4. Zero-eigenvalue eigenstates of H. In this section, we consider the eigen-
states of H with eigenvalue zero. We first prove the second half of Theorem 2 in the
special case where the eigenvalue is zero and then prove the first half of the theorem.

Recall that in a NAND tree T , internal vertices are interpreted as NAND gates
on their children. As Definition 3 puts zero weight on the parental edge of a leaf
evaluating to 1, such leaves can be regarded as disconnected. Thus all leaves connected
to the root component can be interpreted as 0s.

Definition 4. Let Tv denote the subtree of T consisting of v and all its descen-
dants. The restriction to Tv of a vector |a〉 on T is denoted |aTv

〉. That is, for a
subset S of the vertices, define the projection ΠS =

∑
s∈S |s〉〈s|; then |aTv 〉 = ΠTv |a〉.

Also let av = 〈v|a〉, and let HS = ΠSH.
Lemma 3. For an internal vertex p in the NAND tree T , if ∧(p) = 1 and

HTp
|a〉 = 0, then ap = 0.
Proof. Since ∧(p) = 1, there exists a child v of p having ∧(v) = 0. If v is a

leaf, then 0 = 〈v|H|a〉 = hpvap, as asserted. Otherwise, all children c of v must have
∧(c) = 1, implying by induction that ac = 0. Then

0 = 〈v|H|a〉 = hpvap +
∑

c

hvcac = hpvap,

so ap = 0, as claimed.
Lemma 3 constrains the existence of zero-eigenvalue eigenstates supported on the

root r when the NAND formula evaluates to 1. However, there may be zero-eigenvalue
eigenstates that are not supported on the root; for example, consider the right subtree
in Figure 3.

Lemma 4. Consider a vertex p in NAND tree T . If ∧(p) = 0, then there exists
an |a〉 = |aTp

〉 with HTp
|a〉 = 0, ‖|a〉‖ = 1, and ap ≥ 1/(

√
σ−(p)s1/4

p ).
Proof. The proof is by induction on the height of the tree. For the base case when

p is a leaf, let |a〉 = |p〉.
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If p is not a leaf, then ∧(p) = 0 implies ∧(v) = 1 for every child v of p. Thus,
each v has at least one particular child, denoted cv, satisfying ∧(cv) = 0. Then
construct |a〉 as follows. Set av = 0 for all children v of p, and let |aTc

〉 = 0 for
every grandchild c /∈ {cv : v is a child of p}. By induction, for each v construct |ãTcv 〉
satisfying ‖|ãTcv 〉‖ = 1, HTcv |ãTcv 〉 = 0 and ãcv ≥ 1/(

√
σ−(cv)s1/4

cv ).
For each v, in order to satisfy 〈v|H|a〉 = 0, we need hpvap = −hvcvacv . To achieve

this, we rescale the vectors |ãTv
〉. Let ap = 1, and let |aTcv 〉 = − hpv

hvcv

1
ãcv

|ãTcv 〉.
It remains only to verify that ‖|a〉‖2 ≤ √

spσ−(p), so that when we renormalize,
ap/‖|a〉‖ = 1/‖|a〉‖ is still large. Indeed,

‖|a〉‖2 = a2
p +

∑
v

h2
pv

h2
vcv (ãcv )2

‖|ãTcv 〉‖2

≤ 1 +
∑

v

h2
pv

h2
vcv

√
scvσ−(cv)

= 1 +
∑

v

sv√
sp
σ−(cv)

≤ √
sp

(
1
√
sp

+ max
v

σ−(cv)
)

≤ √
spσ−(p).

The key step in the above proof, which motivates the choice of weights hpv, is∑
v sv = sp.

Lemma 4 is a strong converse of Lemma 3, as it does not merely assert that ap can
be set nonzero; it also puts a quantitative lower bound on the achievable magnitude.
Lemma 4 lets us say that there exists a zero-eigenvalue eigenstate with large overlap
on the root r when ∧(r) = 0.

Now in the case ϕ(x) = ∧(r) = 0, let us extend |aTr
〉 from Lemma 4 into a zero-

eigenvalue eigenvector |a〉 over the whole tree, to see that the overlap |〈r′′|a〉|/‖|a〉‖
is large. In order to satisfy H|a〉 = 0, we must have ar′ = 0 and −ar′′ = hr′r

hr′′r′
ar =√

σ−(ϕ)N1/4ar ≥ 1. Therefore, we lower bound

|〈r′′|a〉|
‖|a〉‖

≥ 1√
1 + ‖|aTr

〉‖2
=

1√
2
.

This completes the proof of the first half of Theorem 2.

5. Spectral gap of H in the case ϕ(x) = 1. To prove the second half of
Theorem 2, we must consider the case ϕ(x) = 1 and investigate the eigenvectors of H
corresponding to eigenvalues E close to zero. As T is a bipartite graph, the spectrum
of H is symmetric around zero. Let

|E〉 =
∑

v

av|v〉

be an eigenvector of H with eigenvalue E > 0.
From (3) we obtain

(5) 〈v|H|E〉 = Eαv = hpvap +
∑

c

hvcac.
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The analysis depends on the fact that av/ap is either large or small in magnitude,
depending on whether ∧(v) = 0 or 1.

Lemma 5. Let 0 < E ≤ 1/
(
5σ−(ϕ)

√
σ+(ϕ)

)
. For vertices v 6= r′′ in T , define

y0v and y1v by

y0v = (1 + kv)σ−(v) 4
√
svsp,

y1v = (1 + kv)σ−(v)
s
3/4
v

s
1/4
p

,
(6)

where p is the parent of v and kv is defined by

kv = 4E2σ−(v)2σ+(v).

Then for every vertex v 6= r′′ in T , either av = ap = 0 or

(7)
∧(v) = 0 ⇒ 0 < ap/av ≤ y0vE,
∧(v) = 1 ⇒ 0 > av/ap ≥ −y1vE.

Note that, because of our assumption on E, we always have kv ≤ 4
25 = 0.16.

Proof. The proof is by induction on the height of the tree. For the base case, we
have ∧(v) = 0 for every leaf v, and by (5), Eav = hpvap. Thus either av = ap = 0 or

ap

av
=

E

hpv
= 4

√
sp

sv
E = 4

√
spsvE ≤ y0vE.

The induction proceeds as follows:
• If ∧(v) = 0, then all children c of v evaluate to ∧(c) = 1. First assume
av 6= 0. Dividing both sides of (5) by avhpv, using the induction hypothesis,
and rearranging terms gives

ap

av
=

1
hpv

(
E −

∑
c

hvc
ac

av

)

≤ 1
hpv

(
1 +

∑
c

hvcy1c

)
E.

Using the inductive assumption about y1c and substituting the expressions
for hpv, hvc in terms of ap, av, ac, we can upper bound the coefficient of E by

1
hpv

+
∑

c

(1 + kc)σ−(c)
scs

1/4
p

s
3/4
v

.

Since
∑

c sc = sv and kc ≤ kv for any c, this is at most

(1 + kv)
(

4

√
sp

sv
+ max

c
σ−(c) 4

√
svsp

)
= (1 + kv) 4

√
svsp

(
max

c
σ−(c) +

1
√
sv

)
= (1 + kv)σ−(v) 4

√
svsp.

The induction hypothesis also gives that ap/av ≥ E/hpv > 0. If av = 0, then
the induction hypothesis gives that all ac are zero, so also ap = 0 by (5).
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• If ∧(v) = 1, then there is at least one child c with ∧(c) = 0. We may assume
av 6= 0, since otherwise ap = 0 and the condition holds trivially. Then, again
dividing (5) by avhpv and using the induction hypothesis gives

ap

av
=

E

hpv
−
∑

c

hvc

hpv

ac

av

≤ E

hpv
+

∑
c:∧(c)=1

hvcy1c

hpv
E −

∑
c:∧(c)=0

hvc

hpvy0cE
.(8)

Because of the previous case, we can upper bound the first sum by∑
c

hvcy1c

hpv
E ≤ max

c
(1 + kc)σ−(c) 4

√
svspE

≤ (1 + kv)σ−(v) 4
√
svspE.(9)

We lower bound the second sum by one of its terms (since there is at least
one c with ∧(c) = 0):

hvc

hpvy0cE
≥ s

1/4
p

(1 + kc)σ−(v)s3/4
v E

.

Finally, the first term on the right-hand side of (8) is E
hpv

= 4

√
sp

sv
E, which is

less than the right-hand side of (9). Therefore, (8) is at most

2(1 + kv)σ−(v) 4
√
svspE − s

1/4
p

(1 + kc)σ−(v)s3/4
v E

=
−s1/4

p

[
1− 2(1 + kv)(1 + kc)σ−(v)2svE

2
]

(1 + kc)σ−(v)s3/4
v E

.

Let δ = σ−(v)2svE
2. Since kc ≤ kv ≤ 0.16, we can lower bound the expression

in square brackets by

1− 2 · 1.162δ ≥ 1− 2.7δ.

This means that

ap

av
≤ −s1/4

p

(1 + kc)σ−(v)s3/4
v E

(1− 2.7δ).

To complete the proof that ap

av
≤ − 1

y1vE (and hence av

ap
≥ −y1vE), it suffices

to show that

1 + kc

1− 2.7δ
≤ 1 + kv.

We have

1 + kc

1− 2.7δ
= 1 + kc + (1 + kc)

(
1

1− 2.7δ
− 1
)

≤ 1 + kc + 1.16
(

1
1− 2.7δ

− 1
)
.(10)
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We now observe that δ ≤ σ−(v)2σ+(v)E2 ≤ 0.04. If 0 ≤ δ ≤ 0.04, the last
term of (10) is always upper bounded by 4δ. Therefore, the entire right-hand
side of (10) is upper bounded by

1 + kc + 4δ = 1 + 4σ−(v)2(σ+(c) + sv)E2

≤ 1 + kv.

Now we are ready to complete the proof of the second half of Theorem 2. Assume
|E〉 is an eigenvector of H with eigenvalue E ∈

(
0, 1/

(
5σ−(ϕ)

√
σ+(ϕ)

)]
. We want to

show ar′ = ar′′ = 0. We have

Ear′ = hr′r′′ar′′ + hrr′ar

≥ h2
r′r′′

E
ar′ − hrr′y1rEar′ ,

with the inequality following from Ear′′ = hr′r′′ar′ and Lemma 5. If ar′ 6= 0, we can
divide both sides by Ear′ . Then, moving the second term from the right-hand side to
the left gives us

1 + hrr′y1r ≥
h2

r′r′′

E2
.

Substituting the values of hrr′ and hr′r′′ and applying the assumed upper bound on
E gives us

(11) 1 + y1r ≥
25σ−(ϕ)σ+(ϕ)√

N
≥ 25σ−(ϕ)

√
N.

By Lemma 5, we have

y1r = (1 + kr)σ−(ϕ)
s
3/4
r

s
1/4
r′

≤ 1.16σ−(ϕ)
√
N.

Substituting this into (11) gives a contradiction.
Therefore, ar′ = 0, and, because Ear′′ = hr′r′′ar′ , we also have ar′′ = 0. Together

with Lemma 3 for the case when E = 0, this completes the proof of the second half
of Theorem 2.

6. Discrete-time quantum walk. As mentioned in section 2, one way of ob-
taining a formula evaluation algorithm is to apply phase estimation directly to the
continuous-time quantum walk generated by H. However, simulating that walk has
an overhead that can be avoided by instead considering a corresponding discrete-time
quantum walk.

To construct this walk, we first briefly review Szegedy’s procedure for quantizing
classical random walks. Theorem 6, adapted from [Sze04] (see also [MNRS07]), relates
the eigensystem of the discrete-time quantum walk to that of the original classical
walk.

Theorem 6 (see [Sze04]). Let {|v〉 : v ∈ V } be an orthonormal basis for HV .
For each v ∈ V , let

|ṽ〉 = |v〉 ⊗
∑
w∈V

√
pvw|w〉 ∈ HV ⊗HV ,
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where pvw ≥ 0 and 〈ṽ|ṽ〉 =
∑

w pvw = 1. Let T =
∑

v |ṽ〉〈v| be an isometry mapping
|v〉 to |ṽ〉, and let Π = TT † =

∑
v |ṽ〉〈ṽ| denote the projection onto the span of the

|ṽ〉s. Let S =
∑

v,w |v, w〉〈w, v| denote the swap operator. Let

M = T †ST =
∑

v,w∈V

√
pvwpwv|v〉〈w|

(a real symmetric matrix), and let {|λa〉} denote a complete set of orthonormal eigen-
vectors of M with corresponding eigenvalues λa.

The spectral decomposition of U = (2Π − 1)S is determined by that of M as
follows. Let Ra = span{T |λa〉, ST |λa〉}. Then Ra ⊥ Ra′ for a 6= a′; let R =

⊕
aRa.

U fixes the spaces Ra and is −S on R⊥. The eigenvectors of U within Ra are given
by (1− βa,∓S)T |λa〉, with corresponding eigenvalues βa,± = λa ± i

√
1− λ2

a.
Proof. First assume a 6= a′, and let us show Ra ⊥ Ra′ . Indeed, 〈λa|T †T |λa′〉 =

〈λa|λa′〉 = 0, as T †T = 1. Since S2 = 1, similarly, ST |λa〉 is orthogonal to ST |λa′〉.
Finally, 〈λa|T †ST |λa′〉 = 〈λa|M |λa′〉 = 0. Therefore, the decomposition HV ⊗HV =
(
⊕

aRa)⊕R⊥ is well defined.
R is the span of the images of ST and T . 2Π− 1 is +1 on the image of T and −1

on its complement; therefore, U is −S on R⊥.
Finally, ΠT = TT †T = T and ΠST = TT †ST = TM , so

U(ST |λa〉) = (2Π− 1)T |λa〉 = T |λa〉,

U(T |λa〉) = (2Π− 1)ST |λa〉 = (2λa − S)T |λa〉;

U fixes the subspaces Ra. To determine its eigenvalues on Ra, let |β〉 = (1+βS)T |λa〉.
Then U |β〉 = (2λa + β)T |λa〉 −ST |λa〉 is proportional to |β〉 if β(2λa + β) = −1; i.e.,
β = −λa ± i

√
1− λ2

a. (If λa = ±1, note that T |λa〉 = ±ST |λa〉, so Ra is one-
dimensional, corresponding to a single eigenvector of U .)

To connect this theorem to classical and quantum walks, start with an undirected
graph G = (V,E). Choose the pv,w to be the transition probabilities v → w of a
classical random walk on this graph (i.e., with the constraint pv,w = 0 if (v, w) /∈
E). Then U = (2Π − 1)S can be considered a quantization of the classical walk,
taking place on the directed edges of G. First, the swap S switches the direction
of an edge. Then, when the first register is |v〉, 2Π − 1 acts as a reflection about
|ṽ〉 = |v〉⊗

∑
w∼v

√
pv,w|w〉; it is a “coin flip” that mixes the directed edges leaving v.

Therefore, although U acts on HV ⊗HV , it preserves the subspace spanned by |v, w〉
and |w, v〉 for (v, w) ∈ E. An alternative basis for this subspace is to give a vertex v
together with an edge index to describe an edge leaving v. If the graph has maximum
degree D, then U can be implemented on HV ⊗ CD instead of HV ⊗HV .

Discretization of continuous-time quantum walks. Szegedy’s Theorem 6
relates the eigenvalues and eigenvectors of the quantum walk U to those of the matrix
M =

∑
v,w

√
pv,wpw,v|v〉〈w|. If P =

∑
v,w

√
pv,w|v〉〈w| is the elementwise square root

of the transition matrix of a classical random walk, then M is the elementwise product
P◦PT . ButM can also be regarded as the Hamiltonian for a continuous-time quantum
walk on the vertices of the underlying graph.

In our case, we are given H and desire a factorization H = hP ◦PT for some nor-
malization factor h > 0 such that P has all row norms exactly one. Then Theorem 6
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with M = H/h relates the eigensystem of H to that of the discrete-time quantum
walk corresponding to P . To obtain this factorization, it is convenient to enlarge the
Hilbert space by adding one isolated vertex to the graph, denoted ∅. Then, for a
large class of Hamiltonians, we can choose P as follows.

Claim 7. Let H be an N×N symmetric matrix with nonnegative entries. Define
‖H‖1 = maxv

∑
w |Hv,w|, and suppose that h ≥ ‖H‖1. Then P ◦ PT = (H ⊕ 0)/h,

where P is the (N + 1)× (N + 1) matrix with nonnegative entries Pv,w =
√
Hv,w/h,

Pv,∅ =
√

1−
∑

w Hv,w/h, P∅,w = 0, and P∅,∅ = 1. By construction, all row norms
of P are equal to one.

Remark 2. Szegedy’s Theorem 6, with Claim 7, serves as a general method for
relating an arbitrary positive-weighted continuous-time quantum walk on the vertices
of G to a discrete-time quantum walk on the directed edges of G. In particular, the
eigenvalues of the discrete walk −iU are given by ±

√
1− λ2

a + iλa (i.e., ei arcsin λa and
−e−i arcsin λa), whereas the continuous walk eiM has eigenvalues eiλa . The spectral
gaps from zero of the continuous walk and the discrete walk are equal up to third
order.

7. The algorithm. We now establish the main result.
Theorem 1. Let ϕ be an arbitrary AND-OR formula of size N . After efficient

(i.e., time poly(N)) classical preprocessing that does not depend on the input x, ϕ(x)
can be evaluated with error at most 1/3 using N1/2+O(1/

√
log N) queries to Ox. The

running time is also N1/2+O(1/
√

log N), assuming unit-cost coherent access to the result
of the preprocessing. For an approximately balanced formula (see Definition 2), the
query complexity is only O(

√
N) and the running time is only

√
N(logN)O(1).

By “unit-cost coherent access,” we mean the following. Our algorithm begins by
classically preprocessing the formula, giving some string y. We assume that there
exists an oracle Oy for accessing y as in (1) such that applying Oy takes unit time.

Proof. The proof of Theorem 1 is as follows.

Preprocessing. First, apply Lemma 8 to expand out gates so each NAND gate
has O(1) fan-in.

Lemma 8. For any NAND formula ϕ, one can efficiently construct an equivalent
NAND formula ϕ′ of the same size such that all NAND gates have fan-in at most
two, σ+(ϕ′) = O(σ+(ϕ)), and σ−(ϕ′) = O(σ−(ϕ)).

Bounding the gate fan-in is needed to bound the norm of the weighted adjacency
matrix from Definition 3. A proof of Lemma 8 is given in the appendix.

Next, if σ−(ϕ)
√
σ+(ϕ) = N

1
2+ω(1/

√
log N), then apply the formula rebalancing

procedure of [BCE95, BB94] with parameter k to be determined.
Lemma 9 (see [BB94, Theorem 4]). For any NAND formula ϕ of size N and

for all k ≥ 2, one can efficiently construct an equivalent NAND formula ϕ′ with gate
fan-ins at most two and satisfying3

depth(ϕ′) ≤ (9 ln 2)k log2N,

size(ϕ′) ≤ N1+1/ log2 k.

Let ϕ′ be the preprocessed formula, and let H be the Hamiltonian corresponding
to ϕ′ according to Definition 3. We would like to define U as a discrete-time quantum
walk corresponding to H/n(H) (where n(H) is some upper bound on ‖H‖1) via

3The constant in the depth bound is 9 ln 2 instead of the 3 ln 2 in [BB94, Theorem 4] because we
lose a constant converting an {AND, OR, NOT} formula to a NAND formula.
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Claim 7. Obtaining this U takes a little care, since H depends on the oracle. Let
H0 denote the Hamiltonian from Definition 3, assuming that all leaves evaluate to
0. By applying Claim 7 as part of the preprocessing, we obtain a U0 corresponding
to H0/‖H0‖1. Then let U = OxU0, where Ox is the oracle for the input as in (1),
acting on the leaf vertices. Since Ox introduces a phase of (−1)xi conditioned on
the current vertex being leaf i, this U is also a discrete-time quantum walk as in
Theorem 6. We claim that in Theorem 6, U corresponds to M = H/‖H0‖1. To see
this, note that the only difference between U and U0 is on the |̃i〉s for leaf vertices i
with xi = 1: in U0, |̃i〉 = |i, p〉 (where p is the parent of i), whereas in U , |̃i〉 = |i, i〉 (i.e.,
pi,i = 1). Therefore, the M corresponding to U differs only from H0 in the coefficients
involving leaves i with xi = 1 and 〈i|M |p〉 = 〈̃i|S|p̃〉 = 0, so M = H/‖H0‖1 as
claimed. Note that since the tree has positive weights and constant maximum degree,
‖H0‖1 = O(‖H0‖) = O(1).

For each vertex v, compute a sequence of O((logN)2 log logN) elementary gates
that approximate to within 1/N the reflection about |ṽ〉 induced by U0, using the
Solovay–Kitaev theorem [KSV02]. (With this approximation, the algorithm’s total
error probability increases only by o(1).) Store the descriptions of these gate sequences
in a classical string, which we assume the algorithm can access coherently at unit cost.
To apply U0 at vertex v, the algorithm looks up the corresponding gate sequence and
applies it to the coin register |c〉.

Algorithm.
1. Prepare |r̃′′〉 = |r′′, r′〉.
2. “Measure the energy according to H.” In other words, apply quantum phase

estimation to −iU = −iOxU0. Use precision δp = 1/(10σ−(ϕ′)
√
σ+(ϕ′)) and

error probability δe ≤ 1/4.
3. Output 0 if and only if the measured phase is 0 or π.

Figure 2 lays out the steps of the algorithm in complete detail for the case of a
balanced binary NAND tree. We did not use Claim 7 to derive U in Figure 2, because
in this special case it is clear that applying Theorem 6 to U gives H, except with
larger weights to leaves evaluating to 0 (see Remark 1).

Correctness. The correctness follows from Theorems 2 and 6. If ϕ(x) = 0,
then there exist two eigenvectors of U given by (1 ± iS)T |a〉 with eigenvalues ±i,
respectively. Their overlaps with the initial state |r̃′′〉 are |〈r̃′′|(1± iS)T |a〉| = |ar′′ ±
iar′

hr′′r′
‖H‖ | ≥ 1/

√
2−O(1/N1/4). Since the norm of (1± iS)T |a〉 is at most 2‖|a〉‖ = 2,

we find that the probability of outputting 0 is at least 2
(

1
2 ( 1√

2
− o(1))

)2 = 1/4− o(1).
Conversely, if ϕ(x) = 1, then every eigenstate of H with support on r′ or r′′

has an eigenvalue at least 1/(5σ−(ϕ′)
√
σ+(ϕ′)) in magnitude. Every eigenstate of

U with support on |r′′, r′〉 = |r̃′′〉 = T |r′′〉 must be of the form (1 + βa,±S)T |λa〉 =
(1+(−λa± i

√
1− λ2

a)S)T |λa〉. The terms which can overlap T |r′′〉 are either 〈r′′|λa〉
(via T ) or 〈r′|λa〉 (via ST ). But for |λa| < 1/(10σ−(ϕ′)

√
σ+(ϕ′)), both coefficients

must be zero. Therefore, our algorithm outputs 0 with probability less than δe < 1/4.
This constant gap can be amplified as usual.

Query and time complexity. To obtain precision δp and error probability at
most δe, phase estimation requires applying O(‖H0‖/(δpδe)) = O

(
σ−(ϕ′)

√
σ+(ϕ′)

)
controlled-U operations [CEMM98].

• If ϕ is approximately balanced, this is O(
√
N), as desired.



AND-OR FORMULA EVALUATION ON A QUANTUM COMPUTER 2527

• Otherwise, due to the bounds on σ± below Definition 1,

σ−(ϕ′)
√
σ+(ϕ′) = O

(√
size(ϕ′) depth(ϕ′)3/2

)
= O(N

1
2 (1+1/ log2 k)(k log2N)3/2)

from Lemma 9 with parameter k. Setting k = 2
√

(log2 N)/3 optimizes this
bound, giving N1/2+

√
(3+o(1))/ log N queries to Ox.

Finally, since the Solovay–Kitaev theorem produces a sequence of only (logN)O(1)

elementary gates that approximate each walk step within 1/N , the total running time
is only polylogarithmically larger than the number of queries.

8. Evaluating iterated functions. Our algorithm can be used to evaluate an
arbitrary Boolean function by first writing a NAND formula for the function and
then evaluating that formula. For functions defined recursively, this approach is par-
ticularly natural. Of course, it will only be advantageous when the formula size is
sufficiently small.

In particular, our algorithm gives improved upper bounds for evaluating an it-
erated “all-equal” function studied in [Amb06]. Define f : {0, 1}3 → {0, 1} by
f(x1, x2, x3) = 1 if x1 = x2 = x3 and f(x1, x2, x3) = 0 otherwise. Define a sequence
of iterated functions fn : {0, 1}3n → {0, 1}, for n = 1, 2, 3, . . . , by f1 = f and

fn(x1, . . . , x3n) = fn−1

(
f(x1, x2, x3), f(x4, x5, x6), . . . , f(x3n−2, x3n−1, x3n)

)
for n ≥ 2. The functions fn have attracted interest in the context of relating poly-
nomial degree and quantum query complexity of Boolean functions. The polynomial
degree of a Boolean function f is always a lower bound on its quantum query com-
plexity [BBC+01]. The function fn is one of the known functions for which this lower
bound is not optimal. The polynomial degree of fn is 2n, while the quantum query
complexity of fn is lower bounded by Ω

(
( 3√

2
)n
)

= Ω(2.12n) [Amb06].
Our approach gives the first quantum algorithm for evaluating fn with o(3n)

queries. To see this, note that f can be represented by a NAND formula of size six
as follows:

f(x1, x2, x3) = ∧(∧(x1, x2, x3),∧(x̄1, x̄2, x̄3)).

Using this formula, we can inductively construct a size-6n NAND formula for fn.
Namely, suppose we are given a NAND formula for fn−1 with size 6n−1. Then sub-
stituting for each variable the size-six NAND formula for f gives a NAND formula
for fn with size 6n. The formula is clearly approximately balanced. Thus, using our
algorithm for NAND tree evaluation, we can evaluate fn using O(

√
6n) = O(2.45n)

quantum queries.
Another function for which our algorithm gives an improved upper bound is the

iterated three-majority function. Let g(x1, x2, x3) be 1 if x1 + x2 + x3 ≥ 2 and 0
otherwise. Classically, the query complexity of evaluating the iterated function gn is
only known to lie between Ω

(
(7/3)n

)
and O

(
(2.6537 . . . )n

)
[JKS03], and no better

quantum algorithm was known. However, since g(x1, x2, x3) = (x1∧x2)∨ ((x1∨x2)∧
x3), the function gn can be evaluated in O(

√
5n) = O(2.24n) quantum queries.

Two of the authors have developed a formula evaluation algorithm that in par-
ticular evaluates the above two iterated formulas optimally [RŠ08]. This quantum
algorithm uses O

(
(3/

√
2)n
)

queries to evaluate fn and O(2n) queries to evaluate gn.
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9. Open problems. We conclude by mentioning some open problems.
• Our algorithm needs to know the full structure of the formula beforehand

to determine the quantum walk transition amplitudes (i.e., the biases of the
“quantum coin”) at each internal vertex. However, these values need not be
computed exactly, because there is some freedom in the recurrence on y0v

and y1v. It would be interesting to know if a different choice of coefficients,
or a relaxed calculation thereof, would allow for faster preprocessing. Fur-
thermore, it would be interesting to know on what kinds of structured inputs
the preprocessing can be done in time N1/2+o(1).

• Numerical simulations indicate that the formula can be evaluated by running
the quantum walk from the initial state and measuring whether the final
quantum state has large overlap with 1√

2
(|r′, r′′〉 + |r′′, r′〉) or 1√

2
(|r′, r′′〉 −

|r′′, r′〉). If this is true, then we can avoid the phase estimation on top of the
quantum walk, simplifying the algorithm.

• What kinds of noisy oracles can this algorithm, or an extended version, toler-
ate? For example, [HMW03] extends a Grover search to the case where input
values are computed by a bounded-error quantum subroutine.

• Are there hard instances of formulas for which the rebalancing provided by
Lemma 9 is tight? If so, are these also hard instances for our algorithm? For
example, the most unbalanced formula ϕ(x) = x1 ∧(x2 ∧(x3 ∧(. . .∧xN ))) is
not a hard instance. It can be rebalanced by a different procedure, giving
an equivalent formula with depth O(logN) and size O(N logN) and can be
evaluated with O(

√
N) queries.

Appendix A. Proof of Lemma 8. Let ϕ be a NAND formula, and consider a
NAND gate in ϕ with fan-in k > 2. Rewrite this gate as a NOT gate, i.e., a NAND
gate of fan-in one, applied to an AND gate of fan-in k. Let ψ denote the subformula
rooted at that AND gate. Then the following recursive procedure can be used to
expand the AND gate into a tree of AND gates, each of fan-in two.

Procedure Expand(ψ).

Input: A formula ψ that begins with an AND gate of fan-in k.
Output: An equivalent formula in which the original AND gate of fan-in

k is implemented by AND gates of fan-in at most two.
1. If k ≤ 2, then return ψ.
2. Otherwise, let ψ1, . . . , ψk be the input subformulas of sizes s1 ≥
· · · ≥ sk. Let i∗ = min{i :

∑i∗

j=1 sj ≥ α
∑k

j=1 sj}, where α =
1
2 (3−

√
5). Return

AND
(
Expand

(
AND(ψ1, . . . , ψi∗)

)
,Expand

(
AND(ψi∗+1, . . . , ψk)

))
.

Since the input subformulas are ordered by their sizes, note that i∗ < k, so the
procedure terminates.

Lemma 10. In the tree of AND gates returned by Expand(ψ), the size of the
grandparent of any AND gate v1 is at least a factor of min

(
1

1−α ,
1√
α

)
= 1+

√
5

2 larger
than the size of v1.

Proof. Let f = 1√
α
− 1. Order the leaves of the tree from left to right with s1 on

the left and sk on the right. Consider a node v1 inside the tree, with size S1. Let v2
be v1’s sibling, with size S2.

• If v2 is to the left of v1, then by construction S2 ≥ α(S1+S2), so S1+S2
S1

≥ 1
1−α .
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• If v2 is to the right of v1 with size S2 < fS1, then we have no good lower bound
on S1+S2

S1
. Let p be the parent of v1 and v2, with sibling v3 having size S3.

We claim that S3 ≥ min
(

α
1−α , f

)
· (S1 + S2). To see this, assume otherwise,

that v3 is to the right of p1 with size S3 < f(S1 +S2). Let si be the rightmost
leaf above v2. Thus S1+S2−si < α(S1+S2+S3). Rearranging this equation,

si > (1− α)(S1 + S2)− αS3

> (1− α− αf)(S1 + S2)

> (1− α− αf)
( 1
f

+ 1
)
S2

= S2,

which is a contradiction.
Thus, max

(
S1+S2+S3

S1+S2
, S1+S2

S1

)
≥ min

(
1

1−α ,
1√
α

)
, as claimed.

Proof of Lemma 8. Let T̃ be the tree of AND gates returned by a call to Expand(ψ)
with input subformulas ψ1, . . . , ψk of sizes s1, . . . , sk, with S =

∑k
i=1 si. Let ξi be the

path from the root AND gate up to the subformula ψi. Then by Lemma 10, letting
τ = min

(
1

1−α ,
1√
α

)
= 1+

√
5

2 ,

∑
w∈ξi

sw < 2S
∞∑

j=0

τ−j < 6S

and ∑
w∈ξi

1
√
sw

<
2
√
si

∞∑
j=0

τ−j/2 <
10
√
si
.

After calling Expand on every NAND gate in ϕ with fan-in more than two, rewrite
each AND gate as a NOT gate on a NAND gate, and let ϕ′ be the resulting NAND
formula. The above equations imply that σ+(ϕ′) < 12σ+(ϕ) and σ−(ϕ′) < 20σ−(ϕ).
This completes the proof.
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