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1. Introduction

Understanding the fundamental constituents and forces of nature is one of the strongest motivations

for society to support experimental and theoretical physics. This has been again proven for example

by the enormous public resonance on the likely discovery of the Higgs boson at the LHC and shows

up continuously in the interest in astronomical and cosmological questions. Indeed, the progress is

impressive. Mainly accelerator based research has led to the development of the so-called Standard

Model of particle physics, which is able to describe experimental results up to ‰-level accuracy.

However, while such experiments have been extremely successful to fill the gaps in the Standard

Model as predicted a few decades ago, evidence for physics beyond this theoretical framework has

mounted from astrophysical and cosmological observations. Most prominent are Dark Energy and

Dark Matter. So far accelerator based experiments at the energy or intensity frontiers have not been

able to identify explanations towards understanding these phenomena.

Hence it appears to be natural to ask whether physics beyond the Standard Model may hide

at another frontier. And in fact such a possible frontier is known since the early 1980ties, when

the apparent CP-conservation in QCD was traced back to a hypothetical new particle, the axion. It

was quickly shown that the axion, if it exists, should be extremely light and weakly interacting to

escape experimental bounds. Such an axion was named “invisible”. It poses a new “low-energy

frontier” to the Standard Model hinting at uncharted territory beyond the reach of accelerator based

experiments. In recent years it became clear that the axion might be just one example of many

different “weakly interacting slim particles” (WISPs) as we will describe in Sect. 2.

Experiments searching for WISPs usually rely on photon-WISP interactions. As will be shown

in the subsequent chapter, one can distinguish between WISPs with the same quantum numbers as

photons (allowing for kinetic mixing with photons), and pseudo-scalar or scalar bosons which re-

quire two-photon interactions. The proposed second stage of the ALPS experiment will be sensitive

to both kinds of WISPs and even other predicted WISPy particles.

Typically in such an experiment one of the two photons is provided by a laser beam, while

the other is supplied by a strong magnetic field. In such environments the interactions between

WISPs and photons take place in a coherent fashion. The interaction probability is many orders of

magnitude larger than in accelerator based beam dump experiments for example. A virtual or real

production of WISPs could give rise to spectacular experimental observations ranging from polar-

ization effects to the sudden appearance of light in a seemingly perfectly shielded environment.

The ALPS-II proposal concentrates on the latter idea by trying to shine light through a wall.
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Figure 1. The principle of a light-shining-through a wall experiment: light, typically from a strong laser,

is shone into a magnetic field. WISPs could be created by interaction of the laser light with the magnetic

field or just by kinetic mixing. A barrier blocks the light, but WISPs easily traverse it. In the second part of

the experiment behind the wall, some WISPs convert back to photons giving rise to the impression of light

shining through a wall. The WISPs have to move over macroscopic distances, so that only the production of

on-shell particles is relevant here.

A clear observation of light generated in a very well shielded environment could only be

explained by yet unknown WISPs which pass any barrier. The principle of “light-shining-through-

a-wall” (LSW) experiments is shown in Figure 1.

WISPs produced by laser light as well as reconverted photons originating from these WISPs

have laser-like properties. This allows to

• guide them through long and narrow tubes inside accelerator dipole magnets and

• to exploit resonance effects by setting up optical resonators (cavities).

The ALPS-I experiment at DESY has improved previous results by a factor of 10 in 2010. Future

increases in sensitivity rely basically on three corner stones:

• An optical resonator in front of the wall is the best means to “store” the injected laser light

and thus to amplify the available laser light power. The resonator houses a standing light

wave created by the superposition of the light waves reflected by the two mirrors defining

the resonator. In the resonator the field strength of the light wave moving towards the “wall”

is much larger than the field strength of the injected laser light. The ratio of the square of

both field strengths is called the power built-up factor in the following.

• With a second resonator behind the wall the back conversion probability of WISPs into pho-

tons can be greatly enhanced. To understand this, one has to keep in mind that an optical

resonator also works for very faint light in exactly the same way as sketched above. Indeed

it has been verified experimentally in the microwave regime that even a light wave with an

expectation value for the number of photons inside the resonator much below one is am-

plified as anticipated. Now the wave function of the WISPs propagating in the resonator

behind the wall can be described as consisting out of a large “sterile” part and a tiny photonic

component. Consequently, the photonic component is amplified in the resonator in exactly
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the same fashion as “ordinary” light and the conversion probability into photons increased

accordingly. However, this approach requires that the resonators in front and behind the wall

are tuned to the same frequency and spatial mode (as the laser photons and the photons from

regenerated WISPs have exactly the same properties) and have a negligible relative phase jit-

ter only (so that the WISP beam passing the wall can inject photons into the second resonator

in the same manner as laser light is injected into a resonator).

• The magnetic length is increased by using a string of dipole magnets. As the production of

WISPs and the regeneration of photons takes place in a coherent fashion, a 20-fold increase

in the magnetic length would result in the same increase in the sensitivity to the WISP-photon

coupling strength.

The ALPS-II proposal describes how to combine existing infrastructure at DESY (HERA

dipole magnets, long straight sections in the HERA tunnel, cryogenics) with world-leading ex-

pertise in laser technology (derived from experience at gravitational wave interferometers) and

new optical detectors (superconducting single-photon counters) to achieve sensitivities in WISP

searches more than three orders of magnitude better than at existing laboratory experiments.

The interest in the low-energy frontier has changed in the last five to ten years. This shows

up in the growing participation in the PATRAS workshop series (see http://axion-wimp.

desy.de), recent workshops in the US and the document submitted by international authors for

the discussion of the update of the European strategy for particle physics (http://indico.

cern.ch/contributionDisplay.py?contribId=105\&confId=175067). Corner-

stones were the CAST helioscope at CERN, which searches for axion emission from the sun com-

patible with existing solar models, new theoretical insights into extensions of the Standard Model,

which very often predict numerous new particles at the low-energy frontier, and recently observed

astrophysical puzzles which could be explained by such new particles. Consequently new exper-

imental activities started world-wide. Very often they made use of the infrastructure of large ac-

celerator laboratories. One example was the first stage of the ALPS (“Any Light Particle Search”)

experiment at DESY. It utilized a HERA dipole magnet combined with a strong cw laser driving

an optical resonator inside the magnet. By combining the know-how of particle physicists and ex-

perts of gravitational wave interferometers, ALPS-I reached the world-wide best sensitivity on the

photon coupling for new weakly-interacting, low mass particles amongst laboratory searches.

ALPS-I as well as competing experiments at CERN, FNAL, JLAB and elsewhere can be described

as quick “shots into the dark”. They aimed for fast returns using existing equipments (in the ALPS-I

case a HERA dipole magnet accidentally still installed at a test bench) given strong budget con-

straints. None of these experiments have shown evidence for physics beyond the Standard Model.

However, the realizability of such experiments based on new collaborations of different branches of

physics has been proven successfully in these prototype approaches. A second generation ALPS-II

experiment promises to increase the experimental sensitivity in axion-like particle searches by more

than three orders of magnitude (!). It will allow to access the parameter space of new hypothetical

particles predicted by the abovementioned astrophysical phenomena and predictions of low-energy

incarnations of string theory in the laboratory. It will surpass the strongest constraints on axion-like

particles provided presently by CAST in the low-mass range whilst offering full laboratory control
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over all experimental parameters. ALPS-II will use existing HERA dipoles to be installed in a

straight section of the HERA tunnel. This will be achieved at comparably modest costs while the

impact of any discovery could hardly be overestimated. However, there are competing activities

mainly in the US, which pose time demands on the realization of ALPS-II. For these reasons, a

number of theorists and experimentalists have proposed in the recent submission to the European

Strategy Group to realize ALPS-II.

2. Motivation and science goals for ALPS-II

In the following, we first outline in detail the motivation arising from theory and astrophysics for

the search for new physics at the low-energy frontier, and give a first sketch of the potential impact

of ALPS-II in this field, see Sect. 2.1. Secondly, we detail on the prospected sensitivity of ALPS-II

derived from the experimental parameters, cf. Sect. 2.2. Details on the experiment itself will follow

in Sect. 3.

2.1 Fundamental physics with low-mass, weakly coupled particles

2.1.1 The hunt for WISPs and their connection to fundamental physics questions

Whilst at the moment the LHC strongly supports our current view of fundamental particle inter-

actions, the Standard Model, it is disturbing that our standard cosmological model still requires at

least two more components whose nature is at the moment completely unknown: these are Dark

Matter (DM) and Dark Energy. In addition, recent cosmological data suggests even a third com-

ponent, Dark Radiation, a weakly interacting relativistic particle contributing to the cosmological

radiation density like a neutrino. Besides the missing explanation for this “dark sector”, a second

shortcoming of the Standard Model is its omittance of a quantization of gravity. A worthwhile and

enormous effort is being made to gain an understanding of these tantalizing mysteries of nature,

most prominently at the high energy frontier. However, only a comprehensive search for physics

beyond the Standard Model can make sure that we do not overlook the answers to the questions we

have to nature.

In particular, new particles may have eluded our experimental searches so far not only if they

are very massive, but also easily if they are rather light but weakly coupled [1, 2].

For this reason, in this document, we propose an unprecedented search for weakly-interacting

slim particles (WISPs) in a LSW setup, using high laser intensities as a lever arm. LSW makes use

of the fact that WISPs coupled to photons can be produced inside an optical resonator (“generation

region”). Subsequently WISPs can traverse a barrier (“wall”) which is opaque to photons due to

the WISPs’ feeble interaction with the barrier. Thereupon some WISPs can be reconverted into

photons behind the barrier (“regeneration region”). Thus, via WISPs, light could seemingly “shine

through a wall”1.

We herein build on the pioneering experience with the ALPS-I experiment [4 – 7], which still

remains the currently most sensitive LSW-setup [8] worldwide, see [6]. Other optical LSW setups

1Note that the “Standard Model background for LSW” due to neutrinos or gravitons is negligible for the proposed

setup [3].
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included LIPSS [9, 10] at Jefferson Lab, GammeV [11, 12] at Fermilab, OSQAR [13, 14] at CERN

as well as a LSW setups with BMV [15, 16] and BFRT [17] (see also Tab. 4 for the respective

magnetic lengths). Note that for OSQAR, the evaluation of data is not yet completed [18]. Also, a

proposal for a consecutive experiment at Fermilab, “REAPR” has been made [19].

In a nutshell, the enhanced sensitivity of ALPS-II (three orders of magnitude in comparison to

ALPS-I) will be due to the increased magnetic length, an optical resonator on the regeneration side

and the introduction of advanced detector technology.

As argued below, the proposed ALPS-II experiment might thus contribute to our answering the

above mentioned important fundamental physics questions. ALPS-II will be sensitive to uncharted

parameter ranges of several WISPs, in particular to “axion-like particles” (ALPs), hidden photons

(HPs), minicharged particles (MCPs) and certain scalar fields of massive gravity theories. The

theory case for these particles and the corresponding ALPS-II sensitivity is outlined below.

Pertaining to experiments which exploit the WISPs’ coupling to photons, three major search

strategies are implemented today [20]: Firstly, so-called Haloscopes work under the assumption

that axions, ALPs or HPs constitute a large fraction of the Dark Matter halo also present in our

solar system. If this holds true, a sizable number of Dark Matter axions, ALPs or HPs are present

within state-of-the-art haloscope detectors, making WISPs detectable through a WISP-photon con-

version process. Secondly, so-called Helioscopes make use of the WISP particle flux which should

reach us from the sun. The most prominent example for such a setup is the “Cern Axion Solar

Telescope” (CAST). Thirdly, light-shining-through-walls setups, as also proposed in this docu-

ment, have become an indispensable tool in the search for WISPs. Although they are less sensitive

than Haloscopes and Helioscopes at first sight, they have at least two different advantages which

make them indispensable: They are particularly flexible in the sense that they maintain full access

and control over the WISP production and regeneration regions. For example, controlling and al-

tering the laser polarization as well as the magnetic field strength often provides access to more

particles species. Also, control over the production side eventually enables the locking of a second

optical cavity on the regeneration side. This will eventually make the proposed LSW setup ALPS-

II more sensitive than today’s best existing helioscopes in the lower mass region. In addition, note

that LSW setups are sensitive whether or not WISPs are only a fraction of Dark Matter or no Dark

Matter at all.

2.1.2 The case for axions and axion-like particles

Besides the Higgs particle, the most established proposal for a fundamental spin-0 particle in nature

is the axion [21, 22]. As a consequence of the spontaneous breakdown of the so-called Peccei-

Quinn (PQ) [23] symmetry, it provides the most viable solution to the strong CP problem. In a

nutshell, evidence of the axion particle would explain why the observed CP-violation in the sector

of strong interactions is off by at least 10 orders of magnitude from expectation. The mechanism

which gives rise to the axion can be generalized to generic (pseudo-) scalars a coupled weakly to

two-photons ∼ gaγ , so-called axion-like particles (ALPs). For axions, the relation between their

mass and coupling is given through the color anomaly of the PQ symmetry, cf. the yellow band in

Fig. 2. Thus, intrinsically, for typical axion models this mass-coupling relation is such that only a

small part of its parameter space could be searched yet.

– 6 –



ALPS-I

SN Γ-burst

CAST

ALPS-IIc

QCD Axion

ALPs from in termed. string scales

ALPs as cold dark matter

TeV transparency

WD cooling

10-10 10-8 10-6 10-4 0.01 1

1.´10-15

1.´10-14

1.´10-13

1.´10-12

1.´10-11

1.´10-10

1.´10-9

1.´10-8

1.´10-7

m @eVD

g
aΓ
@G

e
V-

1 D

Figure 2. Schematic overview of the sensitivity reach of the final stage of ALPS-II, ALPS-IIc depict-

ing its scientific impact (The detailed sensitivity range of ALPS-IIc is given in Fig. 3.). As a yellow

band, generic QCD axion models are indicated. For comparison, the ALPS-I results (in green, max.

sensitivity gaγ & 7× 10−8GeV−1) and the currently most stringent bounds on ALPs in this mass region

from the CAST helioscope [24] (in blue) are shown. As visible, ALPS-IIc (in orange, max. sensitivity

gaγ & 2× 10−11GeV−1) will surpass the CAST bounds in the lower mass region and tackle parameter re-

gions in which ALPs are motivated by fundamental particle physics questions (cold Dark Matter candidates,

in gray, and predictions from string theory around gaγ ∼ 10−12 GeV−1, not colored) as well as astrophysical

hints: TeV transparency (red, fiducial region, cf. [25]) and WD cooling (light red band)). In addition the

parameter region excluded from the 1987a super-nova burst is indicated. The predictions from theory and

astrophysical considerations are generally certain within about an order of magnitude. Note that the param-

eter range between µeV . m . 1meV is particularly interesting in the context of axion Dark Matter, and

currently most successfully probed by ADMX [26] (cf. black line). ALPS, on the other hand, can be Dark

Matter in a much wider mass range. For a recent comprehensive overview of the ALPs parameter space, see

[27, 28].
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Generic ALPs, however, do not fall under the mass-coupling relation of axions, and thus can

be realized in a much wider parameter space, see Fig. 2. Like the axion, ALPs can be realized

as pseudo-Nambu-Goldstone bosons of symmetries broken at very high energies. Very strong

motivation for their existence indeed comes from string theory which tries to tackle the Standard

Model’s shortcoming of omitting gravity. Generically in these theories, a rich spectrum of light

(pseudo-)scalars with weak couplings arises. Of particular relevance to the physics case of ALPS-II

are intermediate string scales Ms ∼ 109 to 1012GeV, which can contribute to the natural explanation

of several hierarchy problems in the SM. In these theories, ALPs generically exhibit a coupling

to photons which lies in a parameter range that is accessible to the final stage of the ALPS-II

experiment, ALPS-IIc: The ALP coupling to two-photons is gaγ ∼ α
2π

c
fa

, where fa is the symmetry

breaking scale, α the fine structure constant, c is a constant of O(1) and fa ∼ Ms. Thus ALPs from

intermediate string scales can very well occur in the gaγ ∼ 10−12 GeV−1 regime [29], as sketched

in Fig. 2. Unlike for axions, for axion-like relation the ALP-photon coupling to couplings to other

particle species is not straightforward2. It is important to follow therefore complementary search

strategies. While ALPS-II is only sensitive to the ALP coupling to photons, other experiments and

astrophysical arguments probe also (pseudo-) scalar couplings, e.g., to nucleons [30] or neutrons

[31].

However, axions and ALPs can not only be a low-energy window to new physics in the ul-

traviolet, but they are also well-motivated Dark Matter candidates. Generally, one of the most

prominent candidates for Dark Matter are “weakly interacting massive particles” (WIMPs) whose

drawing power is twofold: WIMPs at the weak scale provide the right relic abundance and new par-

ticles at these scales are favored in particular by supersymmetry. A lot of effort has thus be put into

detecting WIMPs as Dark Matter directly as well as indirectly at, e.g., the LHC. However, although

no final conclusive statements can yet be made: The fact that the LHC as well as the currently most

sensitive direct search Xenon100 have found no such particle, posing heavy restrictions on some

popular models [32], should remind us that other well-motivated Dark Matter candidates do exist.

In particular, axions and other WISPs constitute viable Dark Matter candidates.

For axions, the Dark Matter option has been mainly explored since the 80s particularly by the

“axion dark matter eXperiment” (ADMX). With their ongoing effort and the contribution of se-

tups with complementary mass range [33 – 35], well-established methods are available to explore

the cold Dark Matter axion window. For other WISPs, the viable Dark Matter parameter space is

largely unexplored as recently demonstrated [28]. Note that if produced non-thermally through the

misalignment mechanism, even very light WISPs can be cold Dark Matter. Again, it is notewor-

thy that ALPS-II can explore in part ALP Dark Matter options as indicated in Fig. 2, and might

therefore complement upcoming experiments dedicated to WISPy Dark Matter detection.

In addition to the motivations for ALPs that arise from UV-completions of the Standard Model

and their possible connection to Dark Matter, two hints from astro-particle physics strengthen the

physics case for searching axion-like particles ALPS-II even further.

The first hint pertains to the propagation of cosmic gamma rays with energies above3 O(100)GeV.

Even if no absorbing matter blocks the way of these high energy photons, absorption must be ex-

2While it is true that for Goldstone bosons the coupling to the respective particle types x will obey gax ∼Cax/ f , with

f the symmetry breaking scale, however, the coefficient Cax is model dependent and could even be 0 for some x.
3Note that renormalization group studies formally justify a comparison of ALPs constraints arising from different
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pected as the gamma rays deplete through electron-positron pair production through interaction

with extragalactic background light. However, the observed energy spectra do not seem to match

the absorption feature inferred from this argument [38]. Axion-like particles could provide a res-

olution to this puzzle. Here, the anomalous transparency can be explained if photons convert into

ALPs in astrophysical magnetic fields. The ALPs then travel unhindered due to their weak coupling

to normal matter. Close to the solar neighborhood, ALPs could then be reconverted to high-energy

photons. A sizable number of authors is intensely studying this resolution to the transparency prob-

lem, see, e.g., [39 – 41] to name only a few. Typically, ALPs related to the transparency hint are

predicted to lie in the gaγ ∼ 10−11 to 10−12 GeV−1 coupling-region. In Fig. 2 it can be seen that

ALPS-II can explore a sizable parameter space related to this hint. Note that the favored parameter

regions related to this hint can be covered with ALPS-II almost entirely [25].

The second hint pertains to the longstanding puzzle of the anomalously large cooling rate

of white dwarfs (WD) which receives additional support by the most recent studies of the WD

luminosity function [42] and in some cases to the observed decrease in pulsation period of these

objects [43]. The cooling excess can be attributed to axions with fa ∼ 108 to 109GeV if they couple

to electrons. In a generic case the axion (or ALP) will also have a photon coupling. In Fig. 2, the

corresponding target region4 is depicted, labeled “WD cooling”.

A number of additional astrophysical observations not indicated in Fig. 2 have been consid-

ered to search for signatures of ALPs or – in the absence of a signal – constrain the parameters.

Observations of linearly polarized emission from magnetized WDs [44] and changes of the lin-

ear polarization from radio galaxies (e.g., [45]) provides complementary approaches to search for

signatures of ALPs. The current limits are close to gaγ ∼ 10−11 GeV−1 albeit with uncertainties

related to the underlying assumptions.

Note that of course upcoming data from Cherenkov or space-bound telescopes might very well

further strengthen or – on the contrary – weaken the case for astrophysical ALPs. However, it is

in any case mandatory to find definitive proof or disproof for these theories in the laboratory as

only there uncertainties in experimental parameters of WISP production and identification can be

optimally controlled.

To put this into the right context we emphasize that as a rare exception to astrophysical claims

in general, testing scenarios of the ALP solution to the transparency anomaly and the anomalous

WD cooling is (astonishingly) possible in a small laboratory setup.

2.1.3 Motivation for hidden photons and minicharged particles

Hidden sectors, i.e., particles characterized by very weak interactions with ordinary matter, are a

very generic feature of field- and string-theory completions of the Standard Model. For example,

a hidden sector is a viable instrument to realize supersymmetry breaking. Hidden photons, i.e.,

gauge bosons of an extra U(1) gauge group, are natural ingredients of these hidden sectors. Most

prominently, hidden photons couple to the visible sector via kinetic mixing [46 – 48], parameterized

in the following by χ .

momentum regimes [36]. However, in any case there is strong motivation for purely laboratory measurements, due to

some inevitable uncertainties inherent to bounds from astrophysical sources [37].
4The broadness of the target region is due to the model-dependent factors which translate the ALP-electron to an

ALP-photon coupling. With further studies, a sharpening of the target region should occur.
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Even if in a fundamental theory χ = 0, we know from prominent examples within the Standard

Model, that effectively χ 6= 0 can be easily induced through integrating out degrees of freedom at

higher energy scales5, e.g., degrees of freedom arising from string extensions [47, 50, 48]. The

χ ∼ 10−8 to 10−9 region, accessible to the first stages of ALPS-II is naturally realized in string

compactifications with intermediate string scales [50]. Also, like ALPs, HPs are a viable cold Dark

Matter candidate, see [51, 28].

In addition to hidden photons, the hidden sector naturally can also contain matter (scalars

or Dirac fermions) with fractional electric charge, called minicharged particles [52, 53]. Most

prominently, they can emerge in theories which contain a hidden photon. Search for these particles

is crucial, as MCP searches provide an alternative observational window to hidden sectors and in

particular can provide insight if the hidden photon turns out to be massless and thus not directly

traceable. Here, ALPS-II will chart MCP parameter space which is so-far only indirectly accessible

through cosmological arguments.

2.1.4 Further scientific impact of ALPS-II

Interestingly, although the new physics models listed above are the most well-reviewed and thus

discussed great in detail here, ALPS-II would be sensitive to other, very topical models, which aim

at resolving the puzzle of Dark Energy. Only recently, it has been shown that theories of ghost-

free massive gravity can indeed be constructed, leading to a broad phenomenology for new scalar

degrees of freedom [54]. In particular scalar fields with very light mass are a consequence of using

massive gravity to explain the acceleration of the expansion of the universe and thus Dark Energy.

For some of these models, it has been pointed out that ALPS-I already provides the best constraints

[55] which would be even further improved at ALPS-II or, even better lead to the discovery of

Dark Energy particle candidates in a laboratory. However, as this is still a young field, where the

model-building roads are not as firmly paved as for WISPs, we will not consider these scenarios

here in more detail.

We still want to strongly emphasize that due to these developments, the future scientific impact

of ALPS-II could very well be even wider than described in the previous sections.

2.2 Discovery potential at the three stages of ALPS-II

ALPS-II is subdivided into three stages, see Sect. 3.1.1 for details. In the following we focus on

a theoretical sensitivity analysis for these stages. The installation of the magnet string, required

to detect ALPs and MCPs will be realized only in the final stage, ALPS-IIc. In preparation for

this final stage, two stages without magnets at different optical cavity lengths will be implemented.

ALPS-IIa (L = 10m) and ALPS-IIb (L = 100m) will thus be designed to search for hidden photons.

2.2.1 Experimental aims in the search for ALPs at ALPS-IIc

ALP-photon oscillations [56] occur through a pseudo-scalar coupling term Lint,P = gaγa~E~B, here

enabling the conversion of laser photons characterized by ~E into ALPs a. At ALPS-IIc, this hap-

pens in an external magnetic field ~B of a HERA dipole magnet string, where the laser photons are

5One such example is the renowned Heisenberg-Euler effective action [49] leading to effective photon self-interaction

through integrating out fermionic degrees of freedom.
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polarized in parallel to the magnetic field6. The theory of these oscillations for light with frequency

ω has been discussed widely in the literature, see [8] for a recent overview with a focus on LSW

setups.

For the envisaged measurements at ALPS-IIc, it is crucial to realize that for a string of N

HERA magnets, field-free regions are present at the magnet junctions. Thus the magnetic field is

segmented across the entire magnet string. This slightly modifies the formula for the oscillation

probability valid for ALPS-I [6]. The corresponding implications for the situation with periodic

field-free intersections has been discussed in detail in [57], and one finds that the oscillation prob-

ability for photon ↔ ALP oscillations becomes:

Pγ↔a =
ω√

ω2 −m2

4 g2
aγω2B2

M4
sin

(

M2L

4ωN

)2 sin
(

M2N(L/N+∆)
4 ω

)2

sin
(

M2(L/N+∆)
4 ω

)2 , (2.1)

which reduces to the well-known expression for single magnet setups for N = 1. Also, we have set

h̄ = c = 1.

In a notation analogous to [6], we have introduced the quantity M2 = (m2 + 2ω2(n − 1)),

where n is the index of refraction. In addition, ∆ defines the field-free gap-length, where each

single HERA dipole has a magnetic length of l = 8.83m and the total magnetic length is L = Nl.

For ALPS-IIc, the gap-length is ∆ = 0.936m and we envisage the usage of N = 10 magnets on each

side of the light-blocking barrier at field strengths of B = 5.3T. Details on the setup of the magnet

string will follow in Sect. 3.5.

Note that whilst increasing ω formally increases the conversion probability for WISPs, an

appropriate compromise has to be found regarding the photon number flux in front of the wall

and the aperture requirements. Hence photon energies beyond the optical regime are disfavored

mainly due the lack of appropriate high finesse resonators. For example LSW with X-rays has been

performed already [58, 59] but the sensitivity is much smaller than the experiment proposed here,

except in the high mass range. In the optical photon energy range, experience at ALPS-I (operated

at 532 nm) has shown that the mirrors could stand high power intensities only for some 10 hours.

We suspect that the single-photon energy of 2.33 eV is sufficient to break chemical bounds which

in turn damage the mirror coatings. Such effects have not been observed for 1064 nm photons,

where much expertise and optical component qualification procedures exist in the gravitational

wave interferometer community. For this reason, we have switched to ω = 1.16 eV for ALPS-II. At

even lower energies, LSW (with resonant enhancement) is also possible, see ongoing experiments

at CERN [60, 61]. However, this option is incompatible with the aperture available in accelerator

dipole magnets limiting the sensitivity in ALP searches.

To arrive at the prospective ALPS-IIc exclusion bounds shown in Fig. 3, we infer the expected

performance based on the results of ALPS-I. Note, that for an LSW-configuration which relies

on photon-ALP-photon conversions, it is the square of Eq. 2.1 which determines the experimental

sensitivity. In Tab. 1, the respective upgrades are listed and their impact on the testable photon-

ALP coupling gaγ is shown to culminate in a total sensitivity gain of about 3082. Thus, in the most

6For scalar ALPs, accordingly Lint,S = gaγ a (~E2−~B2) and only the orthogonal mode of the laser light couples to the

external field. For ALPS-IIc, measurements in both polarization modes are foreseen. We emphasize that in the following

all statements about the prospective sensitivity for pseudo-scalars apply equally well for the case of scalars.
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Parameter Scaling ALPS-I ALPS-IIc Sens. gain

Effective laser power Plaser gaγ ∝ P
−1/4
laser 1 kW 150 kW 3.5

Rel. photon number flux nγ gaγ ∝ n
−1/4
γ 1 (532 nm) 2 (1064 nm) 1.2

Power built up in RC PRC gaγ ∝ P
−1/4
reg 1 40,000 14

BL (before& after the wall) gaγ ∝ (BL)−1 22 Tm 468 Tm 21

Detector efficiency QE gaγ ∝ QE−1/4 0.9 0.75 0.96

Detector noise DC gaγ ∝ DC1/8 0.0018 s−1 0.000001 s−1 2.6

Combined improvements 3082

Table 1. Parameters of the ALPS-I experiment in comparison to the ALPS-II proposal. The second column

shows the dependence of the reachable ALP-photon coupling on the experimental parameters. The last

column lists the approximate sensitivity gain for axion-like particle searches compared to ALPS-I. The main

sensitivity gain is due to the enhanced magnetic length arising from the 2×10 HERA-dipole magnet string,

cf. Tab. 3 for details. A sizable additional gain arises from the installation of a regeneration cavity (RC),

cf. Sect. 3.2 for details. A further upgrade comes also from the detection side. The numbers given in this

table are for a transition edge sensor detector, as this is the detector which is expected to be used in the final

version of all three stages of ALPS-II, see Sect. 3.4 and Tab. 2 For hidden photons, there is no gain from the

magnetic field. Thus the sensitivity gain follows as above except for the factor coming from BL and amounts

to 147 for hidden photons.

sensitive low-mass region m . 10−4eV the explored coupling values at ALPS-I gaγ & 7× 10−8

GeV−1 will be extended to gaγ & 2 × 10−11 GeV−1 at ALPS-IIc. For a recent comprehensive

overview of the ALP parameter space also at larger masses, see, e.g., [27, 28, 2].

As visible in Fig. 3, for masses above m & 10−4eV, the sensitivity curve adopts an oscillatory

behavior. Physically this corresponds to phase-mismatches in the ALP production. This is of course

unwanted, as ALPs could very well just hide in these regions where the sensitivity is decreased. In

order to fill these gaps in sensitivity, one has the possibility to shift the effective photon mass by

the insertion of gas into the beam tube. This method has already proven to be very successful at

ALPS-I using Argon [6].

For a single magnet configuration N = 1, it is easy (and analytically possible) to spot the

minima of the transition probability in vacuum. The gas index of refraction which optimally closes

the gaps can then be computed by minimizing the expression in Eq. 2.1 with respect to (n−1), see

Eq. 2.3 below. For N > 1, all gaps will be covered ideally through a parameter scan with different

gas pressures through the insertion of Helium, as detailed in Sect. 3.6.

In Fig. 3, we plot the transition probability for vacuum and exemplarily for one single Helium

pressure corresponding to 0.017mbar (see paragraph including Eq. 3.3 for details on the index of

refraction to pressure relation).

To conclude, ALPS-IIc charts thus-far unexplored parameter space, surpassing even current

helioscope limits at low masses and, for the first time, simultaneously tackles regions which are fa-

vored by theory (Dark Matter, ALPs from intermediate scale string theory) as well as astrophysical

hints (WD cooling, TeV transparency), cf. Fig. 2.
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Figure 3. Prospective sensitivity reach for axion-like particles in the final stage of the ALPS-experiment,

ALPS-IIc. The uppermost, green shaded area gives the currently most sensitive laboratory bounds on ALPs

as reported in [6] for comparison. Below, in orange, we give the expected sensitivity reach of ALPS-IIc,

surpassing the currently most sensitive laboratory limits by more than three orders of magnitude, see main

text for details. In addition we give exemplarily the sensitivity reach with Helium gas at a fixed pressure of

0.017mbar. With varying pressures, the Helium insertion allows to cover the sensitivity gaps of the vacuum

measurements and thus scan the entire accessible parameter range. For clarity, parameter regions favored by

theory and astrophysics hints are shown in Fig. 2 only.

2.2.2 Discovery potential for HPs and MCPs at ALPS-II

Projected Sensitivity in the Search for Hidden Photons

The theory of photon-hidden photon oscillations differs from the case of photon-ALP-oscillations

most prominently by the fact that former also occur without an external magnetic field (both parti-

cles have equal spin). If HPs have a mass, kinetic mixing behaves as mass mixing and thus photon-

HP oscillations occur (in analogy to oscillations among different neutrino flavors) [62]. This leads

to the disappearance and regeneration of photons as they propagate in vacuum and makes their

discovery particularly easy in light-shining-through a wall setups.

Photon-HP oscillations in LSW-experiments are reviewed in [8] and the oscillation probability

– 13 –



for one oscillation (in either direction) γ ↔ γ ′ is given as [63]

Pγ↔γ ′ ≃ 4χ2
m4

γ ′

M4
γ ′

sin2

(

M2
γ ′L

4ω

)

, (2.2)

where, in analogy to the definition for ALPs M2
γ ′ = (m2

γ ′ +2ω2(n−1)). Again, for the LSW-setup

of ALPS-II, the square of Eq. 2.2 is the relevant quantity.

Figure 4 shows the prospective exclusion limits obtained in the various ALPS-II stages. Note

that at each single stage, ALPS-II will chart thus-far unexplored HP parameter space, implying

that at each stage a particle discovery is indeed possible. The black vertical dashed lines in Fig. 4

refer to the Dark Radiation hint [64] derived from CMB data [65, 66]. Although the newest Planck

results [67] still contain indication for an extra relativistic degree of freedom in the CMB (although

reduced to Neff = 3.36± 0.34 at 68 % confidence), the hidden photon is unlikely to be under the

viable candidates to account for this phenomenon. It has been shown that, the total production of

hidden photons in the sun has been underestimated, since the production of longitudinal modes

has not been taken correctly into account. Following [68, 69], the parameter space above the line

labeled “Longitudinal” in Fig. 4 is already excluded by the bounds on the energy loss due to hidden

photon production in the sun’s plasma. However, one should note that for some models the bounds

labeled “Longitudinal” might not apply, e.g. in models, where the hidden photon decays. In a

situation where, for example a sizable amount of hidden photons from the sun cannot reach earth

due to decay, a laboratory search is indispensable. This holds true also for limits on HPs from

direct Dark Matter searches [70].

Our measurements will nicely complement the exclusion limits derived from CAST helioscope

measurements [24] as well as regions covered by measurements of Coulomb’s law [71] and cos-

mological implications [72]. For a recent comprehensive overview of the hidden photon parameter

space, see, e.g., [27, 28].

The prospective exclusion limits for the different vacuum stages of ALPS-II are estimated as

follows. In contrast to the ALPS-I setup[6], infrared lasers with ω = 1.16eV will be used and

the length of the vacuum tubes L is increased7. Thus, quite generally, as the argument of the

sine depends on Lm2/ω , the set-in of the oscillatory behavior within Eq. 2.2 is shifted to lower

mass-values for enhanced lengths. The frequency of our laser sets also the mass scale up to which

our experiment is sensitive to hidden photons. At higher masses, HPs are well probed through

helioscopes and their production in the sun and horizontal branch stars, see, e.g. Fig. 6-3 in [27].

The HP coupling to electrons is particularly well accessible at accelerators, see, e.g. Fig 6-2 of [27]

for an overview.

Quantitatively, the expected increase in the sensitivity to χ can be also estimated from Tab. 1.

The crucial difference to the situation with ALPs is that the “magnetic length” BL will not give

an enhancement factor as photon-HP oscillations do not rely on external fields. Rather, the main

sensitivity gain will arise from the use of a regeneration cavity. Note that the resonant regeneration

7Note that for ALPS-I, the length of the vacuum tubes was slightly different in the production- and regeneration-

regions, leading to a “non-saturation” of the exclusion limits for at mγ ′ & 10−3eV. E.g., this led to a minimum of an

oscillatory envelope function at about mγ ′ ≈ 2×10−3eV, cf. the green shaded area in 4. For ALPS-II however, the length

of the vacuum tubes on the generation and regeneration side will be equal and such unwanted features are avoided.
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principle has been tested with microwaves in the sub-quantum regime [73]. An early optical setup

is described in [74].

For ALPS-IIa with production and regeneration cavity as well as the transition edge sensor, the

enhancement factor with respect to χ is 147. ALPS-IIb will further enlarge the covered parameter

space by the length increase L= 100m and a corresponding shift in the covered mass range to lower

masses. These statements are summarized within the Fig. 4, showing the ALPS-II sensitivity in the

hidden photon parameter space. In addition, ALPS-IIb will begin to tackle the HP cold DM region.

Note that recent [75] and upcoming helioscope searches (SHIPS [76]) are sensitive in particular for

mγ ′ > 10−2eV.

As visible from Fig. 4, cusps appear in the sensitivity range for HP masses mγ ′ & 10−3eV,

corresponding to phase-mismatches in the HP production in the vacuum measurements. These

minima lie at points where m2
γ ′L/4ω = sπ , with s ∈ N

+. A viable method to close these gaps in

the sensitivity reach is the variation of the effective photon mass through insertion of gas into the

tubes. This slightly decreases the amplitude of the conversion probability.

To compute index of refraction which optimally closes the gaps, one has to minimize the

expression in Eq. 2.2 with respect to (n−1). Thus, defining y = M2
γ ′L/(4ω), the transition maxima

lie at8 solutions to a condition with infinite but numerable solutions

tan(y) = y ⇔ y = {0,4.49,7.73...} . (2.3)

To cover the lowermost gap in the sensitivity for ALPS-IIa (L = 10m) and ALPS-IIb (L = 100m),

indices of refraction of (n−1) = 4.57×10−8 and (n−1) = 3.52×10−9 are optimal, respectively.

As s → ∞, the best indices of refraction adequate to cover the gaps optimally shift to (n− 1) =

5.31× 10−8 and (n− 1) = 4.43× 10−9, respectively. Thus for ideal coverage of the gaps, for

ALPS-IIa we should have (n−1)≃ 5×10−8 and for ALPS-IIb (n−1)≃ 4×10−9. This choice is

depicted in Fig. 4. As can be seen, the gas insertion technique, also pioneered by ALPS-I [6] will

enable to cover the higher mass reach entirely.

To conclude, the HP search at ALPS-II will not only cover a parameter space not accessible by

astrophysical considerations, but also tackle a kinetic mixing region naturally predicted by string

compactifications with intermediate string scales as well as a fraction of the HP DM parameter

space.

Projected Sensitivity in the Search for Minicharged Particles

Light-shining-through a wall for minicharged particles at ALPS-IIc comes about as follows: Pho-

tons can be converted into (massless) hidden photons through a virtual MCP loop within an external

magnetic field. Subsequently, the hidden photons can traverse the barrier as in Sect. 2.2.2 and can

thereafter be reconverted into photons through the intermediate MCP loop [62].

The corresponding conversion probability for this process reads [77]

P(γ ↔ γ ′)≃
∣

∣

∣

∣

∣

m2
γ̃ ′

M2

∣

∣

∣

∣

∣

∣

∣eik+L − eik−L
∣

∣

2
, (2.4)

8Note that in [6] the theoretical derivation had a minor fault which however has no influence on presented results

therein.
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Figure 4. Coupling-mass plane for hidden photons. The shaded areas indicate the prospective parameter

reach for HPs at ALPS-IIa with regeneration cavity and ALPS-IIb in setups with vacuum and gas-filled

tubes, respectively. The uppermost, green shaded oscillatory curve denote the results obtained by ALPS-I

in the vacuum case for comparison. Below, in light and dark red, the parameter reach for ALPS-IIa with

regeneration cavity and gas/no-gas is indicated. From there, the light and dark blue areas to the left denotes

the reach of ALPS-IIb, with and without gas, respectively. For the parameter choices with gas, see main

text. The black dashed lines enclose the HP Dark Radiation hint [64], however recent analyses [68, 69]

exclude the parameter range above the line labeled “Longitudinal, thus disfavoring this interpretation. The

gray shaded lower area indicates where HPs could be cold DM [28]. Note that the χ ∼ 10−8 to 10−9 region

is naturally realized in string compactifications with intermediate string scales [50] (beam-like red-shaded

area). The brown areas in the upper right and left corners denote exclusion bounds from other experiments,

see text for details.

k± =
1

4ω

(

2ω2(n−1)−m2
γ̃ ′ ±M2

)

(1±χ2m2
γ̃ ′/M2), (2.5)

where now mγ̃ ′ is the hidden photon effective mass (accounting for the MCP-induced change in

the dispersion relation). It can be written as m2
γ̃ ′ = −2ω2∆N(ε,B,mMCP) with ∆N(ε,B,mMCP) be-

ing the complex index of refraction due to minicharged particles of charge ε and mass mMCP . The

minicharge ε is related to the kinetic mixing parameter χ of the hidden photons through χeH = εe,

where eH is the scalar or Dirac spinor coupling in the hidden sector and e the ordinary electro-

magnetic coupling. The explicit expression for ∆N for scalar or Dirac spinor MCPs is given in

Ref. [62].
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In a scenario where eH matches the coupling in the visible sector9, ALPS-II can improve the

best limits provided by ALPS-I by around two orders of magnitude. This is due to the fact that the

transition probability scales as B2/3 in the low-mass limit10, and the sensitivity enhancement factor

presented for ALPs (cf. Tab. 1) is reduced accordingly.

As a consequence, ALPS-II will chart MCP parameter space which is so-far only indirectly

accessible through cosmological or astrophysical arguments [82]. For a recent comprehensive

overview of the MCP parameter space, see, e.g., [27].

3. The experiment

Here we describe the experimental setup starting with a summary of its main characteristics. For a

short summary see also [83].

3.1 Overview

This section gives a brief overview on the different stages of the ALPS-II experiment and sketches

its operation modes which will allow us to verify the achieved sensitivity and, eventually, to pin

down the nature of the WISP responsible for light shining through the wall.

3.1.1 Stages of the experiment

It is planned to realize the ALPS-II experiment in three main stages. This will allow for a thorough

development of the required new techniques without the necessity of large infrastructure efforts

(i.e., long magnet strings) right from the beginning. As we plan to enter new territory in parameter

space as well as in optical setups, the staged approach is also advantageous because it allows to

adapt to unforeseen new developments. We will show below, that all three stages will provide

sensitivities for different kinds of WISPs beyond present day laboratory experiments allowing for

interesting physics results, see also Sect. 2.2.

It should be stressed that the ALPS collaboration considers the potential technological risks as

manageable as will be shown in this document, but the staged approach described here is also very

well compatible with DESY’s commitments in other larger projects.

The basic three stages of ALPS-II are shown in Fig. 5.

• ALPS-IIa:

This stage aims for demonstrating all features of the optical system and the superconducting

transition-edge sensor (TES) detector in a dedicated laser laboratory with 10 m long produc-

tion and regeneration cavities. ALPS-IIa itself will be subdivided into several steps. A 1 m

tabletop experiment in air with reduced optical power and cavity finesses is already being

conducted, which will allow to prove the consistency of the optical design, develop and test

the control systems and yield first performance data of the overall system. Subsequently, the

high power production cavity will be realized allowing for a first data run using the CCD

9Although probing MCPs in an LSW setup with direct access to the MCP coupling is possible, this is not an imme-

diate option for ALPS-II, as in this situation a solenoidal magnetic field configuration is preferred [78, 79].
10This is a consequence of the strong-field limit of the polarization tensor, applicable for minicharged particles [80,

81].
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Figure 5. Schematic view of the different phases of ALPS-II and of ALPS-I. (a) ALPS-I with a ∼ 10 m

long production cavity and cavity end mirror and wall inside of a HERA superconducting dipole magnet. (b)

ALPS-IIa: prototype with two 10 m long cavities. (c) ALPS-IIb: prototype with two 100 m long cavities.

(d) ALPS-IIc: prototype with two 100 m long cavities using the HERA superconducting dipole magnets.

camera and perhaps already the TES detector to search for hidden photons. This sub-step

is expected to be concluded in early 2013. Afterwards, the regeneration cavity including all

features of the final ALPS-IIc stage will be set up. In 2014, we plan to search for hidden pho-

tons with full sensitivity. Besides interesting physics results, this experiment corresponds in

all aspects to ALPS-IIc, having only a shorter length and lacking magnets. By the middle of

2014, we also envisage to have sufficient experience with the straightening of HERA dipoles

so that all major ingredients of the final ALPS-II stage are known.

It should be mentioned that most costs of ALPS-IIa have been already covered. The new

laser laboratory has been constructed in 2011. We are reusing the laser of ALPS-I. Nearly

all optical components as well as the vacuum system have been purchased already.
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• ALPS-IIb:

In principle this stage corresponds to ALPS-IIa, but with about 100 m long cavities. It will be

installed in one straight section of HERA (around the experimental hall HERA-West) using

the long straight vacuum pipe of the HERA proton ring. This second stage will demonstrate

the functionality of the system on the length scale foreseen for the final setup with HERA

dipole magnets as well as the ability to cope with the situation in the HERA tunnel, e.g.,

seismic vibrations (which are expected to be smaller than in the laser laboratory of ALPS-

IIa), cleanroom installation, and operation given the tight spatial constraints. The aperture

boundaries are a little relaxed compared to ALPS-IIc, so that setting up and operating the

experiment will allow us to gain valuable experience for the final ALPS-IIc setup.

The experience with ALPS-IIb should allow for a fast realization of ALPS-IIc. As ALPS-IIb

will reuse many components of ALPS-IIa the additional costs will be moderate. Mainly new

infrastructure, new cleanrooms and new mirrors for the long cavities have to be provided.

Construction for ALPS-IIb could start in the second half of 2013 with preparation of the site

and installation of the cleanrooms. This should allow to install the optics and the detector

starting late 2014 being ready for data taking in the second half of 2015.

• ALPS-IIc:

This is the final version of ALPS-II with full length cavities and straightened HERA dipoles.

If the approval of this stage is given in the middle of the year 2014, site preparations of a

straight section in the HERA tunnel (most likely at HERA North) could start in the beginning

of 2015, when the construction of the linear accelerator of the European XFEL project is

completed. Note that much more effort is required here compared to ALPS-IIb as the site

is to be prepared to accommodate 20 straightened HERA dipole magnets, see Fig. 6. The

time schedule for the installations strongly depends on the available manpower of the DESY

infrastructure groups involved. At present, it is estimated that both the site preparation and

the installation of the magnets (which are to be straightened in 2014) will require about one

year so that ALPS-IIc will be ready for commissioning and data taking in the year 2017. At

the end of the same year, physics results will be available.

In Tab. 1 the main parameters and the sensitivity of ALPS-I and ALPS-IIc are compared.

We aim for surpassing the present laboratory sensitivity in the coupling constant of axion-like

particles to photons by more than three orders of magnitude. In the low mass regime we aim to

even surpass bounds provided by helioscope measurements, cf. Fig. 2. DESY, coincidentally, seems

to be an ideal place for such an enterprise. First, the HERA dipole magnets will possibly allow for

a relatively easy and cheap way of straightening to increase their aperture. This aperture allows to

set up ALPS-IIc with up to 24 magnets given the lower bound of tolerable clipping losses. Second,

this setup just fits into a straight section of the HERA tunnel, so that ALPS-IIc does not require

any new building. Third, and to finalize the number of lucky coincidences, 24 spare HERA dipole

magnets are available at DESY so that the construction of ALPS-IIc does not demand demounting

of the arcs of the HERA accelerator (besides using the cryoboxes as discussed later).

3.1.2 ALPS-II operation modes and signal interpretation

While operating the experiment the following main issues have to be guaranteed:
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Figure 6. Artist’s view of the ALPS-IIc setup. The picture shows a straight section of the HERA tunnel

equipped with 20 HERA dipoles. The middle part, accommodating the central breadboard including the

“wall” is highlighted.

• the alignment of production and regeneration cavity,

• the power build-up for 1064 nm light in the regeneration cavity,

• and the pointing of regenerated light from WISPs onto the detector.

All these critical items can be probed by opening a shutter in the wall separating the production

and regeneration part of the experiment. The shutter is shown on the central breadboard in Fig. 12,

allowing a tiny fraction of the infrared light of the production cavity to enter the regeneration
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cavity. If both cavities are aligned and the resonance condition of the regeneration cavity is met,

the quadrant photodiodes at the end of the regeneration cavity (see Fig. 12) will notice the expected

intensity of 1064 nm radiation. At the same time, the detector will sense the infrared light in the

regeneration cavity. As this light moves exactly along the same path as photons from reconverted

WISPs, the pointing can be checked easily. However, when the shutter is opened, about 1.7 mW of

1064 nm light (1016 photons per second) will reach the detector. This intensity is to be damped by

dedicated filters to allow the detectors to cope with the flux.

The analysis of the data will rely on a thorough understanding of any backgrounds to detect a

potentially very small photon flux from reconverted WISPs. A signal will be identified by compar-

ing data taken under conditions where WISPs can be expected (so-called “data frames”) with data

which by construction cannot contain reconverted WISPs (“dark frames”). To minimize changes

in the experimental set-up for data and dark frames the regeneration cavity (for the ALPS phases

IIb and IIc) will be detuned to not amplify 1064 nm radiation while staying in lock for 532 nm

light. This can be achieved with the help of the AOM on the central breadboard (see Fig. 12 in

the optics section), again checked by opening the central shutter. With the regeneration cavity be-

ing ineffective for photons from WISPs, their flux at the detector will be damped by the power

build-up factor (about 40000) of the regeneration cavity. Hence, these dark frames correspond to

background runs without any WISPs, while the ambient conditions (i.e., stray light, fluorescence

effects) remain unchanged. Of course, additional test data, where, for example, the main laser is

shut off, the frequency doubled green light suppressed or the detector totally blocked, will be taken

to understand the origin of any spurious background photons. Experience at ALPS-I showed that

continuous improvements and investigative searches resulted finally in well understood remaining

backgrounds (essentially only from detector effects).

Surely, a discovery of WISPs by a photon signal at ALPS-II is to be proven by systematic stud-

ies even if the statistical significance is beyond doubts. In addition, such studies will allow to pin

down some properties of the detected WISP. The following list gives an overview on possibilities

to test the WISPy nature of a photon excess:

• For any WISP the signal is expected to rise with the power build-up in the regeneration cavity.

This prediction can be easily probed by changing the lock condition for the regeneration

cavity.

• A comparison of runs with magnets on and off allows to discriminate between WISPs which

mix kinetically with photons (hidden photons) and WISPs which couple to more than one

photon (like ALPs).

• The polarization of the laser light can be changed with respect to the direction of the magnetic

field. Hence, the parity of a WISP, which shows only up in data with magnets on, can be

determined. Scalars are produced with the polarization perpendicular to the magnetic field,

pseudo-scalars with a polarization parallel to the field.

A production not strongly depending on these polarization directions might indicate the ex-

istence of minicharged particles and massless hidden photons.

• In Figs. 3 and 4 the dependence of the WISP production and reconversion on the gas pressure

within the cavities is shown. This effect would allow to estimate the mass of the discovered
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WISP, ranging from relatively accurate measurements, if the mass is sufficiently large, to

upper limits for very lightweight WISPs.

In summary, the ALPS-II setup will allow for many different systematic checks to prove the

origin of a photon excess and to even determine properties of a WISP particle. The sketched run

procedure also enables sufficient tests to monitor the performance of the experiment, so that a WISP

signal (in the accessible sensitivity regime) cannot escape detection.

3.2 Laser and optics

The main goal of the optical design of ALPS-II is to make the electro-magnetic field provided by

the laser beam on one side of the wall as large as possible and to detect a possibly regenerated field

on the other side with a very high sensitivity. Both tasks can be supported with optical Fabry-Perot

type resonators. On the side in front of the wall, the ALPS-II production cavity (PC) can increase

the optical power of the light beam directed towards the wall by a factor of 5000 compared to the

power of the injected laser. Behind the wall, the regeneration cavity (RC) increases the production

probability with which photons are created from the axion field [84, 85] by a factor of 40000.

Please note that operating the cavities requires the usage of a continuous wave laser.

3.2.1 Technical challenges

These main goals translate into several requirements on the optical system that have to be fulfilled.

Two high finesse optical cavities have to be operated within the small aperture provided by the

magnet string with identical optical axes. Both cavities have to be resonant for the same light

frequency. The mirrors have to be controlled to form stable eigenmodes co-linear to the central axes

of the magnets. The laser beam has to be matched to these modes spatially as well as concerning its

frequency. While the control of the laser and the PC is state-of-the-art in several fields of modern

optics, e.g., the interferometric detection of gravitational waves [86], a new challenge arises in

controlling the RC. This cavity has to be kept aligned and resonant for the regenerated light without

the use of any control light in the spatial and spectral acceptance range of the ALPS-II detector.

3.2.2 Conceptual design

The design goal of ALPS-II is to inject 30 W into the PC with a power buildup of 5000 and

to operate the RC with an equivalent power buildup of 40000. The injection stage of the PC as of

August 2012 is shown in Fig. 7. The main limitations for the optical design are given by the aperture

of the magnet strings, by the durability and losses of available dielectric mirror coatings and by the

environmental disturbances, namely the vibrational fluctuations and their coupling into the length

degree of freedom of the optical cavities. To get a quantitative understanding of these design

boundaries we use a staggered experimental approach: We first set up a phase ALPS-IIa prototype

experiment with 10 m long cavities to understand the limitations from dielectric coatings and gain

experiences in controlling the two cavities. Sensor and actuator range and noise investigations as

well as lock-acquisition studies are part of this phase. Furthermore, the analysis of vibrations and

other environmental disturbances will be an important outcome of this phase.

Based on the information gained, we will modify the setup to allow an operation of two 100 m

long cavities in phase ALPS-IIb. This phase will not have the small aperture set by the magnets,
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Figure 7. This picture shows the injection stage of the production cavity in the laser laboratory in hall 50 at

DESY.

Figure 8. Schematic of the ALPS-II injection stage including the production cavity.

which leads to somewhat relaxed requirements for the cavity alignment control. Once, both 100 m

long cavities are operable, remaining fluctuations can be measured and optionally reduced. Fur-

thermore, we can measure the margin in control authority and bandwidth to estimate the acceptable

level of additional vibrations related to magnet operation and environmental noise. These important

results will feed into the final design of the ALPS-IIc phase, in which the two cavities need to be

operated in the small aperture given by the magnets. The three different phases of the experiment

are schematically shown in Fig. 5.

A schematic sketch of the laser and the PC is shown in Fig. 8. We will use a 35 W high-power

single-mode single-frequency laser system operating at 1064 nm. The master-oscillator power-

amplifier design allows to amplify the power of the 2 W master laser (Innolight Mephisto) to 35 W

while maintaining the frequency stability of the low noise master laser. Several of these lasers are

currently in use in gravitational wave detectors and have proven to be reliable with low mainte-

nance efforts for many years. This laser was already successfully used in the ALPS-I experiment.

The laser light passes a Faraday isolator (FI) to avoid back reflections into the laser and an electro-
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optical modulator that imprints phase modulation sidebands onto the light. These sidebands are

used in a heterodyne detection scheme (Pound-Drever-Hall (PDH) sensing, [87]) to gain informa-

tion on the deviation of one of the resonance frequencies of the PC from the laser frequency. Two

lenses and two steerable piezo-electric transducer (PZT) mirrors are used to match the Gaussian

laser beam to the eigenmode of the PC. A fraction of the light reflected by the cavity is transmitted

by a turning mirror and detected with two QPD that have a detection area split in four quadrants.

A lens is used in front of one quadrant photodiode (QPD) to shift the Gouy phase of the Gaussian

beam by 90◦. Via the heterodyne differential wavefront sensing (DWS) scheme [88], we will gain

information on the parallel shift and tilt of the laser beam with respect to the cavity’s optical axis,

both in the horizontal and vertical plane. The sum of all quadrants of one of the QPDs is used in

the PDH sensing.

By appropriately feeding the alignment and length error signals back to the laser frequency

control actuator and to the PZT mirrors we can stabilize the high power laser beam to match the

cavity eigenmode and to keep laser and cavity resonant. The goal is to keep the remaining spatial

and frequency fluctuations small enough to limit the fluctuations of the power buildup in the cavity

to less than 5% (RMS).

The optical parameters of the PC and RC are designed to allow for high buildup factors. To re-

duce the risk of mirror damage we limited the maximum intensity on the PC mirrors to 500kW/cm2

(well below the damage threshold of about a few 1000kW/cm2 for sputter and e-beam coatings), a

level at which mirrors in the gravitational wave community have been operated for long durations

without degradation. For a smallest beam radius of 5 mm at the central mirror this corresponds

to approximately 150 kW circulating power or a power buildup of the PC of PBPC ≈ 5000. The

RC will not suffer from too high intensities on the mirrors such that its power buildup will be lim-

ited by the optical losses. If we take a typical value of 8ppm losses per mirror and allow for an

equal amount of roundtrip clipping loss the power buildup in an impedance matched cavity will be

PB ≈ 40000. Based on the above arguments we have chosen PBPC ≈ 5000 and PBRC ≈ 5000 as

the ALPS-II cavity design parameters.

The eigenmode in the RC has to be an extension of the PC eigenmode to match the Gaussian

beam parameters of the regenerated field. It can be shown that the Gaussian beam with the smallest

clipping losses for a given constant magnet aperture and identical length of the PC and RC is the

one with the beam waist in the center between the two cavities and a Rayleigh range equal to the

length of a single cavity. For such a beam the aperture radius required to keep the clipping losses

small enough to achieve the power buildup goals is plotted over the cavity length Fig. 9.

Under the assumption that the HERA magnets can be straightened to give an aperture of d =

50 mm – with the free aperture taken to be 10 mm smaller, to account for alignment tolerances, the

waviness of the vacuum pipe, and fluctuations of the laser position – a cavity length of 100 m is

possible.

In principle the PC could be longer as larger clipping losses are acceptable in this cavity. Given

that the total length is limited by the infrastructure, we have, however, not included this option to

allow for mirrors with identical radius of curvature (ROC) in both cavities.

A key component of the ALPS-II optical design is the central breadboard. This breadboard

is marked with a beige-colored background in the optical layout shown in Fig. 12, a picture of the

breadboard during setup of the 1 m tabletop experiment can be seen in Fig. 10. It provides a long
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Figure 9. Minimum aperture diameters 2 · rap required to allow for a power buildup of 5000 for the PC (red,

lower line) and 40000 for the RC (blue, upper line) plotted over the cavity mirror distance d. Additional

mirror losses of 8 ppm are assumed for each cavity mirror.

Figure 10. Picture of a prototype of the ALPS-II central breadboard during setup of the 1 m tabletop

experiment at AEI.
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term stable platform for mounting the central cavity mirrors and the quadrant photodiodes used as

alignment references.

The mirror labeled as CBS1a is the end mirror of the PC and is chosen to be flat (ROC= ∞).

This choice will force the optical axis of the PC to be perpendicular to the surface of CBS1a. A

fraction of 90 % of the beam transmitted by CBS1a is directed towards mirror M2. Mirror M2

transmits 1% of the beam which is detected by the quadrant photodiode QPD3. A control loop

shown in Fig. 12 is used to steer the input mirror PIC of the PC such that the beam on QPD3 hits a

reference point. Once this control loop is operating, all degrees of freedom of the PC axis are fixed

with respect to the central breadboard.

Figure 11. Schematic of the ALPS-II regeneration cavity including control loops.

The main fraction of the beam is reflected by M2 and send into a KTP non-linear crystal.

A beam with a wavelength of 532 nm is produced via the second harmonic generation (SHG)

process. A dichroitic mirror separates the green and red beam and directs the red beam to a beam

dump. A fraction of 90 % of the green beam will be directed towards an optical setup not mounted

on the central breadboard (and outside of the vacuum tank which houses the central breadboard,

see Fig. 12). In this setup the green beam is frequency shifted via an acousto-optic modulator

(AOM) and phase modulation sidebands are added to the beam for the PDH locking of the RC. The

conditioned green beam is now send back to the central breadboard and passes the “wall” through

a set of dichroitic mirrors to make sure that no 1064 nm light enters the RC and detection area.

After the “wall penetration” the green beam is injected into the RC. The RC cavity consist of the

flat mirror CBS2a and the curved mirror REM which can be controlled in the direction of the cavity

axis for cavity length control and in rotation and tilt for cavity alignment control. The mirrors of the

RC are coated to form a resonant cavity for 1064 nm with a power buildup (PB) of 40000 and for

532 nm with a PB of approximately 60. The green beam reflected by the RC traces back the path

of the incoming beam to the quadrant photodiodes QPD 5 and QPD 6 which are used as sensors in
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Figure 12. Layout of the ALPS-IIb and ALPS-IIc optical tables.

differential wavefront sensing (DWS) and PDH sensing schemes to generate error signals for the
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alignment control of the green beam with respect to the cavity eigenmode and the length of the PC

with respect to the resonance of the green beam. Control loops feeding back to the steering mirrors

AM3 and AM4 will keep the green beam aligned to the cavity eigenmode and feed-back to the

cavity end mirror REM will change the cavity length to make it resonant for the green beam. A

schematic of the control loop layout can be seen in Fig. 11.

The remaining task is to make the eigenmode of the RC co-linear with the eigenmode of the

PC. For this we have to mount the two flat central mirrors of these cavities in parallel and rigidly

on the breadboard (see below for required precision). This ensures that the cavity axis are parallel.

Once the red and green beams are resonant in the respective cavity we can open the shutter in the

wall to allow a 1064 nm beam to impinge on the RC. By rotating and tilting mirror REM we can

laterally shift the RC eigenmode until it matches the incoming 1064 nm beam. During this process

we might need to change the frequency offset between the green and red beam via the AOM to

meet the resonance condition for the green and red beam at the same time. Once the 1064 nm beam

resonates in the RC we note the position of the green beam on QPD4 as the spatial reference for

the RC eigenmode. This reference position and the normal to the surface of mirror CBS2a fully

define the RC axis. Hence a control loop feeding back to tilt and rotation of REM to keep the beam

on this reference position fixes the location of the RC eigenmode relative to the central board and

co-linear with the PC axis. If the positions of CBS1a, QPD3, QPD4 and CBS2a do not move with

respect to each other and all control loops are closed the 1064 nm beam will be resonant in the

RC as will be any light field regenerated from WISP particles. A typical measurement sequence

would involve an open central shutter at the beginning and end of the measurement (and possibly in

between) to ensure alignment and resonance conditions are right and a closed central shutter for the

WISP search. During those searches possibly regenerated 1064 nm photons will be transmitted by

CBS2a and CBS2b and steered by DBSb to the main ALPS detector (CCD or TES). It is essential

that none of the 532 nm photons used to control the RC is accidentally detected and interpreted

as regenerated 1064 nm photons. Hence the 532 nm photons have to be reflected, absorbed or

spatially split from the 1064 nm beam path after leaving the RC.

Dedicated studies to determine the production probability of 1064 nm photons (for example by

fluorescence effects) from the 532 nm light used to lock RC are under way. First results have shown

that this probability is below 10−17. We plan to set up further experiments to mimic the optics of

the regeneration cavity in more detail and to exploit polarization effects to discriminate between

fluorescence photons and light from reconverted WISPs. For ALPS-II, a production probability for

1064 nm from 532 nm photons of less than 10−21 photons is to be achieved.

Once the shutter in the wall is closed, we rely on the stability of all components on the central

breadboard. As the green beam used for the RC control leaves the breadboard and the vacuum

system it might be subject to phase fluctuations caused by air turbulences and/or vibrations of

the optical components outside of the vacuum system. Hence we will set up a Mach-Zehnder

interferometer with the beam splitters MZ1 and MZ2. The output port of this interferometer is

sensed by PD2 and will give us information about the phase fluctuations. If required, a control loop

feeding back to mirror IM will be used to correct for these fluctuations.

3.2.3 Expected performance

We expect that we can reach a light power level of 150 kW traveling into the direction of the “wall”
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and to enhance the detection efficiency of regenerated photons by an RC with a power buildup of

40000. Several requirements have to be fulfilled to achieve this performance:

1. The total lateral and angular beam shift introduced to the 1064 nm beam by optical compo-

nents between the two cavities on the central breadboard has to be smaller than 1 mm and

10µrad, respectively, because any beam shift is not seen by the particles transversing the wall

and hence reproduced light would not match the RC eigenmode.

2. To allow parallel alignment of the optical cavities, the central mirrors have to be parallel to

within 10µrad.

3. Drifts (e.g., caused by thermal gradients) of the components on the central board have to be

small enough to meet the pointing requirements given in 1. The mismatch between twice the

red resonance frequency and the green resonance frequency of the RC has to be stable to a

fraction of 0.2 of the RC linewidth (corresponding to approximately 95 % of the maximum

power buildup).

4. The actuator range of the different control loops has to be large enough to compensate the

free running peak-to-peak fluctuations of the relevant degrees-of-freedom.

5. The control-loop disturbance reduction has to be large enough to reduce the deviation of the

cavities from their operation points such that the power buildup factor can be kept at a value

larger the 0.95 times the maximal buildup.

Simulations of the optical setup and estimations of the control loop performance indicate that all

the requirements can be met with state-of-the-art optics, electronics and fabrication processes.

3.3 Cleanroom design

3.3.1 General considerations

The setup of the optical components of the experiment has to fulfill the following requirements:

1. The optical components outside and inside the vacuum must be kept free of dust particles af-

ter being cleaned, during the mounting process and during the experimental runs. Due to the

high cavity power buildup aimed for, the optical components in the experiment, especially

the cavity end mirrors, are most sensitive to dust particle contamination. Even a degrada-

tion of a few ppm in the reflectivity of an end mirror would lower the performance of the

regeneration cavity intolerably.

2. Mechanically and thermally stable conditions have to be maintained during the operation

of the experiment. Only minimal position changes of optical components are tolerable due

to the limited expansion range of the piezo-electrically driven mirror holders. A movement

above a few µm in beam direction of an end mirror can not be compensated by the feedback

loop for cavity length stabilization.

3. For the operation of the infrared laser (continuous-wave output: 35 W at 1064 nm) a safe

working environment has to be created and maintained at all times, with special attention to

the setup phase of the experiment.
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Figure 13. Experimental setup for ALPS-IIa in building 50 room 607.

3.3.2 The cleanrooms

The laboratory space for ALPS-IIa including three cleanrooms has been set up in 2011 already.

The layout of the cleanrooms for the ALPS-IIb and ALPS-IIc experimental setups is based on the

approach used for ALPS-IIa in the laser laboratory housed presently at DESY in building 50 (see

Fig. 13). There are three cleanrooms containing:

1. the laser and the vacuum chamber with the central breadboard,

2. the vacuum chamber with the second end mirror of the production cavity and the first end

mirror of the regeneration cavity and

3. the vacuum chamber with the second end mirror of the regeneration cavity.

Adjacent to the cleanrooms are gray-rooms which serve as airlock to the outside. Cleanroom

conditions will be ensured applying the following measures:

1. The floor inside the cleanrooms and the gray-rooms is regularly cleaned.

2. In each gray-room entrance area adhesive carpeting is used to avoid propagating dirt.

3. Persons use cleanroom suitable clothing and foot wear. To enter a gray-room an additional

cleaning lock space has to be passed, to reach the required cleanliness.

4. A flow of 200 m3/h of fresh air is provided, sufficient for up to 4 persons. In order to refresh

breathing air, filtered air (H12) from the outside is blown into each gray-room. The resulting

turbulent flow of mixed air also reduces the gray-room dust particle concentration compared

to the outside.

5. To reduce dust particle concentration in the cleanroom, clean filtered air (H14) from the

adjacent gray-room is blown in turbulently. The air exits the cleanroom back into the gray-

room. Every two minutes the air volume in the cleanroom is mixed with an equal volume of

filtered air. In that way the dust particle concentration in the gray-room is also reduced and

the breathing air in the cleanroom is continuously refreshed.
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6. The enclosure of the laser table in the cleanroom has a roof with vertical transparent blinds.

Within the enclosure a separate filter unit produces a clean horizontal laminar displacement

flow across the laser table, which is always directed against the person reaching through the

blinds and performing manual work. Dust particles from the person’s moving hand or arm

will not move down towards the optical components on the laser table, but instead leave the

enclosure through the blinds.

Dust particle concentrations are expected to be the same as in the ALPS-IIa laboratory (down

to 0.3 µm size):

• 100000 particles/ft3 outside,

• 5000 particles/ft3 in the gray-room,

• 200 particles/ft3 in the cleanroom and

• 0 - 1 particles/ft3 within the laser table enclosure in front of a working person’s hand reaching

in.

These numbers match the requirements. About two hours after the last person has left a clean-

room of ALPS-IIa, no dust particles are measured anymore by a particle counter located in the

cleanroom outside the enclosure. For more effective dust decontamination of clothing, the use of

an ionization gun will be tested in the ALPS-IIa laboratory.

At present it is planned to support the optical tables in the tunnel cleanrooms from the top of

the HERA tunnel, as there is little space on the floor due to big pipes for cooling water and Helium

gas (see Fig. 34). This concept will be tested at the setup of ALPS-IIb. The cleanroom between

the two magnet strings will be located in a HERA hall and the optical table will be supported from

below.

Like in the ALPS-IIa setup the breadboards containing the optical elements will be supported

from the optical tables, decoupled mechanically from the vacuum vessels, see Fig. 36, which are

supported from the floor of the cleanrooms.

For ALPS-IIc the HERA kicker-bypass will be installed allowing the magnet current and the

cryogenics to bypass the optical setup in the middle of the experiment. To compensate the force of

about 80 kN by the atmospheric pressure on the end flanges of the kicker-bypass, the endflanges

are connected by 3 tension rods. To allow access to the optical elements in the vacuum vessel in the

cleanroom, the tension rods have to be replaced by a steel girder construction. The detailed design

for the construction of the clean/gray rooms remains to be done. It is assumed that the construction

will be done in a similar way as for ALPS-IIa applying a drywall installation.

Temperature Stability

As for the setup of ALPS-IIa, the air blown into the cleanroom will also be used for cleanroom

temperature stabilization by mixing the input flow with the output from an air conditioner unit.

The temperature sensor of a feedback loop will be placed above the laser table. The same feedback

system was used in the ALPS-I laser laboratory where a long term stability of better than ±0.1 ◦C

was reached. The three air conditioning units will use cold water from the 8 ◦C DESY cooling

water system.
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Laser Safety

As for the ALPS-IIa laboratory, a safe laser environment will be set up in accordance with the

required safety rules (DIN/EN 60825). An interlock system based on programmable logic con-

trollers is foreseen which closes the exit shutter of the laser if any door connecting a cleanroom to

its adjacent gray-room, and the gray-room exit door are open at the same time.

3.4 Detection system

The detection of the possible regenerated photons at ALPS is very challenging, mainly due to their

expected low energy and low rate. The wavelength of the photons at ALPS-II being 1064 nm

reduces the detection options and makes silicon-based detectors less efficient due to the proximity

of the energy of the Si band gap. Caused by the low rates, the most important requirement of a

detector system for ALPS-II is extremely low dark count rate (at least less than 10−3 s−1), which

should be coupled with a high detection efficiency.

For ALPS-II two detection options are pursued:

• a PIXIS 1024B CCD camera and

• a Transition-Edge Sensor (TES).

Whereas the CCD camera has already been used for ALPS-I and only needs to be calibrated

for the ALPS-II requirements, an ALPS-II-specific TES set-up is currently being newly developed

by the ALPS collaboration.

3.4.1 Technical challenges

The main requirements for the detection of the low rates of single photons with a wavelength of

1064 nm at ALPS-II are (in the order of their importance):

1. low dark count and background rate,

2. high efficiency,

3. long-term stability,

4. good energy resolution and

5. good time resolution.

The CCD camera is proven to be a viable option and has the advantage of being ready-to-use.

It satisfies the first three criteria, but does not excel in them. The dark current of the CCD is of the

order of 10−3 electrons per pixel per second and its efficiency at the ALPS-II wavelength is about

1.2 % (further details see Sect. 3.4.3).

Transition-edge sensors [89] exploit the rapid change of the resistance at the superconducting

phase transition. This enables them to reach high sensitivity [90] and achieve highest quantum

efficiencies [91]. In addition, good energy and timing resolutions are possible. In comparison to a

Si-CCD, the quantum efficiency of a TES at 1064 nm is larger by nearly two orders of magnitude

and additionally the dark count rate is lowered by a considerable factor. The additional benefit of
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a single-photon spectroscopy opens up attractive avenues to additionally reduce the background

through cuts on the pulse-height. The timing allows for precise definition of good-time-intervals

when the cavity is locked. Hence, an unstable operation of the cavity poses no problem for the TES

detector. However, building and operating a TES setup is more challenging than to use a CCD cam-

era. Points of major importance for the success are the control of the environment (e.g., magnetic

field etc.) at mK temperature, and the sufficient suppression of different possible backgrounds.

In the field of experimental searches for rare events (e.g., direct Dark Matter experiments), TES

detectors have been operated stable over the course of months (see e.g., CRESST II [92]).

3.4.2 Conceptual design

CCD camera

The design of the CCD detector is based upon the experience from the ALPS-I experiment. The

beam of regenerated photons is focused with a lens onto the sensor area of a CCD camera. To

achieve the best performance, the size of the focal spot should be minimal (in the ideal case one

pixel).

The CCD camera in ALPS-II is the same that was used in the ALPS-I experiment, a PIXIS

1024B by Princeton Instruments. The chip is a back-illuminated e2v CCD47-10. It has 1024×1024

13×13 µm sized pixels. The chip can be cooled to a minimum of -70 ◦C. The read-out electronics

allows for two read-out speeds of 2 MHz and 100 kHz with associated read-out noise of 13.73 e

and 4.09 e, respectively. It is capable of binning the pixels into logical pixels, thus reducing the

impact of the read-out noise if the signal cannot be focused on one pixel.

Neighboring pixels can be used to veto cosmic rays and ambient radioactivity.

To optimize the focal spot, the shutter of the central breadboard will be opened so that infrared

light will enter the regeneration cavity. This light will follow exactly the path of regenerated pho-

tons. Hence, its image can be used to optimize the focal spot of the regenerated photons. Because

of the high intensity of this light (1.7 mW), a dedicated filter will be installed in the beam to protect

the camera, which does not change the position of the image. This will be verified by rotating the

filter around the beam-axis.

TES detector system

The working principle of a TES is briefly explained in Fig. 14. The TES is a microcalorimeter

measuring the temperature difference ∆T of the absorber material through the rapid change of the

resistance at the superconducting phase transition, which is proportional to the temperature increase

at the set point. In the case of ALPS, and in general for optical detection, the TES detector serves

as absorber and thermistor at the same time.

The research and development of TES for detection of optical/infra-red photons is actively

carried out at metrology institutes like NIST (in the U.S.), AIST (in Japan), INRIM (in Italy) and

PTB (in Germany). The ALPS collaboration has established contacts to these institutes and is

collaborating regarding the setup of the ALPS TES detector system and the TES chips (see below).

In 2011, first experience was gathered through an extensive collaboration with the Universities

of Trieste and Camerino, building up a TES detector with a dilution refrigerator. For a TES setup

essentially four components are required: the TES detector, a SQUID-current sensor, a cooling
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Figure 14. Working principle of a TES. (a) A photon sensitive absorber with heat capacity C is connected to

the TES thermistor. The absorber is coupled with a weak heat conductivity G to a “heat” bath. The TES is

voltage-biased and the current of the bias circuit is read-out by a SQUID connected to read-out electronics.

(b) The absorption of a photon with energy E causes a rise in temperature. The TES cools down again and is

back to its set point after the time τeff. (c) As the TES is operating in the superconducting transition region,

there is a change of electrical resistance R(T ). (d) The current of the circuit changes, which can be readout

by the SQUID, which is magnetically coupled to the circuit. Integrating over the current signal I(t) leads to

the incident photon energy. Figure from [93].

system to reach and maintain a sufficiently low temperature, and the optics to feed the light signal

to the sensor. The realization and the status of the TES detector of ALPS-II is split into these four

fields, which are described in the following and summarized in Fig. 15.

Sensor: TES Chip TES detector chips are not available commercially. Research groups either

manufacture their own detectors or obtain detectors by collaborating with metrology institutes,

most notably NIST and AIST. NIST and AIST have developed highly efficient multilayer TES

optimized for various optical and near-infrared wavelengths. 11

The two following TES would be suitable for the ALPS-II wavelength of 1064 nm:

• NIST TES with optical structures to couple light and metallic mirrors reaching 98 % quantum

efficiency for 1064 nm [94]

• AIST TES with optical structures to couple light and dielectric mirrors reaching 98 % quan-

tum efficiency for 850 nm [95]

These TES have low critical temperatures (Tc) to reduce the thermal fluctuation noise and to make

the device more sensitive. The NIST TES use Tungsten (W) as sensor material and become super-

conductive between 100 and 200 mK, the AIST TES are made of Titanium/Gold (Ti/Au) leading

to a higher critical temperature of around 300 mK.

11Both institutes have concentrated on the telecommunication wavelengths 1310 and 1550 nm.
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Figure 15. Collection of components of the ALPS TES detector system: (a) Sketch of the ADR: In the upper

part there is a two-stage pulse-tube cooler connected to the 70 K and 4 K stage. The dashed gray part in the

middle indicates the salt pill with 6 T magnet for ADR cooling. The light green part is the mK-environment

with the cold finger. (b) Sketch of the detector bench attached to the cold finger: The detector bench, made

of copper, holds the sensor module (red), where one SQUID and two TES chips are located. The sensor

module is surrounded by a brass part (light turquoise) for a magnetic field coil to compensate background

magnetic fields. (c) Pictures of fiber end and sensor bench: In the bottom picture a sensor module for NIST

TES and PTB SQUID chips is displayed. The two white ceramic ferrules surround the TES chips and can

hold the fiber end pictured above. (d) Picture of TES/SQUID design by AIST: Two fibers are glued to TES

chips, which are connected to the SQUID located on a circuit board. [Pictures from (a) Entropy, (b) DESY,

(c) NIST/PTB, (d) AIST]

ALPS is in contact with NIST and AIST and will receive chips from both institutions in order

to measure their performance for 1064 nm. It is planned to optimize the chips [96] achieving a

low-noise high-efficient TES detector for single 1064 nm photons by using

• dielectric mirrors (narrowband12) instead of metallic mirrors (broadband) and

• an optimized multilayer structure for coupling light with 1064 nm,

if that proves to be beneficial for the ALPS-II experiment.

Read-out: SQUID-Current Sensor TES are mostly read-out by low-Tc dc SQUID current sen-

sors, consisting of the SQUID itself and a read out electronic. These sensors are current to voltage

transformers (transimpedance elements): To give some numbers, a 1 eV energy input would cause

a current of O(100 µA) in the TES circuit (see Fig. 15), which results in a voltage pulse in the

range of 1 to 100 mV. Low-Tc SQUIDs can be operated at mK-temperatures.

The SQUID sensors for the ALPS setup will be supplied from the PTB13 in Berlin. PTB

12A narrowband detector could reduce a broadband background.
13Physikalisch-Technische Bundesanstalt, Working Group 7.21: Cryosensors

– 35 –



SQUIDs are already in use with NIST and AIST TESs, so the PTB group is joining a collaborative

effort with ALPS to find out which SQUID-TES design is the most robust one for the ALPS-

purpose and, more generally, to test TES applications. This will allow ALPS to profit from the

great expertise of PTB regarding SQUIDs.

ALPS has already purchased a TES/SQUID read-out electronic from Magnicon: Two chan-

nels are for SQUID read-out allowing the operation of two TES sensors in parallel for cross checks.

Additionally, a compensating magnetic field coil can be operated to prevent degradation of perfor-

mance of SQUID, when operated in an ADR.

Optics: Fiber Feed-in To guide the light signal into the cryostat and finally onto the TES an

optical fiber is the method of choice. The anticipated design aims at an optimized optical efficiency

and will have to address the following issues:

1. fiber-to-TES coupling in the cold

2. fiber vacuum feed-through as interface between free space and cryogenic environment

3. free-optic-to-fiber coupling

The fiber-to-TES coupling will be done with specific methods developed at NIST and AIST.

NIST uses a modified standard fiber connector, whereas AIST uses UV curable resin for gluing the

fiber end to the TES chip. With both approaches low-loss couplings and a detection efficiency up

to 98 % were reached [97, 95].

For a low-loss working fiber vacuum feed-through with a continuous fiber a standard Swagelok

with a Teflon ferrule will be used, following [98]. DESY’s workshop has already built a single-fiber

feed-through, a feed-through for two fibers is currently under construction.

Most importantly, the incoming signal photons need to be coupled into the fiber. The beam

diameter at the coupling mirror of the regeneration cavity (CBS2a in Fig. 12) will be 11.6 mm.

This will contain 86.5 % of the total power (i.e., 2σ of the Gaussian beam profile). Thus, to capture

about 98.9 % of the total power, an optic is suitable that collimates a 17.5 mm diameter beam into

a single mode fiber with about 5 µm diameter. First tests and experience in the ALPS collaboration

and from other groups demonstrated that with a simple collimator lens a coupling efficiency about

60 to 80 % is easily reachable due to coupling losses.

For reducing the background there are different approaches considered to filter out other wave-

lengths. The fiber itself can be used as a simple filter by using a HI1060 fiber with a operating

range of 980 to 1180 nm instead of the standard fiber SMA980 with a operating range from 970

to 1650 nm. Other possible options are reflecting coatings at the cold end of the fiber and filters

(including polarization) within a fiber circulator design. These options will be further pursued, if

the background level is too high.

Cryogenic System: ADR An ADR was found a suitable solution for the requirements of the

TES setup in a milli-Kelvin environment. The University of Hamburg as collaborator of ALPS

ordered in November 2011 an ADR from the company Entropy. It was delivered in late July 2012,

tested at the PTB in Berlin (see Fig. 16) and is now operational at DESY in Hamburg.

The ADR is a no-liquid-cryogens cryostat with a closed pre-cooling cycle: Integrated is a two-

stage pulse-tube cooler with which the cooling stages of 70 K and 4 K are reached. Then using a
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6 T magnet and a double-stage salt pill unit the milli-Kelvin environment is established through the

principle of adiabatic demagnetization.

A cryogen-free cool-down is possible within 20 h. The hold time at 100 mK is about 48 h

depending on the cold mass. The recharge time to re-establish the mK-environment is about 30 min

according to the datasheet [99]. With the ADR the aim of a compact and robust, transportable

system with a quick cool-down and easy handling is in reach.

The following components for the setup of the TES inside the ADR are currently being de-

signed and built:

• detector bench attached to the ADR cold finger for TES and SQUID chips including coils

compensating for magnetic field

• cryo-cable for read-out from vacuum feed-through to 4 K stage

• circuit board at 4 K stage

• vacuum-feed-through for optical fibers

• thermal anchoring of cables and fibers coming from 300 K

• shields against thermal and magnetic/electric radiation (currently several solutions being de-

signed, the final choice will depend on the actually measured background levels)

After assembling the ADR and characterization of the completed TES detector the complete

detector system will be moved to Hamburg and set up at the ALPS site. The ALPS site is fully

equipped to operate the ADR with 300 V supply and purified water for the compressor14 of the

pulse-tube cooler.

As a status some pictures of the ADR system at PTB are shown in Fig. 16. The ALPS collab-

oration will soon reach mK-regions, after the adjustment and fine tuning of the heat switch.

3.4.3 Expected performance

Fig. 17 shows the gain in sensitivity expected for ALPS-II compared to ALPS-I. The sensitivity for

the CCD improves approximately as t
1/8
meas because it is dominated by the accumulated dark current.

The TES is dominated by the statistics of the signal, hence the improvement is approximately

∝ t
1/4
meas.

A summary of the expected detector performances and the resulting gain in sensitivity is given

in Tab. 2 for a measurement campaign of two weeks corresponding to 336 h of data for the CCD

and 168 h for the TES15.

In the following, details are given for both the CCD and the TES setup.

14The compressor could be a possible source of ground vibrations. Dampening these vibrations (in a first stage by a

neoprene mat) and moving the ADR further away from the laser setup using a long optical fiber is possible, if these steps

prove necessary for the locking of the laser cavity.
15This assumes that the cryogenic environment for the TES can be maintained 50 % of the time.

– 37 –



Figure 16. Status of ADR system and components: The pictures show the status at PTB, Berlin at the end

of August 2012. (a) Infrastructure and components of ADR: The ADR itself (red dewar) is connected to the

control rack for monitoring temperatures and pressure, operating the magnet and driving the heat switch. It

is also connected to the Helium compressor of the pulse-tube cooler via 20 m pipes filled with Helium. (b)

Open ADR: On the 4 K stage the heat switch is mounted, to connect and disconnect the 4 K bath to the salt

pill. On top the cold finger is located reaching mK. (c) Detector bench: The copper components are ready

for attaching the sensors to mK bath. One sensor module is in Japan for attaching AIST chips

Parameter Impact ALPS-I CCD ALPS-II CCD TES

Efficiency QE gaγ ∝ QE−1/4 0.9 0.012 0.75

Detector noise DC gaγ ∝ DC1/8 0.0018 s−1 0.0012 s−1 0.000001 s−1

Sensitivity gain 1 0.5 2.4

Table 2. Parameters of the ALPS-II detector setups and their impact on the sensitivity of the experiment for

a wave length of 1064 nm compared to the ALPS-I setup for 532 nm and 27 h of data. For the ALPS-II sen-

sitivities two weeks of measurement are assumed. A sensitivity factor larger than 1 means an improvement

of the sensitivity. Note that the detector noise for the TES remains to be demonstrated.
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Figure 17. Expected sensitivity gain of the different detector systems for ALPS-II compared to ALPS-I: The

dependency of the sensitivity gain on the exposure time is shown for the TES with a detection efficiency of

75 % and background rates of 10−6 s−1 and 10−5 s−1, respectively, and for the CCD for the parameters given

in Tab. 2. The number of observed background events was estimated conservatively by taking the smallest

integer larger than the expected value for the respective measurement time (i.e., always ≥ 1). The kinks in

the TES lines are due to accumulation of additional background events. The comparison is made against the

ALPS-I results for an exposure time of 27 h (cf. [6]).

CCD:

The dark current of the CCD is known from the data sheet and the experience in ALPS-I to be

0.0008 e s−1 per pixel. The read-out noise has been determined 16 to be 4.09 e at 100 kHz read-

out speed and a quantum efficiency 1.2 % was measured for a wavelength of 1066.7 nm and a

chip temperature of -70 ◦C. Fig. 18 shows the quantum efficiency as stated by the data sheet [100]

together with the measured value.

Tests showed that the CCD can be operated reliably with exposure times up to 6000 s. For

longer observation times, the probability of contaminating the frame with charged particle back-

ground (cosmics and decay products) leads to a loss of frames.

In ALPS-I the end-mirrors of the production cavity had a limited lifetime and, thus, had to

16This value has been established in measurements and differs slightly from the value given by the manufacturer

(3.85 e).
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Figure 18. Measurement of the quantum efficiency of the PIXIS 1024B: The dashed line is the quantum

efficiency measured at a temperature of T=25 ◦C taken from the data sheet [100]. The single bullet is the

measurement of the quantum efficiency at T=-70 ◦C.

be replaced between measurements. Therefore, the position of the signal region changed between

data runs and its shape had to be optimized with a time-consuming procedure resulting in a minimal

achieved size of 3×3 pixel. During all phases of ALPS-II, the position of the signal region will be

fixed. Hence, we expect to achieve a smaller signal region of 1×1 pixel.

TES:

For the setup using a Transition-Edge Sensor an intrinsic background level of less than 10−4 counts

per second can be achieved. Only upper limits have been set by previous studies [90, 101] and a

reduction up to rates as low as 10−7 counts per second might be possible as estimated for the ALPS

setup based on [101]17.

The quantum efficiency of the TES sensor was shown to be as high as 98 % and of a whole

detection setup of 95 %, if optimized [91]. Within the ALPS environment and especially the

different fiber couplings described above, a detection efficiency of 60 to 80 % is expected.

The energy resolution will be about E
∆E

= 5 to 6, which could improve the background reduc-

tion in principle. A good timing resolution of about 1 µs easily enables selecting events based on,

e.g., shutter conditions.

17For the calculation of the sensitivity gain compared to the detector setup in ALPS-I in Tab. 2, a background level of

10−6 counts per second is assumed.
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Figure 19. Shape of the photon beam in the optical cavity within the surrounding vacuum pipe. The vacuum

pipe is only shown on one side of the setup (left).

3.5 Magnets and cryogenics

3.5.1 Introduction

To increase the sensitivity for the detection of axion-like particles, the ALPS-II collaboration plans

to set up optical cavities both on the production and the regeneration side [84, 85] of the experiment

with a power buildup of 5000 and 40000, respectively, and magnet strings of superconducting

HERA dipoles as long as possible, as the sensitivity for the detection of axion-like particles scales

with the product of magnetic field strength B and magnetic length L [20, 102, 56, 57], see also

Eq. 2.1.

The achievable power buildup of an optical cavity with a certain length inside a string of

dipoles depends on the aperture of the vacuum pipe in the dipoles [103]. The diameter of the

circulating photon beam near the focusing mirror will be larger for larger lengths of the optical

resonator (see Fig. 19). Therefore the clipping losses in the resonator will increase with length,

limiting the number of dipoles per string for a given aperture.

Tab. 3 shows the maximum number of HERA dipoles, allowing for an optical cavity with a

power buildup of 40000 at a wavelength of 1064nm for different apertures. The free aperture is

taken to be 10mm smaller, to account for alignment tolerances, the waviness of the vacuum pipe,

and fluctuations of the laser position. For comparison the apertures and the values for B · L for

an experimental setup using LHC dipoles [104] as proposed in [85] or Tevatron dipoles [105], as

considered for REAPR [106 – 108] are included.

The inner diameter of the vacuum pipe in the superconducting HERA dipole is 55mm. Due to

the curvature of the dipoles built for HERA18, the free horizontal aperture is reduced to ≈ 35mm.

However, as will be described below, HERA dipoles can be straightened by a modification of the

cold mass. This modification yields the full aperture of 55mm and allows for the best possible

setup for ALPS-II of 2 ·12 dipoles. However, the total costs of this operation, although not known

at present, are expected to be considerable.

Therefore a cheaper way to increase the aperture in the dipoles has been investigated (see

below). By a “brute force” deformation of the magnet yoke an aperture of 50mm (almost straight)

can be obtained, allowing for a setup of 2 · 10 dipole with a power buildup of 40000. This is the

base line layout for the ALPS-IIc proposal.

18See for example [109]. Key people for the development of the superconducting HERA magnets were H. Kaiser,

K.H. Mess, P. Schmüser and S. Wolff.
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Dipole aperture Number of dipoles B ·L [Tm] Length of single string

mm experiment plus 5m optical setup

35 HERA19 2 ·4 187 44

40 LHC20 [85] 2 ·4 515 72

48 REAPR21 [108] 2 ·6 184 44

50 HERA 2 ·10 468 103
almost straight

55 HERA 2 ·12 562 122
straight

Table 3. Comparison of B ·L for HERA dipoles with different apertures and proposals using LHC or Tevatron

dipoles.

Experiment Year of Magnetic length Magnetic field

publication L[m] B [T] B ·L [Tm]

BFRT [17] 1993 4.4 3.7 16.3

BMV [15] 2007 0.25 11 2.8

LIPPS [10] 2008 1 1.7 1.7

PVLAS [110] 2008 1 5 5

GammeV [11] 2008 3 5 15.0

ALPS-I [6] 2010 4.42 5.0 22.1

OSQAR [14] 2011 14.3 9 128.7

Table 4. Values of B ·L for previous laboratory experiments.

It should be noted that already a setup for ALPS-IIc with 2 ·4 standard HERA dipoles would

result in a larger sensitivity with respect to B ·L, compared to laboratory experiments performed up

to now22 (see Tabs. 3 and 4). With straight HERA dipoles and also with the almost straight dipoles

ALPS-IIc will be clearly competitive to the other experimental setups proposed with respect to

B ·L.

The infrastructure needed for the operation of a superconducting dipole string is specific for

each type of dipole, i.e., the LHC, HERA, or Tevatron dipole. This refers for example to the

cryogenics, the cryogenic boxes, the power supply, or the quench protection system. Although

it is possible to set up a string of the three types of superconducting dipoles, considered here at

any major laboratory, the effort needed would be substantially larger compared to the “home”

laboratory of the magnet. Therefore we did not consider the use of LHC or Tevatron dipoles on the

DESY site.

19HERA: magnetic length 8.83 m, field 5.3 T.
20LHC magnetic length 14.3 m, field 9 T.
21REAPR magnetic length 6.12 m, field 5 T.
22As detailed in Sect. 2, 2 · 10 magnets at the envisaged power build-up suffice to improve current helioscope limits

and tackle parameter regions favored by theory and astrophysical hints.
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Figure 20. Cross section of the HERA dipole cryostat. The welding of the half cylinders of the Helium

vessel around the iron yoke was performed in a big tool which forced the cold mass to a given curvature.

The beam pipe was forced to follow the curvature by spacers glued to the outside of the pipe.

3.5.2 Straight HERA dipoles

Originally the iron yoke, the clamps, the coils, and the vacuum pipe of the HERA dipole were

fabricated straight; only the outer vacuum vessel was formed as a polygon. The welding of the half

cylinders of the Helium vessel around the iron yoke was performed in a big tool which forced the

cold mass to a given curvature. The beam pipe was forced to follow the curvature by spacers glued

to the outside of the pipe.

Therefore by cutting the welding seam of the Helium vessel (see Fig. 20), straightening the

yoke and welding two straight half cylinders around the yoke, it should be possible to obtain a

straight dipole magnet. However, this procedure requires the complete disassembly of the magnet

cryostat and the rebuilding of part of the tooling used originally. The know-how for this procedure

still exists in one company which originally assembled half of the total number of dipoles. The

cost for this method of straightening HERA dipoles however, although not known at present, is

expected to be considerable.

We therefore looked for a simpler and more importantly cheaper way of straightening the

dipole. Engineering studies showed that a straightening of the yoke and thus the beam pipe should

be possible by a brute force deformation with ≈40 kN from the outer vacuum vessel at the 3 planes
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Figure 21. Tools for straightening the cold mass (left) and the inserted tools (right).

Figure 22. Setup of a HERA dipole to test the deformation method. The dipole was used as an exhibit for

many years and was not foreseen as a spare for HERA.

of support of the dipole23.

In May 2011 the deformation method was first tried on a HERA dipole serving as an exhibit

before. The tools to bend the magnet yoke (see Fig. 21) were inserted into the lower flanges of the

outer vacuum vessel at three positions, near the ends of the dipole on one side of the vessel and in

the middle on the other side (see Figs. 21 and 22).

Fig. 23 shows the position of the center of the beam pipe before and after the application of the

deforming forces. The deviation from a straight line was reduced24 from 16.24 mm to 5.24 mm,

yielding about 90 % of the maximum horizontal aperture of 55 mm.

This result proves the applicability of the “brute force” method to substantially enlarge the

23Concept by Rüdiger Bandelmann; development by Gerhard Meyer. We learned later from [85] that a similar method

had been considered at CERN by P. Pugnat for LHC dipoles.
24Measurements of the beam pipe were performed by the DESY survey group MEA.
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Figure 23. Position of the beam pipe axis along the magnet.

horizontal aperture of the vacuum pipe of the superconducting HERA dipoles.

As the deformation of the yoke is elastic, the deforming force has to be maintained during

operation at cryogenic temperatures. Therefore pressure props were designed, which keep the

thermal flux from the vacuum vessel at room temperature to the yoke at liquid Helium temperature

within acceptable limits. The pressure props replace the deformation tools after the straightening

(see Fig. 24).

The props near the ends of the dipole must allow for the length change of the yoke during cool-

down and warm-up and yet maintain the deforming pressure. A simple solution to this problem is

to use a section of a sphere which rolls with the motion of the cold mass25. This way the distance

between the vacuum vessel at room temperature and the yoke does not change during the thermal

motion except for the small thermal shrinkage of the sphere. The forces are always perpendicular to

the surfaces thus avoiding a momentum on the prop and the danger of its tipping over. The thermal

heat flow from room temperature to the cold mass at 4 K through the thin walled titanium tube of

the pressure prop, see Fig. 25, amounts to about 1 Watt per prop.

A prototype pressure prop was subjected to functional tests in vacuum and at liquid Nitrogen

temperature to make sure about the proper choice of materials and the validity of the concept. The

test validated the concept and the choice of materials.

For the insertion of the deforming tools, 3 of the total 6 suspensions of the cold mass and the

radiation shield have to be removed. The installed pressure props interfere with a re-installation of

the suspensions. While the cold mass is still well supported by the three remaining suspensions,

25Concept and realization by Gerhard Meyer.
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Figure 24. Position of a pressure prop in the dipole cryostat.

Figure 25. Principal layout of a pressure prop with low thermal conductivity and the first prototype.

the radiation shield, being a rather soft structure, needs to be supported. By replacing the G10

(glas fiber enforced epoxy) loops of the suspensions by steel strips (see Fig. 27), connected to the

shield part of the suspension off center, and by machining a slit into the shield, to give room for

the pressure props during installation, the suspension of the radiation shield can be reestablished in

essentially the same way as before.

Recently (August 2012) the HERA dipole at the magnet test bench in hall 55, which was used

for the ALPS-I experiment (see Fig. 26), has been straightened on the test bench, with the Helium
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Figure 26. Test bench with the HERA dipole used for the ALPS-I experiment. It is located in hall 55 and

will be used to test all dipoles foreseen for ALPS-IIc.

Figure 27. Suspension of radiation shield and the modification to allow the insertion of a pressure prop.

pipes of the cryogenic boxes remaining connected to the dipole.

The straightened dipole was operated in September 2012 at cryogenic temperatures reaching a

quench current of 6050 amperes26 . This current is slightly higher than the quench current measured

on the unmodified dipole (5920 amperes) in August 2011. The straightened dipole was operated for

30 hours continuously at the design current for ALPS-IIc of 5700 amperes. The cryogenic losses

of the straightened dipole were as for the unmodified dipole.

The straightening procedure will be reviewed based on the experience gained during the first

straightening experiments. Better assembly tools will have to be developed, as the correct position-

ing of the pressure props turned out to be difficult. After the testing of the new tools on a magnet,

pressure props will be fabricated to start the straightening of the magnets foreseen for the ALPS-IIc

strings. Measurements of the position of the vacuum chambers along the dipoles (see below) will

allow for a selection of their location in the magnet strings, which yields the largest overall aperture

26The measurements were performed by members of the DESY group MKS.
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Figure 28. Schematic layout of the experimental setup for ALPS-IIc. Cold Helium and the magnet current

are fed into a cryogenic box on one side of the experiment and run through both dipole strings to a cryogenic

box at the other end of the experiment setup, where the flow is directed back through the dipole strings.

Helium and electrical current are led around the optical setup in the middle by a bypass line. Please note

that all optical elements are placed outside the cold part of the experiment and thus are not expected to be

affected by the cool-down of the magnets.

Figure 29. Kicker bypass in the HERA tunnel (West left 200 m). The bypass will be installed in the

middle of the experiment connecting the two dipole strings of ALPS-IIc and pass the magnet current and the

cryogenics around the optical setup.

for the optical resonators.

3.5.3 The ALPS-IIc magnet string

A string of 2 · 10 HERA dipoles, straightened with the described deformation method, will sup-

ply the necessary horizontal aperture for the optical cavities with sufficiently low clipping losses.

Twenty-four spare HERA dipoles are available.

Fig. 28 shows the setup of the experiment with the two magnet strings and the optics huts

schematically. The cryogenic boxes at the ends of the magnet strings are taken from the straight

section of HERA selected for the setup of the experiment (see Sect. 3.8 for site considerations). To

pass the magnet current and cryogenics around the optical setup in the middle, the “Kicker Bypass”
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Figure 30. The “mouse” survey tool, used to measure the position of the middle of the beam pipe along the

magnet.

Figure 31. Transportation fixture.

from the HERA section WL 200 will be used (see Fig. 29). Essential systems like the quench gas

collection line, other warm Helium pipes or the dump resistors are not shown.

3.5.4 Alignment

The position of the beam pipe along the magnet will be measured for each dipole. This will be done

using a simple tool called “mouse”27, which is pulled through the pipe with a string (see Fig. 30).

From the data, the positioning of each dipole can be evaluated yielding the largest horizontal aper-

ture in the string of magnets. This information will be transferred to existing survey marks on the

outer vacuum vessel to allow for the proper positioning of the magnet in the HERA tunnel.

The dipoles foreseen for ALPS-IIc are stored outside the HERA tunnel in a hall on the DESY

site. For the transportation of the dipoles, the magnet yoke has to be fixed to the outer vacuum

vessel by special fixtures (see Fig. 31) to avoid damage to parts connecting the cold mass with

the vacuum vessel, like the magnet and shield suspensions, or pipes containing the cables for the

quench detection. This is especially important for the transport into the HERA tunnel, as the

magnet has to be rotated out of the horizontal to fit through the access shaft. It remains to be

27Measurements of the beam pipe were performed by the DESY survey group MEA.
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measured, whether the insertion of the fixtures and the transportation of the magnet change the

position of the beam pipe.

The design of the supports of the Helium vessel guarantees that the position of the middle of

the magnet with respect to the outer vacuum is the same at room temperature and at the operating

temperature of 4 K. However, it remains to be measured whether this also holds for the position

of the beam pipe along the magnet. This measurement can be performed at the magnet test bench,

where the achievable magnetic field will be measured for every dipole before the installation into

the HERA tunnel. It is conceivable, to use the “mouse” on the test stand by pulling the string by

stepping motors in the insulating vacuum. However, the method suited best for this measurement

remains to be determined.

It should be noted that the dipoles can be moved within the completed setup horizontally and

vertically by a few millimeters, even when the string is operated at liquid Helium temperature.

Power Supply for the Magnet String of ALPS-IIc

To operate the dipole strings at a magnetic field of 5.3 T a power supply has to deliver a current of

5690 A at a voltage given by the resistance of the cable connections between the power supply in the

hall and the magnet string in the tunnel. For the existing connection of the HERA superconducting

magnet ring in hall West with a resistance of 4 mΩ the voltage amounts to ≈23 Volt at full current.

The power supply has also to supply additional voltage during the ramp up of the current due

to the inductive voltage L · dI/dt at the magnet string. A ramp rate of 2.6 A/s, corresponding to a

ramp time of 36.5 minutes, would require an additional voltage of ≈3 Volts at the power supply for

a string of 2 ·10 dipoles.

An adequate power supply is available in hall West, the original power supply for the super-

conducting magnets of the HERA proton ring. In principle this power supply can be moved to any

of the three other halls. However, operation of the power supply at the required values, at HERA

halls other than hall West, would need investments for additional transformers and cabling [111].

This expenditure can be reduced using the power supply in hall North, originally used for the

operation of the superconducting solenoid of the H1-experiment. By reducing the cable resistance

between the power supply and the magnet strings to below 3 mΩ the capacity of the power supply

of 6000 A at 20 Volts is sufficient to ramp the current and operate a string of 2 ·10 dipoles. There

is an excellent proposal [111] to achieve this reduced resistance, by using the main bus bar system

of the HERA electron dipoles in parallel to the cables from the proton ring.

Quench Protection

If a quench happens in one of the dipoles, the current in the coil must be reduced to zero in a short

time (<1 sec) to avoid overheating and possibly a destruction of the normal conducting part of the

coil [112]. The solution used at HERA is to bypass each magnet in the chain with a diode; if a

magnet quenches, the current in the chain is reduced slowly but is guided around the quenched coil

(see Fig. 32) by means of the diode [112].

If a quench is detected, the power supply is switched off, and switches to dump resistors

(stainless steel tubes of 57 mm diameter and 2.9 mm thick walls) are opened to dissipate the stored

energy [113]. The current decays with the time constant L/R, where L is the inductance of the

magnet string (1.16 Henry) and R is the resistance of the dump resistors plus the cable connections
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Figure 32. Schematics of the HERA quench protection.

to the power supply. Two dump switches increase the safety in case one switch fails and generate

a symmetric voltage profile across the string. Requiring that the inductive voltage per individual

dipole during the decay of the current be equal to the operation of HERA (≈13 Volt), yields a value

of 24 mΩ for the resistance of the dump resistors, which can be realized by slight modifications to

the existing dump resistors.

For the operation of the dipole strings of ALPS-IIc a new quench detection- and protection-

electronics system is required, as the components used for the HERA system are not fully functional

anymore and spares for the outdated electronics and controls are not available. The work on this

system was started in August 2011. It is planned to install and test a prototype of the new system at

the magnet test bench setup in hall 55 at DESY in 2014. The complete quench protection system

has to be available after the magnet string installation at the end of 2016. This leaves sufficient

time for testing and fabrication of the complete system (≈1 year).

Magnet Strings with alternating polarity

The current in the HERA dipoles can flow in only one direction due to the diodes. A string of

dipoles with the standard interface connection between magnets can therefore supply only a single

direction of the magnetic field. A segmentation of the magnetic field into regions of alternating

polarity to increase the mass range of the experiment, as proposed in reference [114], is not pos-

sible without major efforts like special connection boxes between individual dipoles. However, a

comparable increase in sensitivity can be achieved without much effort by changing the refractive

index in the optical resonators (see Sect. 3.6, vacuum system).

Cryogenics

Supplying cold Helium to the ALPS-IIc setup is possible in principle to any of the HERA halls

from the cryogenics plant on the DESY site [115, 116]. The effort and the cost of operation depend

on the straight section chosen for the setup.

The purchase of a new smaller stand-alone refrigerator was considered, but has been discarded

due to the high cost compared to the use of the DESY plant.

There are many advantages in supplying the ALPS-IIc magnet strings with cold Helium from

the DESY cryogenics plant like a trained and experienced operations crew, or the availability of
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Figure 33. Cryogenic feed box for an octant of superconducting magnets at HERA.

large storage tanks for the Helium gas, when the strings have to be warmed up to room temperature

(18 tanks with 367 m3 at 20 bar are available). The storage of ≈ 170m3 required for the warm up

of a 2 ·10 dipole string is therefore easily possible and –it should be noted– without any limitation

to the warm up of the XFEL or FLASH accelerator modules with superconducting cavities.

For ALPS-IIc cold Helium will be transported from the cryogenics plant into the tunnel to

a box (see Fig. 28) by the available Helium transfer line [117], which feeds the Helium into the

strings at one side and returns the Helium to the plant after its passage through the strings. At the

other end of the strings a similar box will be connected to the magnets, which returns the Helium

and the current through the strings. It is intended to use the cryogenic boxes presently installed

in the HERA tunnel at the end of the straight section chosen for the setup of ALPS-IIc. However,

the boxes, as installed for HERA (see Fig. 33), have to be moved to the other side of the straight

section to match the connection pattern of the dipoles. They must be disconnected from the Helium

transfer line and other cryogenics equipment like pre-cooler or valve stations and be reconnected

at their new position.

In case of a quench in the dipoles or a failure of the insulation vacuum, the Helium pressure

in the magnets will increase and eventually has to be relieved before it reaches a level (≈ 20 bar)

which might damage the magnets. The Helium is released via an automatic valve (see right side

of Fig. 33), named after its inventor Kautzky from Fermilab, into the quench gas collection tube

(see Figs. 34 and 35), which guides the gas back to the cryogenics plant. In the valve a reference

pressure and the pressure in the magnets are compared, thus defining a threshold for the pressure

relief. The reference pressure is supplied from a high pressure line (see Figs. 34 and 35) and will

be set to 14 bar like at HERA. The existing quench gas collection tubes and the high pressure lines

can be used for ALPS-IIc by adding new connections to the Kautzky valves of the magnets in the

strings.

To operate the magnet strings, pressure code regulations have to be met. The necessary pres-

sure tests will be performed as for HERA.
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Figure 34. Cross section of the HERA tunnel in the arcs. The ALPS-IIc setup in the straight sections of the

HERA tunnel will look very similar, the main difference being that the components of the HERA electron

ring will have been dismantled.

Figure 35. “Kautzky”-relief valve connected to the quench gas collection line (left) and “Kautzky”-relief

valve (right).

The total heat load at the 4 K level of the straightened magnet strings for ALPS-IIc amounts

to about 140 Watt, substantially less than the heat load of about 400 Watt for an octant, which is

the smallest cryogenic unit of HERA’s superconducting magnet ring.

As the clipping losses from the stored laser beam power of 150 kWatt on the vacuum pipe
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aperture are well below 1 Watt in the entire magnet string, it can be concluded that the cryogenic

operation of the dipole strings will not pose any problems.

3.6 Vacuum system

The vacuum system for the optical resonators of ALPS-IIb and ALPS-IIc and the insulating vacuum

system for the superconducting magnet strings will be described. As we will outline below, here,

we profit very much from the experience gained at HERA. In addition the concepts for changing

the refractive index in the cold pipe within the optical resonators of ALPS-IIc will be described.

3.6.1 The vacuum system for the optical resonators of ALPS-IIb

In the straight section HERA West two optical cavities of about 100m length can be set up with

very little effort needed for the vacuum system. The still existing vacuum pipe of the HERA proton

ring can be used for ALPS-IIb as it is straight over about 2 ·160m in contrast to the other straight

sections of HERA, where vertical bending magnets limit the available straight length in the vacuum

pipe to about 2 · 60m. The aperture of the proton beam pipe is large (cf. Fig. 44) – except for one

location which can be easily modified – and allows the operation of optical cavities at very low

clipping losses.

Locations in hall West and in the tunnel on both sides of the hall have been identified, where

little effort is required to remove the existing accelerator installation to free space for the clean-

rooms at an adequate distance from the hall. The vacuum vessels for the optical components will

be identical to the ones used at ALPS-IIc (see below).

The existing vacuum system is equipped with a large number of ion getter pumps and titanium

sublimation pumps which will allow to obtain very low vacuum pressures in the optical resonators.

At HERA a pressure of 10−10 mbar was achieved. For the regeneration cavity the operation of

ion getter pumps is problematic as they are a potential source of light from glow discharges in the

pumps. Therefore they will be switched off during the measurements searching for hidden photons.

However, the pressure in the pipe can be easily maintained at about 10−6 mbar by turbo-molecular

pump-stations.

3.6.2 The vacuum system for the optical resonators of ALPS-IIc

Three vacuum vessels at room temperature contain the optical elements of the experiment at the

ends of the magnet strings and in the middle between the strings (see Fig. 36). In each vessel the

breadboard for the optical elements is supported from the optical table at three points. The supports

are mechanically decoupled from the vacuum vessels by soft bellows (see Fig. 36). The vessels will

be supported from the floor of the cleanrooms. This concept will be tested at ALPS-IIa.

The vessels will be separable from the vacuum in the magnet strings by all-metal gate valves,

to allow venting of the vessels for work on the optical components, while the magnet strings are

at liquid Helium temperature. If the work on the optical components in the vented vessel requires

transmission of the laser light through both production and regeneration cavity, i.e., an opening of

the gate valves, a complete warm up of the magnet strings will be necessary. Flanges on the vessels

with electrical feed-throughs will allow the connection of electro-optical elements and sensors. A

flange in the central vessel will allow the operation of the “light tight wall” shutter.
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Figure 36. Vacuum vessel for the optical elements in the middle of the experimental setup and one support

of the optical breadboard.

Figure 37. Pumping port (left) and pumping port with Ion Getter Pump (right).

The large flanges at the top and at the bottom of the vessels will be sealed by O-rings to ease

the access to the optical elements in the vessels. To reduce the permeation through the O-rings

there will be two rings per flange spaced a few mm apart. The space between the O-rings will

be pumped to about 1 mbar by a small membrane pump. This concept allows to obtain pressures

below 10−8 mbar in the vessels.

The vessels will be pumped by oil-free turbo molecular pump stations and NEG pumps. The

use of NEG pumps which pump only chemically active gases, will allow the insertion of Helium

gas into the vacuum system (see below), while maintaining a low partial pressure of active gases.

Each string of 10 superconducting HERA dipoles will be containing 2 dipoles with a pumping

port (see Fig. 37), one being connected via a manual valve to an Ion getter pump of 60 liters per

second [118], the other to a rupture disk, which serves as an overpressure valve (see Fig. 38). For

pump down from atmospheric pressure to < 10−5mbar, a pump station with a turbo molecular

pump will be connected (see Fig. 39). Once the beam tubes in the magnet strings approach liquid

Helium temperature external pumps are not needed anymore as the wall of the tubes acts as a cryo-

pump, and the external pumps will be disconnected by the manual valves. The pressure in the cold
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Figure 38. Pumping port with rupture disk.

Figure 39. Turbo-molecular pump station.

sections will be well below 10−10 mbar.

The procedures for assembly and leak checks will be the same as for HERA [119].

3.6.3 The insulation vacuum system

At HERA the insulation vacuum for the chain of superconducting magnets was segmented into

sections by vacuum barriers in the quadrupole cryostats [119]. At ALPS-IIc there are no vacuum

barriers, so the two 100 m long strings of cryostats, connected by the kicker bypass line (see

Sect. 3.5.3), have a common insulating vacuum. This will not pose any problem, as demonstrated at

HERA, where during operation the vacuum barriers were bridged by vacuum bypass lines, forming

one ≈600 m long insulation vacuum section. The insulation vacuum of the magnet strings will be

continuously pumped by a few turbo molecular pump stations as at HERA to a pressure of about

10−6 mbar.

The procedures for assembly and leak checks will be the same as for HERA [118].

3.6.4 Increasing the refractive index in the optical resonators of ALPS-IIc

To improve the range of ALPS-IIc concerning the coupling constant and the mass of the searched

for ALPs, the momentum transfer q between the laser photon and the axion-like particle has to be

varied, cf. Sect. 2.2.1. This can be achieved by a change of the refractive index n in the beam pipe

for both the production and the regeneration side of the experiment. The momentum transfer is
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Figure 40. Wall coverage in molecules
cm2 as a function of pressure. The scaling formula is taken from E.

Wallen [120].

given by:

q = n ·ω −
√

ω2 −m2 (3.1)

where ω is the photon energy and m is the mass of the axion-like particle.

In ALPS-I [6], the refractive index was changed by injecting Argon gas into the vacuum pipe.

This procedure is applicable also to ALPS-IIb. However, as the wall of the vacuum pipe at ALPS-

IIc is at liquid Helium temperature, in contrast to the experimental setup of ALPS-I , gases will

condense on the cold surface with too low a vapor pressure to be of any use.

Only the insertion of Helium gas can lead to a pressure increase in the pipe, yielding adequate

values for the refractive index. Helium atoms will also condensate on the wall of the pipe, but as

soon as the coverage exceeds a monolayer (≈ 1015 molecules
cm2 ) the gas pressure in the pipe at liquid

Helium temperature will reach values (see Fig. 40), which lead to a sufficiently large increase of

the refractive index and thus the momentum transfer q.

The pressure shown in Fig. 40 is measured at room temperature, for example at the pumping

port shown in Fig. 37. The pressure pw at room temperature (Tw) and the pressure pc in the cold

pipe (Tc) are connected by the Knudsen relation

pc

pw
=

√

Tc

Tw
. (3.2)
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Using this relation and the Lorentz-Lorenz law, one can determine the refractive index [121] in the

cold pipe from the pressure pw measured at room temperature (see Fig. 41), through

(n−1) =

√

Tw

Tc
(nw −1)

pw

1000 mbar
, (3.3)

where Tw = 300K, Tc = 4K and nw the refractive index at room temperature and 1000 mbar.

The production probability for axion-like particles [57] (see Eq. 2.1) does essentially not

change up to a pressure (at room temperature) of ≈ 0.001 mbar for the chosen photon wavelength

of 1064 nm. Fig. 42 shows the spiky structure of the probability for a pressure of 10−3 mbar. Vary-

ing the pressure to higher values (up to ≈0.5 mbar) will shift the position of the spikes and thus

leading to a smooth coverage of the ALP’s mass range.

A pressure stability of 0.001 mbar will keep the conversion probability in the production and

regeneration regions stable at a level better than 99%. This will be feasible by measuring the

pressure with capacity manometers, as the partial pressure of Helium is dominant in the range of

interest, compared to other gases in the warm part of the vacuum system.

To establish a certain Helium pressure in the cold pipe, Helium gas will be injected into the

vessels at room temperature at the ends of the magnet strings. Helium atoms will condensate first

on the wall of the cold pipe close to the point of injection. Then the wall coverage will slowly

propagate along the pipe, eventually reaching the far end of the pipe [120]. In the pressure range

of interest for ALPS-IIc it will take a few hours to reach a homogeneous and stable coverage,

indicated by equal Helium pressure in the vacuum vessels at room temperature.
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Figure 42. Normalized production probability at 10−3 mbar as a function of ALP mass.

For the variation of the momentum transfer q the Helium pressure will be changed upwards

from 0.001 mbar to 0.5 mbar, as the removal of Helium from the walls of the cold pipe will require

a warm up of the magnet strings well above 4.2K.

The round trip losses in the optical cavities due to Rayleigh scattering off Helium atoms will

be very small (2 · 10−8 at 0.5 mbar), thus not leading to a reduction of the power buildup of the

cavities. The additional thermal load on the magnet strings due the scattered photons is negligible

(≈0.01 Watt).

3.7 Data acquisition

The data acquisition system (in the following DAQ) will provide the front-end to the detector read-

out and various subsystems (including the slow-control). The front-end will include control over

various subsystems and will record monitoring informations during the operation of the experi-

ment in data-taking and calibration modes. The various data-streams from the detector and the

monitoring systems will be collected and stored for later analyses.

Technical challenges The DAQ has to be scalable to the different stages of the ALPS-II experi-

ment and to be flexible for changes in the photon detector during the different setups. The amount

of data to be read-out and handled is modest and within the performance of available technology.
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We are expecting event rates well below kHz in triggered mode (mostly during calibration runs)

for the TES and CCD read-out rates probably well below a Hz for calibration and even smaller for

data-taking.

Conceptual design The suggested design of the TES-readout is based on a commercially devel-

oped digitizing system (ATS9462 from AlazarTech [122]) for the actual data taking. The digitizing

board allows to sample and digitize up to 512 MSamples with a frequency of 180 MSamples/s

and 16 Bit dynamic range. This PCIe based board has been in use for the digitization of TES

signals at the group 7.21 at the Physikalisch Technisches Institut in Berlin. For the initial setup

and tests an already available DRS-4 board of the ETH Zürich with 4 channels in self-triggering

mode can be used [123] as well. In case of a CCD-camera as detector system, the camera can

be connected directly via a USB interface to the read-out PC. The node (detector and read-out)

handles the communication and transfer of data to a server system. There, the data is collected and

stored in a relational data-base system (preferentially MySQL). The inter-process communication

will be based upon a state-machine system which defines states (e.g., inactive, configuring, ready)

and allowed transitions between the states. The unified state-machine approach will provide well-

defined access and control over the various sub-systems. The actual protocol for the inter-process

communication and control is based upon XML (e.g., XML-RPC [124]) (see Fig. 43 for a scheme

of the DAQ system).

In a similar way, the interface to additional slow-control systems will be incorporated including

1. Magnet control: The superconducting magnets will be controlled by the cryogroup at DESY.

The control environment is based on the EPICS (Experimental Physics and Industrial Control

System), which is in wide use at accelerator facilities. The ALPS-I experiment used a thin

client which would communicate via the http protocol to the actual user. A similar scheme

will be used, extending the HTML syntax to XML. The parameters passed to the DAQ will

include the electrical current, the temperature, as well as error messages in order to diagnose

a quench.

2. Safety loop for the laser: The safety loop will monitor the status of the doors which connect

the grey room from the outside, the emergency switch-off buttons, as well as the integrity

of the laser protection covers (personal interlock). The technical interlock will interrupt the

operation if the room temperature exceeds a defined limit, the pressure in the pipes is too

large (vacuum system), or the superconducting magnet quenches. Additional warnings will

be provided if any other system is in a non-ready state.

For safety reasons, any breaches of the interlock system will have to lead to an immediate shut-

down of the laser system.

The temperature switch can be implemented by using the Uniflex CI45 module from PMA

Prozess- und Maschinen-Automation [125]. These modules need a 24 V power supply and are

mounted on an industrial standard (DIN) rail (Hutschiene). The measured temperature can be read

out directly by the module. The modules can be programmed so that a relay switches at an upper

or lower limit. This relay can be connected directly with the safety loop. The combination of

ARM based computer nodes (e.g., Plug-PC or RASPBERRY PI) which act as interfaces to micro-

controller units (e.g., Arduino boards: these boards provide 14 D/A ports and 6 A/D ports, access
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Figure 43. Scheme of the distributed data acquisition and control system.

through a USB interface). These ready-to-use micro-controller boards are a convenient solution

based upon commercially available hardware that is low-priced and very flexible.

Again, the individual sub-systems will be logically accessed as a state-machine from the

server. Data-streams will be stored in a data-base. The actual number of monitoring systems is

either limited by the address space of the TCP/IP stack (unlikely to be relevant) or the required

bandwidth that can be handled by the server which is used for communication. For the initial

setup, tens of monitoring channels distributed over five nodes will be used.

The front-end to the user will be available through a client program that can be run on any

computer within the same sub-domain of address space. At a later stage, remote-operation through

secure network protocols will be implemented (at a lower priority). The client will have control

over the type of data-taking performed (regular data taking and calibration data taking), will be

able to set parameters of the data-taking (e.g., exposure times of the CCD, triggering threshold for

the TES) and access and control all sub-systems. The parameters will be stored in the data-base in

order to recover the state of the entire system at any time.

The actual data retrieval for analysis will be handled through access of the MySQL data-base.

A number of simple client scripts allow to select and retrieve data and calibration information

preferentially in FITS-type files.

Expected performance The required performance of the system is well-matched with the pro-

posed system. In case of a TES detector system, the most challenging component is the read-out
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of the data during calibration runs. In this particular case, it may be necessary to digitize with a

high sampling frequency in the ideal case continuously the signal for a fraction of a second. During

regular data-taking, the expected background rate of the TES will be small (10−4 Hz) and will be

of no concern. The proposed PCIe-based digitizer system will allow both continuous data-taking

for a few seconds to monitor the base-line accurately as well as triggered operation with additional

on-board digital pulse-shaping (if needed).

The other systems will have modest read-out rates below kHz. Thus, the traffic of tens of

nodes can be handled easily with regular network bandwidth.

3.8 Site considerations for ALPS-IIb and IIc

ALPS-IIb

For ALPS-IIb two optical cavities of about 100 m length will be set up with very little infrastructure

effort in the straight section HERA West. The still existing vacuum pipe of the HERA proton ring

can be used for ALPS-IIb as it is straight over about 2 · 160 m in contrast to the other straight

sections of HERA, where vertical bending magnets limit the available straight length in the vacuum

pipe to about 2 ·60 m. The aperture of the proton beam pipe (see Fig. 44) is large – except for one

location which can be easily modified – and allows the operation of optical cavities as described

before.

Locations in hall West and in the tunnel on both sides of the hall have been identified (see

Fig. 45), where little effort is required to remove the existing accelerator installation to free space

for the clean rooms at an adequate distance from the hall.

ALPS-IIc

For ALPS-IIc the best possible setup – allowing for a power buildup of 40000 in the optical cavity

on the regeneration side of the experiment- consists of 2 · 12 straight HERA dipoles. With the

overall dipole length of 9.766 m such a setup requires a total length of about 250 m including the

space for the cleanrooms and laser huts. The base line design for ALPS-IIc with 2 · 10 almost

straight dipoles requires a total length of about 210 m.

[mm]

Distance from center of the hall 

[m]

Horizontal half aperture

Vertical half aperture

[mm]

Distance from center of the hall 

[m]

Horizontal half aperture

Vertical half aperture

Figure 44. The figure shows the horizontal and vertical apertures of the proton beam pipe to both sides of

HERA hall west. The Gaussian laser beam with a size required for a power buildup of 40000 is sketched as

a red dotted line. As can be seen there is ample space to accommodate the laser beam on both sides.

– 62 –



The natural choice for the setup of dipole strings with these lengths is a straight section of

the HERA tunnel due to the principal availability of infrastructure like cryogenics. The available

length in the long straight sections East and West amounts to 320 m, long enough for a setup of

2 · 12 HERA dipoles for ALPS-IIc. The short straight sections South and North with a length of

220 m allows the setup of 2 ·10 HERA dipoles.

An installation outside of the HERA tunnel on the DESY site has also been considered. There

are possible locations with sufficient length along the eastern borderline of the DESY site. Due to

the additional costs of such an installation for buildings, cryogenics, and infrastructure, which have

been estimated to about 12 million Euros, this possibility has not been followed any further.

The installation of the dipole strings connected properly to cryogenic boxes requires the re-

moval of the existing accelerator installation in any straight section of HERA chosen for this pur-

pose. This is mainly due to the necessary exchange of the cryogenic boxes from one end of the

straight section to the other, to match the connection pattern of the dipoles. The effort in this re-

spect is largest in the straight section West due to the large number of special and complicated

accelerator systems like the proton injection line, the superconducting cavities of the electron ring,

the RF cavities of the proton ring, and the proton beam dump. The beam dump would have to be

disposed of [126], which would cost a few million Euros.

The setup of HERA dipole strings in the straight section East would require the highest op-

eration cost for the cryogenics of all straight sections. In addition the power supply for the su-

perconducting magnet chain of HERA would have to be moved from hall West to East. However,

the straight section East remains the location for a setup of 2 ·12 dipoles string with lower cost as

compared to West, due to the disposal cost for the beam dump.

For the base line design of the ALPS-IIc experiment with 2 ·10 dipoles the total cost is lowest

Figure 45. This picture shows a part of the HERA West right section. Here, there are about 25 m space for

an optical setup requiring little effort for disassembly.
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in the straight section HERA North, which therefore has been selected as best suited for the setup

of ALPS-IIc.

3.9 Setup and installation

ALPS-IIb

In the straight section HERA West the infrastructure for two optical cavities of about 100m length

will be set up with very little infrastructure effort. The existing vacuum pipe of the HERA proton

ring can be used for ALPS-IIb as it is straight over about 2 ·160m in contrast to the other straight

sections of HERA, where vertical bending magnets limit the available straight length in the vacuum

pipe to about 2 ·60m.

Locations in hall West and in the tunnel on both sides of the hall have been identified, where

only minor activities are required to remove the existing accelerator installation to free space for

the clean rooms at an adequate distance from the hall.

2013

The accelerator installation at the locations for the cleanrooms can be dismantled by the DESY

group MEA, whenever manpower is available throughout the whole year, creating space for the

installation of the cleanrooms. The construction of the laser huts will be designed and orders for

the construction as well as for the clean room equipment will be placed.

2014

The cleanrooms will be installed within the first half of the year. With the completion of the ALPS-

IIa experiment in the middle of 2014 (see Sect. 3.2) the optical components and the optical tables

become available and will be installed in the cleanrooms.

2015

The ∼ 100m long production and regeneration cavities will be setup and commissioned, allowing

physics runs in the second half of the year.

ALPS-IIc

2015

In the beginning of 2015, with the completion of the XFEL project, manpower will be available at

DESY to install the ALPS-IIc setup and also cryogenics capacity, allowing the cryogenic tests of

the HERA dipoles for ALPS-IIc on the magnet test bench.

In parallel to the magnet tests, the accelerator installations in the straight section North will be

disassembled. For the disassembly of the normal conducting magnets and cavities in the straight

section the “HERA tram” (see left side of Fig. 46) will be used, which has been transfered from

hall West after the removal of the Kicker bypass from the HERA tunnel.

After the deinstallation of all elements in the straight section, the cryogenic boxes at the ends

of the straight section will be disconnected and moved to the opposite sides.

Then activities will follow, which are easier without the magnet strings in place, like the mod-

ification of the quench gas collection pipe, modification of dump resistors, connections for cooling

water of the laser huts, or work on the main power cables.
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Figure 46. HERA tram (left) and superconducting cables in 4K Helium tube (right).

2016

New supports for the dipoles will be installed. For the installation of the dipoles the “HERA tram”

will be used. In general the installation of the dipole strings will follow the procedures established

for the installation of the superconducting magnets at HERA [127].

After the installation of the superconducting dipoles, the HERA kicker-bypass will be installed

between the two strings. To compensate the force of about 80 kN by the atmospheric pressure on

the end flanges of the kicker-bypass, the endflanges are connected by 3 tension rods, which have

to be replaced by a steel girder construction to allow later after the installation of the cleanroom

access to the optical elements in the vacuum vessel.

The proper electrical connection of the superconducting cables for forward and return current

between adjacent dipoles (see right side of Fig. 46) is of uttermost importance for the operation of

the magnet strings. The heat generated by the resistivity of the connection must be small enough

to be absorbed by the surrounding liquid Helium, to keep the temperature of the connection stable.

For HERA a special tool was used to braze the connections properly by well-trained people [128].

Most of those people are in retirement by now, but a few are still at DESY, who will be capable

of connecting the cables after some retraining. Video material28 is available which shows the

procedures. The video material also shows how to insulate and to fix the cables after brazing to

avoid an electrical discharge. Once the electrical connections are made and tested, the Helium

pipes of adjacent dipoles will be joined, using special welding tools from HERA, shown in the

available video material. These tools are still available and also knowledgeable people to weld the

connections.

The electronics for the quench detection and protection will be placed in the tunnel close to

28Video material by Otto Peters retired from the DESY group MKS.
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the magnets after the completion of the magnet installation.

The laser huts (2.25 ·m2) with the optical tables at the end of the strings and in the middle will

be installed, using the available material from the completed ALPS-IIb experiment for the setup of

the optical resonators and the detector. The cooldown of the magnet strings will be done once the

commissioning of the optics will be completed, as venting of the vacuum pipe in the magnets for

the commissioning of the optics can only be done when the magnets are at room temperature.

2017

After the commissioning of the optical resonators, the detector and commissioning of the magnet

string physics runs will start.

3.10 Operation and run procedure

As discussed in Sect. 2, some parameters will be varied over the course of the experiment in order

to interpret a potential signal and distinguish the different types of WISP, and to fill the sensitivity

gaps (cf. Figs. 3 and 4). These parameters include the magnetic field strength, the orientation of

the laser polarization w.r.t. the magnetic field, and the pressure of the rest gas. The data taken with

one set of these parameters will result in a run. During each run, the experiment will operate in

different modes, which are dedicated either to assert the proper condition of the experiment or to

take data. These are described below. Depending on the actual performance of the subsystems of

the experiment and during the commissioning phase, additional modes may be necessary. A typical

run is shown in Fig. 47.

optics

detector alignment

detector calibration

optics

detector dark

optics

detector signal

. . .

optics

detector dark

optics

detector calibration

detector alignment

run preparation data taking run conclusion

Figure 47. A typical run of ALPS-II in routine operation.
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Condition Assertion

Optics Mode During this mode, the optics system is brought up. This includes checking the

alignment of the production and regeneration cavities, locking the two cavities and setting the

resonance condition of the regeneration cavity for 1064 nm as necessary for the targeted data type

(see below). The resonance condition for 1064 nm can be checked by monitoring QPD7 and

opening the shutter on the central breadboard (Fig. 12). If the shutter is open, infrared light enters

the (resonant) regeneration cavity and is recorded by QPD7.

Because the shutter may be open in this mode, 1.7 mW of 1064 nm (1016 photons per second)

will leave the regeneration cavity and potentially reach the detector. Hence, the detector has to be

protected by, e.g., a flip mirror, which redirects the light to a beam dump.

Detector Alignment Mode In this mode the alignment of the detector to the beam of reconverted

photons is verified. To this end, the shutter on the central breadboard will be open. Infrared light

will enter the regeneration cavity, following exactly the path of potentially regenerated photons. As

mentioned above, 1.7 mW of 1064 nm radiation will hit the detector. Hence, a dedicated filter will

be necessary to protect the detector from any damage due to this intensive radiation as discussed in

Sect. 3.4.2.

Data Taking

It is foreseen to routinely operate the CCD and the TES in three distinct modes: calibration, signal,

and dark. Signal and dark mode will only happen during stable operation of the cavities. They

differ only in the resonance condition of the regeneration cavity. In signal mode the regeneration

cavity will be resonant for infrared light while in dark mode it will be resonant only for 532 nm.

This will be achieved with the AOM on the central breadboard (Fig. 12). Thus, the regeneration

probability is inhibited by a factor of the power build-up of the regeneration cavity for infrared

light (∼ 40000). This makes it possible to record all experimental background (e.g., stray light,

fluorescence effects).

CCD Operation The calibration of the CCD will include the read-out of a bias-frame, a dark-

frame, and a flat-field, which will be used to assure a stable operation of the CCD. The expected

stability during routine operation will reduce the need to take calibration data very frequently.

However, complete calibration data will be taken before and after operation in signal or dark mode.

Regular data-taking in signal or dark mode will consist of a series of frames. The exposure

time will be chosen such that the read-out noise and dark current will balance, which results in

roughly one hour (cf. Sect. 3.4.3).

TES Operation The specific calibration and data-taking routine for the TES based read-out is

at this point less-well defined as for the CCD. Generically, a calibration mode will be required to

calibrate and characterize the detector, the SQUID amplification, and the digitization. All compo-

nents are potentially a source of background and require independent calibration to characterize

the baseline and its fluctuations. Currently, we envisage to use a triggered digitization with up to

180 MSample/s frequency. A continuous read-out of up to 512 MSamples can be stored on-board,

for longer data-taking, direct memory access is possible to store longer data-streams. This will

however be only an option in exceptional cases. In the case of the DRS4-board, the maximum
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bandwidth of the read-out limits the read-out rate to a few hundred Hz (based upon the experience

with the DRS4 board, the maximum rate is 530 Hz). With a random trigger of the read-out, the

baseline can be sampled in an unbiased way. However, any irregularity at frequencies smaller than

kHz will not be visible. This is in principle not an issue given that the signals are much faster.

Dedicated calibration runs will be used to read-out pulses registered with the TES illuminated

by light. The pulses will be analyzed to accumulate a photon number spectrum to calibrate the

single-photon response and to set the trigger threshold.

During regular data-taking, the triggered signals are recorded (without any on-line pulse-

shaping) in a time window of 100 ms in order to cover the pulse as well as the base-line before

and after the pulse. The trigger time is accurate to 8 ns and will be stored for each triggered event.

3.11 Data analysis

The analysis of the photon detector data will result in the number of regenerated photons, which has

to be combined with other experimental parameters to determine the coupling strength to photons

and possibly also the mass of a WISP. More accurately, a confidence interval will be estimated,

yielding either an upper limit or an interval for the number of regenerated photons. Because the

TES and the CCD deliver different types of measurement (the TES is a true single-photon detector

while the CCD integrates the incoming photon flux during exposure), the procedure to estimate the

number of regenerated photons has to by tailored for each detector.

The method to estimate the rate of reconverted photons for the two detectors is described

below. The interpretation of a signal of re-converted photons is sketched in Sect. 3.1.2.

The signal recorded by any of the two detectors will be the sum of different components: the

flux of reconverted photons, irreducible background, noise of the read-out, and a potential offset.

The value of the signal, v, can be described by the following statistical model,

v ∼ Pois(λsig)⊕Pois(λbgd)⊕Gauss(δ ,σro)⊕Offset , (3.4)

where Pois(λ ) are Poisson-distributed components due to reconverted photons (sig) and back-

ground photons (bgd), Gauss(µ,σ) the component due to noise of the read-out (ro), which is

assumed to be Gaussian, and Offset a constant. The measured value, v, is distributed like the

convolution of the distributions of the components, which is represented by ⊕.

CCD The CCD was already used in ALPS-I and later tested in detail to determine its performance

for 1064nm photons. The analysis procedure is based on these experiences and, naturally, more

matured than the approach for the TES, where the data analysis will depend on the results of the

ongoing R&D.

Interpreting the components of Eq. 3.4 in the case of the CCD is straight forward. The Poisso-

nian background is due to the accumulation of thermally produced dark charge; the read-out noise

is caused by the amplification and digitization during the read-out of the camera; and an offset will

be present due to biasing the sensor chip. Pixels outside of the signal region on the camera can be

described by the same model by setting λsig to zero.

It was found that the bias level of the camera shows approximately linear, spatial variations

similar for each frame (fixed pattern) and varies by a global offset on a per-frame basis. To correct

this per-frame variation of the offset, the value of the signal pixel will be corrected by subtracting
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the average of a large number of pixels in the vicinity of the signal pixel. Because the variation of

the bias is approximately linear, the spatial variation of the bias is averaged and can be dropped if

these pixels are distributed symmetrically around the signal pixel. Thus, the corrected signal pixel

value, vc, is described by

vc ∼ Pois(λsig)⊕Gauss(δ ,σro+dc) ,

where the Gaussian now contains the components of the read-out noise and dark current of the

signal pixel as well as of the averaged pixels and incorporates a possible systematic offset, δ ,

between these.

Any signal is searched for by comparing so-called data frames (data, where re-converted pho-

tons from WISP can be expected) with dark frames without any re-converted photons. Correspond-

ing details are sketched in Sect. 3.1.2. To estimate λsig from a set of N signal and M dark frames,

we will use the difference of the averages of the corrected pixel values, t,

t =
1

N

N

∑
i=1

v
(sig)
c (i)− 1

M

M

∑
j=1

v
(dark)
c ( j) ,

which is described statistically by

t ∼ 1

N

N
⊕

i=1

Pois(λsig)⊕Gauss(0,σt) ,

where the first term represents the averaging of N Poisson-distributed observables and σt depends

on the sizes of the signal and dark data sets, N and M, and on the noise from the read-out and the

dark current, σro+dc,

σ2
t =

(

1

N
+

1

M

)

σ2
ro+dc .

An algorithm based on [129] has already been implemented to estimate λsig for an observed

value of t, where σro+dc is estimated from the dark frames. Monte Carlo simulations showed that

for N > 10 and M ≥ 10 ·N this gives precise coverage. Systematic tests of this method will include

using different groups of pixels for the offset correction and applying the method on non-signal

pixels.

TES The TES provides single-photon informations which can be extracted from the pulse shape

(e.g., rise-time, height, pulse-width). The pulse has a typical risetime of 300ns. With the proposed

read-out system that samples at a frequency of 180 MSamples/s, the rise-time of the pulse will be

very well resolved with ≈ 50 samples.

In the simplest scheme, a trigger threshold will be set to suppress the base-line noise and will

trigger the read-out of the digitized pulse and the adjacent base-line29.

The trigger threshold will be regulated to suppress unwanted noise of the base-line while

maintaining a high photon detection efficiency. The resulting background will be given by real

photons (mostly thermal) (λbgd) as well as read-out noise (Gauss(δ ,σ)). The analysis of the events

29A more refined triggering would be based upon the image shape and could be implemented in the FPGA of the

digitizer
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can be used to suppress background photons which are not in the right wavelength band (pulse-

height) or do not show the characteristic pulse-profile. The former will reduce the value of λbgd

while the latter will help to reduce the impact of base-line/readout. A possible statistical analysis of

the TES data could in principle be carried out in a similar fashion as for the CCD. However, it may

be more sensitive to develop an analysis which will benefit from the individual pulse measurements.

Such an analysis would calculate a probability for each observed pulse to be produced from a re-

converted photon, a background photon, or to originate from noise. In such an analysis, hypothesis

testing and parameter estimates would be based upon a likelihood method.

4. Summary & concluding thoughts

Low-energy particle physics experiments enable us to explore fundamental physics in a comple-

mentary way to accelerator-based searches by looking for new light particles with tiny couplings.

Such new particles arise naturally in many extensions of the Standard Model and might also explain

observations that are not accounted for within the particle physics known today (important exam-

ples being the absence of CP violation in the strong interactions and the nature of Dark Matter).

We have presented here the technical design for the proposed ALPS-II experiment at DESY

which could contribute strongly to exploring the widely unchartered territory of Weakly Interact-

ing Slim Particles (WISPs). ALPS-II would improve the best present-day laboratory sensitivity

achieved by ALPS-I by more than three orders of magnitude and even surpass indirect limits on

WISP properties from astrophysics and solar observations. Thus, parameter regions motivated by

astroparticle physics phenomena and from predictions of string theory are in reach of ALPS-II.

ALPS-II necessitates a collaboration of research fields which are usually not in close contact:

the know-how of large particle physics accelerator projects, optical expertise from gravitational

wave interferometers and background-free single photon counting similar to the requirements in

quantum optics and communication technology. Based on the experience with ALPS-I we are

confident to realize ALPS-II with data taking completed in 2017 given the resources and the time

schedule presented in this TDR.

ALPS-II could be implemented at DESY in a very cost effective manner by re-using available

spare HERA dipole magnets and the HERA infrastructure. For investments and operation about

2 MEuro are required in total within the next five years. To significantly go beyond the ALPS-

II reach, R&D activities to tackle technological challenges have been identified: Examples are a

further increase of the laser power in the production cavity to several MW and operating with green

light allowing for much longer installations due to a smaller laser beam divergence. Corresponding

research has started already. Future ALPS-II-like experiments could strongly benefit from magnet

development ongoing for a possible energy upgrade of LHC. However, such large and probably

costly installations are far from being ready for decision. Besides the technology issues one has to

await new results from astrophysics, laboratory WISP searches and theory.

To conclude: Although challenges remain, the rewards of exploring the low-energy frontier

of particle physics with ALPS-II at DESY could be enormous, yielding fundamental insights into

long-standing astro and particle physics puzzles.
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