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1. Introduction. Let A be a nonsingular matrix of order n and b a nonzero n-dimensional
vector. The Arnoldi process [3] reduces A to upper Hessenberg form by a particular type of Gram-
Schmidt orthogonalization for the vectors b, Ab,A2b, . . . At each step of the process, one matrix-
vector multiplication with A is performed and one row and one column is appended to the previous
Hessenberg matrix. The process is well suited to iterative methods with large sparse matrices A.
Two popular methods extracting approximate solutions from the generated Hessenberg matrices
are the Generalized Minimal Residual (GMRES) method [39] for solving the linear system Ax = b
and the Arnoldi method (see, e.g., [37, 38]) for computing the eigenvalues and eigenvectors of A.

The Arnoldi process can be seen as a generalization to non-hermitian matrices of the Lanczos
process for tridiagonalization of hermitian matrices [22]. The Lanczos process is at the basis of
the Conjugate Gradients (CG) method [21, 23] for hermitian positive definite linear systems and
of the Lanczos method for hermitian eigenproblems [22]. In this sense GMRES is a generalization
of CG (even though the l2 norm of the residual is not minimized in CG) and the Arnoldi method
a generalization of the Lanczos method. As convergence of the CG and Lanczos methods are
well understood, it was natural to take the convergence theory of these methods as a starting
point for explaining the behavior of the GMRES and Arnoldi methods. In the CG method,
the convergence behavior is dictated by the distribution of the eigenvalues of the matrix. In
practice, the same is often observed for the GMRES method, but, with possibly non-normal
input matrices, the situation becomes more subtle. For example, Greenbaum and Strakoš [20]
proved that if a residual norm convergence curve is generated by GMRES, the same curve can be
obtained with a matrix having prescribed nonzero eigenvalues (see [10, Lemma 6.9] for an analogue
on prescribed nonzero singular values). Greenbaum, Pták and Strakoš [19] complemented their
result by proving that any nonincreasing sequence of residual norms can be given by GMRES
(a similar result for residual norms at the end of restart cycles in the restarted GMRES method
can be found in [46]). Furthermore, in Arioli, Pták and Strakoš [2] a complete parametrization
was given of all pairs {A, b} generating a prescribed residual norm convergence curve and such
that A has prescribed spectrum. The results in these papers show that the GMRES residual
norm convergence needs not, in general, depend on the eigenvalues of A alone. Other objects,
mostly closely related to eigenvalues, have been considered to explain convergence, for example
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the pseudo-spectrum [43], the field of values [9] or the numerical polynomial hull [18]. In [45] it
was suggested that convergence of the eigenvalues of the Hessenberg matrices generated in the
Arnoldi process (the so-called Ritz values) to eigenvalues of A will often explain the acceleration
of convergence of GMRES.

A fundamental tool in the convergence analysis of the Lanczos method for hermitian eigen-
problems is the interlacing property for the eigenvalues of the subsequently generated tridiagonal
matrices. It enables to prove, among others, the persistence theorem on stabilization of Ritz
values (see, e.g., [31, 32, 33] or [29]). There are several generalizations of the interlacing property
to normal matrices; see e.g. [14, 1], or the papers [25, 12] with geometric interpretations. How-
ever, just as for GMRES, potentially non-normal input matrices make convergence analysis of the
Arnoldi method delicate. There is no interlacing property for the principal submatrices of general
non-normal matrices, see [41] for a thorough discussion on this topic and its relation to the field
of Lie algebra’s. In [30] one finds a sufficient and necessary condition for prescribing arbitrary
eigenvalues of (not necessarily principal) submatrices of general non-hermitian matrices. For a
detailed spectral analysis of non-normal Hessenberg matrices and their principal submatrices, see
also [48].

Since the GMRES and the Arnoldi methods are closely related through the Arnoldi orthogo-
nalization process, a naturally arising question is whether a result, similar to the results of Arioli,
Greenbaum, Pták and Strakoš, on arbitrary convergence behavior of the Arnoldi method can be
proved. By arbitrary convergence behavior of the Arnoldi method, we mean the ability to prescribe
all Ritz values from the very first until the very last iteration (we do not consider convergence to
eigenvectors). In this paper we will give a parametrization of the class of all matrices and initial
Arnoldi vectors that generates prescribed Ritz values. Besides this result on arbitrary convergence
behavior of the Arnoldi method, we derive a parametrization that allows to characterize all pairs
{A, b} generating arbitrary convergence behavior of both GMRES and Arnoldi. The Ritz values
generated in the GMRES method therefore do not, in general, have any influence on the generated
residual norms.

The paper is organized as follows: In the remainder of this section we introduce some notation,
in particular the notation used in [2], which we adopt and we recall the parametrization given
in [2]. In Section 2 we give a parametrization of the class of matrices and initial Arnoldi vectors
that generates prescribed Ritz values. Section 3 reformulates the parametrization in order to
parametrize the pairs {A, b} generating arbitrary behavior of GMRES and Arnoldi at the same
time. We close with a brief discussion of our results and some words on future work.

1.1. Notation. We will use the following parametrization of matrices and right-hand sides
giving prescribed spectrum and prescribed convergence of the GMRES method (see Theorem 2.1
and Corollary 2.4 of [2]).

Theorem 1.1. Assume we are given n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0

and n complex numbers λ1, . . . , λn all different from 0. Let A be a matrix of order n and b an
n-dimensional vector. The following assertions are equivalent:

1. The spectrum of A is {λ1, . . . , λn} and GMRES applied to A and b with zero initial guess
yields residuals r(k), k = 0, . . . , n− 1 such that

∥r(k)∥ = f(k), k = 0, . . . , n− 1.

2. The matrix A is of the form

A = WY C(n)Y −1W ∗
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and b = Wh, where W is a unitary matrix, Y is given by

Y =

[
h

R
0

]
,(1.1)

R being a nonsingular upper triangular matrix of order n− 1, h a vector such that

h = [η1, . . . , ηn]
T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1),(1.2)

and C(n) is the companion matrix corresponding to the polynomial q(λ) defined as

q(λ) = (λ− λ1) · · · (λ− λn) = λn +
n−1∑
j=0

αjλ
j , C(n) =

 0 −α0

In−1

...
−αn−1

 .

Furthermore, we will denote by ej the jth column of the identity matrix of appropriate order.
For a matrix M , the leading principal submatrix of order k will be denoted by Mk. With “the
subdiagonal” and “subdiagonal entries” we will mean the (entries on the) first diagonal under the
main diagonal. Throughout the paper we assume exact arithmetics and we also assume that the
investigated Arnoldi processes do not terminate before the nth iteration. This means that the
input matrix must be nonderogatory. Note that Theorem 1.1 assumes this situation. The case of
early termination will be treated in a forthcoming paper.

2. Prescribed convergence of Ritz values in Arnoldi’s method. Consider the kth
iteration of an Arnoldi process with a matrix A and initial vector b where an upper Hessenberg
matrix Hk (with entries hi,j) is generated satisfying

AV (k) = V (k)Hk + hk+1,k vk+1e
T
k , k < n,(2.1)

with V (k)∗V (k) = Ik, V
(k)e1 = b/∥b∥ and V (k)∗vk+1 = 0, V (k) being the matrix whose columns

are the basis vectors v1, . . . , vk of the kth Krylov subspace Kk(A, b) ≡ span{b, Ab, . . . , Ak−1b}.
The eigenvalues of Hk give the k-tuple

R(k) = (ρ
(k)
1 , . . . , ρ

(k)
k )

of the k (not necessarily distinct) Ritz values generated at the kth iteration of Arnoldi’s method.
We denote by R the set

R ≡ {R(1),R(2), . . . ,R(n)}

representing all (n+1)n/2 generated Ritz values. We also use S for the strict Ritz values without
the spectrum of A, i.e.

S ≡ R \R(n),

and we will denote the (not necessarily distinct) eigenvalues of the input matrix by λ1, . . . , λn, i.e.

R(n) = (λ1, . . . , λn).

In this section we investigate whether the Arnoldi method can generate arbitrary Ritz values
in all iterations. The Ritz values in the Arnoldi method are eigenvalues of the leading principal
submatrices of upper Hessenberg matrices with positive real subdiagonal entries. Prescribing the
set R is only possible if there exist, at all, Hessenberg matrices with positive subdiagonal entries
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where the eigenvalues of all the leading principal submatrices can be prescribed. Parlett and Strang
proved that there is a unique upper Hessenberg matrix with the entry one along the subdiagonal
such that all leading principal submatrices have arbitrary prescribed eigenvalues, see [35, Theorem
3]. We here give a characterization of this unique matrix, which we denote with H(R), that shows
how it is constructed from the prescribed Ritz values.

Proposition 2.1. Let the set

R = { ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n + 1)/2 complex Ritz values and denote the k × k companion matrix

of the polynomial with roots ρ
(k)
1 , . . . , ρ

(k)
k by C(k). If we define the kth column of the unit upper

triangular matrix U(S) through

U(S) e1 = e1, U(S) ek =



−eT1 C
(k−1)ek−1

...
−eTk−1C

(k−1)ek−1

1
0
...


, k = 2, . . . , n,(2.2)

then the unique upper Hessenberg matrix H(R) with the entry one along the subdiagonal and with

the spectrum λ1, . . . , λn such that the kth leading principal submatrix has eigenvalues ρ
(k)
1 , . . . , ρ

(k)
k

for all k = 1, . . . , n− 1 is

H(R) = U(S)−1C(n)U(S).(2.3)

Proof. We will show that the spectrum of the k × k leading principal submatrix of H(R) is

ρ
(k)
1 , . . . , ρ

(k)
k (uniqueness of H(R) was shown in [35] and will also be proved later). Let Uk denote

the k × k leading principal submatrix of U(S) and let, for j > k, ũj denote the vector of the first
k entries of the jth column of U(S)−1. The spectrum of the k × k leading principal submatrix of
H(R) is the spectrum of

[Ik, 0]U(S)−1C(n)U(S)
[

Ik
0

]
= [U−1

k , ũk+1, . . . , ũn]

 0
Uk

0

 = [U−1
k , ũk+1]

[
0
Uk

]
.

It is also the spectrum of the matrix

Uk[U
−1
k , ũk+1]

[
0
Uk

]
U−1
k = [Ik, Ukũk+1]

[
0
Ik

]
,

which is a companion matrix with last column Ukũk+1. From

ek+1 = Uk+1U
−1
k+1ek+1 =

[
Uk −C(k)ek
0 1

] [
U−1
k ũk+1

0 1

]
ek+1 =

[
Ukũk+1 − C(k)ek

1

]
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we obtain Ukũk+1 = C(k)ek.

Note that (2.3) represents a similarity transformation separating the spectrum of H(R) from
the strict Ritz values S of H(R). The matrix U(S) transforms the companion matrix whose strict
Ritz values are all zero to a Hessenberg matrix with arbitrary Ritz values and it is itself composed
of (parts of) companion matrices. We will call U(S), for lack of a better name, the Ritz value
companion transform.

Clearly, the Ritz values generated in the Arnoldi method can exhibit any convergence behavior:
It suffices to apply the Arnoldi process with the initial Arnoldi vector e1 and the matrixH(R) with
arbitrary prescribed Ritz values from Proposition 2.1. Then the method generates the Hessenberg
matrix H(R) itself. If the prescribed Ritz values occur in complex conjugate pairs, then the
Ritz value companion transform U(S) and the Hessenberg matrix H(R) in (2.3) are real and the
Arnoldi process runs without complex arithmetics.

We next look for a parametrization of the class of all matrices and initial Arnoldi vectors
generating given Ritz values. From H(R) we can easily obtain an upper Hessenberg matrix whose
leading principal submatrices have the same prescribed eigenvalues but with arbitrary positive
values along the subdiagonal. Let σ1, σ2, . . . , σn−1 be given positive real numbers and consider
the similarity transformation

H ≡ diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)H(R)

(
diag (1, σ1, σ1σ2, . . . ,Π

n−1
j=1 σj)

)−1
.

Then the subdiagonal of H has the entries σ1, σ2, . . . , σn−1 and all leading principal submatrices of
H are similar to the corresponding leading principal submatrices of H(R). The following theorem
shows the uniqueness of H.

Theorem 2.2. Let the set

R = { ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn) },

represent any choice of n(n+ 1)/2 complex Ritz values and let

Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)

where σ1, σ2, . . . , σn−1 are n− 1 positive real numbers. Then

H = Dσ H(R)D−1
σ

is the unique Hessenberg matrix H with subdiagonal entries

hk+1,k = σk, k = 1, . . . , n− 1,

with eigenvalues λ1, . . . , λn and with ρ
(k)
1 , . . . , ρ

(k)
k being the eigenvalues of its kth leading principal

submatrix for all k = 1, . . . , n− 1.

Proof. We already explained that H has the desired Ritz values and subdiagonal entries. It
remains to show uniqueness. For this we need a recursion for the characteristic polynomials of the
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leading submatrices Hk of H. We denote the prescribed characteristic polynomial of Hk by pk(λ)
and by σk,i we denote the product of prescribed subdiagonal entries

σk,i =

k∏
ℓ=i

σℓ.

We also define the polynomial p0(λ) ≡ 1. Using expansion along the last column to compute the
determinant of Hk − λI, we get

det(Hk − λI) = (−1)k−1h1,kσ
k−1,1 + (−1)k−2h2,kp1(λ)σ

k−1,2

+ (−1)k−3h3,kp2(λ)σ
k−1,3 + . . . + (hk,k − λ)pk−1(λ),

and hence we have the recursion

pk(λ) = (hkk − λ)pk−1(λ) +
k−1∑
i=1

(−1)k−ihikσ
k−1,ipi−1(λ), 1 ≤ k ≤ n.(2.4)

Now assume both H and H̃ have the desired Ritz values and subdiagonal entries and let us prove
that H = H̃ by induction for all subsequent leading principal submatrices. Clearly, h1,1 = h̃1,1 =

ρ
(1)
1 and if the claim is valid for all leading principal submatrices of dimension at most k − 1,

then the entries of Hk and H̃k can differ only in the last column. By comparing the coefficients
(subsequently before λk until λ0) of the polynomial pk(λ) as given in (2.4) with the coefficients
given by

pk(λ) = (h̃kk − λ)pk−1(λ) +
k−1∑
i=1

(−1)k−ih̃ikσ
k−1,ipi−1(λ),

we obtain hik = h̃ik subsequently for i = k, k − 1, . . . , 1.

Theorem 2.2 immediately leads to a parametrization of the matrices and initial Arnoldi vectors
that generate a given set of Ritz valuesR. In addition, the subdiagonal of the generated Hessenberg
matrix can be prescribed.

Corollary 2.3. Assume we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

and n − 1 positive real numbers σ1, . . . , σn−1. If A is a matrix of order n and b a nonzero n-
dimensional vector, then the following assertions are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and initial Arnoldi

vector b has eigenvalues λ1, . . . , λn, subdiagonal entries σ1, . . . , σn−1 and ρ
(k)
1 , . . . , ρ

(k)
k are

the eigenvalues of its kth leading principal submatrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = V DσU(S)−1C(n)U(S)D−1
σ V ∗
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and b = ∥b∥V e1, where V is a unitary matrix, Dσ is the diagonal matrix

Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj),

U(S) is the Ritz value companion transform in (2.2) and C(n) is the companion matrix
of the polynomial with roots λ1, . . . , λn.

Corollary 2.3 is an analogue of Theorem 1.1 on arbitrary convergence of the GMRES method.
Here we prescribe k values (the k Ritz values) in the kth iteration, whereas Theorem 1.1 prescribes
one value (the kth residual norm); the spectrum of A is prescribed in both results. Note that
in [42] it was shown that if the Arnoldi method produces a particular sequence of n(n + 1)/2
Ritz values, the same sequence can be generated by a whole class of matrices together with initial
Arnoldi vectors. The paper also gives a description of this class. It can be seen as an analogue
of the earlier result of Greenbaum and Strakoš [20], showing that if a residual norm convergence
curve is generated by GMRES, the same curve can be obtained by a whole class of matrices
together with right hand sides. Our corollary shows, surprisingly, that for general non-normal
matrices the distribution of the Ritz values generated in the Arnoldi method can be arbitrary and
fully independent on the spectrum. We remark that there exist some results on the distribution
of Ritz values for specific non-normal matrices, for example for Jordan blocks and block diagonal
matrices with a simple normal eigenvalue, see [7].

The given parametrization may give some additional insight in the convergence behavior of
versions of Arnoldi used in practice, e.g. implicitly restarted Arnoldi with polynomial shifts [4, 5];
in particular it may help to better understand cases where Arnoldi with exact shifts fails, see,
e.g. [11]. As Ritz values are contained in the field of values, it may also have implications for field
of values-based analysis of iterative methods.

We here deal with the problem of constructing both an input matrix and an initial vector to
produce prescribed Ritz values. In Corollary 2.3 the initial vector b = ∥b∥V e1 could be chosen
arbitrarily if we define A appropriately, since the only requirement for the matrix V is to be unitary.
When the matrix A is given, changing b will, of course, change the Ritz values. Constructing an
initial vector to produce prescribed Ritz values was done for the Lanczos method in [40]. If a
hermitian matrix has distinct eigenvalues, the paper shows how to construct a perverse initial
vector such that the Ritz values in the one but last iteration are as far from the eigenvalues as
allowed by the interlacing property (see [12] for a generalization to the normal case).

Another consequence of Corollary 2.3 is that the Ritz values in the Arnoldi method are in
general independent of the subdiagonal elements hk+1,k of the generated Hessenberg matrix. This
is not that strange if one realizes that hk+1,k is not an element of the matrix Hk used to extract
the current Ritz values. But on the other hand the independency from hk+1,k is still surprising in
view of the fact that one is used to regard the residual norm

∥AV (k)y − ρ(k)V (k)y∥ = hk+1,k|eTk y|(2.5)

for an eigenpair (ρ(k), y) of Hk, see (2.1), as a measure for the quality of the approximate Ritz
value-vector pair (ρ(k), V (k)y). Corollary 2.3 shows that, in theory, any small nonzero value of
hk+1,k is possible with ρ(k) arbitrarily far from the eigenvalues of A. And conversely, all eigenvalues
of Hk may coincide with eigenvalues of A with an arbitrarily large value of hk+1,k. Though it
is known that the residual norm is not always indicative for the quality of the Ritz values, see
e.g. [8, 16], one might expect that in such counterintuitive cases, the misleading behavior of
hk+1,k is compensated by |eTk y| in (2.5). But consider the following: Let A be parameterized as
A = V H(R)V ∗ and b = V e1 and let for an approximate Ritz value-vector pair (ρ(k), V (k)y) the
residual norm in (2.5) be |eTk y| (all subdiagonal entries hk+1,k of H(R) are one) where

H(R)ky = ρ(k)y.
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For any choice of arbitrarily small nonzero entries σ1, . . . , σn−1, the matrix V DσH(R)D−1
σ V ∗ with

Dσ = diag(1, σ1, . . . ,Π
n−1
j=1 σj) generates the same Ritz value ρ(k), but the residual norm in (2.5)

will change as σk|eTk ys| where (
Dσk

H(R)kD
−1
σk

)
ys = ρ(k)ys

with Dσk
= diag(1, σ1, . . . ,Π

k−1
j=1σj). However, the eigenvector ys is nothing but a scaling of y

because (
Dσk

H(R)kD
−1
σk

)
(Dσk

y) = ρ(k)(Dσk
y),

i.e. ys = Dσk
y. This means that, with appropriate subdiagonal entries, the value |eTk ys| can be

small too (even if ys is normalized) and does not compensate for a small σk, in spite of a possibly
diverging Ritz value ρ(k). Something similar can be said about cases where all eigenvalues of Hk

coincide with eigenvalues of A for arbitrarily large values of σk.

3. Prescribed convergence behavior of the Arnoldi and the GMRES methods for
the same pair {A, b}. The diagonal matrix Dσ with positive entries in Corollary 2.3 contains
the subdiagonal entries of the generated Hessenberg matrix and it can be chosen arbitrarily, for
any prescribed Ritz values. Because the values of these subdiagonal entries influence the residual
norms generated by the GMRES method applied to the corresponding linear system, there is a
chance we can modify the behavior of GMRES while maintaining the prescribed Ritz values. This
is what we will investigate next. Rather than directly choosing the diagonal matrix Dσ to control
GMRES convergence, we will derive an alternative parametrization of the matrices and initial
Arnoldi vectors that generate a given set of Ritz values. This parametrization will reveal the
relation with the parametrization in Theorem 1.1 and thus might enable to combine prescribing
Ritz values with prescribing GMRES residual norms.

The parametrization in Corollary 2.3 is based on a unitary matrix V whose columns span the
nth Krylov subspace Kn(A, b) whereas the parametrization in Theorem 1.1 works with a unitary
matrixW whose columns span AKn(A, b). To better understand the relation between Corollary 2.3
and Theorem 1.1, we will translate the former parametrization in terms of the latter. To achieve
this, we will use two factorizations of the Krylov matrix

K ≡
[
b, Ab,A2b, . . . , An−1b

]
,

one with V and one with W . The first factorization is nothing but the QR decomposition

K = V U(3.1)

of K. By the QR decomposition we will always mean the unique QR decomposition whose upper
triangular factor has positive real main diagonal. The upper triangular factor U is related to the
generated Ritz values as follows.

Lemma 3.1. Let H be the Hessenberg matrix generated by an Arnoldi process terminating at
the nth iteration applied to A and b and let U(S) be the Ritz value companion transform in (2.2)
corresponding to the generated strict Ritz values. Then the upper triangular factor U of the QR
factorization (3.1) of the Krylov matrix K is

U = ∥b∥diag
(
1, h2,1, h2,1h3,2, . . . ,Π

n−1
j=1 hj+1,j

)
U(S)−1.
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Proof. Any Arnoldi process (terminating at the nth iteration) can be written according to
the parametrization of Corollary 2.3 with Dσ = diag (1, h2,1, . . . ,Π

n−1
j=1 hj+1,j). Then in the Krylov

matrix

K =
[
b, Ab, . . . , An−1b

]
we can take ∥b∥V out of the brackets to factor it since

b = ∥b∥V e1

Ab = ∥b∥V DσU(S)−1C(n)U(S)D−1
σ e1

A2b = ∥b∥V
(
DσU(S)−1C(n)U(S)D−1

σ

)2
e1

· · · = · · ·

An−1b = ∥b∥V
(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1.

Therefore

K = ∥b∥V
[
e1, DσU(S)−1C(n)U(S)D−1

σ e1, . . . ,
(
DσU(S)−1C(n)U(S)D−1

σ

)n−1

e1

]
.

Now we would like to show that the last matrix on the right-hand side is just DσU(S)−1. The
first entry of the diagonal matrix Dσ being one we have U(S)D−1

σ e1 = e1. Obviously we have

(DσU(S)−1C(n)U(S)D−1
σ )j = (DσU(S)−1(C(n))jU(S)D−1

σ ). Hence
(
DσU(S)−1C(n)U(S)D−1

σ

)j
e1

= DσU(S)−1(C(n))je1. It is straightforward to see that (C(n))je1 = ej+1. This yields(
DσU(S)−1C(n)U(S)D−1

σ

)j
e1 = DσU(S)−1ej+1, j = 0, . . . , n− 1

and hence we have the factorization K = ∥b∥V DσU(S)−1. On the other hand K = V U . The
uniqueness of the QR factorization gives U = ∥b∥DσU(S)−1.

A similar result is proven in [26, Proposition 3.1]. The second factorization of K which we
need involves the unitary factor W . We prove the following result in the same way as the previous
lemma; it was also proved in [2] in a different way.

Lemma 3.2. Consider a matrix A with initial Arnoldi vector b such that the Arnoldi process
does not terminate before iteration n. If we write A as A = WY C(n)Y −1W ∗ and b as b = Wh
according to Theorem 1.1, then we have

K = WY.

Proof. With Theorem 1.1 the Krylov matrix is defined as

K =
[
Wh,AWh,A2Wh, . . . , An−1Wh

]
.

We wish to take W out of the brackets to factor K. This can be done since

AW = WY C(n)Y −1

A2W = W (Y C(n)Y −1)2

· · · = · · ·
An−1W = W (Y C(n)Y −1)n−1.
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Therefore

K = W
[
h, Y C(n)Y −1h, . . . , (Y C(n)Y −1)n−1h

]
.

Now we would like to show that the last matrix on the right-hand side is just Y . The vector h
being the first column of Y we have h = Y e1. Obviously we have (Y C(n)Y −1)j = Y (C(n))jY −1.
Hence (Y C(n)Y −1)jh = Y (C(n))je1. As before, (C

(n))je1 = ej+1. This yields

(Y C(n)Y −1)jh = Y ej+1, j = 0, . . . , n− 1

and this proves the result.

With the two factorizations K = V U = WY we are ready for a second parametrization,
formulated with the notation of Theorem 1.1 and based on the unitary matrix W , of the pairs
{A, b} generating arbitrary Ritz values.

Theorem 3.3. Assume we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains only nonzero numbers, and n−1 positive real numbers σ1, . . . , σn−1.
If A is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions
are equivalent:

1. The Hessenberg matrix generated by the Arnoldi process applied to A and initial Arnoldi

vector b has eigenvalues λ1, . . . , λn, subdiagonal entries σ1, . . . , σn−1 and ρ
(k)
1 , . . . , ρ

(k)
k are

the eigenvalues of its kth leading principal submatrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is a unitary matrix, C(n) is the companion matrix corresponding
to the eigenvalues λ1, . . . , λn and Y is of the form

Y =

[
h

R
0

]
.

R is the upper triangular matrix

R = ΓL∗T,(3.2)

of order n− 1, where T is the trailing principal submatrix in the partitioning

∥b∥diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj)U(S)−1 =

[
∥b∥ t∗

0 T

]
,(3.3)

of the scaled inverse of the Ritz value companion transform U(S) in (2.2) and L is the
lower triangular factor in the Cholesky decomposition

LL∗ = In−1 + T−∗tt∗T−1.(3.4)
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The diagonal matrix Γ with unit modulus entries is such that

eTk ΓL
−1T−∗t ≥ 0, k = 1, . . . , n− 1(3.5)

and the entries of h = [η1, . . . , ηn]
T satisfy

[η1, . . . , ηn−1]
T = ∥b∥ΓL−1T−∗t, ηn = ∥b∥

√
1− ∥L−1T−∗t∥2.(3.6)

Proof. First we prove the implication 1 → 2. Because the Arnoldi process does not stop before
the last iteration, GMRES applied to the linear system with matrix A, right-hand side b and zero
initial guess does not stop before the last iteration, and we can write A = WY C(n)Y −1W ∗ and
b = Wh according to Theorem 1.1. From Lemma 3.2, the factorization (3.1) and Lemma 3.1 we
have

K∗K = Y ∗W ∗WY = Y ∗Y, K∗K = U∗V ∗V U = ∥b∥2U(S)−∗DT
σDσU(S)−1.

Hence the matrix Y from the parametrization must satisfy

Y ∗Y = ∥b∥2U(S)−∗DT
σDσU(S)−1.

Let ĥ = [η1, . . . , ηn−1]
T be the vector of the first n − 1 components of h from (1.2). Then from

(1.1) we have

Y ∗Y =

[
∥h∥2 ĥ∗R

R∗ĥ R∗R

]
.(3.7)

Comparing (3.7) with ∥b∥2U(S)−∗DT
σDσU(S)−1 and using the partitioning (3.3), we obtain for

R and ĥ the conditions

R∗R = T ∗T + tt∗, ĥ = ∥b∥R−∗t.(3.8)

Furthermore, we have the conditions ηk ≥ 0, k = 1, . . . , n− 1, because all entries of ĥ correspond
to entries describing the GMRES convergence curve according to (1.2).

Let L be the lower triangular factor in the Cholesky decomposition

LL∗ = In−1 + T−∗tt∗T−1,

let Γ be a diagonal matrix with unit modulus entries and let R = ΓL∗T . Then

R∗R = T ∗LΓ∗ΓL∗T = T ∗(In−1 + T−∗tt∗T−1)T = T ∗T + tt∗

is always satisfied and Γ can be chosen such that

eTk ΓL
−1T−∗t ≥ 0, k = 1, . . . , n− 1.

It follows that

ĥ = ∥b∥R−∗t = ∥b∥ΓL−1T−∗t

and with ∥h∥ = ∥W ∗b∥ = ∥b∥ we obtain

ηn =

√
∥h∥2 − ∥ĥ∥2 = ∥b∥

√
1− ∥L−1T−∗t∥2.
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For the implication 2 → 1, let A = WY C(n)Y −1W ∗ be the parametrization of A given in
assertion 2 and let b = Wh. By Lemma 3.2, K = WY and let K = V Ũ be the QR factorization
of the Krylov matrix K. We first show that Ũ = ∥b∥DσU(S)−1.

In the QR decomposition K = V Ũ we have V e1 = b/∥b∥ and therefore we can partition Ũ as

Ũ =

[
∥b∥ t̃∗

0 T̃

]
.(3.9)

With the first part of the proof

R∗R = T̃ ∗T̃ + t̃t̃∗, ĥ = ∥b∥R−∗t̃,

see (3.8), i.e.

t̃ =
R∗ĥ

∥b∥
, T̃ ∗T̃ = R∗R− R∗ĥĥ∗R

∥b∥2
.

But by assumption, we have for t and T from (3.4) and (3.6) the same equalities,

t =
T ∗LΓ∗ĥ

∥b∥
=

R∗ĥ

∥b∥
,

T ∗T = T ∗(LL∗ − T−∗tt∗T−1)T = T ∗LΓ∗ΓL∗T − tt∗ = R∗R− R∗ĥĥ∗R

∥b∥2
.

The matrix R∗R − R∗ĥĥ∗R
∥b∥2 is positive definite since it is the Schur complement of ∥h∥2 in Y ∗Y ,

which is positive definite. Therefore the Cholesky decomposition of the matrix R∗R − R∗ĥĥ∗R
∥b∥2

exists and T̃ = T is the unique Cholesky factor. Together with t̃ = t = R∗ĥ
∥b∥ we have

Ũ = ∥b∥DσU(S)−1.

Because of K = WY = V Ũ and with (2.3) it follows that

A = WY C(n)Y −1W ∗ = V ŨC(n)Ũ−1V ∗

= V DσU(S)−1C(n)U(S)D−1
σ V ∗ = V DσH(R)D−1

σ V ∗.

The upper Hessenberg matrix DσH(R)D−1
σ generated by the Arnoldi method therefore has the

prescribed Ritz values and subdiagonal entries.

Note that Theorem 3.3 and Corollary 2.3 are not fully equivalent. In Theorem 3.3 we must
assume, for reasons of compatibility with Theorem 1.1, that the spectrum of A does not contain
the origin. In Corollary 2.3 the only free parameters are a unitary matrix and the norm of the
initial Arnoldi vector. In Theorem 3.3 there appears to be slightly more freedom because a unit
modulus entry of Γ can lie anywhere on the unit circle if the corresponding entry of L−1T−∗t
is zero, see (3.5). There is of course much less freedom in Theorem 3.3 than there is in the
parametrization of Theorem 1.1 when prescribing a GMRES convergence curve.

We see that by modifying the choice of the subdiagonal entries σ1, . . . , σn−1 in Theorem 3.3,
we might modify the vector h representing the GMRES convergence curve generated with A
and b while maintaining the prescribed Ritz values, i.e. while leaving the Ritz value companion
transform U(S) in (3.3) unchanged. Does this mean we can force any GMRES convergence speed
with arbitrary Ritz values ? There is one situation where this is certainly not possible: When there
is a zero Ritz value in some iteration, this implies a singular Hessenberg matrix and corresponds
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to an indefinable iterate in the FOM method, which is equivalent to stagnation in the parallel
GMRES process, see e.g. [6, 17]. Hence zero Ritz values are equivalent with GMRES stagnation.
For completeness, we give another proof of this well-known fact, formulated with the notation of
Theorem 3.3.

Lemma 3.4. With the notation of Theorem 3.3 and for 1 ≤ k ≤ n−1, the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k )

contains a zero Ritz value if and only if ηk = 0 in (3.6).

Proof. Denote by U(S) the Ritz value companion transform in (2.2) and let it be partitioned
according to (3.3) as

U(S) = ∥b∥Dσ

[
∥b∥ t∗

0 T

]−1

= ∥b∥Dσ

[
1

∥b∥
−t∗T−1

∥b∥
0 T−1

]
,

where Dσ = diag (1, σ1, σ1σ2, . . . ,Π
n−1
j=1 σj). By definition of U(S), the k-tuple (ρ

(k)
1 , . . . , ρ

(k)
k )

contains a zero Ritz value if and only if t∗T−1ek = 0. It can easily be checked that the lower
triangular factor L in the Cholesky decomposition

LL∗ = In−1 + T−∗tt∗T−1

has its kth row and column zero, except for the diagonal entry, if and only if t∗T−1ek = 0. Then
the vector ĥ, being the solution of the lower triangular system

LΓ∗ĥ = T−∗t

has kth entry zero if and only if t∗T−1ek = 0.

Thus GMRES residual norms cannot be fully independent of Ritz values. However, we will
show that the only restriction Ritz values put on GMRES residual norms is precisely that zero Ritz
values imply stagnation. Otherwise, any GMRES behavior is possible with arbitrary prescribed
Ritz values. Before proving this, we need the following auxiliary result.

Lemma 3.5. Consider n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0

and define

ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1), ĥ = [η1, . . . , ηn1 ]
T .

If we denote by Rh the upper triangular factor of the Cholesky decomposition

RT
hRh = In−1 −

ĥĥT

f(0)2
,

then we have

eTkR
−T
h ĥ = 0 ⇔ f(k − 1) = f(k), k = 1, . . . , n− 1.

Proof. The entries of RT
h are

(RT
h )i,k =

−ηiηk√
η2k+1 + · · ·+ η2n

√
η2k + · · ·+ η2n

, (RT
h )k,k =

√
η2k+1 + · · ·+ η2n√
η2k + · · ·+ η2n

,(3.10)
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see [15] on the Cholesky decomposition of a rank-one updated identity matrix, or also [27, Theorem
4.2]. Therefore, if ηk = 0 for some k ≤ n − 1, then the kth row and kth column of RT

h are zero
except for the main diagonal entry. It is easily seen from solving the lower triangular system
RT

hx = ĥ with forward substitution that x = R−T
h ĥ is zero only there where ĥ is zero.

Theorem 3.6. Consider a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,

such that (λ1, . . . , λn) contains no zero number, and n positive numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that f(k− 1) = f(k) if and only if the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero number. Let A

be a square matrix of size n and let b be a nonzero n-dimensional vector. The following assertions
are equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(k), k = 0, . . . , n− 1 such that

∥r(k)∥ = f(k), k = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the kth leading

principal submatrix of the generated Hessenberg matrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = WY C(n)Y −1W ∗

and b = Wh, where W is a unitary matrix and C(n) is the companion matrix corresponding
to the polynomial with roots λ1, . . . , λn. Y is given by

Y =

[
h

R
0

]
,

h being the vector

h = [η1, . . . , ηn]
T , ηk = (f(k − 1)2 − f(k)2)1/2, k < n, ηn = f(n− 1),

and R being the nonsingular upper triangular matrix of order n− 1

R = R−1
h D−∗

c C−1,(3.11)

where C is the trailing principal submatrix in the partitioning

U(S) =
[

1 c∗

0 C

]
(3.12)
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of the Ritz value companion transform U(S) for R defined in (2.2). Rh is the upper
triangular factor of the Cholesky decomposition

RT
hRh = In−1 −

ĥĥT

f(0)2
,

for ĥ = [η1, . . . , ηn−1]
T and Dc is a nonsingular diagonal matrix such that

R−T
h ĥ = −f(0)2Dc c.(3.13)

Proof. Because of Theorem 1.1 it is clear that the parametrization given here generates the
prescribed GMRES residual norms and vice-versa. Hence it suffices to show the given parametriza-
tion generates the prescribed Ritz values and vice-versa. For this we will use the parametrization
of Theorem 3.3 and prove that the matrix R in (3.11) satisfies the same conditions as the upper
triangular R in (3.2) in Theorem 3.3.

First we show that the nonsingular diagonal matrix Dc used to define R in (3.11) exists. With
the assumed partitioning (3.12) of U(S) and by the definition of U(S), the entries of c are zero

precisely at positions corresponding to iterations with a zero Ritz value. By assumption, ĥ is
zero at exactly these positions and so is R−T

h ĥ with Lemma 3.5. Thus we can always define a
nonsingular diagonal matrix Dc such that

R−T
h ĥ = −f(0)2Dcc.

Now with the definition (3.11) of R we have

R∗ĥ = −f(0)2C−∗c.

Next, in analogy with (3.3), consider the partitioning

diag(f(0), D−∗
c )U(S)−1 =

[
f(0) t∗

0 T

]
,(3.14)

of a diagonal scaling of U(S)−1 =

[
1 −c∗C−1

0 C−1

]
. It follows that

t = −f(0)C−∗c =
R∗ĥ

f(0)

and

T = D−∗
c C−1.

To prove that the matrix R in (3.11) satisfies the same conditions as the upper triangular R in
(3.2) in Theorem 3.3, it remains to show that R−1

h = L∗, Γ = In−1, where L and Γ are the matrices
defined in the second assertion of Theorem 3.3. We have

In−1 + T−∗tt∗T−1 = In−1 +DcC
∗R

∗ĥ

f(0)

(
DcC

∗R
∗ĥ

f(0)

)∗

= In−1 +
R−T

h ĥ

f(0)

(
R−T

h ĥ

f(0)

)∗

= R−T
h

(
RT

hRh +
ĥĥ∗

f(0)2

)
R−1

h = R−T
h R−1

h
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and with Γ = In−1

eTkR
T
hT

−∗t = eTkR
T
h

R−T
h ĥ

f(0)
=

ηk
f(0)

≥ 0, k = 1, . . . , n− 1.

Together with

ηn = f(n− 1) =
√
f(0)2 − (f(0)2 − f(1)2)− . . .− (f(n− 2)2 − f(n− 1)2) = f(0)

√
1− ∥ĥ∥2

f(0)2
,

we have that matrices of the form

W

[
h

R
0

]
C(R(n))

[
h

R
0

]−1

W ∗

and right-hand sides Wh generate the prescribed Ritz values and vice-versa, see Theorem 3.3.

The only freedom we have to prescribe both Ritz values and GMRES residual norms is in
the unitary matrix W and in those entries of the diagonal matrix Dc on positions corresponding
to iterations with a zero Ritz value or, equivalently, on positions corresponding to iterations
where GMRES stagnates. On these positions Dc may have arbitrary values. In this sense we
have exhausted all the degrees of freedom; GMRES and Arnoldi are invariant under unitary
transformation and more values than Ritz values and residual norms cannot be prescribed for the
same Arnoldi process.

Theorem 3.6 says that one can construct matrices and right-hand sides for which converged
Ritz values need not imply accelerated convergence speed in the GMRES method, as is the case
for the CG method for hermitian positive definite matrices [44]. The only restriction Ritz values
put on GMRES is that a zero Ritz value leads to stagnation in the corresponding iteration. A
restricted role of Ritz values for GMRES may be expected in view of the fact that the Ritz values
are not the roots of the polynomials GMRES generates to compute its residuals. These roots
are the harmonic Ritz values [34, 17]. Although harmonic Ritz values generated in the Arnoldi
procedure might be prescribed in a similar way as we did for ordinary Ritz values in the previous
section [28], it is not clear whether this is possible with given GMRES residual norms. Nonetheless,
the extent to which ordinary Ritz values and residual norms are independent is astonishing. Note,
for example, that for matrices close to normal the bounds derived in [45] suggest that as soon as
eigenvalues of such matrices are sufficiently well approximated by Ritz values, GMRES from then
on converges at least as fast as for a related system in which these eigenvalues are missing. This
may be surprising but it is not contradictory.

Note that we could also have formulated the second assertion in the previous theorem analo-
gously to the second assertion in Theorem 3.3. Then the diagonal scaling matrix in (3.3) takes the
form of the diagonal matrix in (3.14); otherwise the assertion needs not be changed. Translated
in the notation of Corollary 2.3, this gives the following alternative parametrization.

Corollary 3.7. Assume we are given a set of tuples of complex numbers

R = {ρ(1)1 ,

(ρ
(2)
1 , ρ

(2)
2 ) ,

...

(ρ
(n−1)
1 , . . . , ρ

(n−1)
n−1 ) ,

(λ1 , . . . . . . . . . , λn)} ,
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such that (λ1, . . . , λn) contains no zero number, and n positive real numbers

f(0) ≥ f(1) ≥ · · · ≥ f(n− 1) > 0,

such that f(k − 1) = f(k) if and only if the k-tuple (ρ
(k)
1 , . . . , ρ

(k)
k ) contains a zero number. If

A is a matrix of order n and b a nonzero n-dimensional vector, then the following assertions are
equivalent:

1. The GMRES method applied to A and right-hand side b with zero initial guess yields
residuals r(k), k = 0, . . . , n− 1 such that

∥r(k)∥ = f(k), k = 0, . . . , n− 1,

A has eigenvalues λ1, . . . , λn, and ρ
(k)
1 , . . . , ρ

(k)
k are the eigenvalues of the kth leading

principal submatrix of the generated Hessenberg matrix for all k = 1, . . . , n− 1.
2. The matrix A is of the form

A = V diag(f(0), D−∗
c )U(S)−1C(n)U(S) diag(f(0)−1, D∗

c )V
∗

and b = ∥b∥V e1, where V is a unitary matrix, U(S) is the Ritz value companion transform
for R defined in (2.2) and C(n) is the companion matrix of the polynomial with roots
λ1, . . . , λn. Dc is a nonsingular diagonal matrix such that

R−T
h ĥ = −f(0)2Dcc

with ĥ being the vector

ĥ = [η1, . . . , ηn−1]
T , ηk = (f(k − 1)2 − f(k)2)1/2,

Rh being the upper triangular factor of the Cholesky decomposition

RT
hRh = In−1 −

ĥĥT

f(0)2
,

and c being the first row of U(S) without its diagonal entry.

This parametrization is based on unitary matrices V spanning Kn(A, b) instead of unitary
matrices W spanning AKn(A, b) and is therefore closer to the actual Arnoldi process which is
run in standard implementations of the GMRES and Arnoldi methods. On the other hand,
the parametrization in Theorem 3.6 reveals more clearly the relation with the prescribed residual
norms. Note that we can easily change Corollary 3.7 to yield a “V -based” analogue of Theorem 1.1;
it suffices to consider U(S) as a free parameter matrix. Corollary 3.7 also shows how to define the
subdiagonal entries hk+1,k of a Hessenberg matrix with prescribed Ritz values in order to obtain
prescribed GMRES residual norms: They follow from the equality

f(0) diag
(
1, h2,1, h2,1h3,2, . . . ,Π

n−1
j=1 hj+1,j

)
= diag (f(0), D−∗

c ).
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4. Conclusions and future work. The Arnoldi orthogonalization process is a cornerstone
of several successful Krylov subspace methods for non-hermitian matrices. Nevertheless, two
of the most popular methods based on it, the GMRES and the Arnoldi methods, can exhibit
counterintuitive convergence behavior. For GMRES it is known for some time that any non-
increasing convergence curve is possible and can be generated with any spectrum [19]; the fact
that all Ritz values formed by the Arnoldi method can be prescribed appears not to have been
noticed so far. The present paper also shows that arbitrary convergence of GMRES is possible
not only with any spectrum, but even with any Ritz values for all iterations (provided we treat
the stagnation case correctly).

Seen the success of (modified versions of) the GMRES and Arnoldi methods for a large
variety of problems, the situations described in our theoretical results may occur rarely in solving
practical problems in scientific computing. For example in the Arnoldi method, cases of Ritz
values diverging further away from the spectrum in every iteration are possible as we proved in
Section 2, but they happen for particular matrices only in combination with particular initial
Arnoldi vectors. As one normally chooses the initial Arnoldi vector randomly, the chances that
this vector produces diverging Ritz values may be small and in practice one can easily rerun the
process with a different random initial Arnoldi vector. In the GMRES method, however, one
is stuck to a given right-hand side and applications exist where the pathological cases described
in [19] occur. An example is given by convection-diffusion problems, see e.g. [36] or [24, Fig.
3.10 and 3.11]. This type of problems also contains an illustration of our results of Section 3: In
the convection dominated case, system matrices are often close to transposed Jordan blocks (i.e.
upper Hessenberg matrices with identical Ritz values for all iterations) and, for certain boundary
conditions, right-hand sides are close to the first unit vector [24]. Hence we have almost converged
Ritz values from the very start, but this does not mean that GMRES converges rapidly as one
would expect. On the contrary, it is known that these problems give very slow, nearly stagnating
GMRES residual norms during the initial phase of convergence [13, 24].

It is often assumed that counterintuitive GMRES behavior, i.e. spectral information which
is misleading for residual norms, is possible in the highly non-normal case only, and one may
expect the counterintuitive results of this paper to be restricted to the highly non-normal case,
too. None of the two statements is entirely correct; for instance arbitrary GMRES convergence
curves are possible for such nice normal matrices as are the perfectly conditioned unitary matrices,
see [20, Section 3.1] and [19]. As for our results on the Arnoldi method, certainly prescribed Ritz
values outside the convex hull of the eigenvalues are possible with non-normal matrices only and
probably the further one prescribes Ritz values away from the convex hull, the more non-normal
the constructed input matrix must be. On the other hand, divergence inside the convex hull might
still be possible with some normal but nonhermitian matrices. Very few appears to the authors
to be known on this topic (for general normal matrices of size three, see e.g. [7]). Although there
are generalized interlacing properties for normal matrices, they cannot be exploited because the
leading principal submatrices of normal Hessenberg matrices need not be normal. Let us also
recall that the Ritz values generated in the Lanczos method in the one but last iteration can be
as far from the eigenvalues as allowed by the interlacing property [40].

Our results are of a theoretical nature and may give additional insight in the properties of the
GMRES and the Arnoldi methods. An important issue related to our results is how to detect, a
priori, whether a matrix with initial vector will lead to diverging Ritz value behavior in Arnoldi
or to stagnation in GMRES. For GMRES, work on complete or partial stagnation was done for
example in [47] or, recently, in [27], where the results are linked with the parametrization in The-
orem 1.1. More generally, the question is whether our theory gives some insight on what is a good
Arnoldi starting vector, respectively, right-hand side b. Work for the near future includes modi-
fications of our results for popular restarted versions of Arnoldi or GMRES which may enhance
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theoretical insight in the behavior of strategies that are frequently used in practice.

Software. At the link http://www.cs.cas.cz/duintjertebbens/duintjertebbens soft.html the rea-
der can find MATLAB subroutines to create matrices and initial vectors with the parametrizations
in this paper.
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