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§1. Introduction

A statistical manifold is defined by Lauritzen [5] and nothing but a
Riemannian manifold (M, g) with a symmetric covariant tensor T of order 3.

The symmetric tensor defines a pair of torsion free dual connections and vice
versa The latter geometry has been studied by Amari and others in connection

with statistical inferences (cf. [1] and [2]). Moreover, Eguchi [3] has proved

that a contrast function also gives all the data of the statistical manifold if
it exists We will find in this paper a contrast function which induces a given

statistical manifold.

DEFINITION. A contrast function of a diflferentiable manifold M is a

real-valued smooth function p on M x M such that p(x, y) > 0 with equality
if and only if x = y and

XxXxp(x, y)lx=y > 0

for any smooth vector field X on M which is non-zero at x.

We use the following notation for a function on M defined by the value
of the partial derivative in M x M with respect to the smooth vector fields

Xl9.. .9XΛ9Yl9...9Ym on M as in [3]:

p(Xl...Xn\Yl...YJ(z)

= (xί)x...(xn)x(Y1)y...(Ym)yp(χ,y)lx=z,y=z.

In particular, the partial derivative Zp(X^ ... Xn\ Y± ... Ym) on M is equal to

p(ZX1 ...Xn\ Y,... Ym) + p(X, ...XnlZY,... Ym).
According to Eguchi [3] the Riemannian metric tensor g is defined by

g(X9 Y)= -p(X\Y).

Since the contrast function takes the minimum at the diagonal manifold
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AM = {(x9 y)eM x M\x = y}, we have p ( X \ - ) = 0 for any X. Moreover

applying X to. p(y| ) = 0, we get p(XY\ ) = - p ( X \ Y ) . Thus g ( X , Y ) =

p ( X Y \ - ) = p ( - \ X Y ) and g is positive definite by the definition of our contract

function. The symmetry also follows from g(X9 Y) - g(Y9 X) = p([X, 7]| )

= 0.
The trilinear form T is defined by

T(X, Y,Z)=- p(XY\Z) + p(Z\XY).

We see that T(fX, Y9 Z) =fT(X9 Y, Z\ T(X9 Y9 Z) - T(X, Y9 Z) = p ( [ X 9 7]

|Z) - p(Z\[X9 7]) = 0 and T(X9 Z, 7) - T(X9 Y9 Z) = p(XY\Z) + p(Y |*Z)
- p(XZ\ 7) - p(Z\XY) = X{p(Y\Z) - p(Z\ 7)} - 0. Therefore Γ is a symme-

tric covariant tensor of order 3.

THEOREM 1. For any statistical manifold (M, g, T) we can find a contrast

function p of M which gives g and T by the above formulas.

We will make several remarks concering Theorem 1.

For the proof of Theorem 1 we use only the fact that the first derivatives of

p should vanish The free parameters for the values of the partial derivatives

of order up to 3 on ΔM are just given by n(n + l)/2 parameters gtj and

n(n 4- l)(n + 2)/6 parameters Tijk.

Due to [1], if one of the torsion free dual connections is flat (i.e., of zero

curvature), then the other dual connection is also flat; Moreover if M is simply

connected in addition, we have a canonical contrast function called divergence

which has the form

P(χ,y) = φ(χ) + ψ(χ*(y))-χ χ*(y)

where x = (xl9... ,xπ) and x* = (x1,... ,x") are the aίfine coordinates with

respect to the flat connections and x x* denotes the Euclidean inner product

ΣίXjX 1 ' ; We see that the affine coordinates x and x* of the same point are

related by the Legendre transformation x-x* = φ(x) + ψ(x*) and satisfy

9ij = β(Bi, 8j) = diBjφ, g" = g(d\ dj) = dldjφ and g(dl

9 dj) = δ]. Even if M is
not simply connected, the Riemannian metric g is given by g(dh dj) = dβjφ for

a local coordinate; So such a manifold is called Hessian manifold [7] as well

as 1-flat statistical manifold (cf. [5]).

If N is a regular submanifold of M for a statistical manifold (M, g9 T),

then N inherits the structure of statistical manifold by restricting the tensors

g and T; The trosion free dual connections are given by the orthogonal

projection The restriction of a contrast function gives also a contrast function

of (N9 g\N, T\N). So, the embedding problem of a given statistical manifold

into a 1-flat statistical manifold will be an interesting problem to seek more
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canonical contrast functions.

If p is symmetric, then the tensor T is zero and the induced statistical
manifold is a Riemannian manifold A contrast function for a Riemannian
manifold is given by the square of the Riemannian distance between two points

x and y\ For the smoothness see [4; Th. 4.3.6] for example; What Eguchi [3]
proved implies that the square of the Riemannian distance for the submanifold
and the distance measured in an ambient manifold coincide up to the third

order. In case of Finsler spaces the square of the distance may not give a
smooth function on the product manifold The normal coordinate may not
be smooth at the origin in Finsler geometry (cf. [6; §3.6]).

Eguchi [3] proved also that the curvature tensors are related to some of
the fourth order property of the contrast functions What are the free
parameters in this case will be another problem.

§2. Proof of Theorem 1

By the condition that the function p on M x M takes the minimum at

the diagonal we have already get p(X\ ) = p( \X) = 0 and then

p(XY\ ) = p(YX\ ) = p( \XY) = p( \YX)=-p(X\Y)=-p(Y\X)

for any smooth vector fields X and Y on M. The latter function is denoted

by g(X, Y).

LEMMA 2.1. If \_X, Y] = [Y, Z] = [Z, X] = 0, we have

(1) 2 p ( X Y Z \ - ) = Xg(Y, Z) + Yg(Z, X) + Zg(X, Y) + T (X, Y, Z\
(2) 2 p ( - \ X Y Z ) = Xg(Y9 Z) + Yg(Z9 X) + Zg(X9 Y) - T(X, Y, Z),
(3) 2p(XY\Z) = - Xg(Y9 Z) - Yg(Z9 X) + Zg(X9 Y) - T(X9 Y, Z) and

(4) 2p(X\ YZ) = Xg(Y9 Z) - Yg(Z9 X) - Zg(X9 Y) + T(X9 Y, Z).

Proof. The first equality comes from

Xg(Y9 Z) + Yg(Z9 X) + Zg(X9 Y)

= Xp(YZ\ )- Yp(X\Z) + Z p ( X Y \ - ) = 2p(XYZ\ )—T(Y9 Z, X).

The right-hand side of the third one is equal to

X p ( Y \ Z ) + Yp(Z\X) - Z p ( Y \ X ) - T(X9 Y, Z)

= p(XY\Z) + p(Z\XY) - T(X9 Y9Z) = 2p(XY\Z).

The others are proved in the same way. q.e.d

Proof of Theorem 1. We use a local coordinate x l 5 . . . ,x π of M of the
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first factor and write yl9...9yn for the same coordinate for the second
factor; Also we write z l 5 . . . , z Λ for the same coordinate for ΔM = M. The
corresponding vector fields on M x M will be denoted by dl9...9dn and
δf, ...,δ*; Also the corresponding vector fields on ΔM = M by δl9...9δn. The
Riemannian metric #0(z) = g(δi9 δj)(z) on M determines the partial derivatives
δiδjp = - dβjp = - dfdjp = dfdjp on ΔM by d ί d j p ( x , y)\x=y=z = g^z).
Now Lemma 2.1 (1) means that after g is defind on M, T(δi9 δj9 δk)(z)
determines dίdjdkp(x, y)\x=y=z and vice versa. Moreover the values of the
other partial derivatives of order 3 on ΔM are determined uniquely and
compatibly by the other formulas in Lemma 2.1. So, we can define p locally
by

p(χ, y) = (i/2) Σ Σ βij(z\z=y(χi - yJ(χj - ^ )
n n n

+ (1/12) Σ Σ Σ [be* + δjffu -
1=1 j=l k=l

+ T(δi9 δj9 δk)}(z)lz = y(xi - yi)(xj - yj)(xk - yk).

Take a smooth partition of unity (εα(z)} subordinate to the covering of
M = ΔM by the coordinate neighborhoods {UΛ}. We take the local coordinate
zl9...9zn of UΛ and define a local contrast function pΛ on a product
neighborhood of UΛ c AM by applying the above formula to the corresponding
local coordinate xl9 ...,*„, yl9 ... ,yn. In other words we write with the
Einstein convention

δb, £)}(% =j?(xβ - ya)(xb -

= y(xa - ya)(xb - yb)

+ δίδίδϊnδi, δj9 δk)}(z)lz=y(χa - ya)(χb - yb)(*c ~ yd

where δa = d/dza, gab = g(δa, δb) and δl

a = dzjdza. Using also the notation

«9« = dxjdxi and δ" = dza/dzi9 we have

didjgab(z)}s=y(χb - yb)

= δi'^^ y W|,=y{3? 3J + 3J5? + (δjSJJίx, - yb) + (xβ - ya)(d$)}.

So, we get didjptfa y)\x=y = z = (l/2){gίj(z) + g^z)} = g^z).
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Moreover, we have

iBjδkpΛ(x, y)\x=y = z - ( l / 2 ) { δ i g j k + δjgki + 6kgtj 4- T(δi9 δj9 δk)}(z)

+ didϊd*, + δ?δ δfc + d?dίδ + δίδΐδi + 3Sd?d'.)ix-z = 0I 1C J J I K ' J K I K J I ' K, I J / \ X — Z

because dk\x = z = δk, d°\x=z — d", δk(φψ) = (δkφ)ψ + φ(δk\l/} and δk(δl

aδ^) = 0
for any fe, α, i, /, φ and ψ In fact, we use the fact that the value of the first

term (\/2)δi

aδ
j

bgiΊ\z){dk(da

id]} + dk(5Jd?) + (SfSJ)^ + ̂ (^^)}|x = z is not chan-
ged by any permutation of the set{1,7, fe}; By multiplying by 12 we get the

36 terms obtained by applying the permutation of {z, 7, fe} to the triple of

9ijδla(δkδ'i) + 0/ /^U^fc^?) an<^ the 36 terms obtained from gz/^/c^l)^? +

Now without using the Einstein convention we redefine

near zlM. Then, in the original local coordinate

διSj(Σ ε*(y)p*(χ> y))\x=y=z = Σ e*(y)si8jpΛ(χ> y)\x=y=z = ^X
α α

and

.V))|;c = y = z = Σ ^

δkgij + 7(5,, δj, δk)}(z).

So, by extending this p which is defined only on a neighborhood of AM

smoothly on the whole M x M we get a desired constrast function of the
given statistical manifold (M, g, T). q.e.d

Acknowledgement: I would like to express my deepest thanks to Dr.
Eguchi who kindly taught the contents of [3] and after my having written
this paper sent a copy of Nagoka's note which gave p in a local coordinate
neighborhood concerning the problem 5 of [1 p.101]. Nagoka's formula for
a local p is essentially the same as ours but not prepared enough to get a
global constrast function p.
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