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ABSTRACT 
We describe a large scale system for clustering a stream of news 
articles that was developed as part of the Geospace & Media Tool 
(GMT). The GMT integrates the news feed with geospatial, 
census, and human network information to provide a research tool 
for members of Congress and their staffs. News articles covering 
the same event are summarized for the user through the clustering 
component. The clustering result is available to the user at any 
time without additional on-demand clustering steps. The 
documents are grouped into clusters on-the-fly without any 
assumptions on the number of clusters and without retrieving 
previous documents. High efficiency is achieved by utilizing 
locality sensitive hashing (LSH) as a means to determine a small 
set of candidate clusters for each document. This way a large 
number of clusters can be considered while keeping the number of 
expensive document to cluster comparisons low. Our experiments 
with the system reveal interesting aspects of large-scale text 
processing in general and news clustering in particular. We 
demonstrate how the LSH based approximation achieves a large 
speedup at the cost of only few and small errors. On a high-
frequency benchmark data set a clustering quality comparable to 
one of the best non-streaming document clustering algorithms is 
obtained. 
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H.4 [Information Systems Applications]: Miscellaneous 

General Terms 
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1. INTRODUCTION 
The automated processing of large amounts of text is an important 
tool in knowledge management [9, 18]. Classification and 

clustering of text documents can help to structure a document 
collection and make it more accessible. At a coarse level an 
assignment to topics or categories can help to navigate a corpus. 
If some of the documents are already assigned to topics, a 
supervised classification approach can help to label the remaining 
documents and any new documents [34, 43, 29].  

Otherwise unsupervised clustering can help to discover the 
underlying topical structure of existing text collections [15, 35, 
52]. In many applications the document collection is dynamic [5, 
48, 30] in the sense that new documents are continuously being 
added to the database and need to be processed. In this scenario 
both supervised and unsupervised methods need to be able to cope 
with new topics in the text that do not fit the previous 
classification or cluster model [46, 20].  

Consider news articles from newspapers and news agencies that 
form a stream of text documents. For a given event different news 
sources publish similar articles and even the same news source 
covers a developing story over several days. Clustering can be 
used to aggregate the news articles that cover the same story and 
offer the user a better overview of the current events [5, 48, 30]. 
For each cluster a summary can be generated from using 
headlines and content of representative articles and the most 
relevant keywords. Additional articles from the cluster can be 
displayed on demand to provide more details. A well known 
implementation of such a news aggregation system is Google 
News (http://news.google.com).  

We describe a large scale system for clustering a stream of news 
articles that is a core component of Geospace & Media Tool 
(GMT) developed in cooperation with the Parsons Institute for 
Information Mapping (PIIM), The New School, NY. The GMT 
integrates the news feed with geospatial, census, and human 
network information to provide a research tool for the members of 
Congress and their staffs. We describe the requirements of the 
text clustering component within this application and describe an 
efficient solution. We report the results of extensive experiments 
regarding the trade-off between speed and quality, the handling of 
dynamic content, and the merits of using meta-data to improve the 
clustering quality. The same system could be applied to cluster 
Blog entries, emails, customer service requests, medical reports, 
and similar potentially high rate text streams. Section 2 briefly 
describes the different components and use cases of the GMT and 
translates this into requirements for the clustering of new articles. 
In Section 3 we review related work on text clustering. The data 
set used in evaluating the system is described in Section 4. 
Sections 5-6 describe our online text clustering system. The 
evaluation with news articles in Section 7 shows the high 
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clustering quality and discusses the influence of some key 
parameters on the performance. The results and lessons learned 
are discussed in Section 8 and the achievements are summarized 
in Section 9. 

2. GEOSPACE & MEDIA TOOL 
The GMT is a government funded tool developed under the lead 
of the Parsons Institute for Information Mapping (PIIM), The 
New School, NY. It integrates a stream of news articles provided 
by Factiva (http://www.factiva.com) with geospatial, census, and 
human network information to provide a research tool for the 
United States’ senators and their staff. The news articles are 
processed by a customized entity extraction module that combines 
off-the-shelve software for named entity and geo location 
detection with algorithms for disambiguation. The articles and the 
detected entities are then processed by the clustering component 
described in detail in this study. The news articles and clusters are 
stored in a relational database system for access by the web-based 
GMT client. The client lists the currently active top stories and 
supports user-defined keyword and location searches. The ranking 
of top stories and search results utilizes statistics pre-computed 
during the clustering. For each news cluster several representative 
headlines and keywords are displayed. The extracted locations of 
the news articles and clusters are used to display them on a 
zoomable map. Census data provided by ESRI 
(http://www.esri.com) can be displayed on top of the map to 
provide context to news stories. The connections between 
extracted people and organizations can be explored with network 
displays that are complemented with biographical and contact 
information. 

The clustering component of the GMT serves to summarize news 
articles about one particular event or topic for the users. The 
grouping of similar articles eases the browsing of the vast amount 
of content. The ranking helps in determining the currently most 
important topics. The users of the GMT are further interested in 
small stories with local scope. The geo-location of news articles 
helps in searching such articles via the interactive map or by 
specifying regions along with tops keywords. For the clustering it 
means that all news articles need to be clustered, not only articles 
about the major topics. Existing systems like Google News only 
display top stories and it is unclear what happens to the rest of the 
news. Preliminary user tests resulted in positive feedback about 
the usefulness of the system to congressional staff to solve the 
daily task of researching various current topics. 

Each resulting news cluster should contain as many articles about 
an event as possible (high recall) and only contain only few 
articles with low relevance (high precision). The system needs to 
find a tradeoff between these two quality measures for both large 
clusters and small clusters simultaneously.  

The news stream used in the GMT contains about 50k-100k 
articles per day. The news articles need to be clustered as fast as 
possible to provide timely information to the users. With such a 
high rate of incoming articles clustering of the complete data set 
will quickly become infeasible. Even clustering only the articles 
from the last few days will be demanding and more importantly 
useless, because the result will be outdated when it is available. 
Data stream clustering techniques are needed [24, 2, 22, 3, 1] to 
continuously process the feed. The data stream model is 
commonly characterized such that “the data elements in the 

stream arrive online”, “the system has no control over the order 
[...]”, “data streams are potentially unbounded in size” [6] and 
there is only one chance of fast access for each data element. For 
data mining in general [17] and clustering in particular [8] this has 
been translated into certain requirements.  

In summary, we identified the following conditions as being 
crucial for the clustering the news stream in the GMT:  

• Process the stream in a single pass using a small constant 
time per record and only a fixed amount of main memory 
[17].  

• Process all documents [8], i.e., do not use load-shedding or 
outlier removal. 

• Create a clustering similar in quality to non-streaming 
algorithms [17]. 

• Make the clustering available at any point in time [17]. 

• Do not make assumptions about the number of clusters. 

• Dynamically adjust to changing content. 

We developed a new solution for this problem because no 
previously proposed method met the above requirements 
sufficiently (see Section 3). Even though our method is quite 
simple it achieves excellent clustering quality in an application to 
news processing. 

3.  RELATED WORK 
Introductions to text clustering can be found in [35, 9, 52, 18]. An 
analysis of the efficiency and quality of various building blocks 
from the popular k-Means and Scatter- Gather [15] algorithms for 
large datasets is done in [31]. In [35] the bi-secting k-Means 
algorithm performed better than k-means and hierarchical 
algorithms. The extensive evaluation of hierarchical clustering 
algorithms concludes that “partitional methods are suitable for 
producing flat and hierarchical clustering solutions for document 
datasets effectively and efficiently” [52].  

Two well known incremental hierarchical clustering algorithms 
are BIRCH [49] for numerical data and COBWEB [19] for 
categorical data. In [39] a variant of COBWEB for text 
documents is described. The algorithms can update the current 
clustering model upon arrival of new data points, but they are not 
well suited for data stream processing [8]. The time and memory 
requirements of COBWEB can degrade because the internal tree 
structure is not balanced. BIRCH is designed to use slow 
secondary memory for the cluster model. Even if the cluster 
model can be kept in memory completely by using pruning 
techniques it does not necessarily correspond to a natural cluster 
structure, a final clustering of the leaf nodes is required [49].  

The incremental competitive learning algorithm of [7] is targeted 
toward text documents and produces a flat clustering. Exactly k 
clusters of about the same size clusters are created. For a detailed 
clustering of a collection very different cluster sizes are more 
desirable as noted for news articles in [45]. Here, a cluster model 
of a news archive is updated daily in a batch process, thus not 
making the result available in real time as new articles arrive. In 
[50, 51] self splitting competitive learning is advocated to free the 
user from choosing the number of clusters. In order to assign the 
vectors of a splitted cluster to the new sub-clusters the vectors of 
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previous data points are needed, violating the one pass 
requirement.  

Clustering of text streams has also been used for retrospective 
theme detection [36] and topic detection and tracking in the TDT 
workshops [48]. Topic detection aims to find the first incoming 
document of a new topic. Here, comparing new documents to all 
previous documents has worked better than comparing them to 
clusters [10]. Topic tracking aims at discovering all document that 
belong to the topic given a certain number of example documents. 
Topic tracking can be done in retrospective or online [5, 48] with 
supervised and unsupervised methods [47, 21]. Unsupervised 
online clustering corresponds to combined topic detection and 
topic tracking given the first detected document. For the 
retrospective analysis several clustering algorithms are compared 
in [48]. Hierarchical clustering performed best, but online single-
pass clustering was almost as good. This was explained with the 
temporal proximity of topics in the data set. In contrast to our 
requirements some topic tracking systems do not assign all 
documents to clusters [10].  

In [16] the very fast k-Means (VFKM) algorithm is proposed for 
huge datasets, but it requires several passes over the data using a 
sample with increasing size in each pass. A one-pass 
approximation to k-Medians is described in [37, 24]. The data 
points are clustered in batches to obtain a large number of 
weighted medians which are successively re-clustered until only k 
centers remain. The number of clusters k needs to be specified at 
least roughly and the clustering result is not available at any time. 
Whenever a clustering of the data observed so far is desired, the 
clustering up to the final level needs to be initiated.  

The approach proposed in [2, 3, 1] does not make any 
assumptions on the number of clusters, but also divides the 
process into an online and offline component. The online part 
keeps a collection of so-called micro-clusters with sufficient 
statistics and temporal information about the data points assigned 
to it up to date. At certain time points a snapshot of these clusters 
is saved. The offline part constructs the final clustering from the 
stored micro-clusters for a specified time horizon on demand. 
This step is potentially very expensive for large time horizons. A 
density based micro-clustering is described in [12]. In [28] the 
data stream is first segmented by a change point detection 
algorithm. Each time a segment boundary is found the preceding 
segment is clustered. This can potentially cause a large delay 
between the time a data point is observed and when it is clustered. 

4. DATA SET 
Our text clustering system was developed to process the stream of 
news from many (online) news sources collected by the news 
provider Factiva. Depending on the number of original sources 
about 50k-200k articles per day need to be processed. The goal 
was to provide an efficient way to cluster the news articles at a 
story level to support the browsing of the articles. This is in 
contrast with text categorization [34] or topic tracking (e.g. [5]) 
where broad categories or only major news stories are of interest. 
The ground truth data available with commonly used benchmark 
datasets like Reuters-21578 [33] or RCV1 [32] corresponds to 
(coarse) topic categories and not individual news stories. The 
TDT datasets contain labeled news stories but the data is collected 
over several months resulting in relatively low daily and hourly 
rates of articles that do not represent our target stream well. 

Moreover, certain datasets like TDT2 [14] include structurally 
diverse news items, such as radio and TV broadcasts, or have 
been compiled to benchmark different tasks, such as supervised 
adaptive topic tracking and multilevel hierarchical topic detection 
(TDT56). The labeling procedure of the TDT datasets is further 
biased towards larger stories [48].  

We therefore collected the daily news articles from 02/16 to 02/28 
in 2006 and labeled 80 news stories of various sizes as our ground 
truth for evaluation. Several large stories were identified 
monitoring the websites of major newspapers during the same 
time period. Smaller local stories were found by filtering the 
complete data with keyword queries like “Phoenix” and 
performing an initial very fine grained clustering on this subset. 
For each story a thorough semiautomatic labeling process was 
performed involving the following steps executed repeatedly as 
necessary:  

• Search the database for more articles containing important 
keywords present in the current story.  

• Rank the selected articles by their similarity (see Section 5) 
to the center of the current selection or the closest article in 
the current selection to help distinguishing relevant and 
irrelevant articles.  

• Search the database for more articles with high similarity to 
any selected article.  

• Rank unselected candidate articles by their similarity to the 
closest article in the current selection to add very similar 
articles. 

 For borderline articles the decision about what was included in a 
story was checked by at least two persons. The 80 true stories 
were split into a training part used in optimizing the crucial 
system parameters and an independent test part to evaluate them. 
For each data set we added about 1000 unlabeled articles per day 
randomly selected from the stream. Some statistics of the final 
data sets are shown in Table 1.  

Table 1: Characteristics of benchmark data sets derived from 
high density text stream 

Data set Articles Articles per story 
 labeled unlabeled min median max 
Train 4168 12416 7 34 682 
Test 3674 12371 4 40 643 

 
Large stories included a discussion about the hunting accident of 
Cheney, the resignation of the president of Harvard University 
and calls for the closing of Guantanamo. Typical medium sized 
stories were the delays at Delphi and the hostages abducted from 
an oil platform in Nigeria. Among the smallest stories were the 
decision about Measure 37 in Oregon and a gunman in Phoenix. 
Several stories were specifically selected to be very similar, e.g., 
patent issues of Blackberry and of Adidas vs. Nike. 

5. PREPROCESSING 
The incoming documents are preprocessed with the standard text 
mining chain of methods [40]. First all words from a list of stop 
words are removed. For our news application the list included the 
names of several big news agencies. We further removed all 
Internet links and Email addresses. From the remaining words a 



list of lower case word stems is generated with Porter’s stemming 
algorithm [38]. The frequencies of the word stems are saved for 
each document.  

For the news application the names of locations, persons, and 
organizations were extracted from the original (un-stemmed) text 
and saved separately with their occurrence frequencies. Each 
article was further assigned a list of subject categories similar to 
the RCV1 data. Each category code was treated as a word stem. 
The importance of this meta-information and of words from the 
headline and the abstract can optionally be emphasized by 
artificially increasing their frequencies.  

Each word stem frequency is then mapped to a numerical value 
with the incremental TFIDF (Term Frequency Inverse Document 
Frequency) scheme of [11] as used in many topic detection 
approaches [48, 4, 10]:  

where TF is the term frequency (how many times did the term 
appear in the document), N the number of documents processed, 
DLk is length of the k-th document in words, and DF is the 
document frequency (in how many documents did the word 
appear so far). The more frequently a word appears in a 
document, the higher the corresponding feature value is. The 
document frequencies indicate how common a word stem is in the 
document collection. The more frequently a word appears in the 
corpus, the lower the corresponding feature value is.  

The value of N, the sum of the DLk values, and the DF for each 
word stem are updated incrementally as the stream is processed. 
In order to ensure bounded memory consumption we limit the list 
of word stems and their corresponding DF to a fixed number. 
When this limit is exceeded we discard the words stems that have 
not appeared in any document for the longest amount of time. 
This way the system can adapt to changing topics in the document 
stream. The most common word stems in the corpus correspond to 
very common terms of the English language that are not quite 
general enough to be used as stop words. Their frequencies 
stabilize quickly [11]. Many word stems with medium document 
frequencies correspond to currently important topics because they 
appeared in a significant number of documents. The word stems 
with very low document frequencies mostly correspond to noise 
(e.g. misspellings) or very small stories that have a short lifespan 
in the stream.  

6. CLUSTERING 
In order to meet our requirements we need a single pass algorithm 
that processes all documents with limited memory and processing 
time. The documents need to be assigned to clusters immediately 
to minimize the delay between the point in time when a document 
is ingested into the database and when it is available to the user as 
part of a cluster. We cannot make any assumptions on the number 
of clusters a priori. In Algorithm 6.1 we list the basic single-pass 
clustering algorithm [48, 44].  

Each incoming document is compared to a set of candidate 
clusters determined by ρ. Different variants of ρ are discussed 
below. If the distance to the closest cluster is below the threshold 
T, the document is assigned to this cluster. Otherwise a new 
cluster containing the current document vector is created. For δ(·, 
·) we use the cosine distance of a document vector to the cluster 
centroid where each vector is normalized to length one. For 
efficiency the centroid can be pruned to contain only the k largest 
entries [48].  

 
Multiple cluster memberships can be supported with the following 
variation: The document is added to all clusters that are 
sufficiently similar and a new cluster is only created if no cluster 
with a distance below the threshold is found. The time needed to 
process a document depends on the size of the candidate cluster 
set C hat returned by ρ. If efficiency is not an issue we can simple 
choose 

 
i.e., compare each incoming document to all existing clusters. 
Clearly this will not be scalable because as the document stream 
progresses more and more existing clusters will need to be 
considered. Using only the most recent clusters from a sliding 
time window ensures limited memory consumption and 
processing time independent of the amount of previously 
clustered documents. Given a maximum age A and an age 
function a (·, ·) for clusters we can define: 

  
For the age of a cluster we use the difference between the time 
stamp of the current document and the most recent document in 
the cluster, other formulations are possible.  

For high density streams and long time windows this will still 
return too many candidates to achieve real-time processing. Let’s 
assume we have 10k documents per day that are on average 
clustered into clusters of size 10. If we want to keep 1k clusters 
from each of the last 7 days this leaves us 1.2ms for a single 
comparison of a document to a cluster including the time needed 
for IO and preprocessing. With 50k documents per day only 



0.05ms are available. We need to reduce the number of document 
cluster comparison to handle such high density streams together 
with large time windows. We propose to use locality-sensitive 
hashing (LSH) [27, 26, 41] to overcome this obstacle. LSH 
provides an index structure that can be used to determine 
approximate nearest neighbors, can be updated incrementally, and 
can deal with high dimensional data [41]. For a given vector the 
hash returns a (small) set of candidate clusters. These candidate 
clusters include the most similar cluster with high probability. Let 
LSH(·, ·) be this hash function, then we can define 

 
The exhaustive search is only carried out over the much smaller 
set of clusters as determined by the hash function. This way large 
time windows can be supported without a prohibitively large 
increase in processing time. The hash supports online updates. 
New clusters are added to the hash and changed clusters are 
updated by removing the old cluster vector and adding the current 
vector. The hash returns a variable number of clusters for each 
request. To ensure a limited run time we keep track of the sizes of 
the clusters stored in the hash and use at most the M largest 
candidate clusters. We used an efficient variant of the hash 
functions described in [26]. Instead of implicitly mapping the 
range of each TFIDF features to several binary columns we used 
only one binary feature indicating whether the TFIDF value is 
greater than zero, i.e., whether the word stem is present in the 
document or not.  

Some notes on implementation. The major cost of such a 
clustering system is the retrieval of the text from the database or 
files and the storage of vectors and cluster information in the 
database. If C hat is large the corresponding vectors cannot be 
kept in memory. The usage of LSH thus saves not only distance 
calculations but many vector retrieval operations either from a 
disk cache or the database. The set of relevant clusters C hat can 
be maintained incrementally or reinitialized in large intervals, 
e.g., daily. While the algorithm is formulated such that each 
document is processed individually, it is more efficient to process 
(small) batches of documents together. This will only cause a 
small delay in the clustering of the documents early in the batch. 

7. EVALUATION 
We performed a thorough evaluation of our clustering system to 
optimize parameters for deployment and to analyze the tradeoff 
between speed and quality. First we analyzed the approximation 
quality of our LSH based solution to find out how much scale-up 
one can expect for making certain errors. Next the most important 
parameters of the clustering algorithms were optimized on the 
training set and evaluated independently on the test set. We 
demonstrate the resulting high quality of the online system by 

comparing our system to a non-streaming method. Finally we 
performed experiments varying the size of the feature space and 
the size of the cluster representation to see if we can save more 
time and space without sacrificing the achieved quality.  

7.1 Methods  
During the following evaluations we fixed several parameters of 
the system based on prior experience to avoid a combinatorial 
explosion. We used 250 random hash functions based on 2 
random permutations each. During clustering the hash was filled 
with at most 10k clusters at the beginning of each day selected 
from the previous 7 days based on size and age. Unless otherwise 
noted we used a clustering threshold of 0.76 and emphasized all 
meta data (see Section 7.3.1). The number of active features was 
at most 50k and the size of cluster vectors was not limited. The 
documents were processed in batches of size 100.  

The clustering quality was evaluated with precision, recall, and F1 
[40]. For each ground truth story we evaluated all clusters that 
contained at least one article of the story. Precision measures how 
dominant this story is in the cluster, whereas recall measures how 
much of the story is contained in the cluster. F1 measures a 
compromise between precision and recall as each can be 
optimized individually with a trivial solution (one cluster with all 
documents or one cluster per document). The cluster with the 
highest F1 score was selected for each story and the unweighted 
average of the F1 values was used to evaluate a clustering result. 
We chose not to use weighting by size because we want small 
clusters to be well represented. To de-emphasize the influence of 
the random number generation in the hash structure we used 
several repetitions for each parameter setting and report mean and 
standard deviation. The test data is only explicitly used in 
parameter optimization to avoid over fitting and the comparison 
to the non-streaming algorithm to ensure reproducibility. The 
other experiments were performed to analyze the system’s 
behavior and give recommendations for the parameter selection.  

7.2 Nearest cluster approximation  
The deployed LSH speeds up the search of the cluster closest to a 
document vector, but it provides only an approximation. There 
can be cases where the nearest cluster is not part of the candidate 
set. We performed some experiments to evaluate the 
approximation quality similar to [23]. In order to investigate the 
trade-off between speed and error we varied the number of 
candidate clusters M that we use for exhaustive nearest cluster 
search. The more candidates we consider, the more likely the true 
closest cluster should be found or the smaller the possible error 
should be but at the same time more distance calculations and 
vector retrieval operations are needed.  



We compared the LSH based cluster candidate selection to an 
exhaustive search over all clusters in the hash as in [23] and to a 
random selection that picks the same number of clusters as 
returned by the LSH method. The results for 5 repetitions of each 
setting on the training data are listed in Table 2. The test data was 
not used, as the results are independent of the labeling. We 
recorded the fraction of erroneous decisions in finding the closest 
cluster (error rate). The standard deviation is not listed because it 
was 2 orders of magnitude smaller than the mean.  

For all wrong decisions we calculated the mean and standard 
deviation of the absolute difference between the distance to the 
best cluster and distance to the selected cluster (absolute error) 
within each clustering run and list the mean values over the 
repetitions. To evaluate the speedup in comparison with the 
exhaustive optimal search we report the percentage of necessary 
distance calculations that also correspond to the number of vector 
retrieval operations. The overhead needed to maintain and query 
the hash is very low as the hash fits into main memory and mainly 
integer operations are used. We did not use wall clock timing 
because they are heavily influenced by the configuration of the 
caches and the memory management of the database and the 
operating system. 

The LSH-based selection proved to be very effective. It leads to 
much fewer wrong decisions and much smaller absolute errors. 
With 1000 candidates less than a fourth of the decisions are 
wrong with a mean absolute error of only 0.04. Compared to the 
optimal exhaustive search a high speed can be achieved. Above 
1k candidates a saturation effect is observed. This is probably due 
to the necessarily limited capability of the hash structure with 
fixed parameters. We further investigated the influence of the 
number of candidates on the cluster quality. The F1 values for the 
LSH-base approximation are shown in Figure 1. The quality 
increases clearly up to 500 candidates, above 1k candidates little 
improvement is observed. Similar results were obtained on the 
test set. We chose this candidate set size for further experiments.  

 

Table 2: Quality of LSH-based nearest cluster selection.

Candidates Error rate Absolute Error Speedup 
 LSH Random LSH Random  

250 0.39 0.93 0.0614 ± 0.1057 0.1718 ± 0.1742 20.4 
500 0.31 0.89 0.0498 ± 0.0881 0.1606 ± 0.1696 11.3 
750 0.26 0.87 0.0419 ± 0.0700 0.1547 ± 0.1669 8.5 

1000 0.24 0.85 0.0382 ± 0.0581 0.1543 ± 0.1684 7.2 
1250 0.23 0.84 0.0354 ± 0.0478 0.1514 ± 0.1669 6.6 
1500 0.22 0.84 0.0345 ± 0.0450 0.1515 ± 0.1674 6.3 

 

Figure 1: Cluster quality for LSH approximation with 
different numbers of cluster candidates.  

7.3 Cluster quality  
7.3.1 Clustering threshold  
Optimization of the threshold parameter is crucial for achieving a 
good quality with single-pass clustering [48, 25]. We performed a 
parameter study involving the threshold and different weighting 
schemes for emphasis of the following meta-data: locations, 
persons, organizations, categories, headline, and abstract. The 
baseline setting does not use any meta-information. The best 
emphasized variant utilizes the meta-information from locations, 
organizations, categories, and the abstract. In order to further 
investigate the importance of meta-data we implemented a third 
weighting scheme simulating the absence of locations, persons, 
and organizations by removing the corresponding word stems. 

Table 3: P-values for comparison of the cluster quality with a 
threshold of 0.76. 

vs. baseline Training Test 
Emphasized meta-data < 10-13 < 0.0165 
Removed meta-data < 10-4 < 10-15

 

All tests were repeated 20 times to enable an evaluation of 
significance with the t-test. The results for the training data are 
shown in Figure 2 with mean and standard deviation for several 
thresholds.  



 
Figure 2: Cluster quality on the training data for different 
thresholds and meta-data weighting schemes.  

The emphasis of meta data clearly improves the clustering quality 
on the training data. The p-values from the comparison using the 
best clustering threshold of each setting are shown in Table 3. 
This result can also be reproduced on the test data using the same 
threshold values as on the training data. The absolute difference in 
quality is smaller on the test data and for the larger thresholds 
(corresponding to higher recall but lower precision) it is even 
better than the emphasized variant. The removal of meta-data 
results in a significant decrease in cluster quality on both datasets 
as can be seen from Figures 2-3, and Table 3. It seems that the 
off-the-shelve text preprocessing already does a decent job in 
detecting which word stems are most important for the news 
articles. Nevertheless, emphasizing meta-data explicitly can 
further improve the quality significantly.  

7.3.2  Comparison with hierarchical clustering  
Our online clustering system performs quite well as demonstrated 
in the previous sections. In addition one needs to consider that 
even a thorough manual labeling process will never be perfect so 
F1 values of 100% are not to be expected. In order to estimate 
how much quality is lost due to the online constraints we 
compared our algorithm to groupwise average hierarchical 
clustering, one of the best offline text clustering algorithms [48, 
47, 31, 25, 52]. Starting with one cluster per document the two 
closest clusters are merged based on the average similarity of all 
pairs of documents from the two clusters. 

 
Figure 3: Cluster quality on the test data for different 
thresholds and meta-data weighting schemes.  

We stopped merging as soon as the number of clusters was equal 
to that created by the single-pass algorithm. It turned out that 
under these conditions the single-pass algorithm performed better 
than groupwise average clustering on the training data. We varied 
the threshold of the single-pass and thus the number of clusters 
for groupwise averaging until an optimum was found. The best 
results for each method are shown in Table 4. 

Table 4: Cluster quality in comparison with offline group-wise 
average clustering.  

Data set Single-pass Groupwise 
Training 0.9378 ± 0.0018 0.9453 ± 0.0001 
Testing 0.9091 ± 0.0073 0.9258 ± 0.0005 

 

For both datasets the single-pass clustering achieves F1 values 
that are comparable to offline hierarchical clustering. The 
absolute differences in the F1 values are smaller than 0.01. Of 
course hierarchical clustering does not scale up to high frequency 
text streams because it requires the calculation of all pair wise 
distances which is quadratic in the size of the document 
collection.  

7.3.3  Size of the feature space  
An important feature of our system is the dynamic feature space. 
Only a limited number of word stems can be used at any time to 
avoid an unbounded increase in the run time of the system. A 
larger feature space will generally lead to a slower system and 
extremely large feature spaces will contain a lot of irrelevant 
word stems. On the other hand the feature space should not be 
chosen too small because then important words might be 
discarded if they don’t occur in the currently processed 
document(s). If they occur again at a later point in time they will 
be added as a new feature with a different vector position. This 
can lead to errors in the assignment of a document to an existing 
cluster with similar documents, because such word stems will 
incorrectly increase the distance. We varied the maximum number 
of active feature from 15k to 175k and measured the number of 
re-appearing word stems including duplicates and the cluster 



quality on the training data as shown in Figure 4 and Figure 5, 
respectively. Similar results were obtained on the test set. 

The number of re-appearing features is very high for small 
numbers of active features. If at most 25k features are active at 
any time a feature is assigned a different vector position than for a 
previous occurrence more than 100k times. For 100k active 
features this happens only around 7k times. This is also reflected 
in the cluster quality that rises steeply up to 50k-75k features and 
does not improve past 100k features.  

Both curves are certainly somewhat data set dependent, the 
number of unique features in this data set is about 166k. For real 
life high density streams we recommend to use at least 100k. 

 
Figure 4: Number of re-appearing features for different 
maximum numbers of active features. 

 
Figure 5: Cluster quality for different maximum numbers of 
active features.  

 

7.3.4 Size of the cluster representation  
Apart from the global limitations on the number of features, the 
vector based representation of each cluster can be limited. For 

clusters that contain many documents, the number of non-zero 
entries in the vector calculated as the sum of the individual 
documents vectors can become very large. The vector sum can be 
pruned by keeping only the largest d entries and setting additional 
values to zero [42]. This will reduce noise and increase the speed 
of distance and hash calculations. We varied the maximum 
number of features per cluster from 100 to 10k and measured the 
cluster quality on the training set as shown in Figure 6. Similar 
results were obtained on the test set. 

 
Figure 6: Cluster quality for different numbers of feature per 
cluster. 

The clustering quality rises up to a maximum of 1.5k features per 
clusters. Beyond this no significant degradation could be 
observed. The influence of noise seems to be negligible but 
pruning is still worthwhile because it saves memory and 
processing time. We assume that the entries pruned beyond the 
largest 1.5k have small TFIDF values and thus do not 
significantly influence the clustering quality.  

8. DISCUSSION  
We designed a high performance text clustering system and 
applied it to the real world problem of news aggregation. Our 
main contribution is the usage of LSH to make the single-pass 
clustering algorithm [48, 44] scale up to high frequency text 
streams using a very simple hash function. Previous research used 
datasets with much lower density of news articles per day and or a 
posterior analysis of news archives. Under these conditions all 
clusters from a long time range can be considered for an incoming 
document and even iterative algorithms might be feasible. For 
high-frequency text streams our solution creates a good solution 
efficiently. We showed empirically that a very high level of 
cluster quality is maintained even though only a small fraction of 
the distance calculations and the associated retrieval of cluster 
vectors are needed. Our reported experiences give insight into the 
problems that are encountered when dealing with large-scale 
problems.  

We store the centroid vectors of clusters from a sliding time 
window in the hash structure to find good candidate clusters for 
an incoming document vector. If memory permits, document 
vectors could be stored in the hash with the corresponding cluster 



id to assign a document to the cluster with the closest document. 
For topic detection this single-link approach is of advantage [48] 
whereas for clustering the former group-average paradigm is 
reported to work better [25].  

The clustering quality of the single-pass clustering algorithm has 
been reported to be almost as good as or even better than iterative 
algorithms [48, 25] if the clustering threshold parameter is set 
appropriately. The optimal threshold on our training data was 
between 0.76 and 0.78 depending on the particular experimental 
setting. This compares with previously mentioned values and 
ranges: 0.77 [48] 0.7- 0.9 [25]. We achieved a cluster quality that 
is comparable with one of the best offline clustering algorithms 
for text data, namely group-wise average hierarchical clustering.  

The single-pass clustering is similar to micro-clustering [3] 
without the on-demand step. New documents are added to the 
most similar micro-cluster if the similarity is high enough. If the 
maximum amount of micro-clusters k is reached inactive clusters 
are removed. This is similar to our time window. The LSH 
technique could also be used to speed up micro-clustering.  

If we were to execute the on-demand clustering step on a regular 
basis, several problems would arise within our applications. First 
of all it would need to done frequently to minimize the delay 
between the time when the document is ingested into the system 
and the time when it is available to the user as part of a cluster. 
Even hourly clustering would mean a significant delay for a news 
system. Also, it has been reported in [10] that a delay does not 
necessarily help in new event detection. If each on-demand 
clustering is done independently, the amount of clusters that are 
saved to the database is much larger compared to single-pass 
clustering where one cluster can stretch over a long period of 
time. Clusters from close-by snapshot times would be very similar 
creating near duplicates in the database that are hard to detect and 
filter. A possible solution to this would be the recently proposed 
evolutionary clustering framework [13] where consecutive 
clusterings are required to be similar. In this case a previous 
cluster could be associated with a similar current cluster and 
saved as a single object in the database. This approach does not, 
however, support clusters with gaps longer than the clustering 
interval. Our single-pass clustering supports long cluster lifetimes 
including gaps up to the duration of the sliding time window. The 
historical information of the time stamps of documents within a 
cluster can be easily reconstructed from the database on demand. 
Finally in [3] there is no mentioning of limiting the number of 
features which is a potential memory problem.  

Our experimental study indicates that utilizing locations, persons, 
and organizations is of advantage. This is in accordance with 
previous studies [30, 25]. In [25] one vector for the text and 
separate vectors for entities and noun phrases are generated. The 
similarities from comparing the corresponding vectors from 
different documents are mixed with weights found by regression 
on a training data set. We integrated the text information and the 
meta-data into a single vector with emphasized frequencies for 
meta-data terms. This enables the use of a single hash structure to 
find a single set of cluster candidates. When using several vectors 
and similarities the determination of good candidates will be more 
involved.  

When varying the maximum length of cluster centroid vectors we 
found that the clustering quality on our training increases up to 

around 1.5k entries and does degrade for larger values. This is in 
contrast to previous studies that truncated the vectors for 
efficiency down to 20 [42] or 25 [31] entries. One reason for our 
observation might be the larger vocabulary and size of our corpus. 
We recommend to use much higher values.  

We did not use any dimensionality reduction techniques like 
latent semantic indexing (e.g. [9, 18]) because the projection 
would require additional online computation and we would loose 
the direct correspondence of feature with words stems that is 
utilized to generate keywords for each cluster.  

9. SUMMARY  
We presented a system for high performance online text 
clustering of a stream of news articles that meets all the identified 
requirements of the Geospace & Media Tool. The system has 
been tested on the complete news stream over several weeks and 
successfully discovered top stories as reported by other news 
sites. The system will be deployed in the near future to aid 
members of Congress their staffs in analyzing the daily news in 
connection with geospatial, census, and human network 
information.  

The textual content of the articles is analyzed and similar articles 
are grouped into clusters on-the-fly without any assumptions on 
the number of clusters and without retrieving previous documents. 
The result is available to the user at any time without additional 
on-demand clustering steps. The system dynamically adjusts to 
changing topics by gradually adapting the feature space. 
Efficiency is ensured by limiting the amount of currently active 
features and by considering only clusters from a finite time 
horizon for the assignment of incoming documents. Very large 
time windows can be supported by using locality-sensitive 
hashing to summarize the clusters and find the most similar 
cluster for each document with high probability. We demonstrated 
the effectiveness and efficiency of the system on the very 
demanding application of news clustering. The clustering quality 
is comparable to one of the best non-streaming document 
clustering algorithms and the architecture can easily support 
several 10k documents per day on off-the-shelve hardware. 
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