
Any-time clustering of high frequency news streams
Fabian Moerchen

Siemens Corporate Research
755 College Road East

08540 Princeton, NJ, USA
001-609-734-3529

fabian.moerchen
@siemens.com

Klaus Brinker
Siemens Corporate Research

755 College Road East
08540 Princeton, NJ, USA

001-609-734-3312

klaus.brinker@gmail.com

Claus Neubauer
Siemens Corporate Research

755 College Road East
08540 Princeton, NJ, USA

001-609-734-6567

claus.neubauer@siemens.com

ABSTRACT
We describe a large scale system for clustering a stream of news
articles that was developed as part of the Geospace & Media Tool
(GMT). The GMT integrates the news feed with geospatial,
census, and human network information to provide a research tool
for members of Congress and their staffs. News articles covering
the same event are summarized for the user through the clustering
component. The clustering result is available to the user at any
time without additional on-demand clustering steps. The
documents are grouped into clusters on-the-fly without any
assumptions on the number of clusters and without retrieving
previous documents. High efficiency is achieved by utilizing
locality sensitive hashing (LSH) as a means to determine a small
set of candidate clusters for each document. This way a large
number of clusters can be considered while keeping the number of
expensive document to cluster comparisons low. Our experiments
with the system reveal interesting aspects of large-scale text
processing in general and news clustering in particular. We
demonstrate how the LSH based approximation achieves a large
speedup at the cost of only few and small errors. On a high-
frequency benchmark data set a clustering quality comparable to
one of the best non-streaming document clustering algorithms is
obtained.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms, Performance.

Keywords
text mining, clustering, data streams.

1. INTRODUCTION
The automated processing of large amounts of text is an important
tool in knowledge management [9, 18]. Classification and

clustering of text documents can help to structure a document
collection and make it more accessible. At a coarse level an
assignment to topics or categories can help to navigate a corpus.
If some of the documents are already assigned to topics, a
supervised classification approach can help to label the remaining
documents and any new documents [34, 43, 29].

Otherwise unsupervised clustering can help to discover the
underlying topical structure of existing text collections [15, 35,
52]. In many applications the document collection is dynamic [5,
48, 30] in the sense that new documents are continuously being
added to the database and need to be processed. In this scenario
both supervised and unsupervised methods need to be able to cope
with new topics in the text that do not fit the previous
classification or cluster model [46, 20].

Consider news articles from newspapers and news agencies that
form a stream of text documents. For a given event different news
sources publish similar articles and even the same news source
covers a developing story over several days. Clustering can be
used to aggregate the news articles that cover the same story and
offer the user a better overview of the current events [5, 48, 30].
For each cluster a summary can be generated from using
headlines and content of representative articles and the most
relevant keywords. Additional articles from the cluster can be
displayed on demand to provide more details. A well known
implementation of such a news aggregation system is Google
News (http://news.google.com).

We describe a large scale system for clustering a stream of news
articles that is a core component of Geospace & Media Tool
(GMT) developed in cooperation with the Parsons Institute for
Information Mapping (PIIM), The New School, NY. The GMT
integrates the news feed with geospatial, census, and human
network information to provide a research tool for the members of
Congress and their staffs. We describe the requirements of the
text clustering component within this application and describe an
efficient solution. We report the results of extensive experiments
regarding the trade-off between speed and quality, the handling of
dynamic content, and the merits of using meta-data to improve the
clustering quality. The same system could be applied to cluster
Blog entries, emails, customer service requests, medical reports,
and similar potentially high rate text streams. Section 2 briefly
describes the different components and use cases of the GMT and
translates this into requirements for the clustering of new articles.
In Section 3 we review related work on text clustering. The data
set used in evaluating the system is described in Section 4.
Sections 5-6 describe our online text clustering system. The
evaluation with news articles in Section 7 shows the high

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DMCS Workshop, KDD’07, August 12–15, 2007, San Jose, CA, USA.
Copyright 2007 ACM …$5.00.

http://news.google.com/

clustering quality and discusses the influence of some key
parameters on the performance. The results and lessons learned
are discussed in Section 8 and the achievements are summarized
in Section 9.

2. GEOSPACE & MEDIA TOOL
The GMT is a government funded tool developed under the lead
of the Parsons Institute for Information Mapping (PIIM), The
New School, NY. It integrates a stream of news articles provided
by Factiva (http://www.factiva.com) with geospatial, census, and
human network information to provide a research tool for the
United States’ senators and their staff. The news articles are
processed by a customized entity extraction module that combines
off-the-shelve software for named entity and geo location
detection with algorithms for disambiguation. The articles and the
detected entities are then processed by the clustering component
described in detail in this study. The news articles and clusters are
stored in a relational database system for access by the web-based
GMT client. The client lists the currently active top stories and
supports user-defined keyword and location searches. The ranking
of top stories and search results utilizes statistics pre-computed
during the clustering. For each news cluster several representative
headlines and keywords are displayed. The extracted locations of
the news articles and clusters are used to display them on a
zoomable map. Census data provided by ESRI
(http://www.esri.com) can be displayed on top of the map to
provide context to news stories. The connections between
extracted people and organizations can be explored with network
displays that are complemented with biographical and contact
information.

The clustering component of the GMT serves to summarize news
articles about one particular event or topic for the users. The
grouping of similar articles eases the browsing of the vast amount
of content. The ranking helps in determining the currently most
important topics. The users of the GMT are further interested in
small stories with local scope. The geo-location of news articles
helps in searching such articles via the interactive map or by
specifying regions along with tops keywords. For the clustering it
means that all news articles need to be clustered, not only articles
about the major topics. Existing systems like Google News only
display top stories and it is unclear what happens to the rest of the
news. Preliminary user tests resulted in positive feedback about
the usefulness of the system to congressional staff to solve the
daily task of researching various current topics.

Each resulting news cluster should contain as many articles about
an event as possible (high recall) and only contain only few
articles with low relevance (high precision). The system needs to
find a tradeoff between these two quality measures for both large
clusters and small clusters simultaneously.

The news stream used in the GMT contains about 50k-100k
articles per day. The news articles need to be clustered as fast as
possible to provide timely information to the users. With such a
high rate of incoming articles clustering of the complete data set
will quickly become infeasible. Even clustering only the articles
from the last few days will be demanding and more importantly
useless, because the result will be outdated when it is available.
Data stream clustering techniques are needed [24, 2, 22, 3, 1] to
continuously process the feed. The data stream model is
commonly characterized such that “the data elements in the

stream arrive online”, “the system has no control over the order
[...]”, “data streams are potentially unbounded in size” [6] and
there is only one chance of fast access for each data element. For
data mining in general [17] and clustering in particular [8] this has
been translated into certain requirements.

In summary, we identified the following conditions as being
crucial for the clustering the news stream in the GMT:

• Process the stream in a single pass using a small constant
time per record and only a fixed amount of main memory
[17].

• Process all documents [8], i.e., do not use load-shedding or
outlier removal.

• Create a clustering similar in quality to non-streaming
algorithms [17].

• Make the clustering available at any point in time [17].

• Do not make assumptions about the number of clusters.

• Dynamically adjust to changing content.

We developed a new solution for this problem because no
previously proposed method met the above requirements
sufficiently (see Section 3). Even though our method is quite
simple it achieves excellent clustering quality in an application to
news processing.

3. RELATED WORK
Introductions to text clustering can be found in [35, 9, 52, 18]. An
analysis of the efficiency and quality of various building blocks
from the popular k-Means and Scatter- Gather [15] algorithms for
large datasets is done in [31]. In [35] the bi-secting k-Means
algorithm performed better than k-means and hierarchical
algorithms. The extensive evaluation of hierarchical clustering
algorithms concludes that “partitional methods are suitable for
producing flat and hierarchical clustering solutions for document
datasets effectively and efficiently” [52].

Two well known incremental hierarchical clustering algorithms
are BIRCH [49] for numerical data and COBWEB [19] for
categorical data. In [39] a variant of COBWEB for text
documents is described. The algorithms can update the current
clustering model upon arrival of new data points, but they are not
well suited for data stream processing [8]. The time and memory
requirements of COBWEB can degrade because the internal tree
structure is not balanced. BIRCH is designed to use slow
secondary memory for the cluster model. Even if the cluster
model can be kept in memory completely by using pruning
techniques it does not necessarily correspond to a natural cluster
structure, a final clustering of the leaf nodes is required [49].

The incremental competitive learning algorithm of [7] is targeted
toward text documents and produces a flat clustering. Exactly k
clusters of about the same size clusters are created. For a detailed
clustering of a collection very different cluster sizes are more
desirable as noted for news articles in [45]. Here, a cluster model
of a news archive is updated daily in a batch process, thus not
making the result available in real time as new articles arrive. In
[50, 51] self splitting competitive learning is advocated to free the
user from choosing the number of clusters. In order to assign the
vectors of a splitted cluster to the new sub-clusters the vectors of

http://www.factiva.com/
http://www.esri.com/

previous data points are needed, violating the one pass
requirement.

Clustering of text streams has also been used for retrospective
theme detection [36] and topic detection and tracking in the TDT
workshops [48]. Topic detection aims to find the first incoming
document of a new topic. Here, comparing new documents to all
previous documents has worked better than comparing them to
clusters [10]. Topic tracking aims at discovering all document that
belong to the topic given a certain number of example documents.
Topic tracking can be done in retrospective or online [5, 48] with
supervised and unsupervised methods [47, 21]. Unsupervised
online clustering corresponds to combined topic detection and
topic tracking given the first detected document. For the
retrospective analysis several clustering algorithms are compared
in [48]. Hierarchical clustering performed best, but online single-
pass clustering was almost as good. This was explained with the
temporal proximity of topics in the data set. In contrast to our
requirements some topic tracking systems do not assign all
documents to clusters [10].

In [16] the very fast k-Means (VFKM) algorithm is proposed for
huge datasets, but it requires several passes over the data using a
sample with increasing size in each pass. A one-pass
approximation to k-Medians is described in [37, 24]. The data
points are clustered in batches to obtain a large number of
weighted medians which are successively re-clustered until only k
centers remain. The number of clusters k needs to be specified at
least roughly and the clustering result is not available at any time.
Whenever a clustering of the data observed so far is desired, the
clustering up to the final level needs to be initiated.

The approach proposed in [2, 3, 1] does not make any
assumptions on the number of clusters, but also divides the
process into an online and offline component. The online part
keeps a collection of so-called micro-clusters with sufficient
statistics and temporal information about the data points assigned
to it up to date. At certain time points a snapshot of these clusters
is saved. The offline part constructs the final clustering from the
stored micro-clusters for a specified time horizon on demand.
This step is potentially very expensive for large time horizons. A
density based micro-clustering is described in [12]. In [28] the
data stream is first segmented by a change point detection
algorithm. Each time a segment boundary is found the preceding
segment is clustered. This can potentially cause a large delay
between the time a data point is observed and when it is clustered.

4. DATA SET
Our text clustering system was developed to process the stream of
news from many (online) news sources collected by the news
provider Factiva. Depending on the number of original sources
about 50k-200k articles per day need to be processed. The goal
was to provide an efficient way to cluster the news articles at a
story level to support the browsing of the articles. This is in
contrast with text categorization [34] or topic tracking (e.g. [5])
where broad categories or only major news stories are of interest.
The ground truth data available with commonly used benchmark
datasets like Reuters-21578 [33] or RCV1 [32] corresponds to
(coarse) topic categories and not individual news stories. The
TDT datasets contain labeled news stories but the data is collected
over several months resulting in relatively low daily and hourly
rates of articles that do not represent our target stream well.

Moreover, certain datasets like TDT2 [14] include structurally
diverse news items, such as radio and TV broadcasts, or have
been compiled to benchmark different tasks, such as supervised
adaptive topic tracking and multilevel hierarchical topic detection
(TDT56). The labeling procedure of the TDT datasets is further
biased towards larger stories [48].

We therefore collected the daily news articles from 02/16 to 02/28
in 2006 and labeled 80 news stories of various sizes as our ground
truth for evaluation. Several large stories were identified
monitoring the websites of major newspapers during the same
time period. Smaller local stories were found by filtering the
complete data with keyword queries like “Phoenix” and
performing an initial very fine grained clustering on this subset.
For each story a thorough semiautomatic labeling process was
performed involving the following steps executed repeatedly as
necessary:

• Search the database for more articles containing important
keywords present in the current story.

• Rank the selected articles by their similarity (see Section 5)
to the center of the current selection or the closest article in
the current selection to help distinguishing relevant and
irrelevant articles.

• Search the database for more articles with high similarity to
any selected article.

• Rank unselected candidate articles by their similarity to the
closest article in the current selection to add very similar
articles.

 For borderline articles the decision about what was included in a
story was checked by at least two persons. The 80 true stories
were split into a training part used in optimizing the crucial
system parameters and an independent test part to evaluate them.
For each data set we added about 1000 unlabeled articles per day
randomly selected from the stream. Some statistics of the final
data sets are shown in Table 1.

Table 1: Characteristics of benchmark data sets derived from
high density text stream

Data set Articles Articles per story
 labeled unlabeled min median max
Train 4168 12416 7 34 682
Test 3674 12371 4 40 643

Large stories included a discussion about the hunting accident of
Cheney, the resignation of the president of Harvard University
and calls for the closing of Guantanamo. Typical medium sized
stories were the delays at Delphi and the hostages abducted from
an oil platform in Nigeria. Among the smallest stories were the
decision about Measure 37 in Oregon and a gunman in Phoenix.
Several stories were specifically selected to be very similar, e.g.,
patent issues of Blackberry and of Adidas vs. Nike.

5. PREPROCESSING
The incoming documents are preprocessed with the standard text
mining chain of methods [40]. First all words from a list of stop
words are removed. For our news application the list included the
names of several big news agencies. We further removed all
Internet links and Email addresses. From the remaining words a

list of lower case word stems is generated with Porter’s stemming
algorithm [38]. The frequencies of the word stems are saved for
each document.

For the news application the names of locations, persons, and
organizations were extracted from the original (un-stemmed) text
and saved separately with their occurrence frequencies. Each
article was further assigned a list of subject categories similar to
the RCV1 data. Each category code was treated as a word stem.
The importance of this meta-information and of words from the
headline and the abstract can optionally be emphasized by
artificially increasing their frequencies.

Each word stem frequency is then mapped to a numerical value
with the incremental TFIDF (Term Frequency Inverse Document
Frequency) scheme of [11] as used in many topic detection
approaches [48, 4, 10]:

where TF is the term frequency (how many times did the term
appear in the document), N the number of documents processed,
DLk is length of the k-th document in words, and DF is the
document frequency (in how many documents did the word
appear so far). The more frequently a word appears in a
document, the higher the corresponding feature value is. The
document frequencies indicate how common a word stem is in the
document collection. The more frequently a word appears in the
corpus, the lower the corresponding feature value is.

The value of N, the sum of the DLk values, and the DF for each
word stem are updated incrementally as the stream is processed.
In order to ensure bounded memory consumption we limit the list
of word stems and their corresponding DF to a fixed number.
When this limit is exceeded we discard the words stems that have
not appeared in any document for the longest amount of time.
This way the system can adapt to changing topics in the document
stream. The most common word stems in the corpus correspond to
very common terms of the English language that are not quite
general enough to be used as stop words. Their frequencies
stabilize quickly [11]. Many word stems with medium document
frequencies correspond to currently important topics because they
appeared in a significant number of documents. The word stems
with very low document frequencies mostly correspond to noise
(e.g. misspellings) or very small stories that have a short lifespan
in the stream.

6. CLUSTERING
In order to meet our requirements we need a single pass algorithm
that processes all documents with limited memory and processing
time. The documents need to be assigned to clusters immediately
to minimize the delay between the point in time when a document
is ingested into the database and when it is available to the user as
part of a cluster. We cannot make any assumptions on the number
of clusters a priori. In Algorithm 6.1 we list the basic single-pass
clustering algorithm [48, 44].

Each incoming document is compared to a set of candidate
clusters determined by ρ. Different variants of ρ are discussed
below. If the distance to the closest cluster is below the threshold
T, the document is assigned to this cluster. Otherwise a new
cluster containing the current document vector is created. For δ(·,
·) we use the cosine distance of a document vector to the cluster
centroid where each vector is normalized to length one. For
efficiency the centroid can be pruned to contain only the k largest
entries [48].

Multiple cluster memberships can be supported with the following
variation: The document is added to all clusters that are
sufficiently similar and a new cluster is only created if no cluster
with a distance below the threshold is found. The time needed to
process a document depends on the size of the candidate cluster
set C hat returned by ρ. If efficiency is not an issue we can simple
choose

i.e., compare each incoming document to all existing clusters.
Clearly this will not be scalable because as the document stream
progresses more and more existing clusters will need to be
considered. Using only the most recent clusters from a sliding
time window ensures limited memory consumption and
processing time independent of the amount of previously
clustered documents. Given a maximum age A and an age
function a (·, ·) for clusters we can define:

For the age of a cluster we use the difference between the time
stamp of the current document and the most recent document in
the cluster, other formulations are possible.

For high density streams and long time windows this will still
return too many candidates to achieve real-time processing. Let’s
assume we have 10k documents per day that are on average
clustered into clusters of size 10. If we want to keep 1k clusters
from each of the last 7 days this leaves us 1.2ms for a single
comparison of a document to a cluster including the time needed
for IO and preprocessing. With 50k documents per day only

0.05ms are available. We need to reduce the number of document
cluster comparison to handle such high density streams together
with large time windows. We propose to use locality-sensitive
hashing (LSH) [27, 26, 41] to overcome this obstacle. LSH
provides an index structure that can be used to determine
approximate nearest neighbors, can be updated incrementally, and
can deal with high dimensional data [41]. For a given vector the
hash returns a (small) set of candidate clusters. These candidate
clusters include the most similar cluster with high probability. Let
LSH(·, ·) be this hash function, then we can define

The exhaustive search is only carried out over the much smaller
set of clusters as determined by the hash function. This way large
time windows can be supported without a prohibitively large
increase in processing time. The hash supports online updates.
New clusters are added to the hash and changed clusters are
updated by removing the old cluster vector and adding the current
vector. The hash returns a variable number of clusters for each
request. To ensure a limited run time we keep track of the sizes of
the clusters stored in the hash and use at most the M largest
candidate clusters. We used an efficient variant of the hash
functions described in [26]. Instead of implicitly mapping the
range of each TFIDF features to several binary columns we used
only one binary feature indicating whether the TFIDF value is
greater than zero, i.e., whether the word stem is present in the
document or not.

Some notes on implementation. The major cost of such a
clustering system is the retrieval of the text from the database or
files and the storage of vectors and cluster information in the
database. If C hat is large the corresponding vectors cannot be
kept in memory. The usage of LSH thus saves not only distance
calculations but many vector retrieval operations either from a
disk cache or the database. The set of relevant clusters C hat can
be maintained incrementally or reinitialized in large intervals,
e.g., daily. While the algorithm is formulated such that each
document is processed individually, it is more efficient to process
(small) batches of documents together. This will only cause a
small delay in the clustering of the documents early in the batch.

7. EVALUATION
We performed a thorough evaluation of our clustering system to
optimize parameters for deployment and to analyze the tradeoff
between speed and quality. First we analyzed the approximation
quality of our LSH based solution to find out how much scale-up
one can expect for making certain errors. Next the most important
parameters of the clustering algorithms were optimized on the
training set and evaluated independently on the test set. We
demonstrate the resulting high quality of the online system by

comparing our system to a non-streaming method. Finally we
performed experiments varying the size of the feature space and
the size of the cluster representation to see if we can save more
time and space without sacrificing the achieved quality.

7.1 Methods
During the following evaluations we fixed several parameters of
the system based on prior experience to avoid a combinatorial
explosion. We used 250 random hash functions based on 2
random permutations each. During clustering the hash was filled
with at most 10k clusters at the beginning of each day selected
from the previous 7 days based on size and age. Unless otherwise
noted we used a clustering threshold of 0.76 and emphasized all
meta data (see Section 7.3.1). The number of active features was
at most 50k and the size of cluster vectors was not limited. The
documents were processed in batches of size 100.

The clustering quality was evaluated with precision, recall, and F1
[40]. For each ground truth story we evaluated all clusters that
contained at least one article of the story. Precision measures how
dominant this story is in the cluster, whereas recall measures how
much of the story is contained in the cluster. F1 measures a
compromise between precision and recall as each can be
optimized individually with a trivial solution (one cluster with all
documents or one cluster per document). The cluster with the
highest F1 score was selected for each story and the unweighted
average of the F1 values was used to evaluate a clustering result.
We chose not to use weighting by size because we want small
clusters to be well represented. To de-emphasize the influence of
the random number generation in the hash structure we used
several repetitions for each parameter setting and report mean and
standard deviation. The test data is only explicitly used in
parameter optimization to avoid over fitting and the comparison
to the non-streaming algorithm to ensure reproducibility. The
other experiments were performed to analyze the system’s
behavior and give recommendations for the parameter selection.

7.2 Nearest cluster approximation
The deployed LSH speeds up the search of the cluster closest to a
document vector, but it provides only an approximation. There
can be cases where the nearest cluster is not part of the candidate
set. We performed some experiments to evaluate the
approximation quality similar to [23]. In order to investigate the
trade-off between speed and error we varied the number of
candidate clusters M that we use for exhaustive nearest cluster
search. The more candidates we consider, the more likely the true
closest cluster should be found or the smaller the possible error
should be but at the same time more distance calculations and
vector retrieval operations are needed.

We compared the LSH based cluster candidate selection to an
exhaustive search over all clusters in the hash as in [23] and to a
random selection that picks the same number of clusters as
returned by the LSH method. The results for 5 repetitions of each
setting on the training data are listed in Table 2. The test data was
not used, as the results are independent of the labeling. We
recorded the fraction of erroneous decisions in finding the closest
cluster (error rate). The standard deviation is not listed because it
was 2 orders of magnitude smaller than the mean.

For all wrong decisions we calculated the mean and standard
deviation of the absolute difference between the distance to the
best cluster and distance to the selected cluster (absolute error)
within each clustering run and list the mean values over the
repetitions. To evaluate the speedup in comparison with the
exhaustive optimal search we report the percentage of necessary
distance calculations that also correspond to the number of vector
retrieval operations. The overhead needed to maintain and query
the hash is very low as the hash fits into main memory and mainly
integer operations are used. We did not use wall clock timing
because they are heavily influenced by the configuration of the
caches and the memory management of the database and the
operating system.

The LSH-based selection proved to be very effective. It leads to
much fewer wrong decisions and much smaller absolute errors.
With 1000 candidates less than a fourth of the decisions are
wrong with a mean absolute error of only 0.04. Compared to the
optimal exhaustive search a high speed can be achieved. Above
1k candidates a saturation effect is observed. This is probably due
to the necessarily limited capability of the hash structure with
fixed parameters. We further investigated the influence of the
number of candidates on the cluster quality. The F1 values for the
LSH-base approximation are shown in Figure 1. The quality
increases clearly up to 500 candidates, above 1k candidates little
improvement is observed. Similar results were obtained on the
test set. We chose this candidate set size for further experiments.

Table 2: Quality of LSH-based nearest cluster selection.

Candidates Error rate Absolute Error Speedup
 LSH Random LSH Random

250 0.39 0.93 0.0614 ± 0.1057 0.1718 ± 0.1742 20.4
500 0.31 0.89 0.0498 ± 0.0881 0.1606 ± 0.1696 11.3
750 0.26 0.87 0.0419 ± 0.0700 0.1547 ± 0.1669 8.5

1000 0.24 0.85 0.0382 ± 0.0581 0.1543 ± 0.1684 7.2
1250 0.23 0.84 0.0354 ± 0.0478 0.1514 ± 0.1669 6.6
1500 0.22 0.84 0.0345 ± 0.0450 0.1515 ± 0.1674 6.3

Figure 1: Cluster quality for LSH approximation with
different numbers of cluster candidates.

7.3 Cluster quality
7.3.1 Clustering threshold
Optimization of the threshold parameter is crucial for achieving a
good quality with single-pass clustering [48, 25]. We performed a
parameter study involving the threshold and different weighting
schemes for emphasis of the following meta-data: locations,
persons, organizations, categories, headline, and abstract. The
baseline setting does not use any meta-information. The best
emphasized variant utilizes the meta-information from locations,
organizations, categories, and the abstract. In order to further
investigate the importance of meta-data we implemented a third
weighting scheme simulating the absence of locations, persons,
and organizations by removing the corresponding word stems.

Table 3: P-values for comparison of the cluster quality with a
threshold of 0.76.

vs. baseline Training Test
Emphasized meta-data < 10-13 < 0.0165
Removed meta-data < 10-4 < 10-15

All tests were repeated 20 times to enable an evaluation of
significance with the t-test. The results for the training data are
shown in Figure 2 with mean and standard deviation for several
thresholds.

Figure 2: Cluster quality on the training data for different
thresholds and meta-data weighting schemes.

The emphasis of meta data clearly improves the clustering quality
on the training data. The p-values from the comparison using the
best clustering threshold of each setting are shown in Table 3.
This result can also be reproduced on the test data using the same
threshold values as on the training data. The absolute difference in
quality is smaller on the test data and for the larger thresholds
(corresponding to higher recall but lower precision) it is even
better than the emphasized variant. The removal of meta-data
results in a significant decrease in cluster quality on both datasets
as can be seen from Figures 2-3, and Table 3. It seems that the
off-the-shelve text preprocessing already does a decent job in
detecting which word stems are most important for the news
articles. Nevertheless, emphasizing meta-data explicitly can
further improve the quality significantly.

7.3.2 Comparison with hierarchical clustering
Our online clustering system performs quite well as demonstrated
in the previous sections. In addition one needs to consider that
even a thorough manual labeling process will never be perfect so
F1 values of 100% are not to be expected. In order to estimate
how much quality is lost due to the online constraints we
compared our algorithm to groupwise average hierarchical
clustering, one of the best offline text clustering algorithms [48,
47, 31, 25, 52]. Starting with one cluster per document the two
closest clusters are merged based on the average similarity of all
pairs of documents from the two clusters.

Figure 3: Cluster quality on the test data for different
thresholds and meta-data weighting schemes.

We stopped merging as soon as the number of clusters was equal
to that created by the single-pass algorithm. It turned out that
under these conditions the single-pass algorithm performed better
than groupwise average clustering on the training data. We varied
the threshold of the single-pass and thus the number of clusters
for groupwise averaging until an optimum was found. The best
results for each method are shown in Table 4.

Table 4: Cluster quality in comparison with offline group-wise
average clustering.

Data set Single-pass Groupwise
Training 0.9378 ± 0.0018 0.9453 ± 0.0001
Testing 0.9091 ± 0.0073 0.9258 ± 0.0005

For both datasets the single-pass clustering achieves F1 values
that are comparable to offline hierarchical clustering. The
absolute differences in the F1 values are smaller than 0.01. Of
course hierarchical clustering does not scale up to high frequency
text streams because it requires the calculation of all pair wise
distances which is quadratic in the size of the document
collection.

7.3.3 Size of the feature space
An important feature of our system is the dynamic feature space.
Only a limited number of word stems can be used at any time to
avoid an unbounded increase in the run time of the system. A
larger feature space will generally lead to a slower system and
extremely large feature spaces will contain a lot of irrelevant
word stems. On the other hand the feature space should not be
chosen too small because then important words might be
discarded if they don’t occur in the currently processed
document(s). If they occur again at a later point in time they will
be added as a new feature with a different vector position. This
can lead to errors in the assignment of a document to an existing
cluster with similar documents, because such word stems will
incorrectly increase the distance. We varied the maximum number
of active feature from 15k to 175k and measured the number of
re-appearing word stems including duplicates and the cluster

quality on the training data as shown in Figure 4 and Figure 5,
respectively. Similar results were obtained on the test set.

The number of re-appearing features is very high for small
numbers of active features. If at most 25k features are active at
any time a feature is assigned a different vector position than for a
previous occurrence more than 100k times. For 100k active
features this happens only around 7k times. This is also reflected
in the cluster quality that rises steeply up to 50k-75k features and
does not improve past 100k features.

Both curves are certainly somewhat data set dependent, the
number of unique features in this data set is about 166k. For real
life high density streams we recommend to use at least 100k.

Figure 4: Number of re-appearing features for different
maximum numbers of active features.

Figure 5: Cluster quality for different maximum numbers of
active features.

7.3.4 Size of the cluster representation
Apart from the global limitations on the number of features, the
vector based representation of each cluster can be limited. For

clusters that contain many documents, the number of non-zero
entries in the vector calculated as the sum of the individual
documents vectors can become very large. The vector sum can be
pruned by keeping only the largest d entries and setting additional
values to zero [42]. This will reduce noise and increase the speed
of distance and hash calculations. We varied the maximum
number of features per cluster from 100 to 10k and measured the
cluster quality on the training set as shown in Figure 6. Similar
results were obtained on the test set.

Figure 6: Cluster quality for different numbers of feature per
cluster.

The clustering quality rises up to a maximum of 1.5k features per
clusters. Beyond this no significant degradation could be
observed. The influence of noise seems to be negligible but
pruning is still worthwhile because it saves memory and
processing time. We assume that the entries pruned beyond the
largest 1.5k have small TFIDF values and thus do not
significantly influence the clustering quality.

8. DISCUSSION
We designed a high performance text clustering system and
applied it to the real world problem of news aggregation. Our
main contribution is the usage of LSH to make the single-pass
clustering algorithm [48, 44] scale up to high frequency text
streams using a very simple hash function. Previous research used
datasets with much lower density of news articles per day and or a
posterior analysis of news archives. Under these conditions all
clusters from a long time range can be considered for an incoming
document and even iterative algorithms might be feasible. For
high-frequency text streams our solution creates a good solution
efficiently. We showed empirically that a very high level of
cluster quality is maintained even though only a small fraction of
the distance calculations and the associated retrieval of cluster
vectors are needed. Our reported experiences give insight into the
problems that are encountered when dealing with large-scale
problems.

We store the centroid vectors of clusters from a sliding time
window in the hash structure to find good candidate clusters for
an incoming document vector. If memory permits, document
vectors could be stored in the hash with the corresponding cluster

id to assign a document to the cluster with the closest document.
For topic detection this single-link approach is of advantage [48]
whereas for clustering the former group-average paradigm is
reported to work better [25].

The clustering quality of the single-pass clustering algorithm has
been reported to be almost as good as or even better than iterative
algorithms [48, 25] if the clustering threshold parameter is set
appropriately. The optimal threshold on our training data was
between 0.76 and 0.78 depending on the particular experimental
setting. This compares with previously mentioned values and
ranges: 0.77 [48] 0.7- 0.9 [25]. We achieved a cluster quality that
is comparable with one of the best offline clustering algorithms
for text data, namely group-wise average hierarchical clustering.

The single-pass clustering is similar to micro-clustering [3]
without the on-demand step. New documents are added to the
most similar micro-cluster if the similarity is high enough. If the
maximum amount of micro-clusters k is reached inactive clusters
are removed. This is similar to our time window. The LSH
technique could also be used to speed up micro-clustering.

If we were to execute the on-demand clustering step on a regular
basis, several problems would arise within our applications. First
of all it would need to done frequently to minimize the delay
between the time when the document is ingested into the system
and the time when it is available to the user as part of a cluster.
Even hourly clustering would mean a significant delay for a news
system. Also, it has been reported in [10] that a delay does not
necessarily help in new event detection. If each on-demand
clustering is done independently, the amount of clusters that are
saved to the database is much larger compared to single-pass
clustering where one cluster can stretch over a long period of
time. Clusters from close-by snapshot times would be very similar
creating near duplicates in the database that are hard to detect and
filter. A possible solution to this would be the recently proposed
evolutionary clustering framework [13] where consecutive
clusterings are required to be similar. In this case a previous
cluster could be associated with a similar current cluster and
saved as a single object in the database. This approach does not,
however, support clusters with gaps longer than the clustering
interval. Our single-pass clustering supports long cluster lifetimes
including gaps up to the duration of the sliding time window. The
historical information of the time stamps of documents within a
cluster can be easily reconstructed from the database on demand.
Finally in [3] there is no mentioning of limiting the number of
features which is a potential memory problem.

Our experimental study indicates that utilizing locations, persons,
and organizations is of advantage. This is in accordance with
previous studies [30, 25]. In [25] one vector for the text and
separate vectors for entities and noun phrases are generated. The
similarities from comparing the corresponding vectors from
different documents are mixed with weights found by regression
on a training data set. We integrated the text information and the
meta-data into a single vector with emphasized frequencies for
meta-data terms. This enables the use of a single hash structure to
find a single set of cluster candidates. When using several vectors
and similarities the determination of good candidates will be more
involved.

When varying the maximum length of cluster centroid vectors we
found that the clustering quality on our training increases up to

around 1.5k entries and does degrade for larger values. This is in
contrast to previous studies that truncated the vectors for
efficiency down to 20 [42] or 25 [31] entries. One reason for our
observation might be the larger vocabulary and size of our corpus.
We recommend to use much higher values.

We did not use any dimensionality reduction techniques like
latent semantic indexing (e.g. [9, 18]) because the projection
would require additional online computation and we would loose
the direct correspondence of feature with words stems that is
utilized to generate keywords for each cluster.

9. SUMMARY
We presented a system for high performance online text
clustering of a stream of news articles that meets all the identified
requirements of the Geospace & Media Tool. The system has
been tested on the complete news stream over several weeks and
successfully discovered top stories as reported by other news
sites. The system will be deployed in the near future to aid
members of Congress their staffs in analyzing the daily news in
connection with geospatial, census, and human network
information.

The textual content of the articles is analyzed and similar articles
are grouped into clusters on-the-fly without any assumptions on
the number of clusters and without retrieving previous documents.
The result is available to the user at any time without additional
on-demand clustering steps. The system dynamically adjusts to
changing topics by gradually adapting the feature space.
Efficiency is ensured by limiting the amount of currently active
features and by considering only clusters from a finite time
horizon for the assignment of incoming documents. Very large
time windows can be supported by using locality-sensitive
hashing to summarize the clusters and find the most similar
cluster for each document with high probability. We demonstrated
the effectiveness and efficiency of the system on the very
demanding application of news clustering. The clustering quality
is comparable to one of the best non-streaming document
clustering algorithms and the architecture can easily support
several 10k documents per day on off-the-shelve hardware.

10. ACKNOWLEDGMENTS
We acknowledge the team at Parsons Institute for Information
Mapping, The New School, New York, NY, for their
collaboration in integrating our text processing methods into the
GMT and providing the extracted meta-data for our experiments.
We further thank Marc Muntziger for his help in the experiments
regarding the meta-data emphasis and Sheik Abdul-Saboor and
Tino Hertlein for helping to label the ground truth stories.

11. REFERENCES
[1] C. Aggarwal. Data Streams: Models and Algorithms.

Springer, 2007.
[2] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework for

clustering evolving data streams. In Proceedings of the
International Conference on Very Large Databases (VLDB),
2003.

[3] C. Aggarwal and P. Yu. A framework for clustering massive
text and categorial data. In Proceedings of the SIAM
Conference on Data Mining (SDM), 2006.

[4] J. Allan, V. Lavrenko, D. Malin, and R. Swan. Detections,
bounds, and timelines: UMass and TDT-3. In Proceedings of
the Topic Detection and Tracking Workshop (TDT-3), 2000.

[5] J. Allan, R. Papka, and V. Lavrenko. On-line new event
detection and tracking. In Proceedings of the International
ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 37–45, 1998.

[6] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Proceedings of
ACM Symposium on Principles of Database Systems
(PODS), pages 1–16, 2002.

[7] J. Banerjee and A. Ghosh. Competitive learning mechanisms
for scalable, incremental and balanced clustering of
streaming texts. In Proceedings of the International Joint
Conference on, Neural Networks (IJCNN), volume 4, pages
2697–2702, 2003.

[8] D. Barbara. Requirements for clustering data streams.
SIGKDD Explorations, 3(2):23–27, 2002.

[9] M. W. Berry. Survey of Text Mining: Clustering,
Classification, and Retrieval. Springer, 2003.

[10] T. Brants and F. Chen. A system for new event detection. In
Proceedings of the International ACM Conference on
Research and Development in Information Retrieval
(SIGIR), pages 330–337. ACM Press, 2003.

[11] J. Callan. Document filtering with inference networks. In
Proceedings of the International ACM Conference on
Research and Development in Information Retrieval
(SIGIR), pages 262–269. ACM Press, 1996.

[12] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based
clustering over an evolving data stream with noise. In
Proceedings of the SIAM Conference on Data Mining
(SDM), 2006.

[13] D. Chakrabarti, R. Kumar, and A. Tomkins. Evolutionary
clustering. In Proceedings of International ACM Conference
on Knowledge Discovery and Data Mining (KDD), pages
554–560, 2006.

[14] C. Cieri, D. Graff, M. Liberman, N. Martey, and S. Strassel.
The TDT-2 text and speech corpus. In DARPA Broadcast
News Workshop, 1999.

[15] D. Cutting, D. Karger, J. Pedersen, and J. Tukey.
Scatter/Gather: A cluster-based approach to browsing large
document collections. In Proceedings of the International
ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 318–329, 1993.

[16] P. Domingos and G. Hulten. A general method for scaling up
machine learning algorithms and its application to clustering.
In Proceedings of the International Conference on Machine
Learning (ICML), pages 106–113. Morgan Kaufmann, 2001.

[17] P. Domingos and G. Hulten. A general framework for
mining massive data streams. Journal of Computational and
Graphical Statistics, 12:945–949, 2003.

[18] R. Feldman and J. Sanger. The Text Mining Handbook.
Cambridge, 2007.

[19] D. Fisher. Knowledge acquisition via incremental conceptual
clustering. Machine Learning, 2(2):139–172, 1987.

[20] G. Forman. Tackling concept drift by temporal inductive
transfer. In Proceedings of the International ACM
Conference on Research and Development in Information
Retrieval (SIGIR), pages 252–259. ACM Press, 2006.

[21] M. Franz, J. McCarley, T. Ward, and W.-J. Zhu.
Unsupervised and supervised clustering for topic tracking. In
Proceedings of the International ACM Conference on
Research and Development in Information Retrieval
(SIGIR), pages 310–317, 2001.

[22] M. Gaber, A. Zaslavsky, and S. Krishnaswamy. Mining data
streams: a review. ACM SIGMOD Record, 34(2):18–26,
2005.

[23] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. In Proceedings of the
International Conference on Very Large Databases (VLDB),
1999.

[24] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L.
O’Callaghan. Clustering data streams: Theory and practice.
IEEE Transactions on Knowledge and Data Engineering,
15(3):515–528, 2003.

[25] V. Hatzivassiloglou, L. Gravano, and A. Maganti. An
investigation of linguistic features and clustering algorithms
for topical document clustering. In Proceedings of the
International ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 224–
231. ACM Press, 2000.

[26] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionality. In
Proceedings of the ACM Symposium on Theory of
Computing, 1998.

[27] P. Indyk, R. Motwani, P. Raghavan, and S. Vempala.
Locality-preserving hashing in multidimensional spaces. In
Proceedings of the ACM Symposium on Theory of
Computing, pages 618–625, 1997.

[28] A. Jain, Z. Zhang, and E. Chang. Adaptive non-linear
clustering in data streams. In Proceedings of the ACM
International Conference on Information and knowledge
management (CIKM), pages 122–131. ACM Press, 2006.

[29] T. Joachims. A statistical learning model of text
classification with support vector machines. In Proceedings
of the International ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 128–
136. ACM Press, 2001.

[30] W. Lam, H. Meng, K. Wong, and J. Yen. Using contextual
analysis for news event detection. International Journal Of
Intelligent Systems, 16(4):525–546, 2001.

[31] B. Larsen and C. Aone. Fast and effective text mining using
linear-time document clustering. In Proceedings of the Text
Mining Workshop at the International ACM Conference on
Knowledge Discovery and Data Mining (KDD), pages 16–
22. ACM Press, 1999.

[32] D. Lewis, Y. Yang, T. Rose, and F. Li. RCV1: A new
benchmark collection for text categorization research.
Journal of Machine Learning Research,, 5:361–397, 2004.

[33] D. D. Lewis. An evaluation of phrasal and clustered
representations on a text categorization task. In Proceedings

of the International ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 37–
50, 1992.

[34] D. D. Lewis. Machine learning for text categorization:
background and characteristics. In Proceedings of the 21st
National Online Meeting, pages 221–226. Information
Today, 2000.

[35] S. M., K. G., and K. V. A comparison of document
clustering techniques. In Proceedings of the Text Mining
Workshop at the International ACM Conference on
Knowledge Discovery and Data Mining (KDD), 2000.

[36] Q. Mei and C. Zhai. Discovering evolutionary theme patterns
from text: an exploration of temporal text mining. In
Proceedings of the International ACM Conference on
Knowledge Discovery and Data Mining (KDD), pages 198–
207. ACM Press, 2005.

[37] L. O’Callaghan, N. Mishra, A. Meyerson, S. Guha, and R.
Motwani. Streaming-data algorithms for high-quality
clustering. In Proceedings of IEEE International Conference
on Data Engineering, 2002.

[38] M. F. Porter. An algorithm for suffix stripping. pages 313–
316, 1997.

[39] N. Sahoo, J. Callan, R. Krishnan, G. Duncan, and R.
Padman. Incremental hierarchical clustering of text
documents. In Proceedings of the ACM International
Conference on Information and Knowledge Management
(CIKM), pages 357 – 366, 2006.

[40] G. Salton. Automatic Text Processing: The Transformation,
Analysis and Retrieval of Information by Computer. Addison
Wesley, 1989.

[41] H. Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufman, 2006.

[42] H. Schuetze and C. Silverstein. Projections for efficient
document clustering. In Proceedings of the International
ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 74–81. ACM Press,
1997.

[43] F. Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47, 2002.

[44] D. Shen, Q. Yang, J.-T. Sun, and Z. Chen. Thread detection
in dynamic text message streams. In Proceedings of the
International ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 35–
42. ACM Press, 2006.

[45] A. Smeaton, M. Burnett, F. Crimmins, and G. Quinn. An
architecture for efficient document clustering and retrieval
on a dynamic collection of newspaper texts. In BCS-IRSG
Annual Colloquium on IR Research, Workshops in
Computing, 1998.

[46] G. Widmer and M. Kubat. Learning in the presence of
concept drift and hidden contexts. Machine Learning,
23(1):69–101, 1996.

[47] Y. Yang, J. Carbonell, R. Brown, T. Pierce, B. Archibald,
and X. Liu. Learning approaches for detecting and tracking
news events. IEEE Intelligent Systems, 14(4):32–43, 1999.

[48] Y. Yang, T. Pierce, and J. Carbonell. A study on
retrospective and on-line event detection. In Proceedings of
the International ACM Conference on Research and
Development in Information Retrieval (SIGIR), pages 28–
36, 1998.

[49] T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: an
efficient data clustering method for very large databases. In
Proceedings of the International ACM Conference on
Managemet of Data (SIGMOD), pages 103–114, 1996.

[50] Y.-J. Zhang and Z.-Q. Liu. Self-splitting competitive
learning: a new on-line clustering paradigm. IEEE
Transactions on Neural Networks, 13(2):369–380, 2002.

[51] Y.-J. Zhang and Z.-Q. Liu. Refining web search engine
results using incremental clustering. International Journal of
Intelligent Systems, 19(1-2):191–199, 2004.

[52] Y. Zhao and G. Karypis. Hierarchical clustering algorithms
for document datasets. Data Mining and Knowledge
Discovery, 10(2):141–168, 2005.

	1. INTRODUCTION
	2. GEOSPACE & MEDIA TOOL
	3. RELATED WORK
	4. DATA SET
	5. PREPROCESSING
	6. CLUSTERING
	7. EVALUATION
	7.1 Methods
	7.2 Nearest cluster approximation
	7.3 Cluster quality
	7.3.1 Clustering threshold
	7.3.2 Comparison with hierarchical clustering
	7.3.3 Size of the feature space
	7.3.4 Size of the cluster representation

	8. DISCUSSION
	9. SUMMARY
	10. ACKNOWLEDGMENTS
	11. REFERENCES

