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ABSTRACT
Self-organization for wireless multi-hop systems can be di-
vided into two categories: proactive cluster-based solutions
and reactive on-demand solutions. Whereas the former have
been studied for ad-hoc networks, the latter seem more adap-
ted to low-energy low-traffic wireless sensor networks. We
show that, despite the relative high cost to build and main-
tain a topology, a cluster-based approach is particularly
suited for Body Area Networks. We present AnyBody, a self-
organization protocol in which sensors attached to a person
are grouped into clusters.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Wireless
Communication

1. INTRODUCTION
Wireless Sensor Networks (WSNs) [1] are composed of nodes
capable of doing three complementary tasks: measuring a
physical value, processing that value and communicating
over a wireless channel. Whereas in this paper we look at
WSNs from a computer network point of view, this field
of Research is highly interdisciplinary, ranging from Micro-
electronics to Biology and Sociology. WSNs are foreseen to
have very diverse applications, such as forest fire detection,
smart homes or Health monitoring. This diversity directly
reflects in the solutions which are proposed, and which differ
radically depending of the final application.

Body Area Networks (BANs) can be seen as a subclass of
WSNs, with specific constraints. Note that in this paper, we
will consider that the nodes of the BAN communicate wire-
lessly. A wireless sensor is constrained in terms of available
memory, bandwidth, computational power and embedded
energy. Depending on the application of BANs, additional
constraints may be added.
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As we assume no fixed infrastructure is available (such as
a base station), some sort of functional structure needs to
be brought into the network. This can be done by adding
a self-organizing function to the communication protocols
running on our BAN[13]. Once established, this structure
can facilitate finding a multi-hop path between source and
destination (i.e. routing), reducing the load of the network
by performing data aggregation, and reducing the energy
consumption by turning off redundant nodes.

We consider a group of patients staying at a hospital. On a
given floor of the building, sensors are deployed. These can
be medical sensors (coupled with a medical sensing device),
and/or sensors gathering information about the patients’ en-
vironment (temperature, noise level, . . . ). All sensors have
the same communication facilities, and periodically report
some information. This information needs to flow in a multi-
hop mode toward a special gathering node which we call sink
node. The sink node acts as a gateway node between the
hospital’s (wired) computer network, and the BAN. Once
the wireless network is running, the medical crew is alerted
when a patient needs urgent medical assistant, and can mon-
itor the environment of the patient. The purpose of our
self-organization protocol is to create a functional structure
inside the sensor network to enable this information flow.

This paper is organized as follows. In Section 2, we present
related work. This includes flat routing, and self-organiza-
tion and hierarchical routing protocols. In Section 3, we
describe AnyBody. Five steps are required to set up a func-
tional structure inside the BAN, and to set up the routing
paths. A realistic example is given to describe the proto-
col. In Section 4, we present results obtained by extensive
simulation. The characteristics of the built structure is pre-
sented, as well as the cost of building it. This paper is
concluded, and future work is presented in Section 5.

2. RELATED WORK
It is not clear whether it is better to adopt a flat or hierarchi-
cal structure, especially for routing. Flat routing protocols
run on a network of undifferentiated sensors. Examples are
AODV[11] and DSR[6], where the sink node floods the whole
network with a request. The nodes which have the requested
information use the path the request came from for return-
ing the answer to the sink. Geographic routing protocols
also run on a flat topology. Assuming each node knows its
position and the sink’s, the information is sent to the neigh-
bor node closest to the sink node. This simple protocol has
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been improved to guarantee delivery of the message[4, 7].

Whereas guaranteed delivery can be achieved, the assump-
tion that nodes are position-aware is rather strong. Having
each node equipped with a GPS module can turn to be too
expensive. What’s more, additional functionalities such as
data aggregation and node scheduling (i.e. turning off re-
dundant nodes to spare their batteries) is not easy on a flat
topology. Self-organization protocols are therefore studied.
Nodes are grouped together to form clusters, and each one
of these clusters is lead by a clusterhead[5, 17, 2]. Hierar-
chical routing protocols can then run on this structure in
order to setup paths toward the sink node. It is important
to differentiate clustering and routing protocols running on
these clusters.

LEACH[5] is perhaps the simplest clustering protocol. De-
pending on a pre-defined probability, nodes elect themselves
as clusterhead. Other nodes then join the closest cluster-
head. As we will see in Section 4, the number of clusters
grows linearly with the number of nodes, which may not
be desirable. What’s more, as clusterheads are placed ran-
domly, some non-clusterhead nodes may have no clusterhead
at communication range. As a result, they are disconnected
from the network although physically there exists a multi-
hop path to the sink node.

Clustering algorithms have been proposed to alleviate the
aforementioned problems. Mitton et al.[9] defines the den-
sity of a node as the ratio between the number of links within
the node’s 2-hop neighbors and the number of 2-hop neigh-
bors. Nodes who have the local highest density are elected
clusterhead. The authors show that the obtained cluster-
based structure can be used for example for efficient broad-
casting[8]. This assumes 2-hop neighborhood knowledge,
which implies sending several hello packets per node.

The previous two works focus on clustering only. In [15],
Tholeyre et al. present a complete self-organization pro-
tocol, coupling a routing and a clustering protocol. The
resulting protocol starts by electing nodes as dominators,
which form a Connected Dominated Set. This means that
all nodes are either dominators (thus part of the Connected
Dominating Set), or neighbors of a dominator. Only af-
ter this step, some dominators are elected clusterheads, and
other nodes join them to form clusters. The main difference
with AnyBody (to be explained in detail in Section 3) is that
our protocol starts by building the clusters before intercon-
necting them, which is done the other way in Tholeyre et
al.’s proposition. We argue that using our approach, we can
really understand how the clusters are built. We have cho-
sen to use Mitton et al.’s clustering algorithm in AnyBody.
This can easily be interchanged to meet specific needs. This
flexibility is harder to achieve when using Tholeyre et al.’s
proposition.

3. THE ANYBODY PROTOCOL
3.1 Overview
AnyBody runs in five steps, which will be detailed in the
next subsection. First, a node discovers which other nodes
it can directly communicate with – its 1-hop neighbors –
by exchanging hello messages (step 1). Then, based on this
information, nodes are grouped into clusters, with one clus-

terhead for each cluster (step 2 and 3). Clusters are then
interconnected (step 4), and routing paths are set up toward
the sink node (step 5).

3.2 Setting up the cluster-based structure
Please refer to Fig. 1, which illustrates all five steps. We
assume all nodes start functioning at the same time. When
a tie occurs, it is broken randomly (e.g. in step 3, if a node
has two neighbor with the same density, it sends to either
one of them).

1. Neighbor discovery. Each node sends out a hello1

message in which it puts its unique identifier. During a
given time frame, it waits for hello1 messages from its
neighbors. This time frame is used to reduce the num-
ber of collisions between hello1 message. Its duration
must be optimized depending on the MAC protocol.
After this step, all nodes know what neighbors they
have. In Fig. 1, we draw an edge between neighbor
nodes, leading to the connectivity graph. Furthermore,
nodes relay the hello1 message they have received
from their direct neighbors by sending a hello2 during
a second time frame. Upon hearing those hello2 mes-
sages, each node has a complete knowledge of its 2-hop
neighborhood (what are my 1-hop and 2-hop neighbors,
and which of those nodes can communicate together ? )

2. Density calculation. Based on the node’s knowledge
of its 2-hop neighborhood, it calculates its density as
defined in [9]. The density is the ratio between the
number of links and the number of nodes within the 2-
hop neighborhood. Each node then sends out a hello3

message containing its density, and receives the density
of its neighbors. This density calculation serves in step
3 to elect a clusterhead and form clusters.

3. Contacting clusterhead. Once each node has re-
ceived these hello3 messages from all its neighbors,
it sends its list of 1-hop neighbors to its neighbor of
highest density with a join message. No message is
sent if the node has a higher density than all its neigh-
bors. The join messages are relayed by the receiving
nodes until it reaches a node with highest local den-
sity. Note that this process results is electing local
nodes with highest density as clusterheads, and not
the node with network wide highest density.

After step 3, nodes are grouped into clusters. Clus-
terheads are the nodes with highest density inside the
cluster. They know which nodes are attached to them,
including each one of its members’ neighbors list. We
call intra-cluster gradient the paths followed by the
join messages. Each node which has relayed a mes-
sage needs to remember to which node it has sent it.
The intra-cluster gradient will be used for all intra-
cluster communication. It is represented in Fig. 1 by
the green arrows.

4. Setting up the backbone. So far, we have set up
independent clusters; now they need to be intercon-
nected. Each clusterhead identifies the gateway nodes
(GW ) of its cluster. To do so, it goes through its list
of cluster members, and pinpoints those who have a
neighbor not inside the cluster. It uses the intra-cluster



Figure 1: The five steps of the AnyBody self-organizing protocol. The black dots represents the nodes.
The sink node is represented by a red square. Communication ranges are represented by colored circles
centered on the nodes (step 1). An edge interconnects nodes which are able to communicate (step 2). The
intra-cluster gradient paths are represented by green arrows (step 2-3). The density is written next to each
node in step 2-3. The envelopes represent the join messages containing the nodes’ neighbors. In step 5, the
edges represent the virtual links, black for intra-cluster links (the intra-cluster gradients), and orange for the
inter-cluster links (inter-cluster gradients).



gradient paths to send them a gw inform message,
informing them they have been elected GW nodes.
There are always two gateway nodes facing each other,
each one of a different cluster. The job of a GW node
is the following: each time it receives a message from
the gateway node of the other cluster, it sends it to its
clusterhead using the intra-cluster gradient paths. If
it receives a message from its clusterhead, it sends it
to gateway node it is connected to.

At the end of this step, clusters are formed, and clus-
terheads are virtually connected to each other through
GW nodes. This virtual connection is represented in
Fig. 1, step 5, by the orange edge. All these virtual
connection between clusterheads will form what we
call a virtual backbone (a term also used in [14]). All
inter-cluster communication will be done on this vir-
tual backbone.

5. Setting up the routing paths. Now that we have
interconnected clusters, we can set up the routing paths.
As we have a many-to-one communication scheme (one
being the sink node), we set up a gradient. The sink
node starts by sending out a gradient setup(1) mes-
sage to its clusterhead. This one then increases the
counter and sends a gradient setup(2) message on
all the backbone links it is connected to. All cluster-
heads receiving this message increase the counter, and
resend a gradient setup(3) message on the backbone
links they’re connected to. This process goes on un-
til all clusterhead have sent one gradient setup mes-
sage. All clusterheads set their height as the smallest
counter contained in a gradient setup message they
have received. They also remember who they received
this message from, and call this other clusterhead next
hop.

At the end of this step, we have formed clusters, have
interconnected them, and have set routing path from
each cluster to the sink node. We call inter-cluster
gradient this path. They follow the clusterheads with
decreasing heights. Note that all links of the inter-
cluster gradient are part of the virtual backbone.

3.3 Using the structure for routing
We have described how AnyBody sets up a functional struc-
ture. Let’s see how this structure is used for routing on
the practical example depicted in Fig. 2. In this figure, we
have three clusters called A, B and C. For practical rea-
sons, we have labeled each node with the cluster it belongs
to, and a unique number inside that cluster (order is of no
importance).

After step 1, the connectivity graph is revealed, and it turns
out nodes C.1, C.2 and C.3 are disconnected from the sink.
They will never be able to send any message. After step
3 of the AnyBody protocol, nodes A.9, B.7 and C.3 have
been elected clusterhead of clusters A, B and C, respec-
tively. Moreover, the intra-cluster gradient path (depicted
with blue dotted arrows on Fig. 2) are identified. In step 4,
nodes A.2, B.1, A.8 and B.2 are informed they are gateway
nodes. In step 5, the sink sets up the inter-cluster gradient
path depicted as plain orange arrows. Note that these paths
converge to the clusterhead of the cluster to which the sink
node belongs.

Figure 2: Routing in a cluster-based hierarchical
structure. The dotted blue and plain orange ar-
rows represent the intra- and inter-gradient paths,
respectively.

Let’s assume node A.1 wants to send a message to the sink.
It starts by sending its message to its clusterhead A.9, fol-
lowing the intra-cluster gradient path A.1-A.2-A.3-A.4-A.5-
A.9. The clusterhead receives the message, and sends it
along the inter-cluster gradient path A.9-A.6-A.7-A.8-B.2-
B.3-B.4-B.5-B.7. The message was sent from cluster A
through cluster B by the gateway nodes A.8 and B.2. The
clusterhead B.7 finally redirects the message to the sink
node, using the reverse intra-cluster gradient path of cluster
B, following the path B.7-B.9-B.8.

More generally, using AnyBody, all message will follow the
path sending node - its clusterhead - other clusterheads -
sink’s clusterhead - sink.

3.4 Other possible uses of the structure
So far, we have focused the description of AnyBody on rout-
ing. Setting up intra- and inter-cluster gradients lets any
node send a message to the sink in a localized and dis-
tributed manner. Yet, the AnyBody structure offers other
possible uses, some of which are (but are not limited to):

• Redundant sensors could be turned off in order to re-
duce the energy consumption. In Fig. 2), a sensor like
A.1 could be turned off without affecting the global
functioning. Other nodes such as A.9 could turn off
their sensing device, but should let their communica-
tion device remain on, as it is necessary for relaying
other nodes’ messages.

• Before sending messages onto the inter-cluster gradi-
ent paths, clusterheads could buffer it for some time.
In case a second message reaches the clusterhead while
the first one is still buffered, these message could be
combined (either appended one to each other, or av-
eraged out, summed up, depending on the nature of
the data). This data aggregation technique would re-
duce the number of messages sent on the inter-cluster
gradient paths.



• Heterogeneous networks are composed of sensors with
different possibilities. Some nodes may have more bat-
tery, higher available bandwidth, more memory etc. It
would be interesting to give those more capable nodes
a more demanding role such as being a clusterhead.
Those super-nodes could for example increase their
density so as to get elected clusterhead.

Whereas the exact implementation of these other possible
uses of the AnyBody structure is considered future work, the
adaptation is rather simple, and the possibilities endless.

4. PERFORMANCES
We have implemented AnyBody onto the Georgia Tech Sen-
sor Network Simulator (GTSNetS)[10], an event-driven object-
oriented simulation tool specifically designed for Wireless
Sensor Networks (including Body Area Networks). In this
Section, we will detail the models and parameters used, and
present simulation results on both the characteristics of the
built structure and the cost of building it.

4.1 Modeling the environment
We consider a 1000 × 1000 area, possibly the floor of the
hospital the sensor network is deployed on. In that area,
nodes are positioned uniformly (i.e. each node chooses a x
and y axis coordinate in [0...1000], uniformly). Among these
sensors, one is randomly chosen to be the sink.

As we want to measure only the performance of our self-
organization protocol, we want to free ourselves from lower
layer considerations. We chose to use the IEEE 802.11 MAC
protocol[16], which is the default MAC protocol of our sim-
ulator. Nevertheless, the chosen MAC layer has little or no
impact on the simulation results we gathered because we
only log the activity of our self-organizing protocol. For ex-
ample, when counting the number of exchanged messages,
we don’t count specific IEEE 802.11 layer 2 messages.

Similarly, we use the Unit Graph Model for propagation,
which is a rather simplified model. Each node has a com-
munication radius. Nodes separated by a distance smaller
than that radius can communicate. This implies link bidi-
rectionality.

In order to evaluate the impact of growing number of neigh-
bors, simulations were performed for a communication ra-
dius of 150 and 250.

4.2 Cluster characteristics
In this subsection, we study the characteristics of the self-
organized structure build by AnyBody.

We first focus on the mean number of clusters. For this, we
increase the size of the network, by increasing the number
of nodes from 100 to 1000. We plot results for AnyBody
and LEACH[5] for a range of 150 (Fig. 3) and 250 (Fig. 4).
Note that a clusterhead election probability of 5% is used
for LEACH.

As LEACH uses a clusterhead election probability equal for
all nodes, we obtain an linearly increasing number of clus-
terheads (i.e. clusters) with the number of nodes. This phe-

Figure 3: Mean number of clusters with a commu-
nication range of 150. A clusterhead election prob-
ability of 5% is used for LEACH.

Figure 4: Mean number of clusters with a commu-
nication range of 250. A clusterhead election prob-
ability of 5% is used for LEACH.



Figure 5: The mean cluster size in number of nodes.
It is higher for 250 range because there are less
(but bigger) clusters than for the 150 range. The
vertical error bars represent the ranges between
the min and max values obtained around the –here
interconnected– average values.

nomenon is independent from the communication range. We
argue that having a constant number of clusters is better.
Indeed, when nodes are added in the same area, they should
join existing clusters. Data aggregation could be more ef-
fective (as the number of aggregated flows increases), and
scheduling algorithms could be more efficient (with more
nodes in a cluster, more are redundant and can be turned
off). As can be seen from Fig.-4, AnyBody keeps the number
of clusters low, and nearly constant with a growing number
of nodes.

By comparing the two figures, it can be seen that AnyBody
creates more clusters for a communication range of 150. This
is due to the fact that the nodes have a more limited commu-
nication area, which translates into clusters having a smaller
membership. More clusters are thus created to cover all
nodes.

We plot the mean cluster size in Fig. 5. As expected, this
cluster size is higher for a range of 250. There are indeed
less (but bigger) clusters than with a range of 150.

4.3 Cluster setup cost
In the previous subsection, we have described the character-
istics of the structure built by AnyBody. This structure has
promising characteristics such as a constant number of clus-
ters when the number of nodes increases. In this subsection,
we show how costly it is to set up such a structure.

We represent the energy consumption of the setup phase
by the number of sent messages. A more precise model is
possible, but necessarily takes into account the underlying
layers. As we want our results to be lower layer-independent,
we have chosen to count the number of sent messages. Keep
in mind that receiving a message can be nearly as costly as
sending one[12].

Figure 6: The cost of setting up the AnyBody struc-
ture, expressed in number of individual transmis-
sions.

In Fig. 6, we depict the number of sent messages during
the setup phase of AnyBody (i.e. the five steps described in
Section 3). Each node is asked to send three hello messages
(steps 1–2). It is thus normal to see a near linear increase
of the number of sent messages with the number of nodes.
In step 3, nodes send join messages to their clusterhead.
The larger the clusters, the more hops each join message
will need to travel. Therefore, the number of sent message is
higher for a range of 250, as the size of the clusters is larger.

4.4 Run-time cost
Once the structure is built, useful data can be transmitted
to the sink node. As sender and receiver may be too far from
each other to communicate directly, intermediate node re-
lay that message. Depending on path followed, the number
of these relaying nodes can vary. In Fig. 7, we have de-
picted the average number of individual transmissions (i.e.
the number of hops) to send a message from source to size.
Sending nodes were chosen randomly inside the network.
Results are averaged out over 100, 200 and 300 runs for the
network of size 100, 200, and 300 respectively.

An important result is that we achieve 100% delivery ratio,
which means that each sent message is received. In a flat
routing protocol, this is achievable, but with a large hop
count[4].

5. CONCLUSION
In this paper, we have presented AnyBody, a complete self-
organization and routing protocols for Wireless Body Area
Networks. AnyBody starts by building a structure for the
network made of clusters, and then use this structure to ef-
ficiently send packets from source to sink. The setup phase
consists of grouping the nodes into clusters, interconnect-
ing those clusters, and finally identifying the routing paths.
Extensive simulation has shown that our structure has inter-
esting characteristics, such as a constant number of clusters
when the number of nodes increases.

Having a protocol to maintain the cluster structure of Any-



Figure 7: The mean number of individual transmis-
sions to carry a message from source to sink.

Body is considered future work. This could be done peri-
odically (e.g. completely rebuilding the structure every 25
hours), or locally on an event-driven basis (e.g. when a link
breaks). Based on these simulation results, it would be in-
teresting to have a more analytical comparison between the
energy consumption of hierarchical and flat routing proto-
cols. This analysis could span over a wide range of both
types of protocols. Finally, it would be interesting to merge
this analysis on energy consumption with some recent an-
alytical results on network capacity[3] in order to obtain a
trade-off.
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