
AnySee: Peer-to-Peer Live Streaming
Xiaofei Liao, Hai Jin, *Yunhao Liu, *Lionel M. Ni, and Dafu Deng

School of Computer Science and Technology
Huazhong University of Science and Technology

Wuhan, 430074, China
{xfliao, hjin, dfdeng }@hust.edu.cn

*Department of Computer Science
Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong
{liu, ni}@cs.ust.hk

Abstract — Efficient and scalable live-streaming overlay
construction has become a hot topic recently. In order to improve
the performance metrics, such as startup delay, source-to-end
delay, and playback continuity, most previous studies focused on
intra-overlay optimization. Such approaches have drawbacks
including low resource utilization, high startup and source-to-end
delay, and unreasonable resource assignment in global P2P
networks. Anysee is a peer-to-peer live streaming system and
adopts an inter-overlay optimization scheme, in which resources
can join multiple overlays, so as to (1) improve global resource
utilization and distribute traffic to all physical links evenly; (2)
assign resources based on their locality and delay; (3) guarantee
streaming service quality by using the nearest peers, even when
such peers might belong to different overlays; and (4) balance the
load among the group members. We compare the performance of
our design with existing approaches based on comprehensive
trace driven simulations. Results show that AnySee outperforms
previous schemes in resource utilization and the QoS of
streaming services. AnySee has been implemented as an Internet
based live streaming system, and was successfully released in the
summer of 2004 in CERNET of China. Over 60,000 users enjoy
massive entertainment programs, including TV programs,
movies, and academic conferences. Statistics prove that this
design is scalable and robust, and we believe that the wide
deployment of AnySee will soon benefit many more Internet
users.

Keywords — Peer-to-Peer; Live Streaming; Inter-Overlay
Optimization; Distributed Approach; Load Balance; AnySee

I. INTRODUCTION

With the improvement of network bandwidth, multimedia
services based on streaming live media, such as IPTV [5], have
gained much attention recently. Significant progress has been
made on the efficient distribution of live streams in a real-time
manner over a large population of spectators with good QoS
[4]. Due to the practical issues of routers, IP multicast [6] has
not been widely deployed. Therefore, researchers have
expended a lot of effort building an efficient streaming overlay
multicast scheme based on P2P networks [7], in which
spectators behave as routers for other users. Efficient and
scalable live-streaming overlay construction [8] has become a
hot topic. Different from traditional distributed systems,
streaming overlays focus on the following three metrics:
startup delay, source-to-end delay, and playback continuity, as
these metrics have a direct bearing on the interactive usability
of a live streaming system. Large delays would exhaust user

patience and unplanned interruptions would spoil the
entertainment value.

In order to improve the above metrics, previous studies [9]
focused on intra-overlay optimization, in which each node
joins at most one overlay. With the help of locality-aware
strategies [10][11] and optimization schemes such as DONet in
CoolStreaming [12], Narada in ESM [13], QoS of live
streaming P2Ps have significantly improved. However, they
still suffer from long delay and unplanned interruptions,
especially when a large number of peers join the network
simultaneously.

Figure 1 shows an example of intra-overlay optimization
with two logical streaming overlays. Peers A, B, C and D join
the stream originating at S1 and peers E, F, G, H and K join the
stream originating at S2. The number on each edge represents
the cost of the link between two nodes. In traditional intra-
overlay optimization schemes, two multicast trees can be
established as shown in Fig. 1 (a) and (b). There are two
obvious drawbacks. First, such overlay construction is not
globally optimal. Considering peer D in Fig. 1(a), the cost S1

 D is 8, while if the path S1 S2 D is used, the cost is
only 4. Second, resource utilization of traditional approaches is
relatively low. Most of the existing protocols are tree based.
Consequently, all leaf nodes fail to contribute any bandwidth or
CPU cycles to the multicast trees.

H

AB

F
G

S2

S1

C

D

533

5

S1

A D

B C

6
3

3

3
5

5

2

FG

S2

E

H

353

K

E

K

2

5

5

2

4

275
2

2

6
2

Overlay Topology(a) (b)

(c) Physical Topology

4 3

Figure 1. Intra-overlay optimization: (a) optimal multicast tree rooted at S1;
(b) optimal multicast tree rooted at S2; (c) physical topology

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

1-4244-0222-0/06/$20.00 (c)2006 IEEE

We propose an inter-overlay optimization based scheme,
AnySee, in which resources can join multiple overlays
simultaneously, so as to (1) improve global resource utilization
of a P2P live streaming network and distribute traffic to all
physical links evenly; (2) assign resources based on their
locality and delay; (3) guarantee streaming service quality by
using the nearest peers, even if such peers might belong to
different overlays; and (4) balance the load among the group
members. After AnySee optimization on the example shown in
Fig. 1, better overlays are constructed as illustrated in Fig. 2.

Figure 2. AnySee inter-overlay optimization

However, for a distributed approach such as AnySee, to
reach the above design goal without global network knowledge
is not trivial. Several key issues, including efficient neighbor
discovery, resource assignment, overlay construction and
optimization, must be addressed.

To prove the effectiveness of AnySee, comprehensive trace
driven simulations are conducted based on topologies from real
P2P networks [1]. Results show that AnySee outperforms
previous schemes in resource utilization and the QoS of
streaming services. A well-known public implementation,
AnySee v.1.1, was released on June 2004. It has been used to
broadcast live-streaming media, including TV programs,
movies and the Grid and Cooperative Computing (GCC’04)
international conference in Wuhan, to tens of thousands of end-
users in CERNET (China Education and Research Network).
In the past several months, over 60,000 users, from 40
universities and 20 cities in China, have tested AnySee P2P
streaming services. The source-to-end delay, resource
utilization, and the startup delay were all quite encouraging.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the idea of
inter-overlay optimization of AnySee. Section IV describes our
simulation methodology and performance analysis. We
describe implementation experiences and show our
observations and measurements of AnySee in Section V. We
conclude this work in Section VI.

II. RELATED WORKS

Two types of schemes based on intra-overlay optimization
were proposed recently: tree-based overlays and mesh-based
overlays. Borrowing ideas from IP multicast, tree-based
protocols are simple, efficient, and scalable. There are two
types of tree-based protocols, including single tree protocols,
such as ESM, NICE [19] and ZigZag [18], and multiple tree
protocols [14][15]. The major issue of single tree protocols is

to build a scalable multicast tree with high efficiency. Multiple
tree protocols, such as MDC [16], emphasize the overall
resilience and load balance of the streaming network. The main
idea is to divide the video of one stream into several parts
based on “layer concept” in CoopNet or patching ideas [20].
However, the leaving or crash behavior of nodes in the upper
layers often causes buffer underflow. They cannot provide
backup streaming services, and waste any spare resources.

To improve the stability of services, mesh-based protocols
have been proposed, in which each peer can accept media data
from multiple “parents” as well as providing services for
multiple “children”, such as Coolstreaming, PROMISE [17]
and GNUStream [21]. The resource utilization of a mesh is
higher than that of a tree. Meshes based on Gossip protocol can
find fresh peers in the single mesh with low management
overhead, but not in global P2P networks. Due to the random
selection algorithm, the quality of service cannot be
guaranteed, such as the startup delay. Also, to decrease the
impact of autonomy of peers on streaming services, very large
buffer space, such as used in Coolstreaming, is necessary.

Zhang proposed a DHT based P2P resource pool, SOMO
[22], [23] to manage global resources and optimize multiple
ALM (Application Layer Multicast) sessions, especially
computation applications. The main idea of such approaches is
to structure all peers strictly [24], ignoring the features of
specific applications. However the huge maintenance overhead
makes these approaches far from scalable. Indeed, even if we
have global knowledge of a P2P network, finding an optimal
assignment of resources is still NP-hard. Based on a completely
distributed heuristic, our proposed approach selects streaming
paths and uses key links or peers as backup providers. Inter-
overlay optimization is conducted in AnySee to complement
traditional intra-overlay strategies.

III. ANYSEE DESIGN

To achieve good performance in P2P live streaming
systems, AnySee faces the following challenges: (1) how to
find paths with low delays, including source-to-end delay and
startup delay, in a global P2P network; (2) how to maintain the
service continuity and stability (decreasing the impact of
interruption caused by peers leaving); (3) how to determine the
frequency of optimization operations; and (4) how to reduce
the control overhead caused by the algorithm. We introduce the
design of AnySee in this section.

A. Overview
As illustrated in Fig. 3, the basic workflow of AnySee is as

follows. First, an efficient mesh-based overlay is constructed.
A location detector based algorithm is employed to match the
overlay with the underlying physical topology [25]. Second,
the single overlay manager, which is based on traditional intra-
overlay optimization, such as Narada [13] and DONet, deals
with the join/leave operations of peers. Third, the inter-overlay
optimization manager explores appropriate paths, builds
backup links, and cuts off paths with low QoS for each end
peer. Fourth, the key node manager allocates the limited
resources, and the buffer manager manages and schedules the
transmission of media data.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Decoding/Player

Mesh-based Overlay Manager

Single
Overlay
Manager

Buffer
Manager

Inter-overlays
Optimizations

Manager

Key Node
Manager

S

(), ,1dm id S

(), ,0dm id S P1

P2

P3

P4

P5

P6

N1

N2

N3

N4

Figure 3. The system diagram of an AnySee node Figure 4. Roadmap of detector message initaited by S

B. Mesh-based Overlay Manager
In AnySee, peers join the mesh-based overlay first. Every

peer, with a unique identifier, first connects the
bootstrapping peers and selects one or several peers to
construct logical links. Every peer maintains a group of
logical neighbors. The key issue here is to let the mesh-based
overlay match with the underlying physical topology [26] .
The mesh-based overlay manager, a key component of
AnySee, uses some strategies, such as an LTM (Location-
aware Topology Matching) technique [25], to optimize the
overlay, find the latest neighbors, and eliminate slow
connections. There are two major operations: flooding-based
detection with limited TTL, and updating logical
connections.

In the first operation, each peer periodically floods a
message, defined as dm(id, S, TTL), to its neighbors. The
message dm(id, S, TTL) means that the peer initiates a
message with ID value id in TTL hops. Since our purpose is
to find the latest neighbors of peer S, we define TTL=2. To
detect the distance of peers, the message body has six parts,
including messageID, TTL value, sourceIP (the IP address of
the source peer), sourceTimestamp (the timestamp1 when the
source forwards the message), DirectIP (the IP address of
one neighbor within one hop) and DirectTimestamp (the
timestamp when the neighbor within one hop gets the
message). Figure 4 shows the roadmap of one message from
S. Obviously, a message is broadcast to direct neighbors and
2-hop away neighbors.

In the second step, logical links are updated. With the
help of the timestamps on peers, peer P1 compares the
distance between two paths, 1 1 1S P and S N P→ → → . If
the former length is larger, the link 1 1N P→ would be cut
off and the direct path between S and P1 would be
established. All peers would do the same operations as those

1The clocks of all peers are synchronized based on NTP.
Current implementation of NTP version 4.1.1 in public
domain can reach the synchronization accuracy down to 7.5
milliseconds [27].

of peer S. After several operations, peers would connect with
their nearest neighbors.

C. Single Overlay Manager
The single overlay manager is responsible for peers

leaving/joining operations. Before inter-overlay
optimization, one peer joins one streaming overlay and
receives media contents from multiple providers or single
provider according to intra-overlay optimization schemes. In
this design, a new attribute is introduced called LastDelay,
which is the minimal of all source-to-end delays from the
current node to the streaming source on different paths. With
LastDelay, each path to the media source can be measured
and evaluated. When a media block is delivered from the
media source to the node, the single overlay manager
records the timestamp and writes it into the media block’s
header. When a peer receives the media block with the initial
timestamp, it computes the difference of the initial
timestamp and the arriving timestamp. The minimal
difference is the value of LastDelay. Peers can join or leave
the topology according to LastDelay.

D. Inter-overlay Optimization Manager
Generally, each peer maintains one active streaming path

set and one backup streaming path set. Initially all streaming
paths are managed by the single overlay manager.

When the number of backup streaming paths is less than
a threshold, the inter-overlay optimization algorithm is called
to find appropriate streaming paths in the global P2P
network with the help of the mesh-based overlay. When one
active streaming path is cut off due to its poor QoS or peer’s
leaving, a new streaming path is selected from the backup
set.

Basically, a peer P under source S with a streaming rate
rate(S) maintains (1) an active streaming path set with
threshold size (),a P Sδ , and (2) a backup streaming path set

with threshold size (),b P Sδ . Each streaming path iSP from
S to P has two parameters: delay (SPi, S, P) is the source-to-

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

end delay from source S to peer P; rate(SPi, S, P) is the
streaming rate in the last hop of the path. Clearly, we have:

()
()

()
,

1
, ,

a P S

i
i

rate SP S P rate S
δ

=
≥∑ (1)

()
()

()
(), ,

1 1
, , , ,

b aP S P S

i i
i i

rate SP S P p rate SP S P
δ δ

= =
=∑ ∑ (2)

Let ()D Sµ denote the threshold for the delay, which is
related to the priority of the streams only.

We also design a probing message named ProbM as
shown in Fig. 5. This message includes two major parts: (1)
initial information about the message, including sequence
number, Seq., initial peer ID, Peer_0, message issuance time,
Timestamp0, media source ID of the initial peer, Source,
current LastDelay, and TTL; (2) an array with the size of
TTL to record peer ID and the arriving timestamp of the
message. Considering that 95% of peers in the Gnutella
system could be reached within 7 hops by pure flooding, the
maximal TTL is set to 7.

There are mainly two tasks for the inter-overlay
optimization manager, including backup streaming path set
management and active streaming path set management.

The major operation in backup streaming path set
management is the probing procedure, called reverse tracing
algorithm. This algorithm starts when the size of backup set
is less than (),b P Sδ . Peer_0 sends out a ProbM message to j
of its neighbors with the recording array empty. Each
receiver records the message arrival time and its ID into the
accepted message body. The receiver will stop forwarding
the message if (1) it finds that the delay from the initial peer
Peer_0 to this peer is greater than LastDelay; or (2) the
receiver is the source of this streaming service. Otherwise,
the message would be forwarded to j random neighbors.

After reverse tracing, the media source is able to analyze
the arrived messages with ID Seq., and explore the best path
from the source to the message issuance peer. Informed by
the source, the peer is able to construct the best overlay path
accordingly. Figure 6 shows an example of the reverse
tracing algorithm based on the overlay shown in Fig. 1, when
j=3 and j=2, respectively. In this figure, all delays are
replaced with the cost of two peers. Peer D sends out a
message and the possible routes of the message are
illustrated. Some routes are cancelled due to a longer delay
than LastDelay. Eventually, a good path S1 S2 D is
successfully selected. Then LastDelay is updated. As a large
portion of ProM messages are stopped during forwarding
process, the overhead is acceptable.

Peer_1

Peer_TTL

Peer_0 SourceTimestamp0
Timestamp1

Timestampn

LastDelay TTLSeq.

Middle
Peers
Array

Figure 5. Structure of message ProbM

D

102 5

End
>8

End
G

5 22 3 5

C

2 6

52

End
>8

F B

H

H

S1

>8

>=8

>=8

(a) LastDelay = 8
j=3

End
>=8

D
2 5

End

22 3 5

2 6

52

End
>8

B

H

H

>8

>=8

(b) LastDelay = 8
j=2

End
>=8

H I

7 2

>8 >8

>=8

S1 S1

S1

S1 S1

S1

S2 S2A A

G

C

G

C

DDD

Figure 6. Examples of reverse tracing algorithm: (a) each peer forwards to

three neighbors; (b) each peer forwards to two neighbors

A streaming path is treated as invalid if (1) the source-to-
end delay is larger than a given threshold ()D Sµ , or (2) the
direct parent of the end peer on the path leaves. In this
design, we only disconnect the overlay link between the end
peer to its parent node because (1) the other connections on
the path can be reserved to provide support for new
incoming peers, and (2) our observations show that large
delays often come from the last connection in the path, and
(3) frequent disconnections incur a lot of unnecessary traffic.

The management of an active streaming path set has
three operations, including maintaining the states of active
streaming paths, cutting off invalid paths, and adding new
active paths from a backup set, which are straightforward.
When the total bit rates from active streaming paths are
lower than rate(S), the manager will check whether a better
path should be activated to replace the current one.

This manager has the following characteristics: (1) it
employs a heuristic algorithm, and the system is optimized
step by step; (2) probing procedures have originated from the
normal peers, not the source peer, so that the control
overhead is balanced to normal peers; (3) the number of
forwarding neighbors, j, balance the tradeoff between the
optimization effectiveness and the overhead; (4) the
frequency of probing and optimization is dynamic. In
AnySee, probing procedure is feedback-driven based on
delay. Here how to set the initial value of the threshold,

()D Sµ , is of importance. Logs from AnySee, to be
described in Figures 19-21, show that when peers are
watching highly popular movies, they are willing to tolerate
a higher delay as much as 30 seconds. It is reasonable that
different programs define different ()D Sµ .

E. Key Node Manager
It is of great importance for peers to have an effective

admission control policy when there are too many requests.
Suppose each peer has N spare connections. According to the
characteristics of requests, each request will fall into one of
M queues with different priorities and popularities. When we
assign the N spare connections to M queues, there are two

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

interesting cases. First, some queues are assigned with more
than one connection tunnel, which can be modeled as an
M/M/m/K queuing system [28]. Second, some queues only
receive one connection, which follows an M/M/1/K queuing
model.

The admission control policy of a peer is designed to
make the resources utilization optimal. The problem can be
described as follows. Suppose there are M queues of
requests. The arriving rate of queue j is jλ , all arriving rates
satisfy 1j Mλ λ λ< < < < . The service rate to assign one
connection is µ and each connection processor can buffer k
requests (k≥1). Assuming the probability that n requests
follow the M/M/m/K queuing model is np , we have

()
0

0

0,1... 1
!

, 1...
!

n

n m n

m
p n m

np
m p n m m K

m

ρ

ρ

= −=

 = +

 (3)

where
m
λρ
µ

= ; we also have

() ()

() () ()

1
11

0

0 1
1

0

1 1
! ! 1

1 1
! !

i m K mm

i

i mm

i

m m
i m

p
m m

K m
i m

ρ ρ ρ ρ
ρ

ρ

−
− +−

=

−
−

=

 − + ≠
 − =

+ − + =

∑

∑

 (4)

Thus, the average utilization of N spare connections of
one peer can be given by:

() 01 1
!

m Km pk
m
ρρ ρ ρ ρ

−
= − = −

 (5)

One connection processor can buffer k requests,
then K mk= . When the probability that n requests are
following the M/M/1/K queuing model is '

np , we have

()
1

'

1
1

1 0
1 1

1

n

K

np n K

K

ρ ρ
ρ

ρ

ρ

+

 −
≠ −= ≤ ≤

 = +

 (6)

and λρ
µ

= . Then the average utilization of N spare

connections of one peer can be given by

~
'
0 1

11
1

K

Kp ρρ ρ
ρ +

 −= − = −
 (7)

and '
Kp is the failure probability of requests. Then, the target

can be expressed:

()()
~

1 2
1 ,

1

, , ...

1

i k

M i j
i j M

M

i i
i

Max N N N Max

Subject to N N N N

ρ ρ ρ
≠ −

≤ ≤

=

 = +

= ≤ <

∑

∑
 (8)

The above optimization problem (Eq. (8)) can be divided
into two parts. First, we enumerate all (M, 1)-partitions (M
queues and each should be allocated at least 1 connection) of
N spare connections such that the best allocation can be
found to maximize ()1 2, ,... MN N Nρ in Eq. (8). Second, for
all H partitions of N connections, we can compute all H
results of average resources utilization and select the best
partition, based on which of the resources utilization is
maximal. In the first phase, we can get H, the number of
partitions of N by

()
() ()

1
1

1 !
() ,

1 ! !
N
M

N
H N M

M N M
−
−

−
= = ≥

− −
 (9)

From Equation (9), the first algorithm complexity is
O(N). The second algorithm is to select the maximal one
from H results. Its complexity is ()1

1 ()N
MO C O N−

− = .
Consequently, this optimization problem has complexity of
O(N). Considering one normal peer with 10Mbps bandwidth
and average streaming rate 300Kbps, N should be set less
than 33.

F. Buffer Manager
This manager is responsible for receiving valid media

data from multiple providers in the active streaming path set
and continuously keeping the media playback. AnySee
employs a similar heuristic as used in the Coolstreaming
system [12] to fetch expected media segments in a dynamic
and heterogeneous network to meet two constraints: the
playback deadline for each segment and the heterogeneous
streaming bandwidth from partners. As Coolstraming does
not employ any inter-overlay optimization, peers often fail to
find the closest neighbors to supply services. To keep the
media playback continuous, a big buffer must be used. Due
to the effectiveness of the inter-overlay optimization scheme
adopted in AnySee, a small buffer space is enough, and
indeed a small buffer often means a shorter startup delay.

IV. SIMULATION
Before introducing our implementation experiences and

the observation about the real AnySee system, we evaluate
AnySee with comprehensive simulations and contrast its
performance with a recent live streaming system,
Coolstraming [12].

A. Simulation Methodology
We consider two types of topologies, physical topology

and logical P2P topology. The physical topology represents a
real topology with Internet characteristics. The logical
topology represents the overlay P2P topology built on top of
the physical topology. All P2P nodes are in a subset of nodes
in the physical topology. The communication cost between

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

two logical neighbors is calculated based on the shortest
physical path between this pair of nodes.

We develop a crawler based on Gnutella protocol [1] and
the source codes are rewritten from Limewire open source
client [2]. The crawler’s main function is to probe the
connections of Gnutella peers. When peers are receiving
crawler ping messages, they reply with corresponding pong
messages. With the help of forty-five independent threads,
our crawler discovers over fifty thousands peers and their
connections in one week. In this simulation we use three data
sets, obtained from different time slots. Each trace includes
around 2,000 peering nodes.

For the physical topology, we use BRITE [3] generating
three topologies, each with 5,000 nodes. The average number
of neighbors of each node ranges from 4 to 10.

The major parameters in our simulations are listed in
Table 1. In each run, peers randomly join one of S streaming
overlays (S=1, 4, 8, 12). Each peer randomly has C
connections ranging from 4 (1 Mbps bandwidth) to 40 (10
Mbps bandwidth) and maintains at least M neighbors. The
size of each overlay is N (N<500). Each stream is 1800-
seconds long, and the streaming rate is r, normally 300 Kbps.
Based on the delay values from the trace, we set the
bandwidths for peers. For simplicity, the threshold ()D Sµ is
set to 25 seconds, which is estimated from logs of AnySee
implementation. The adjustment factor p is set to 1, which
means we provide one backup streaming path for each active
streaming path.

To better evaluate the performance of AnySee, we use
the metrics as follows. (1) Resource utilization is defined as

the ratio between the used connections to all connections; (2)
Continuity index, representing the playback continuity, is
defined as the number of segments that arrive before
playback deadlines over the total number of the segments.

TABLE I. SIMULATION PARAMETERS

Abbreviate Comment
S Number of streaming overlays
M Number of neighbors
N Size of one overlay
r Streaming playback rate
C Number of total bandwidth connections

B. Results

The first set of simulations is conducted in a stable
environment, in which peers do not leave after joining the
overlays. For each simulation setup, we take 100 runs and
report the average.

We first evaluate the QoS of the AnySee service in a
stable environment. Figure 7 plots the continuity index
against streaming rate, where we contrast AnySee and
Coolstreaming. When the streaming rate is increased, the
continuity of AnySee is relatively good while the continuity
of Coolstreaming is degraded. There are two reasons. First,
AnySee can find more near neighbors from all peering nodes
to request services, while Coolstraming is only able to find
suppliers from the same overlay. Second, the necessary
buffer size of AnySee is only 40 seconds, while
Coolstreaming needs a 120-second buffer.

Figure 7. Continuity index V.S. streaming rates when N=400, S=12 and
initial buffer size is 40 seconds

Figure 8. Resources utilization: overlay size V.S. the number of streaming
overlays when M=12, r=300 Kbps

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Figure 9. Continuity index under dynamic environments when M=5,
N=400, r=300 Kbps and initial buffer size is 40 seconds

Figure 10. Resource utilization under dynamic environments when M=5,
N=400, and r=300 Kbps

Figure 11. Services map of AnySee in CERNET of China (red center point:
HUST, Wuhan)

Figure 12. System modules of AnySee

Figure 8 contrasts resource utilization of AnySee and
Coolstreaming. Seen on the left part of Figure 9, a larger
number of streaming overlays has a greater impact on the
performance of AnySee, but no obvious influence on
Coolstreaming. This is due to the fact that Coolstreaming does
not let peers to select better relay paths using other peers in
different overlays.

We then conduct simulations when peers are leaving and
joining freely. We define the lifetime of each peer in the
overlay, from 100 seconds to 500 seconds. Peer average
lifetime is exponentially distributed with an average of T
seconds. We can see from Figures 9 and 10 that longer
lifetime leads to better service quality and higher resource
utilization. However, when the average lifetime of peers is
short, the continuity of Coolstreaming is relatively poor. As
our proposed AnySee has a backup path management design
and the reverse tracing component keeps finding better paths
dynamically, AnySee always outperforms Coolstreaming.

V. IMPLEMENTATION OF ANYSEE
We have implemented the public free system, AnySee, and

released two versions (v.1.0 and v.1.1) to provide a scalable
live-streaming service platform based on inter-overlay
optimization in CERNET of China. From June 2004 to
February 2005, there were over 60,000 connections to the
platform and above 40 universities and 20 cities in China were
in the service map as shown in Fig. 11. The system is
implemented with Java and is platform-independent.

A. Architecture Overview
AnySee system is comprised of four components. They are

(1) a rendezvous point (RP), (2) a media source, (3) a monitor,
and (4) end systems. Each end system contains an IP to
Network Coordinates Database (INCD), which is pre-built and
integrated into the end system software.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Figure 12 shows the modules of end systems in AnySee.
Every end system (including the Broadcaster) is composed of
several function modules as follows: (1) getting media data
(GMD) module is for Broadcaster; (2) sending peer selection
(SPS) module is deployed on all peers except the Broadcaster;
(3) session for controlling message (SFCM) module is
responsible for exchanging control messages between current
peer and its supplier, and monitoring actions of child peers; (4)
buffer manager (BM) module gets media packets from the
upper-layer, sends them to the HTTP server module, and
deletes packets with outdated timestamps in the buffer; (5)
data transmitter (DT) module fetches media packets from the
buffer, and transmits packets to underlying peers under flow
control policy; (6) HTTP server (HS) module creates a virtual
HTTP service at a local machine. After retrieving media data
packets from the buffer, HS module sends them to media
players such as Windows Media Player, under the HTTP
protocol.

B. Implementation Experiences
We discuss two interesting issues in AnySee

implementation, GID based service scheme and locality-aware
buffer management scheme.

1) GID based service scheme

Due to the characteristics of streaming applications, it is
desirable to let every peer to get media services from suppliers
with low latency and high bandwidth. Many approaches have
been proposed, such as GNP. However, most of them are too
complex to be feasible. In AnySee, all peers are in the same
CERNET and the physical network map is well known. It is
efficient that the distance is computed with the help of the
paired IP addresses. Thus, AnySee requires each peer maintain
an INCD, from which each peer can have a position, named
GID in the global network. The GID value of an end host is a
128-bits integer encoded by the 4-layer geometrical
information corresponding to ISPs, cities, campuses, and
buildings, respectively. Such information is also used by
AnySee to estimate the physical locations of peers.

2) Locality-aware buffer management scheme

As the behavior of peers in upper layers have a larger
impact on QoS than that of peers in the lower layers, AnySee
employs a layer-aware buffer management scheme. Each peer
computes its appropriate buffer space size according to the
layer number. In AnySee, the buffer size of peer A at the m-th
layer is given by:

() '
A A AT f m t tε= = × + (10)

where At denotes the total link delay, '
At is the total

transporting delay, and ε is the average disconnection times
of one connection.

Suppose the probability of a link or node failure is bP , and
a peer needs bt time to explore a new parent, the border delay
is l b bt P t= × and the link delay At is the accumulation of all

border delays. Suppose the transporting delay per hop is µ
and the total hops between the source peer and peer A is m, the
total transporting delay of peer A is '

At mµ= × . If the path
from source peer to peer A is

1 1 2 1
{ , ,..., }

mS A S a a a a Al l l l
−→ → → →= ,

the path has the following properties: (1) the source peer
would persist all the time and the path

1S al → would not break
down; (2) peer A would also stay in the network and the path

1ma Al
− → would exist; (3) the influence that multiple borders

break down simultaneously is the accumulation of influence
that multiple borders break down one by one; (4) if one peer

ia leaves, one new peer '
ia would join the tree and replace the

position of ia . Then the total link delay can be computed as

1

1

1
a ai i

i m

A l
i

t t
→ +

= −

=

= ∑ ,

and

1

1(1)
a ai i

i
l b lt P t

→ +

−= − ×

then, () () 21 ... 1 m
A l b l b lt t P t P t−= + − × + + − × ,

after computation,

() ()()
1

11 1
1 1

m
mb

A l b b
b

P
t t t P

P

−
−− −

= × = × − − (11)

Then, we have

()11 (1)m
A b bT t P mε µ−= × × − − + × (12)

Given the estimation of the above parameters in Eq. (12),
the maximum buffer size of peer A at the m-th layer is
computed which only relates to layer m.

C. Performance of AnySee
Among all log data collected, we select records from

13/08/2004 to 29/08/2004. Over 7200 users from over 40
universities in 14 cities of China received services with
AnySee. We analyzed the performance of the multiple
multicast trees every ten minutes.

Figure 13 plots the average height of AnySee trees against
tree size. Although the height increases when more peers join
each service tree, the height is always less than 7 even with a
thousand peers included in one tree. Such a property helps
shorten the source-to-end delay as shown in Fig. 14. We can
see the source-to-end delay is always less than 200 ms. From
the logs of AnySee, the startup delay of most peers is less than
20s. We have implemented a simple prototype, which can get
media services from a Coolstreaming network, and we observe
the startup delays for 50 times. Mostly, the startup delay of
Coolstreaming is around 60 seconds. Based on the results
shown in Fig. 14, we set µ to 20ms and define 2bt = ,

0.4bP = , 2ε = .

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

Figure 13. Height V.S. tree size Figure 14. Source-to-end delay V.S. tree size

Figure 15. Maximum number of peers in different
hot periods

Figure 16. Maximum percentage of leaving peers in
different hot periods

Figure 17. Average delay in different hot periods

D. Users Behavior and System Optimization
It is important to know the user behavior, which can help

us optimize the system. We select three log sets to analyze
the total number of peers, the average delay, and the leaving
peer percentage in different “hot” periods. We select 7
different hot periods for three programs, Program-a,
Program-b, and Program-c.

Figures 15, 16, and 17 show the maximum number of
peers, maximum percentage of leaving peers, and average
delay of three programs, including Program-a, Program-b,
and Program-c for one hour. The results show that the
overlays with popular movies attract more users to join, but
cause larger average delays. From the figures, we have the
following interesting observations. First, larger delay is not
always the major reason that causes people to leave the
overlay. For example, the leaving percentage of Program-a is
not the largest while its average delay is the longest. Peers
have more patience than that imaged by previous researchers
if the program is very popular. Second, delays from 20 to 30
seconds will not be the killer for the live streaming services.
Most people will still stay in the overlay even if there is a 30
second delay from the source peer.

Based on the above observations, AnySee does not
determine the optimization frequency only according to the

average delay, but also the percentage of leaving peers. That
too many users are leaving the overlay is the signal that the
overlay is under heavy burden and needs to be optimized.
AnySee defines the parameter “optimization index”, ADL,
which is given by

ADL=
delayaverage

percentageleaving×100

TABLE II. ADLS IN HOT PERIODS OF DIFFERENT PROGRAMS

Num. Program-a Program-b Program-c
1 0.5217 0.4706 0.6363
2 0.4583 0.5000 0.4167
3 0.7000 0.5238 0.4545
4 0.7143 0.5455 0.8462
5 0.5600 0.6190 0.6429
6 0.6154 0.5217 0.6667
7 0.5862 0.4642 0.6875

Average 0.5937 0.5213 0.6215

After computation, three ADLs from different periods are
shown in Table 2. From Table 2, the average ADLs for the
above programs are 0.5937, 0.5213, and 0.6215,
respectively. AnySee provides a threshold on ADL to
determine whether an overlay optimization is necessary.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

VI. CONCLUSION AND FUTURE WORK
Efficient and scalable live-streaming overlay construction

has become a hot topic recently. In order to improve the
metrics, such as startup delay, source-to-end delay, and
playback continuity, most previous studies focused on intra-
overlay optimization. Such approaches have drawbacks
including low resource utilization, high startup and source-
to-end delay, and inefficient resource assignment in global
P2P networks.

In this paper, we propose an inter-overlay optimization
based live streaming scheme. Instead of selecting better
paths in the same overlay, AnySee peers are able to construct
efficient paths using peers in different overlays. We evaluate
the performance of AnySee by comprehensive simulations.
Our experimental results show that AnySee outperforms
existing intra-overlay live streaming schemes, such as
Coolstreaming.

The practical AnySee system has been released for
several months and its client code is free to be downloaded
in CERNET of China. To date, over 60,000 users benefit
from AnySee to enjoy two international academic
conferences, namely GCC’04 (Grid and Cooperative
Computing) and NPC’04 (Network and Parallel Computing),
and other massive entertainment programs. Logs from
AnySee show that users have great patience for live
streaming services with large delay if they have enough
interest in the programs. We hope the system can serve more
people and attain better quality in the future.

We are currently building peer-to-peer video-on-demand
services for large-scale users based on inter-overlay
optimization schemes. We are going to observe more user
behaviors to further improve the system performance.

ACKNOWLEDGMENT

This work was partially supported by China National
Natural Science Foundation (NSFC) under grant
No.60125208, 60433040, 60573129, 60573140, Specialized
Research Fund for the Ph.D Program from Ministry of
Education under grant No. 20050487040, and Hong Kong
RGC Grants HKUST6264/04E, DAG 05/06.EG44 and
AoE/E-01/99.

REFERENCES
[1] The Gnutella protocol specification 0.6, http://rfc-

gnutella.sourceforge.net.
[2] Limewire, http://www.limewire.com/.
[3] BRITE, http://www.cs.bu.edu/brite/.
[4] J. Liu, B. Li, and Y.-Q Zhang, "Adaptive Video Multicast

Over the Internet", IEEE Multimedia, 2003.
[5] B. Alfonsi, "I Want My IPTV: Internet Protocol Television

Predicted a Winner", IEEE Distributed Systems Online, 2005.
[6] R. Perlman, "Models for IP Multicast", in Proceedings of

IEEE International Conference on Networks, 2004.
[7] A. Ganjam and H. Zhang, "Internet Multicast Video

Delivery", IEEE Proceeding, 2005.
[8] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and S.

Khuller, "Construction of an Efficient Overlay Multicast

Infrastructure for Real-Time Applications", in Proceedings of
IEEE INFOCOM, 2003.

[9] A. Myers, T.S.E. Ng, and H. Zhang, "Rethinking the Service
Model: Scaling Ethernet to a Million Nodes", in Proceedings
of ACM SIGCOMM HotNets, 2004.

[10] Y. Liu, X. Liu, L. Xiao, L. Ni, and X. Zhang, "Location-
Aware Topology Matching in P2P Systems", in Proceedings
of IEEE INFOCOM, 2004

[11] T.S.E. Ng and H. Zhang, "A Network Positioning System for
the Internet", in Proceedings of USENIX, 2004.

[12] X. Zhang, J. Liu, B. Li, and T. P. Yum, "DONET: A Data-
Driven Overlay Network for Efficient Live Media Streaming",
in Proceedings of IEEE INFOCOM, 2005.

[13] Y. Chu, S. G. Rao, and H. Zhang, "A Case for End System
Multicast," in Proceedings of ACM SIGMETRICS, 2000.

[14] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron,
and A. Singh, "SplitStream: High-bandwidth Content
Distribution in Cooperative Environments", in Proceedings of
ACM SOSP, 2003.

[15] D. Kostic, A. Rodriguez, J. Albrecht, and A. Vahdat, "Bullet:
High Bandwidth Data Dissemination Using an Overlay Mesh",
in Proceedings of ACM SOSP, 2003.

[16] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K.
Sripanidkulchai, "Distributing Streaming Media Content
Using Cooperative Networking", in Proceedings of ACM
NOSSDAV, 2002.

[17] M. Hefeeda, A. Habib, B. Botev, D. Xu, and B. Bhargava,
"PROMISE: Peer-To-Peer Media Streaming Using
Collectcast", in Proceedings of ACM Multimedia, 2003.

[18] D. Tran, K. Hua, and S. Sheu, "Zigzag: An Efficient Peer-To-
Peer Scheme for Media Streaming", in Proceedings of IEEE
INFOCOM, 2003.

[19] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, "Scalable
Application Layer Multicast", in Proceedings of ACM
SIGCOMM, 2002.

[20] Y. Guo, K. Suh, J. Kurose, and D. Towsley, "P2Cast: P2P
Patching Scheme for VoD Service", in Proceedings of WWW,
2003.

[21] X. Jiang, Y. Dong, and X. D, B. Bhargava, "GNUSTREAM:
A P2P Media Streaming System Prototype", in Proceedings of
IEEE ICME, 2003.

[22] Z. Zhang, Y. Chen, S. Lin, B. Lu, S. Shi, X. Xie, and C. Yuan,
"P2P Resource Pool and Its Application to Optimize Wide-
Area Application Level Multicasting", in Proceedings of
International Conference on Parallel Processing Workshops,
2004.

[23] Z. Zhang, S. Shi, and J. Zhu, "SOMO: Self-Organized
Metadata Overlay for Resource Management in P2P DHT", in
Proceedings of IEEE IPTPS, 2003.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network", in
Proceedings of ACM SIGCOMM, 2001.

[25] Y. Liu, L. Xiao, X. Liu, L.M. Ni, and X. Zhang, "Location
Awareness in Unstructured Peer-To-Peer Systems", IEEE
Transactions on Parallel and Distributed Systems, 2005.

[26] M. Ripeanu and I. Foster, “Mapping Gnutella Network”,
IEEE Internet Computing, 2002.

[27] NTP: The Network Time Protocol, http://www.ntp.org/.
[28] L. Kleinrock, Queueing Systems, John Wiley, 1974.
[29] Y. Liu, A-H. Esfahanian, L. Xiao, and L. M. Ni,

"Approaching Optimal Peer-to-Peer Overlays", in
Proceedings of IEEE MASCOTS, 2005.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the Proceedings IEEE Infocom.

	Select a link below
	Return to Main Menu
	Return to Previous View

