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Abstract — Efficient and scalable live-streaming overlay 
construction has become a hot topic recently. In order to improve 
the performance metrics, such as startup delay, source-to-end 
delay, and playback continuity, most previous studies focused on 
intra-overlay optimization. Such approaches have drawbacks 
including low resource utilization, high startup and source-to-end 
delay, and unreasonable resource assignment in global P2P 
networks. Anysee is a peer-to-peer live streaming system and 
adopts an inter-overlay optimization scheme, in which resources 
can join multiple overlays, so as to (1) improve global resource 
utilization and distribute traffic to all physical links evenly; (2) 
assign resources based on their locality and delay; (3) guarantee 
streaming service quality by using the nearest peers, even when 
such peers might belong to different overlays; and (4) balance the 
load among the group members. We compare the performance of 
our design with existing approaches based on comprehensive 
trace driven simulations. Results show that AnySee outperforms 
previous schemes in resource utilization and the QoS of 
streaming services. AnySee has been implemented as an Internet 
based live streaming system, and was successfully released in the 
summer of 2004 in CERNET of China. Over 60,000 users enjoy 
massive entertainment programs, including TV programs, 
movies, and academic conferences. Statistics prove that this 
design is scalable and robust, and we believe that the wide 
deployment of AnySee will soon benefit many more Internet 
users. 

Keywords — Peer-to-Peer; Live Streaming; Inter-Overlay 
Optimization; Distributed Approach; Load Balance; AnySee 

I.  INTRODUCTION  

With the improvement of network bandwidth, multimedia 
services based on streaming live media, such as IPTV [5], have 
gained much attention recently. Significant progress has been 
made on the efficient distribution of live streams in a real-time 
manner over a large population of spectators with good QoS 
[4]. Due to the practical issues of routers, IP multicast [6] has 
not been widely deployed. Therefore, researchers have 
expended a lot of effort building an efficient streaming overlay 
multicast scheme based on P2P networks [7], in which 
spectators behave as routers for other users. Efficient and 
scalable live-streaming overlay construction [8] has become a 
hot topic. Different from traditional distributed systems, 
streaming overlays focus on the following three metrics: 
startup delay, source-to-end delay, and playback continuity, as 
these metrics have a direct bearing on the interactive usability 
of a live streaming system. Large delays would exhaust user 

patience and unplanned interruptions would spoil the 
entertainment value.   

In order to improve the above metrics, previous studies [9] 
focused on intra-overlay optimization, in which each node 
joins at most one overlay.  With the help of locality-aware 
strategies [10][11] and optimization schemes such as DONet in 
CoolStreaming [12], Narada in ESM [13], QoS of live 
streaming P2Ps have significantly improved. However, they 
still suffer from long delay and unplanned interruptions, 
especially when a large number of peers join the network 
simultaneously. 

Figure 1 shows an example of intra-overlay optimization 
with two logical streaming overlays. Peers A, B, C and D join 
the stream originating at S1 and peers E, F, G, H and K join the 
stream originating at S2. The number on each edge represents 
the cost of the link between two nodes. In traditional intra-
overlay optimization schemes, two multicast trees can be 
established as shown in Fig. 1 (a) and (b). There are two 
obvious drawbacks. First, such overlay construction is not 
globally optimal. Considering peer D in Fig. 1(a), the cost S1 

 D is 8, while if the path S1  S2  D is used, the cost is 
only 4. Second, resource utilization of traditional approaches is 
relatively low. Most of the existing protocols are tree based. 
Consequently, all leaf nodes fail to contribute any bandwidth or 
CPU cycles to the multicast trees. 
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Figure 1.  Intra-overlay optimization: (a) optimal multicast tree rooted at S1; 
(b) optimal multicast tree rooted at S2; (c) physical topology 
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We propose an inter-overlay optimization based scheme, 
AnySee, in which resources can join multiple overlays 
simultaneously, so as to (1) improve global resource utilization 
of a P2P live streaming network and distribute traffic to all 
physical links evenly; (2) assign resources based on their 
locality and delay; (3) guarantee streaming service quality by 
using the nearest peers, even if such peers might belong to 
different overlays; and (4) balance the load among the group 
members. After AnySee optimization on the example shown in 
Fig. 1, better overlays are constructed as illustrated in Fig. 2. 

 
Figure 2.  AnySee inter-overlay optimization 

However, for a distributed approach such as AnySee, to 
reach the above design goal without global network knowledge 
is not trivial. Several key issues, including efficient neighbor 
discovery, resource assignment, overlay construction and 
optimization, must be addressed.  

To prove the effectiveness of AnySee, comprehensive trace 
driven simulations are conducted based on topologies from real 
P2P networks [1]. Results show that AnySee outperforms 
previous schemes in resource utilization and the QoS of 
streaming services. A well-known public implementation, 
AnySee v.1.1, was released on June 2004. It has been used to 
broadcast live-streaming media, including TV programs, 
movies and the Grid and Cooperative Computing (GCC’04) 
international conference in Wuhan, to tens of thousands of end-
users in CERNET (China Education and Research Network). 
In the past several months, over 60,000 users, from 40 
universities and 20 cities in China, have tested AnySee P2P 
streaming services. The source-to-end delay, resource 
utilization, and the startup delay were all quite encouraging. 

The rest of this paper is organized as follows. Section II 
discusses the related work. Section III presents the idea of 
inter-overlay optimization of AnySee. Section IV describes our 
simulation methodology and performance analysis. We 
describe implementation experiences and show our 
observations and measurements of AnySee in Section V. We 
conclude this work in Section VI. 

II. RELATED WORKS 

Two types of schemes based on intra-overlay optimization 
were proposed recently: tree-based overlays and mesh-based 
overlays. Borrowing ideas from IP multicast, tree-based 
protocols are simple, efficient, and scalable. There are two 
types of tree-based protocols, including single tree protocols, 
such as ESM, NICE [19] and ZigZag [18], and multiple tree 
protocols [14][15]. The major issue of single tree protocols is 

to build a scalable multicast tree with high efficiency. Multiple 
tree protocols, such as MDC [16], emphasize the overall 
resilience and load balance of the streaming network. The main 
idea is to divide the video of one stream into several parts 
based on “layer concept” in CoopNet or patching ideas [20]. 
However, the leaving or crash behavior of nodes in the upper 
layers often causes buffer underflow. They cannot provide 
backup streaming services, and waste any spare resources.  

To improve the stability of services, mesh-based protocols 
have been proposed, in which each peer can accept media data 
from multiple “parents” as well as providing services for 
multiple “children”, such as Coolstreaming, PROMISE [17] 
and GNUStream [21]. The resource utilization of a mesh is 
higher than that of a tree. Meshes based on Gossip protocol can 
find fresh peers in the single mesh with low management 
overhead, but not in global P2P networks. Due to the random 
selection algorithm, the quality of service cannot be 
guaranteed, such as the startup delay. Also, to decrease the 
impact of autonomy of peers on streaming services, very large 
buffer space, such as used in Coolstreaming, is necessary.  

Zhang proposed a DHT based P2P resource pool, SOMO 
[22], [23] to manage global resources and optimize multiple 
ALM (Application Layer Multicast) sessions, especially 
computation applications. The main idea of such approaches is 
to structure all peers strictly [24], ignoring the features of 
specific applications. However the huge maintenance overhead 
makes these approaches far from scalable. Indeed, even if we 
have global knowledge of a P2P network, finding an optimal 
assignment of resources is still NP-hard. Based on a completely 
distributed heuristic, our proposed approach selects streaming 
paths and uses key links or peers as backup providers. Inter-
overlay optimization is conducted in AnySee to complement 
traditional intra-overlay strategies. 

III. ANYSEE DESIGN 

To achieve good performance in P2P live streaming 
systems, AnySee faces the following challenges: (1) how to 
find paths with low delays, including source-to-end delay and 
startup delay, in a global P2P network; (2) how to maintain the 
service continuity and stability (decreasing the impact of 
interruption caused by peers leaving); (3) how to determine the 
frequency of optimization operations; and (4) how to reduce 
the control overhead caused by the algorithm. We introduce the 
design of AnySee in this section. 

A. Overview 
As illustrated in Fig. 3, the basic workflow of AnySee is as 

follows. First, an efficient mesh-based overlay is constructed. 
A location detector based algorithm is employed to match the 
overlay with the underlying physical topology [25]. Second, 
the single overlay manager, which is based on traditional intra-
overlay optimization, such as Narada [13] and DONet, deals 
with the join/leave operations of peers. Third, the inter-overlay 
optimization manager explores appropriate paths, builds 
backup links, and cuts off paths with low QoS for each end 
peer. Fourth, the key node manager allocates the limited 
resources, and the buffer manager manages and schedules the 
transmission of media data. 
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Figure 3.  The system diagram of an AnySee node Figure 4.  Roadmap of detector message initaited by S 

B. Mesh-based Overlay Manager 
In AnySee, peers join the mesh-based overlay first. Every 

peer, with a unique identifier, first connects the 
bootstrapping peers and selects one or several peers to 
construct logical links. Every peer maintains a group of 
logical neighbors. The key issue here is to let the mesh-based 
overlay match with the underlying physical topology [26] . 
The mesh-based overlay manager, a key component of 
AnySee, uses some strategies, such as an LTM (Location-
aware Topology Matching) technique [25], to optimize the 
overlay, find the latest neighbors, and eliminate slow 
connections. There are two major operations: flooding-based 
detection with limited TTL, and updating logical 
connections.  

In the first operation, each peer periodically floods a 
message, defined as dm(id, S, TTL), to its neighbors. The 
message dm(id, S, TTL) means that the peer initiates a 
message with ID value id in TTL hops. Since our purpose is 
to find the latest neighbors of peer S, we define TTL=2. To 
detect the distance of peers, the message body has six parts, 
including messageID, TTL value, sourceIP (the IP address of 
the source peer), sourceTimestamp (the timestamp1 when the 
source forwards the message), DirectIP (the IP address of 
one neighbor within one hop) and DirectTimestamp (the 
timestamp when the neighbor within one hop gets the 
message). Figure 4 shows the roadmap of one message from 
S. Obviously, a message is broadcast to direct neighbors and 
2-hop away neighbors. 

In the second step, logical links are updated. With the 
help of the timestamps on peers, peer P1 compares the 
distance between two paths, 1 1 1S P and S N P→ → → . If 
the former length is larger, the link 1 1N P→  would be cut 
off and the direct path between S and P1 would be 
established. All peers would do the same operations as those 

                                                        
1The clocks of all peers are synchronized based on NTP. 
Current implementation of NTP version 4.1.1 in public 
domain can reach the synchronization accuracy down to 7.5 
milliseconds [27]. 

of peer S. After several operations, peers would connect with 
their nearest neighbors.  

C. Single Overlay Manager 
The single overlay manager is responsible for peers 

leaving/joining operations. Before inter-overlay 
optimization, one peer joins one streaming overlay and 
receives media contents from multiple providers or single 
provider according to intra-overlay optimization schemes. In 
this design, a new attribute is introduced called LastDelay, 
which is the minimal of all source-to-end delays from the 
current node to the streaming source on different paths. With 
LastDelay, each path to the media source can be measured 
and evaluated. When a media block is delivered from the 
media source to the node, the single overlay manager 
records the timestamp and writes it into the media block’s 
header. When a peer receives the media block with the initial 
timestamp, it computes the difference of the initial 
timestamp and the arriving timestamp. The minimal 
difference is the value of LastDelay. Peers can join or leave 
the topology according to LastDelay. 

D. Inter-overlay Optimization Manager 
Generally, each peer maintains one active streaming path 

set and one backup streaming path set. Initially all streaming 
paths are managed by the single overlay manager.  

When the number of backup streaming paths is less than 
a threshold, the inter-overlay optimization algorithm is called 
to find appropriate streaming paths in the global P2P 
network with the help of the mesh-based overlay. When one 
active streaming path is cut off due to its poor QoS or peer’s 
leaving, a new streaming path is selected from the backup 
set.  

Basically, a peer P under source S with a streaming rate 
rate(S) maintains (1) an active streaming path set with 
threshold size ( ),a P Sδ , and (2) a backup streaming path set 

with threshold size ( ),b P Sδ . Each streaming path iSP  from 
S to P has two parameters: delay (SPi, S, P) is the source-to-
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end delay from source S to peer P; rate(SPi, S, P) is the 
streaming rate in the last hop of the path. Clearly, we have:  

( )
( )

( )
,

1
, ,

a P S

i
i

rate SP S P rate S
δ

=
≥∑                                   (1) 

( )
( )

( )
( ), ,

1 1
, , , ,

b aP S P S

i i
i i

rate SP S P p rate SP S P
δ δ

= =
=∑ ∑             (2)  

Let ( )D Sµ  denote the threshold for the delay, which is 
related to the priority of the streams only.  

We also design a probing message named ProbM as 
shown in Fig. 5. This message includes two major parts: (1) 
initial information about the message, including sequence 
number, Seq., initial peer ID, Peer_0, message issuance time, 
Timestamp0, media source ID of the initial peer, Source, 
current LastDelay, and TTL; (2) an array with the size of 
TTL to record peer ID and the arriving timestamp of the 
message. Considering that 95% of peers in the Gnutella 
system could be reached within 7 hops by pure flooding, the 
maximal TTL is set to 7. 

There are mainly two tasks for the inter-overlay 
optimization manager, including backup streaming path set 
management and active streaming path set management.  

The major operation in backup streaming path set 
management is the probing procedure, called reverse tracing 
algorithm. This algorithm starts when the size of backup set 
is less than ( ),b P Sδ . Peer_0 sends out a ProbM message to j 
of its neighbors with the recording array empty. Each 
receiver records the message arrival time and its ID into the 
accepted message body. The receiver will stop forwarding 
the message if (1) it finds that the delay from the initial peer 
Peer_0 to this peer is greater than LastDelay; or (2) the 
receiver is the source of this streaming service. Otherwise, 
the message would be forwarded to j random neighbors.  

After reverse tracing, the media source is able to analyze 
the arrived messages with ID Seq., and explore the best path 
from the source to the message issuance peer. Informed by 
the source, the peer is able to construct the best overlay path 
accordingly. Figure 6 shows an example of the reverse 
tracing algorithm based on the overlay shown in Fig. 1, when 
j=3 and j=2, respectively.  In this figure, all delays are 
replaced with the cost of two peers. Peer D sends out a 
message and the possible routes of the message are 
illustrated. Some routes are cancelled due to a longer delay 
than LastDelay. Eventually, a good path S1 S2 D is 
successfully selected.  Then LastDelay is updated. As a large 
portion of ProM messages are stopped during forwarding 
process, the overhead is acceptable.   
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Peer_0 SourceTimestamp0
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LastDelay TTLSeq.
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Figure 5.  Structure of message ProbM 
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Figure 6.  Examples of reverse tracing algorithm: (a) each peer forwards to 

three neighbors; (b) each peer forwards to two neighbors 

A streaming path is treated as invalid if (1) the source-to-
end delay is larger than a given threshold ( )D Sµ , or (2) the 
direct parent of the end peer on the path leaves. In this 
design, we only disconnect the overlay link between the end 
peer to its parent node because (1) the other connections on 
the path can be reserved to provide support for new 
incoming peers, and (2) our observations show that large 
delays often come from the last connection in the path, and 
(3) frequent disconnections incur a lot of unnecessary traffic. 

The management of an active streaming path set has 
three operations, including maintaining the states of active 
streaming paths, cutting off invalid paths, and adding new 
active paths from a backup set, which are straightforward. 
When the total bit rates from active streaming paths are 
lower than rate(S), the manager will check whether a better 
path should be activated to replace the current one. 

This manager has the following characteristics: (1) it 
employs a heuristic algorithm, and the system is optimized 
step by step; (2) probing procedures have originated from the 
normal peers, not the source peer, so that the control 
overhead is balanced to normal peers; (3) the number of 
forwarding neighbors, j, balance the tradeoff between the 
optimization effectiveness and the overhead; (4) the 
frequency of probing and optimization is dynamic. In 
AnySee, probing procedure is feedback-driven based on 
delay. Here how to set the initial value of the threshold, 

( )D Sµ , is of importance. Logs from AnySee, to be 
described in Figures 19-21, show that when peers are 
watching highly popular movies, they are willing to tolerate 
a higher delay as much as 30 seconds. It is reasonable that 
different programs define different ( )D Sµ . 

E. Key Node Manager 
It is of great importance for peers to have an effective 

admission control policy when there are too many requests. 
Suppose each peer has N spare connections. According to the 
characteristics of requests, each request will fall into one of 
M queues with different priorities and popularities. When we 
assign the N spare connections to M queues, there are two 
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interesting cases. First, some queues are assigned with more 
than one connection tunnel, which can be modeled as an 
M/M/m/K queuing system [28]. Second, some queues only 
receive one connection, which follows an M/M/1/K queuing 
model.  

The admission control policy of a peer is designed to 
make the resources utilization optimal. The problem can be 
described as follows. Suppose there are M queues of 
requests. The arriving rate of queue j is jλ , all arriving rates 
satisfy 1 ... ...j Mλ λ λ< < < < . The service rate to assign one 
connection is µ  and each connection processor can buffer k 
requests (k≥1). Assuming the probability that n requests 
follow the M/M/m/K queuing model is np , we have  
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0,1... 1
!
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n m n
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p n m
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m p n m m K
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ρ
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                                   (3) 

where 
m
λρ
µ

= ; we also have 

( ) ( )

( ) ( ) ( )

1
11

0

0 1
1

0

1 1
! ! 1

1 1
! !

i m K mm

i

i mm

i

m m
i m

p
m m

K m
i m

ρ ρ ρ ρ
ρ

ρ

−
− +−

=

−
−

=

  − + ≠ 
 −   = 

 
+ − + = 

   

∑

∑

                 (4) 

Thus, the average utilization of N spare connections of 
one peer can be given by: 

( ) 01 1
!

m Km pk
m
ρρ ρ ρ ρ

−  
= − = − 

 
                                     (5) 

One connection processor can buffer k requests, 
then K mk= . When the probability that n requests are 
following the M/M/1/K queuing model is '

np , we have  

( )
1

'

1
1

1 0
1 1

1
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K

np n K
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ρ ρ
ρ
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 −
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and λρ
µ

= . Then the average utilization of N spare 

connections of one peer can be given by 

~
'
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11
1

K

Kp ρρ ρ
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 −= − =  − 
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and '
Kp  is the failure probability of requests. Then, the target 

can be expressed: 
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The above optimization problem (Eq. (8)) can be divided 
into two parts. First, we enumerate all (M, 1)-partitions (M 
queues and each should be allocated at least 1 connection) of 
N spare connections such that the best allocation can be 
found to maximize ( )1 2, ,... MN N Nρ  in Eq. (8). Second, for 
all H partitions of N connections, we can compute all H 
results of average resources utilization and select the best 
partition, based on which of the resources utilization is 
maximal. In the first phase, we can get H, the number of 
partitions of N by 

( )
( ) ( )

1
1

1 !
( ) ,

1 ! !
N
M

N
H N M

M N M
−
−

−
= = ≥

− −
                           (9) 

From Equation (9), the first algorithm complexity is 
O(N). The second algorithm is to select the maximal one 
from H results. Its complexity is ( )1

1 ( )N
MO C O N−

− = . 
Consequently, this optimization problem has complexity of 
O(N). Considering one normal peer with 10Mbps bandwidth 
and average streaming rate 300Kbps, N should be set less 
than 33.  

F. Buffer Manager 
This manager is responsible for receiving valid media 

data from multiple providers in the active streaming path set 
and continuously keeping the media playback. AnySee 
employs a similar heuristic as used in the Coolstreaming 
system [12] to fetch expected media segments in a dynamic 
and heterogeneous network to meet two constraints: the 
playback deadline for each segment and the heterogeneous 
streaming bandwidth from partners. As Coolstraming does 
not employ any inter-overlay optimization, peers often fail to 
find the closest neighbors to supply services. To keep the 
media playback continuous, a big buffer must be used. Due 
to the effectiveness of the inter-overlay optimization scheme 
adopted in AnySee, a small buffer space is enough, and 
indeed a small buffer often means a shorter startup delay.   

IV. SIMULATION 
Before introducing our implementation experiences and 

the observation about the real AnySee system, we evaluate 
AnySee with comprehensive simulations and contrast its 
performance with a recent live streaming system, 
Coolstraming [12].  

A. Simulation Methodology 
We consider two types of topologies, physical topology 

and logical P2P topology. The physical topology represents a 
real topology with Internet characteristics. The logical 
topology represents the overlay P2P topology built on top of 
the physical topology. All P2P nodes are in a subset of nodes 
in the physical topology. The communication cost between 
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two logical neighbors is calculated based on the shortest 
physical path between this pair of nodes. 

We develop a crawler based on Gnutella protocol [1] and 
the source codes are rewritten from Limewire open source 
client [2]. The crawler’s main function is to probe the 
connections of Gnutella peers. When peers are receiving 
crawler ping messages, they reply with corresponding pong 
messages. With the help of forty-five independent threads, 
our crawler discovers over fifty thousands peers and their 
connections in one week. In this simulation we use three data 
sets, obtained from different time slots. Each trace includes 
around 2,000 peering nodes.  

For the physical topology, we use BRITE [3] generating 
three topologies, each with 5,000 nodes. The average number 
of neighbors of each node ranges from 4 to 10.  

The major parameters in our simulations are listed in 
Table 1. In each run, peers randomly join one of S streaming 
overlays (S=1, 4, 8, 12). Each peer randomly has C 
connections ranging from 4 (1 Mbps bandwidth) to 40 (10 
Mbps bandwidth) and maintains at least M neighbors. The 
size of each overlay is N (N<500). Each stream is 1800-
seconds long, and the streaming rate is r, normally 300 Kbps. 
Based on the delay values from the trace, we set the 
bandwidths for peers. For simplicity, the threshold ( )D Sµ  is 
set to 25 seconds, which is estimated from logs of AnySee 
implementation. The adjustment factor p  is set to 1, which 
means we provide one backup streaming path for each active 
streaming path.  

To better evaluate the performance of AnySee, we use 
the metrics as follows. (1) Resource utilization is defined as 

the ratio between the used connections to all connections; (2) 
Continuity index, representing the playback continuity, is 
defined as the number of segments that arrive before 
playback deadlines over the total number of the segments. 

TABLE I.  SIMULATION PARAMETERS 

Abbreviate Comment 
S Number of streaming overlays  
M Number of neighbors 
N Size of one overlay 
r Streaming playback rate 
C Number of total bandwidth connections 

B. Results 

The first set of simulations is conducted in a stable 
environment, in which peers do not leave after joining the 
overlays. For each simulation setup, we take 100 runs and 
report the average.  

We first evaluate the QoS of the AnySee service in a 
stable environment. Figure 7 plots the continuity index 
against streaming rate, where we contrast AnySee and 
Coolstreaming. When the streaming rate is increased, the 
continuity of AnySee is relatively good while the continuity 
of Coolstreaming is degraded. There are two reasons. First, 
AnySee can find more near neighbors from all peering nodes 
to request services, while Coolstraming is only able to find 
suppliers from the same overlay.  Second, the necessary 
buffer size of AnySee is only 40 seconds, while 
Coolstreaming needs a 120-second buffer.  

 

Figure 7.  Continuity index V.S. streaming rates when N=400, S=12 and 
initial buffer size is 40 seconds 

Figure 8.  Resources utilization: overlay size V.S. the number of streaming 
overlays when M=12, r=300 Kbps 
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Figure 9.  Continuity index under dynamic environments when M=5, 
N=400, r=300 Kbps and initial buffer size is 40 seconds 

Figure 10.  Resource utilization under dynamic environments when M=5, 
N=400, and r=300 Kbps 

  

Figure 11.  Services map of AnySee in CERNET of China (red center point: 
HUST, Wuhan) 

Figure 12.  System modules of AnySee 

Figure 8 contrasts resource utilization of AnySee and 
Coolstreaming. Seen on the left part of Figure 9, a larger 
number of streaming overlays has a greater impact on the 
performance of AnySee, but no obvious influence on 
Coolstreaming. This is due to the fact that Coolstreaming does 
not let peers to select better relay paths using other peers in 
different overlays.  

We then conduct simulations when peers are leaving and 
joining freely. We define the lifetime of each peer in the 
overlay, from 100 seconds to 500 seconds. Peer average 
lifetime is exponentially distributed with an average of T 
seconds.  We can see from Figures 9 and 10 that longer 
lifetime leads to better service quality and higher resource 
utilization.  However, when the average lifetime of peers is 
short, the continuity of Coolstreaming is relatively poor. As 
our proposed AnySee has a backup path management design 
and the reverse tracing component keeps finding better paths 
dynamically, AnySee always outperforms Coolstreaming.  

V. IMPLEMENTATION OF ANYSEE 
We have implemented the public free system, AnySee, and 

released two versions (v.1.0 and v.1.1) to provide a scalable 
live-streaming service platform based on inter-overlay 
optimization in CERNET of China. From June 2004 to 
February 2005, there were over 60,000 connections to the 
platform and above 40 universities and 20 cities in China were 
in the service map as shown in Fig. 11. The system is 
implemented with Java and is platform-independent.  

A. Architecture Overview 
AnySee system is comprised of four components. They are 

(1) a rendezvous point (RP), (2) a media source, (3) a monitor, 
and (4) end systems. Each end system contains an IP to 
Network Coordinates Database (INCD), which is pre-built and 
integrated into the end system software.  
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Figure 12 shows the modules of end systems in AnySee. 
Every end system (including the Broadcaster) is composed of 
several function modules as follows: (1) getting media data 
(GMD) module is for Broadcaster; (2) sending peer selection 
(SPS) module is deployed on all peers except the Broadcaster; 
(3) session for controlling message (SFCM) module is 
responsible for exchanging control messages between current 
peer and its supplier, and monitoring actions of child peers; (4) 
buffer manager (BM) module gets media packets from the 
upper-layer, sends them to the HTTP server module, and 
deletes packets with outdated timestamps in the buffer; (5) 
data transmitter (DT) module fetches media packets from the 
buffer, and transmits packets to underlying peers under flow 
control policy; (6) HTTP server (HS) module creates a virtual 
HTTP service at a local machine. After retrieving media data 
packets from the buffer, HS module sends them to media 
players such as Windows Media Player, under the HTTP 
protocol. 

B. Implementation Experiences 
We discuss two interesting issues in AnySee 

implementation, GID based service scheme and locality-aware 
buffer management scheme. 

1) GID based service scheme 

Due to the characteristics of streaming applications, it is 
desirable to let every peer to get media services from suppliers 
with low latency and high bandwidth. Many approaches have 
been proposed, such as GNP. However, most of them are too 
complex to be feasible. In AnySee, all peers are in the same 
CERNET and the physical network map is well known. It is 
efficient that the distance is computed with the help of the 
paired IP addresses. Thus, AnySee requires each peer maintain 
an INCD, from which each peer can have a position, named 
GID in the global network. The GID value of an end host is a 
128-bits integer encoded by the 4-layer geometrical 
information corresponding to ISPs, cities, campuses, and 
buildings, respectively. Such information is also used by 
AnySee to estimate the physical locations of peers.  

2) Locality-aware buffer management scheme 

As the behavior of peers in upper layers have a larger   
impact on QoS than that of peers in the lower layers, AnySee 
employs a layer-aware buffer management scheme. Each peer 
computes its appropriate buffer space size according to the 
layer number. In AnySee, the buffer size of peer A at the m-th 
layer is given by: 

( ) '
A A AT f m t tε= = × +                                                     (10) 

where At  denotes the total link delay, '
At  is the total 

transporting delay, and ε  is the average disconnection times 
of one connection.  

Suppose the probability of a link or node failure is bP , and 
a peer needs bt  time to explore a new parent, the border delay 
is l b bt P t= ×  and the link delay At  is the accumulation of all 

border delays. Suppose the transporting delay per hop is µ  
and the total hops between the source peer and peer A is m, the 
total transporting delay of peer A is '

At mµ= × . If the path 
from source peer to peer A is 
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Then, we have 

( )11 (1 )m
A b bT t P mε µ−= × × − − + ×                                   (12) 

Given the estimation of the above parameters in Eq. (12), 
the maximum buffer size of peer A at the m-th layer is 
computed which only relates to layer m.  

C. Performance of AnySee 
Among all log data collected, we select records from 

13/08/2004 to 29/08/2004. Over 7200 users from over 40 
universities in 14 cities of China received services with 
AnySee. We analyzed the performance of the multiple 
multicast trees every ten minutes.  

Figure 13 plots the average height of AnySee trees against 
tree size. Although the height increases when more peers join 
each service tree, the height is always less than 7 even with a 
thousand peers included in one tree. Such a property helps 
shorten the source-to-end delay as shown in Fig. 14. We can 
see the source-to-end delay is always less than 200 ms.  From 
the logs of AnySee, the startup delay of most peers is less than 
20s. We have implemented a simple prototype, which can get 
media services from a Coolstreaming network, and we observe 
the startup delays for 50 times. Mostly, the startup delay of 
Coolstreaming is around 60 seconds. Based on the results 
shown in Fig. 14, we set µ  to 20ms and define 2bt = , 

0.4bP = , 2ε = .  
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Figure 13.  Height V.S. tree size Figure 14.  Source-to-end delay V.S. tree size 

   

Figure 15.  Maximum number of peers in different 
hot periods 

Figure 16.  Maximum percentage of leaving peers in 
different hot periods 

Figure 17.  Average delay in different hot periods 

 

D. Users Behavior and System Optimization 
It is important to know the user behavior, which can help 

us optimize the system. We select three log sets to analyze 
the total number of peers, the average delay, and the leaving 
peer percentage in different “hot” periods. We select 7 
different hot periods for three programs, Program-a, 
Program-b, and Program-c.  

Figures 15, 16, and 17 show the maximum number of 
peers, maximum percentage of leaving peers, and average 
delay of three programs, including Program-a, Program-b, 
and Program-c for one hour. The results show that the 
overlays with popular movies attract more users to join, but 
cause larger average delays. From the figures, we have the 
following interesting observations. First, larger delay is not 
always the major reason that causes people to leave the 
overlay. For example, the leaving percentage of Program-a is 
not the largest while its average delay is the longest. Peers 
have more patience than that imaged by previous researchers 
if the program is very popular. Second, delays from 20 to 30 
seconds will not be the killer for the live streaming services. 
Most people will still stay in the overlay even if there is a 30 
second delay from the source peer. 

Based on the above observations, AnySee does not 
determine the optimization frequency only according to the 

average delay, but also the percentage of leaving peers. That 
too many users are leaving the overlay is the signal that the 
overlay is under heavy burden and needs to be optimized. 
AnySee defines the parameter “optimization index”, ADL, 
which is given by  

ADL=
delayaverage

percentageleaving×100  

TABLE II.  ADLS IN HOT PERIODS OF DIFFERENT PROGRAMS 

Num. Program-a Program-b Program-c 
1 0.5217 0.4706 0.6363 
2 0.4583 0.5000 0.4167 
3 0.7000 0.5238 0.4545 
4 0.7143 0.5455 0.8462 
5 0.5600 0.6190 0.6429 
6 0.6154 0.5217 0.6667 
7 0.5862 0.4642 0.6875 

Average 0.5937 0.5213 0.6215 
 

After computation, three ADLs from different periods are 
shown in Table 2. From Table 2, the average ADLs for the 
above programs are 0.5937, 0.5213, and 0.6215, 
respectively. AnySee provides a threshold on ADL to 
determine whether an overlay optimization is necessary.  
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VI. CONCLUSION AND FUTURE WORK 
Efficient and scalable live-streaming overlay construction 

has become a hot topic recently. In order to improve the 
metrics, such as startup delay, source-to-end delay, and 
playback continuity, most previous studies focused on intra-
overlay optimization. Such approaches have drawbacks 
including low resource utilization, high startup and source-
to-end delay, and inefficient resource assignment in global 
P2P networks.  

In this paper, we propose an inter-overlay optimization 
based live streaming scheme. Instead of selecting better 
paths in the same overlay, AnySee peers are able to construct 
efficient paths using peers in different overlays. We evaluate 
the performance of AnySee by comprehensive simulations. 
Our experimental results show that AnySee outperforms 
existing intra-overlay live streaming schemes, such as 
Coolstreaming.  

The practical AnySee system has been released for 
several months and its client code is free to be downloaded 
in CERNET of China. To date, over 60,000 users benefit 
from AnySee to enjoy two international academic 
conferences, namely GCC’04 (Grid and Cooperative 
Computing) and NPC’04 (Network and Parallel Computing), 
and other massive entertainment programs. Logs from 
AnySee show that users have great patience for live 
streaming services with large delay if they have enough 
interest in the programs. We hope the system can serve more 
people and attain better quality in the future.  

We are currently building peer-to-peer video-on-demand 
services for large-scale users based on inter-overlay 
optimization schemes. We are going to observe more user 
behaviors to further improve the system performance.  
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