
Anytime Algorithms for Multi-Armed Bandit Problems

Robert Kleinberg∗

1 Introduction

How should a decision-maker perform repeated
choices so as to optimize the average cost or ben-
efit of those choices in the long run? This ques-
tion motivates the theory of online learning, which
encompasses problems such as the well-known best-
expert [13, 9] and multi-armed bandit [10, 1] prob-
lems. This paper concerns a new approach to deal-
ing with multi-armed bandit problems in which the
decision-maker’s strategy set is large (exponential
or possibly infinite). Recent theoretical progress
on the analysis of algorithms for such problems
(e.g. [2, 3, 8, 11, 14]) has led to improved online algo-
rithms for problems in areas such as online routing [2],
dynamic pricing mechanisms [4, 5, 12], and analysis
of reputation systems in e-commerce and peer-to-peer
networks [3].

In a multi-armed bandit problem, the decision-
maker must repeatedly choose from a fixed set of al-
ternatives (henceforth called “strategies”) in a series
of trials such that the costs of the strategies vary
from one trial to the next, and only the cost of the
chosen strategy is revealed after each trial. The goal
is to minimize the average cost of the chosen strate-
gies, and the algorithm’s efficacy in meeting this goal
is evaluated by comparing its average cost with that
of the single stationary (i.e. not time-varying) strat-
egy whose average cost is minimum. The difference
between these two quantities is called regret. One
typically studies randomized algorithms whose regret
converges to zero over time, and the relevant ques-
tion is how fast this convergence takes place; the δ-
convergence time of the algorithm is the minimum
number of trials required for the regret to shrink to
O(δ).

When the set of strategies has a fixed finite size
K, it has been known for quite some time that
there exist algorithms whose convergence time is
O(K log K) even if the costs of the strategies are
determined by an adaptive adversary. (For instance,

∗MIT CSAIL, 32 Vassar St., Cambridge, MA 02139, and
Department of Computer Science, Cornell University, Ithaca,
NY 14853. Supported by a Fannie and John Hertz Foundation
Fellowship. Email: rdk@csail.mit.edu.

the Exp3 algorithm of [1] achieves this bound.) This
convergence time comes very close to matching the
trivial lower bound of Ω(K). (The algorithm must
try each strategy at least once in order to guarantee
δ-convergence.) This trivial lower bound seems to
eliminate hope of designing rapidly-converging multi-
armed bandit algorithms when the size of the strategy
set is infinite or exponential in the problem size.
However, for many problems (e.g. dynamic pricing
and online routing) the set of strategies, though
large, is somehow structured and the cost functions
are constrained by this structure (e.g. the delay of
routing along a path is a linear function of the set of
edges traversed by the path). This has recently led
to the discovery of rapidly converging multi-armed
bandit algorithms for the following special cases:

• The strategy set is a one-parameter interval and
the cost functions are Lipschitz-continuous [7,
11].

• The strategy set is a bounded compact subset of
Rn and the cost functions are linear [2, 14].

• The strategy set is a bounded convex subset of
Rn and the cost functions are convex [8, 11].

All of these results place some constraints on the class
of cost functions in order to achieve rapid conver-
gence, and indeed (as mentioned above) there are
trivial lower bounds showing that some such con-
straints are necessary. When the strategy set is a
K-element set and cost functions are unconstrained,
the convergence time must be at least Ω(K). Sim-
ilarly, when the strategy set is a convex subset of
Rn and the cost functions are constrained only to be
Lipschitz-continuous, the convergence time must be
at least Ω(2n). To derive the latter lower bound, con-
sider a case in which the interior of the strategy set
contains 0 and the cost functions are equal to zero
in all but one of the 2n orthants of Rn, negative in
the remaining orthant. Any algorithm requires Ω(2n)
trials before discovering the orthant which contains
negative-cost strategies.

In this paper we introduce an alternative way of
overcoming these trivial lower bounds by modifying
the definition of convergence time. Our approach is

motivated by the following observation: in both of
the trivial lower bounds cited above, we can force the
algorithm to have exponential convergence time only
by arranging for an exponentially small fraction of the
strategy set to be superior to all other strategies. But
perhaps we can still design algorithms which meet the
following type of guarantee: if a polynomially small
fraction of the strategy set achieves an average cost
less than y, the algorithm should achieve an average
cost less than y + δ (for arbitrarily small constants
δ > 0) in a polynomial number of trials. We call algo-
rithms with this property anytime bandit algorithms
because they have the property that, if stopped at
any time T > 0, they satisfy a non-trivial perfor-
mance guarantee which improves as T → ∞, even-
tually converging to optimality. For example, Corol-
lary 4.4 provides an example of a bandit algorithm
meeting the following performance guarantee: for all
ε > 0, if the algorithm is stopped at any time T and
its cost is compared with any strategy x which is not
among the best ε-fraction of the strategy set, its ex-
pected regret is at most O

(
log2(T)
εT 1/3

)
.

We use the word anytime here intentionally
to draw a parallel with the use of the term any-
time algorithm in the artificial intelligence literature
(e.g. [6, 15]) to refer to algorithms for optimization
problems which generate imprecise answers quickly
and proceed to construct progressively better ap-
proximate solutions over time, eventually converging
to the optimal solution. While such algorithms are
widely used in the artificial intelligence community,
to date there has not been an adequate theoretical
treatment of their properties. In this paper we do not
claim to provide a comprehensive theoretical founda-
tion for studying anytime algorithms, but we think
it is interesting to observe that the setting of multi-
armed bandit problems supplies a context in which
one may formulate a rigorous notion of “anytime al-
gorithm” and provide provable performance guaran-
tees and lower bounds.

In addition to the two motivations cited above —
the goal of defining rapidly-converging bandit algo-
rithms for large strategy sets with unconstrained cost
functions, and the goal of studying a context in which
rigorous analysis of anytime algorithms is possible —
we have a very specific third motivation for devel-
oping anytime bandit algorithms. In recent work by
the author and Baruch Awerbuch [3], a collabora-
tive learning algorithm is presented which may be
regarded as a rapidly-converging distributed multi-
armed bandit algorithm in an environment consist-
ing of a large number of users, an unknown subset
of whom are dishonest. The algorithm uses a rather

complicated subroutine BBA which may be regarded
as a particular implementation of an anytime bandit
algorithm. The definition of “anytime bandit algo-
rithm” presented here is tailored to allow any such
algorithm to be substituted in place of the BBA algo-
rithm in [3]. This leads to simpler and faster collab-
orative learning algorithms; in particular, it allows
an improvement of the main theorem in [3], substi-
tuting a convergence time of O(log3(n)) in place of
O(log16(n)), where n is the number of agents and
resources in the collaborative learning environment.

We wish to stress that the construction of any-
time bandit algorithm (in Section 4 below) is quite
straightforward, exploiting a standard doubling tech-
nique which is commonly used in the online learning
literature. In our opinion, the novelty of this paper,
and its main contribution, lies not in constructing
these algorithms but in formulating the definition of
“anytime bandit algorithm” and recognizing its use-
fulness, and also in establishing a surprising and non-
trivial lower bound for the convergence time of such
algorithms. (See Section 5.)

The rest of this paper is organized as follows.
In section 2 we formulate two precise definitions of
“anytime bandit algorithm.” We also formulate a
stronger notion which we call a “perfect anytime
bandit algorithm,” a straw-man representing the
best performance guarantee we could hope for in an
anytime bandit algorithm. In section 3 we prove
the two definitions of an anytime bandit algorithm
are equivalent. In section 4 we present algorithms
satisfying either of the equivalent definitions. Finally,
in section 5 we prove that no perfect anytime bandit
algorithm exists.

2 Definitions

2.1 Basic definitions for multi-armed bandit
problems

Definition 2.1. (Multi-armed bandit algo-
rithm) Suppose given a set S (whose elements are
called “strategies”) and a collection of functions Γ
(whose elements are called “cost functions”) each of
which is a mapping from S to R. A multi-armed
bandit algorithm for (S, Γ) is a randomized online
algorithm specified by a probability space Ωalg and a
sequence of functions Xt : Ωalg × Rt−1 → S for
t = 1, 2, We interpret Xt(r, y1, . . . , yt−1) = x
to mean that the online algorithm chooses strategy
x at time t if its random seed is r and the costs
of the strategies observed in trials 1, 2, . . . , t − 1 are
y1, . . . , yt−1, respectively.

Throughout this paper, we will assume that Γ is

equal to the set [0, 1]S of all functions from S to the
closed interval [0, 1].

Note that Definition 2.1 doesn’t place any limita-
tions on the computational resources which the algo-
rithm may use in computing the functions Xt. How-
ever, all of the algorithms introduced in this paper
will be computationally efficient, in that they require
only polynomial computation time per trial.

Definition 2.2. (Adversary, oblivious adver-
sary) An adversary for a multi-armed bandit prob-
lem with strategy set S and cost function class Γ is
specified by a probability space Ωadv and a sequence
of functions Ct : Ωadv × St−1 → Γ for t = 1, 2,
We interpret Ct(r′, x1, . . . , xt−1) = c to mean that the
adversary chooses cost function c at time t if its ran-
dom seed is r′ and the algorithm has played strategies
x1, . . . , xt−1 in trials 1, . . . , t− 1, respectively.

A deterministic oblivious adversary is an adver-
sary such that each function Ct is a constant func-
tion mapping Ωadv×St−1 to some element ct ∈ Γ. A
randomized oblivious adversary is an adversary such
that for all t, the value of Ct(r′, x1, . . . , xt−1) depends
only on r′, i.e. Ct is a random variable on Ωadv tak-
ing values in Γ.

Definition 2.3. (Transcript of play) If ALG
and ADV are an algorithm and adversary for a multi-
armed bandit problem with strategy set S and cost
function class Γ, then we may define a probability
space Ω = Ωalg×Ωadv and sequences of random vari-
ables (xt), (ct), (yt) (1 ≤ t < ∞) on Ω representing
the strategies, cost functions, and feedback values, re-
spectively, that are selected given the random seeds
used by the algorithm and adversary. These random
variables are defined recursively according to the for-
mulae:

xt(r, r′) = Xt(r, y1(r, r′), . . . , yt−1(r, r′))
ct(r, r′) = Ct(r′, x1(r, r′), . . . , xt−1(r, r′))
yt(r, r′) = ct(r, r′).

We refer to the probability space Ω and the random
variables (xt), (ct), (yt) (1 ≤ t < ∞) collectively as
the transcript of play for ALG and ADV.

Definition 2.4. (Regret) Suppose given an algo-
rithm ALG and adversary ADV for the multi-armed
bandit problem with strategy set S and cost function
class Γ. For any strategy x ∈ S and positive integer
T , the regret of ALG relative to x is defined by:

R(ALG,ADV; x, T) = E

[
T∑

t=1

ct(xt)− ct(x)

]

and the normalized regret is defined by

R(ALG, ADV; x, T) =
1
T

R(ALG, ADV;x, T).

Suppose now that we are given a set of adversaries
A and a subset U ⊆ S. The normalized U -regret of
ALG against A is defined by:

R(ALG,A; U, T) = max
ADV∈A

max
x∈U

R(ALG, ADV; x, T).

If U is a singleton set {x} or A is a singleton set
{ADV}, we will use notations such as
R(ALG, {ADV}; {x}, T) and R(ALG,ADV; x, T) inter-
changeably. If U is the entire strategy set S we will
use the notation R(ALG,A;T).

2.2 Definitions for anytime bandit algo-
rithms

Definition 2.5. (Anytime bandit algorithm,
perfect anytime bandit algorithm, conver-
gence time) Given a probability space (S, µ), an
algorithm ALG is called an anytime bandit algo-
rithm for (S, µ) if there exists a function τ(ε, δ),
defined for all ε, δ > 0 and taking values in N,
such that for all randomized oblivious adversaries
ADV there exists a subset U ⊆ S such that µ(S \
U) ≤ ε and R(ALG,ADV;U, T) < δ for all T >
τ(ε, δ). It is a perfect anytime bandit algorithm
if τ(ε, δ) ≤ (1/ε)poly(log(1/ε), 1/δ). The function
τ(ε, δ) is called the convergence time of the algorithm.

To gain an intuition for Definition 2.5, it is
helpful to consider the case in which S is a finite
set of size K and µ is the uniform measure on S.
Then the definition states that for all T > τ(ε, δ),
there are at most εK strategies x ∈ S satisfying
R(ALG, ADV; x, T) ≥ δ. (This implies, for instance,
that τ(1/2K, δ) is an upper bound on the algorithm’s
δ-convergence time, where “δ-convergence time” is
defined as in Section 1.) Generalizing now to an
arbitrary measure space (S, µ), Definition 2.5 says
that ALG is an anytime bandit algorithm for (S, µ) if
the set of strategies which outperform ALG by more
than δ shrinks to have measure zero as T →∞, and
has measure less than ε whenever T > τ(ε, δ).

A useful alternative definition of “anytime ban-
dit algorithm” assumes that S is a countable set
whose elements are arranged in an infinite sequence
x1, x2, (Equivalently, we may simply assume that
S = N.) We think of an element’s position in this se-
quence as indicating its “priority” for the algorithm,
and the algorithm’s objective at time T is to perform

nearly as well as all of the highest-priority strategies
in the sequence, i.e. those belonging to an initial
segment x1, x2, . . . , xj whose length tends to infinity
with T .

Definition 2.6. (anytime bandit algorithm
for N) An algorithm ALG with strategy set N
is called an anytime bandit algorithm for N if
there exists a function τ(j, δ), defined for all j ∈
N, δ > 0 and taking values in N, such that
R(ALG,Aobl; {1, . . . , j}, T) < δ for all T > τ(j, δ),
where Aobl denotes the class of all oblivious adver-
saries. It is a perfect anytime bandit algorithm if
τ(j, δ) ≤ j poly(log(j), 1/δ). The function τ(j, δ) is
called the convergence time of the algorithm.

In [1] the authors prove a lower bound of
Ω(
√

KT) for the regret of K-armed bandit algorithms
against an oblivious adversary. Observe that this im-
plies a lower bound τ(j, δ) = Ω(j/δ2) for the conver-
gence time of anytime bandit algorithms for N; simi-
larly it implies a lower bound τ(ε, δ) = Ω(1/εδ2) for
the convergence time of anytime bandit algorithms
for a probability space (S, µ). Hence the definition of
“perfect anytime bandit algorithm” ensures that the
convergence time of such an algorithm is optimal up
to a factor of poly(log(j), 1/δ) or poly(log(1/ε), 1/δ).

3 Equivalence of the definitions

Theorem 3.1. The following are equivalent:

1. There is an anytime bandit algorithm for N.

2. For all probability spaces (S, µ), there is an
anytime bandit algorithm for (S, µ).

Moreover, the two conclusions remain equivalent with
“perfect anytime bandit algorithm” in place of “any-
time bandit algorithm”.

Proof. (1) ⇒ (2): Assume that there is an anytime
bandit algorithm ALGN for N with convergence time
τ(j, δ). Given a probability space (S, µ), we imple-
ment an anytime bandit algorithm ALGµ for (S, µ) as
follows. At initialization time, the algorithm samples
an infinite sequence x1, x2, x3, . . . of elements of S by
drawing independent samples from the distribution
µ. Next, ALGµ simulates algorithm ALGN, choosing
strategy xj every time ALGN chooses a strategy j ∈ N.
(Of course, in an actual implementation of ALGµ, one
need not perform an infinite amount of computation
at initialization time. Instead, the samples x1, x2, . . .
can be determined by “lazy evaluation”: whenever
ALGN decides to a choose a strategy j ∈ N which has
not been chosen before, ALGµ draws a new sample
xj ∈ S from distribution µ.)

If ALGN has convergence time τ(j, δ), we claim
that ALGµ has convergence time

τ∗(ε, δ) = τ

(⌈
1
ε

log
(

2
δ

)⌉
,

δ

2

)
.

To see this, let T be any integer greater than τ∗(ε, δ),
and for θ ∈ [0, 1] let

Uθ =

{
x ∈ S : E

[
1
T

T∑
t=1

ct(x)

]
> θ

}

denote the set of strategies whose average cost ex-
ceeds θ. This is a measurable subset of S, so we may
define

θ∗ = inf{θ : µ(Uθ) < 1− ε}
U =

⋂

θ<θ∗
Uθ

V = Uθ∗ =
⋃

θ>θ∗
Uθ.

Note that V ⊆ U and

µ(V) ≤ 1− ε ≤ µ(U).

Now let j = d(1/ε) log(2/δ)e, and let E denote the
event that {x1, x2, . . . , xj} is a subset of V . For any
x ∈ U ,

E

[
1
T

T∑
t=1

ct(xt)− ct(x)

]

= Pr(E)E

[
1
T

T∑
t=1

ct(xt)− ct(x)

∥∥∥∥∥ E
]

+(1− Pr(E))E

[
1
T

T∑
t=1

ct(xt)− ct(x)

∥∥∥∥∥ E
]

≤ Pr(E) + E

[
1
T

T∑
t=1

ct(xt)− ct(x)

∥∥∥∥∥ E
]

(3.1)

We claim each term on the right side of (3.1) is
less than δ/2, from which it follows that ALGµ is an
anytime bandit algorithm for (S, µ) with convergence
time τ∗(ε, δ). The fact that Pr(E) < δ/2 rests on a
straightforward calculation:

Pr(E) ≤ (1− ε)j < e−εj ≤ δ/2.

To see that the second term on the right side of (3.1)
is at most δ/2, note that by the definition of τ(j, δ/2)

we have

E

[
1
T

T∑
t=1

ct(xt)

∥∥∥∥∥ x1, x2, . . . , xj

]

< δ/2 + min
i

E

[
1
T

T∑
t=1

ct(xi)

∥∥∥∥∥ x1, x2, . . . , xj

]

for any values of x1, x2, . . . , xj . Also, since we are
assuming ADV is an oblivious adversary,

E

[
1
T

T∑
t=1

ct(xi)

∥∥∥∥∥ x1, . . . , xj

]
= E

[
1
T

T∑
t=1

ct(xi)

]
.

Finally, for any set {x1, . . . , xj} which is not a subset
of V ,

min
i

E

[
1
T

T∑
t=1

ct(xi)

]
≤ θ∗ ≤ E

[
1
T

T∑
t=1

ct(x)

]
.

Since E denotes the event that {x1, x2, . . . , xj} is not
a subset of V and is independent of the random
variable 1

T

∑
ct(x), we conclude that

E

[
1
T

T∑
t=1

ct(xt)

∥∥∥∥∥ E
]

< δ/2 + E

[
1
T

T∑
t=1

ct(x)

∥∥∥∥∥ E
]

,

which establishes that the second term on the right
side of (3.1) is less than δ/2 as claimed. Finally, note
that the inequality τ(j, δ) ≤ j poly(log(j), 1/δ) im-
plies that τ∗(ε, δ) ≤ (1/ε)poly(log(1/ε), 1/δ), which
confirms that (1) implies (2) with “perfect anytime”
in place of “anytime.”

(2) ⇒ (1): Define a probability distribution µ on N
by assigning to each singleton set {n} a probability
proportional to (n log2 n)−1. (This is a well-defined
probability distribution because

∑∞
n=1(n log2 n)−1 =

C < ∞ for some constant C.) Now let ALG
be an anytime bandit algorithm for (N, µ) with
convergence time τ(ε, δ). We claim ALG is also
an anytime bandit algorithm for N with conver-
gence time τ∗(j, δ) = τ((2Cj log2 j)−1, δ). To
see this, let ε = (2Cj log2 j)−1 and observe that
µ({x}) > ε for all x ∈ {1, 2, . . . , j}. By the de-
finition of an anytime bandit algorithm for (N, µ),
R(ALG,A;x, T) < δ whenever µ({x}) > ε and T >
τ(ε, δ). Thus R(ALG,A; {1, 2, . . . , j}) < δ for any
T > τ∗(j, δ), as claimed. Finally, note that the
inequality τ(ε, δ) ≤ (1/ε)poly(log(1/ε), 1/δ) implies
τ∗(j, δ) ≤ j poly(log j, 1/δ), which confirms that (2)
implies (1) with “perfect anytime” in place of “any-
time.”

4 Construction of anytime bandit algorithms

In this section we specify an anytime bandit algo-
rithm satisfying Definition 2.6. In fact, the definition
may be strengthened by enlarging A to be the set of
all adaptive adversaries for N. The algorithm uses,
as a subroutine, the adversarial multi-armed bandit
algorithm Exp3 [1]. This algorithm Exp3 achieves re-
gret O(

√
TK log(K)) with strategy set {1, 2, . . . ,K}

against an adaptive adversary.

Definition 4.1. (ABA(F)) For any increasing
function F : N → N, we define an algorithm
ABA(F) as follows. For each k ≥ 0, at time F (k) the
algorithm initializes an instance of Exp3 with strategy
set {1, 2, . . . , 2k}. From time F (k) to F (k + 1)− 1 it
uses this instance of Exp3 to select strategies in N,
and at the end of each trial it feeds the cost of the
chosen strategy back to Exp3.

Theorem 4.1. Let A denote the set of all adaptive
adversaries for strategy set N and cost function class
Γ = [0, 1]N. For any k > 0 and any T < F (k), the
regret of ABA(F) satisfies

R(ABA(F),A; {1, 2, . . . , j}, T)

= O

(
F (dlog2 je)/T +

√
k2k/T

)
.

Proof. For x ∈ {1, 2, . . . , j} and ADV ∈ A, we will
prove that

E

[
T∑

t=1

ct(xt)− ct(x)

]
≤ F (dlog2 je) + O(

√
k2kT).

To do so, we make use of the fact that for i ≥ dlog2 je,
strategy x belongs to the strategy set of the Exp3
subroutine operating from time t0 = F (i) to time
t1 − 1 = min(T, F (i + 1) − 1). This strategy set has
cardinality K = 2i, so the regret bound for Exp3
guarantees that

E

[
t1−1∑
t=t0

ct(xt)−ct(x)

]
= O

(√
K log(K)(t1 − t0)

)

= O
(√

i2iT
)

and therefore

E

[
T∑

t=1

ct(xt)− ct(x)

]

=
k−1∑

i=1

E




min(T,F (i+1)−1)∑

t=F (i)

ct(xt)− ct(x)




≤
∑

i<dlog2 je

F (i+1)−1∑

t=F (i)

1

+
∑

dlog2 je≤i<k

E




min(T,F (i+1)−1)∑

t=F (i)

ct(xt)− ct(x)




≤ F (dlog2 je) +
k−1∑

i=1

O
(√

i2iT
)

= F (dlog2 je) + O
(√

k2kT
)

.

Corollary 4.1. For any α > 0, there exists an
algorithm ABA which is anytime bandit algorithm for
N, whose regret R = R(ABA,A; {1, 2, . . . , j}, T) and
convergence time τ = τ(j, δ) satisfy

R = O

(
j1+α

T
+

√
T−

α
1+α log(T)

)

τ = O

(
j1+α

δ
+

(
log(j/δ)

δ2

)1+1/α
)

Proof. Let F (k) = d2(1+α)ke, let ABA = ABA(F),
and apply Theorem 4.1.

Corollary 4.2. There exists an algorithm ABA
which is an anytime bandit algorithm for N, whose re-
gret R = R(ABA,A; {1, 2, . . . , j}, T) and convergence
time τ = τ(j, δ) satisfy

R = O(j log3(j)/T + 1/ log(T))

τ = O
(
j log3(j)/δ + 2O(1/δ)

)
.

Proof. Let F (k) = k32k, let ABA = ABA(F), and
apply Theorem 4.1.

The next corollary is useful primarily as a con-
struction of an anytime bandit algorithm to be
plugged into the collaborative learning algorithm
of [3] in place of the complicated and inefficient BBA
subroutine.

Corollary 4.3. There exists an algorithm ABA
which is an anytime bandit algorithm for N, with re-
gret satisfying

R(ABA,A; {1, 2, . . . , j}, T) = O
(
j log(T)/T 1/3

)
.

Proof. Setting α = 2 in the preceding corollary, we
obtain an algorithm whose regret satisfies

R(ABA,A; {1, 2, . . . , j}, T) = O

(
j3

T
+

log(T)
T 1/3

)
.

Trivially, the regret also satisfies
R(ABA,A; {1, 2, . . . , j}, T) ≤ 1. To prove the
corollary, it suffices to prove that for all sufficiently
large j, T ,

j log(T)/T 1/3 ≥ min{1, j3/T + log(T)/T 1/3}.
Assume, to the contrary, that j log(T)/T 1/3 < 1
and that j log(T)/T 1/3 < j3/T + log(T)/T 1/3. Re-
arranging terms in the second inequality, we obtain
T 2/3 log(T) < j3

j−1 , while the first inequality implies
log2(T)

T 2/3 < 1
j2 . Multiplying these two together, we ob-

tain log3(T) < j
j−1 , which is not possible for suffi-

ciently large j, T .

Corollary 4.4. For any probability space (S, µ),
there exists an algorithm ABA which is an anytime
bandit algorithm for (S, µ), whose regret meets the
following guarantee: for every randomized oblivious
adversary ADV, there is a set U ⊆ S of measure at
least 1− ε, such that

R(ABA, ADV; U, T) = O

(
log2(T)
εT 1/3

)
.(4.2)

Proof. The first half of the proof of Theorem 3.1 es-
tablished a bound on the regret of anytime bandit al-
gorithm algorithms for (S, µ) which can be expressed
as follows. If ALGN is an anytime bandit algorithm
for N whose regret satisfies

(4.3) R(ALGN,A; {1, . . . , j}, T) ≤ f(j, T)

for some function f , then there is an anytime bandit
algorithm ALGµ for (S, µ) whose regret meets the
following guarantee for all ε > 0, for all j > 0, and
for all oblivious adversaries ADV: there exists a set
U ⊆ S of measure at least 1− ε, such that

R(ALGµ, ADV; U, T) ≤ e−εj + f(j, T).

The corollary follows by applying this fact using the
algorithm from Corollary 4.3, which satisfies (4.3)
with f(j, T) = O

(
j log(T)/T 1/3

)
. One puts j =

dlog(T)/εe to obtain the bound stated in (4.2).

5 Non-existence of perfect anytime bandit
algorithms

In the preceding section we saw that anytime ban-
dit algorithms for N can achieve convergence time

O(j1+α poly(1/δ)) for arbitrarily small positive con-
stants α, and that they can also achieve conver-
gence time O(j polylog(j) 2O(1/δ)). Given these posi-
tive results, it is natural to wonder whether one can
achieve convergence time O(j polylog(j) poly(1/δ)),
i.e. whether a perfect anytime bandit algorithm ex-
ists. This question is answered negatively by the fol-
lowing theorem.

Theorem 5.1. Let d be any positive integer.
There does not exist an anytime bandit algo-
rithm for N achieving convergence time τ(j, δ) =
O(j logd(j) δ−d).

Proof. Assume, by way of contradiction, that ALG
is an algorithm with convergence time τ(j, δ) <
Cj logd(j)δ−d. We will consider the algorithm’s regret
against an oblivious adversary ADV who supplies
an input instance in which all cost functions ct are
equal to a single random cost function c, defined
as follows. Let rk (1 ≤ k < ∞) be independent
random variables, where rk is uniformly distributed
over the set {22k−1

+ 1, 22k−1
+ 2, . . . , 22k} × {0, 1}.

Let c(1) = 1/4, and define c(j) for j ≥ 2 as follows:
let k = dlog2(log2(j))e and put

c(j) =
{

2−k if rk = (j, 1)
1 otherwise.

In other words, with probability 1/2 the cost of every
element in the set {22k−1

+ 1, . . . , 22k} is equal to
1, and with probability 1/2 there is a uniformly
distributed random element of this set with cost 2−k,
and all others have cost 1.

Presented with this input, the algorithm ALG will
select a random sequence of strategies x1, x2, . . . , xT .
Let us say that the algorithm performs a probe at
time t if this is the first time that it samples xt,
i.e. xt 6∈ {x1, x2, . . . , xt−1}. Let qt be the Bernoulli
random variable

qt =
{

1 if ALG performs a probe at time t
0 otherwise

and let Q =
∑T

t=1 qt denote the random variable
which counts the number of probes up to time T .
We will frequently need to use the following fact.

Claim 5.1. Pr(min1≤t≤T c(xt) ≤ 2−k ‖Q) is at most

Q
/(

22k − 22k−1
)

.

Proof. For x > 0, let loog(x) = dlog2(log2(x))e and
let r(x) = 22loog(x) − 22loog(x)−1

denote the number of
strategies in the set {22loog(x)−1

+1, . . . , 22loog(x)}. Let

τ1 < τ2 < . . . < τQ denote the numbers of the trials
in which the algorithm performs its Q probes. For
0 ≤ s < Q,

Pr
(
c(xτs+1) > 2−k ‖ c(xτ1), c(xτ2), . . . , c(xτs

)
)

≥
{

1− 1
r(x)−s if x > 22k−1

1 otherwise

≥ 1− 1
22k − 22k−1 − s

.

Hence

Pr
(

min
1≤t≤T

c(xt) > 2−k

)

≥
Q−1∏
s=0

(
1− 1

22k − 22k−1 − s

)

= 1− Q

22k − 22k−1 ,

which establishes the claim.

Resuming the proof of Theorem 5.1, put T = 22k+3dk.
We distinguish two cases.

Case 1: Pr
(
Q > 1

2

(
22k − 22k−1

))
< 3/4.

Case 2: Pr
(
Q > 1

2

(
22k − 22k−1

))
≥ 3/4.

In Case 1, let j = 22k

, δ = 2−k−5. For sufficiently
large k,

τ(j, δ) = Cj logd(j)δ−d = 22k+2dk+5d+log2(C) < T.

We will prove that

R(ALG,ADV; {1, 2, . . . , j}, T) > δ,

thus obtaining a contradiction. Consider the follow-
ing three events.

E1 =
{

Q ≤ 1
2

(
22k − 22k−1

)}

E2 =
{

min
1≤t≤T

c(xt) ≥ 2−(k−1)

}

E3 =

{
min

1≤x≤22k
c(x) = 2−k

}

By assumption, Pr(E1) > 1/4. Claim 5.1 estab-
lishes that Pr(E2 ‖ E1) ≥ 1/2. Next we argue
that Pr(E3 ‖ E1 ∧ E2) ≥ 1/3. Let U = {22k−1

+
1, . . . , 22k}, and let V denote the intersection of U

with {x1, x2, . . . , xT }. Conditional on E1, |V | ≤
|U |/2, and conditional on E2, rk is uniformly distrib-
uted in the set U ×{0, 1} \ V ×{1}. Hence the prob-
ability is at least 1/3 that rk ∈ (U \ V)× {1}, which
implies E3.

Putting this all together, Pr(E1∧E2∧E3) > 1/24.
Assuming E2 and E3, there exists a strategy x ∈
{1, 2, . . . , j} such that 1

T

∑T
t=1 c(xt) − c(x) ≥ 2−k =

32δ. Thus,

R(ALG,ADV; {1, 2, . . . , j}, T)

= E

[
1
T

T∑
t=1

c(xt)− c(x)

]

≥ 32δ Pr(E2 ∧ E3) > δ,

as claimed.
In Case 2, let j = 22k−1

and δ = 2−2k−1/d. Note
that τ(j, δ) < T provided that k is sufficiently large.
Letting E denote the complement of an event E , we
have Pr(E1) ≥ 3/4 by assumption, and we have

Pr(E3) = Pr
(
rk ∈ {22k−1

+ 1, . . . , 22k} × {0}
)

=
1
2
;

hence Pr(E1 ∧ E3) ≥ 1/4. Let

E4 =
{

min
1≤t≤T

c(xt) ≥ 2−k

}
.

By Claim 5.1,

Pr(E4) ≤ T
/(

22k+1 − 22k
)

= o(1),

so for k sufficiently large

Pr(E1 ∧ E3 ∧ E4) > 1/8.

Let x = arg min1≤i≤j c(i). Assuming E3 and E4, we
have c(xt) ≥ c(x) for t = 1, 2, . . . , T . Moreover,
assuming E4, there are at least Q− k− 1 probes with
cost 1, so

1
T

T∑
t=1

c(xt)−c(x) ≥ 1
T

(Q−k−1)(1−c(x)) ≥ Q− k − 1
2T

.

Assuming E1 and assuming k is sufficiently large,

Q− k − 1
2T

> 2−4dk > 23−2k−1/d = 8δ,

hence

R(ALG, ADV; {1, 2, . . . , j}, T)

≥ Q− k − 1
2T

Pr(E1 ∧ E3 ∧ E4) > δ,

contradicting the assumption that ALG is an anytime
bandit algorithm with convergence time τ(j, δ).

References

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and
R. E. Schapire, The nonstochastic multiarmed
bandit problem, SIAM J. Computing, 32 (2002),
pp. 48–77.

[2] B. Awerbuch and R. Kleinberg, Adaptive rout-
ing with end-to-end feedback: distributed learning
and geometric approaches, in Proceedings of the
36th ACM Symposium on Theory of Computing
(STOC), 2004, pp. 45–53.

[3] , Competitive collaborative learning, in Pro-
ceedings of the 18th Annual Conference on Learning
Theory (COLT), 2005. To appear.

[4] A. Blum and J. Hartline, Near-optimal online
auctions, in Proceedings of the 16th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA
2005), 2005, pp. 1156–1163.

[5] A. Blum, V. Kumar, A. Rudra, and F. Wu, On-
line learning in online auctions, Theoretical Com-
puter Science, 324 (2004), pp. 137–146.

[6] M. Boddy, Anytime problem solving using dynamic
programming, Proceedings of National Conference
on Artificial Intelligence (AAAI), (1991).

[7] E. Cope, Regret and convergence bounds for
immediate-reward reinforcement learning with con-
tinuous action spaces, 2004. Unpublished manu-
script.

[8] A. D. Flaxman, A. T. Kalai, and H. B. McMa-
han, Online convex optimization in the bandit set-
ting: Gradient descent without a gradient, in Pro-
ceedings of the 16th ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), 2005, pp. 385–394.

[9] Y. Freund and R. E. Schapire, A decision-
theoretic generalization of on-line learning and an
application to boosting, Journal of Computer and
System Sciences, 55 (1997), pp. 119–139.

[10] J. C. Gittins and D. M. Jones, A dynamic alloca-
tion index for the sequential design of experiments,
in Progress in Statistics, J. G. et al., ed., North-
Holland, 1974, pp. 241–266.

[11] R. Kleinberg, Nearly tight bounds for the
continuum-armed bandit problem, in Advances in
Neural Information Processing Systems 17, L. K.
Saul, Y. Weiss, and L. Bottou, eds., MIT Press,
Cambridge, MA, 2005, pp. 697–704.

[12] R. Kleinberg and T. Leighton, The value of
knowing a demand curve: Bounds on regret for
on-line posted-price auctions, in Proceedings of the
44th IEEE Symposium on Foundations of Computer
Science (FOCS), 2003, pp. 594–605.

[13] N. Littlestone and M. K. Warmuth, The
weighted majority algorithm, Information and Com-
putation, 108 (1994), pp. 212–260.

[14] H. B. McMahan and A. Blum, Online geometric
optimization in the bandit setting against an adap-
tive adversary, in Proceedings of the 17th Annual
Conference on Learning Theory (COLT), vol. 3120

of Lecture Notes in Computer Science, Springer Ver-
lag, 2004, pp. 109–123.

[15] S. Zilberstein, Operational rationality through
compilation of anytime algorithms, 1993.

